
A Scalable Protocol for Content-Based Routing in Overlay Networks

R. Chand, P.A. Felber
Institut EURECOM

06904 Sophia Antipolis, France
{chand|felber}@eurecom.fr

Abstract
In content networks, messages are routed on the basis of

their content and the interests (subscriptions) of the mes-
sage consumers. This form of routing offers an interesting
alternative to unicast or multicast communication in loosely-
coupled distributed systems with large number of consumers,
with diverse interests, wide geographical dispersion, and het-
erogeneous resources (e.g., CPU, bandwidth). In this paper,
we propose a novel protocol for content-based routing in over-
lay networks. This protocol guarantees perfect routing (i.e.,
a message is received by all, and only those, consumers that
have registered a matching subscription) and optimizes the
usage of the network bandwidth. Furthermore, our protocol
takes advantage of subscription aggregation to dramatically
reduce the size of the routing tables, and it fully supports
dynamic subscription registrations and cancellations without
impacting the routing accuracy. We have implemented this
protocol in the application-level routers of an overlay network
to build a scalable XML-based data dissemination system. Ex-
perimental evaluation shows that the size of the routing tables
remains small, even with very large populations of consumers.

1 Introduction

Content-based routing differs significantly from tra-
ditional unicast and multicast communication, in that
messages are routed on the basis of their content rather
than the IP address of their destination. This form of
addressing is widely used in event notification or pub-
lish/subscribe systems [12] to deliver relevant data to
the consumers, according to the interests they have ex-
pressed. By allowing consumers to define the type of
messages they are interested in, data producers do not
need to keep track of the consumer population and can
simply inject messages in the network. In turn, con-
sumers with scarce resources (e.g., mobile devices with
limited bandwidth) can restrict the type and amount of
data that they receive by registering highly-selective sub-
scriptions, and hence limit their incoming network traf-
fic. The complex task of filtering and routing messages
is left to the network infrastructure, which consists typi-
cally of application-level routers organized in an overlay
network.

In order to route messages to all, and only those, con-
sumers that have registered a matching subscription, the
distributed routers of a content-based network must keep
track of the consumers’ subscriptions in their routing
table.With large numbers of consumers, the size of the
routing tables can quickly become a bottleneck, as each
router must match each incoming message against the
subscriptions of its routing table at “wire speed” and the
filtering speed is highly dependent of the number of sub-
scriptions. It is thus of paramount importance for a scal-
able content-based network to incorporate a space- and
bandwidth-efficient routing protocol, and highly-efficient

filtering mechanisms.
In the paper, we present the XRoute content-based

routing protocol that we have designed for our XNet

XML-based data dissemination system [7]. Although
XNet uses XML as data format and XPath as subscrip-
tion language, our routing protocol can be readily ap-
plied to other subscription models, including simple IP
prefixes. The protocol implements perfect routing, i.e., a
message is routed only to the consumers that have reg-
istered a matching subscription, and to all of them. It
takes advantage of subscription similarities to “aggre-
gate” them in the routing tables, and hence minimize
the space requirements and increase the filtering speed
at the routers. Furthermore, the protocol allows con-
sumers to register new subscriptions, and cancel them,
at any time without impacting the routing accuracy. To
the best of our knowledge, this is the first content-based
routing protocol that takes advantage of subscription ag-
gregation and fully supports subscription cancellations.
Experimental evaluation demonstrates that subscription
aggregation is effective and dramatically reduces the size
of the routing tables.

2 Related Work

Selective event dissemination can be achieved by var-
ious means. The simplest approach, called flooding, con-
sists in broadcasting events and filtering out unwanted
data at the consumer (or at the consumer’s local content
router). This approach can quickly lead to network satu-
ration. Alternatively, routers can be configured to match
published events against all subscriptions and compute
a destination list used to route events. This approach,
called match-first, increases the space requirements and
the filtering time at the routers, and does not scale well
to large numbers of subscriptions. These two approaches
are generally not classified as “content-based routing”
because data is routed to all nodes in the first case, and
according to a pre-computed list of addresses in the sec-
ond case.

Several publish/subscribe systems implement some
form of content-based routing (see [12] for a survey).
Elvin [14] is architectured around a single server that
filters and forwards producer messages directly to con-
sumers, thus alleviating the need for a real content-based
routing protocol. The authors mention a distributed ex-
tension of Elvin, but do not discuss how they plan to
achieve distributed content routing.

IBM Gryphon [2] uses a set of networked brokers to
distribute events from publishers to consumers. It uses
a distributed filtering algorithm based on parallel search
trees maintained on each of the brokers to efficiently de-
termine where to route the messages. To construct or to

update the parallel search trees, each broker must have a
copy of all the subscriptions in the system, which makes
this approach unpractical with large number of subscrip-
tions or when subscriptions are frequently registered and
canceled.

Siena [4] also uses a network of event servers for
content-based event distribution. The routing protocol
of Siena [5] is most similar to ours. Each event server
maintains a routing table that holds a subset of the sub-
scriptions, and the associated subscribers and neighbor
routers. Messages are matched against each subscrip-
tion and forwarded along the paths corresponding to
matching subscriptions. However, Siena’s routing pro-
tocol does not support subscription cancellation (cancel-
lations in Siena would degrade routing accuracy, and the
system could eventually degenerate into a flooding ap-
proach). In addition, we could not determine the space-
and time-efficiency of the protocol, and whether it can
be extended to support more general subscription lan-
guages.

Jedi [10] proposes several variations for event routing
among its networked event servers, including the flood-
ing and match-first approaches. With the hierarchical
approach, event servers are organized in an (arbitrary)
tree; subscriptions are propagated upward the tree, and
messages are propagated both upward and downward to
the children that have matching subscriptions. This ap-
proach may lead to very large routing tables at the root
of the tree, and unnecessary propagation of events up-
ward the tree.

In [16], the authors propose an approach for content-
based routing of XML data in mesh-based overlay net-
works. They introduce a routing protocol that reassem-
bles data streams sent over multiple redundant paths to
tolerate some node or link failures. The focus of this
work is on reliable delivery of streaming data, and does
not explicitly address subscription management.

In [15], the authors propose to add content-based
routers at specific nodes of an IP multicast tree to reduce
network bandwidth usage and delivery delays. They pro-
pose algorithms for determining the optimal placement
of a given number of content routers. The routing proto-
col merely consists of propagating subscriptions upward
the tree, until they reach the producer or are subsumed
by other subscriptions. Subscription cancellation is not
supported.

Note that, in this paper, we focus on the routing of
messages in an overlay network, and we do not explicitly
address the issue of efficiently matching the messages
against subscriptions. This problem has been widely
studied elsewhere (e.g., in [1, 13, 3, 7, 11]).

3 System Model and Definitions
Our protocol routes messages (or events) through the

nodes of an overlay network, according to the messages’
content and the subscriptions registered by the con-
sumers. Each node of the overlay network acts as a
content-based router. Each data consumer and producer
is connected to some node in the network; we call such
nodes consumer and producer nodes. To simplify the
presentation, we assume that consumer and producer
nodes are distinct, i.e., one cannot directly connect both
a producer and a consumer to the same router node.
Nodes that have no consumer or producer are inner
nodes. A sample network topology is shown in Figure 4.

We assume that all routers know their neighbors, as
well as the best paths that lead to each producer. We

also assume that the number and location of the producer
nodes is known. In contrast, the consumer population
does not need to be known a priory.

Nodes communicate with their neighbors using reli-
able point-to-point transport such as TCP, and we as-
sume that nodes and links do not fail. Each node has a
set of links, or interfaces, that connects the node to its di-
rect neighbors. We assume that there exists exactly one
interface per neighbor (we ignore redundant links con-
necting two neighbors). For a given producer, we will
generally denote by Iup, or upstream interfaces, the in-
terfaces along the path up to the producer, and Idown,
or downstream interfaces, the other interfaces (along the
paths to the consumers). In general, we will discuss the
properties and behavior of our protocol in the case of a
single producer; it can be, however, trivially extended to
the case of multiple producers.

The actual consumers are connected to consumer
nodes via links that are not part of the overlay net-
work, and therefore not associated with any of the node’s
interface. Furthermore, to simplify the presentation of
the protocol, we assume that consumer nodes are edge
routers with a single interface that connects them to the
overlay network (this property can always be satisfied by
introducing virtual consumer nodes at the edges of the
overlay). Consumers register and cancel subscriptions
via their consumer nodes. A consumer cannot cancel a
subscription that it did not previously register (the con-
sumer node will filter out such requests).

Consumer interests are expressed using a subscription
language. Subscriptions allow to specify predicates on
the set of valid events for a given consumer. Our XNet

system was designed to use a significant subset of the
XPath language [17] to specify complex, tree-structured
subscriptions, and the XTrie filtering algorithm [7] for
efficient matching of events against large number of sub-
scriptions. However, our routing protocol can be used
with any subscription language.

We say that a subscription S1 covers another sub-
scription S2, denoted by S1 ⊇ S2, iff any event matching
S2 also matches S1, i.e., matches(S2) ⇒ matches(S1).
The covering relationship defines a partial order on the
set of all subscriptions. For XPath expressions, we have
shown in [6] that covering relationships can be evaluated
in O(nm) time, where n and m are the number of nodes
of the two expressions being compared.

4 Overview of the Protocol
Goals. Our routing protocol has been designed to
achieve several goals. First, it should lead to perfect
routing of data in the network, i.e., when an event is
published, all the consumers that are interested in that
event, and only those, must receive it. Second, routing
should ideally be optimal, i.e., the link cost of routing
an event should be no more than that of sending the
event along a multicast tree spanning all the consumers
interested in the event.

Third, the protocol should take advantage of subscrip-
tion aggregation to minimize space and processing re-
quirements at the nodes. Informally, subscription ag-
gregation is a mechanism that enables us to reduce the
size of the routing tables by detecting and eliminat-
ing subscription redundancies; it is a key technique to
scale to very large populations of consumers in a pub-
lish/subscribe system.

Finally, the protocol should be efficient and allow con-
sumers to register and cancel subscriptions at any time.

In particular, canceling a subscription should leave the
system in the same state as if the subscription were not
registered in the first place.

Routing. Routing works in a distributed manner.
Each node N in the network contains in its routing table
a set of entries that represent the subscriptions that its
neighbor nodes are interested in. For each subscription
S, node N maintains some information in its routing ta-
ble in the form “if match S, send toN1, N2, . . . ”. In other
words, node N knows which neighbor nodes it must for-
ward an event to, if that event matches S. When a node
is a consumer node, it knows the consumers which are
interested in receiving events matching S. The process
starts when a publisher produces an event at its pub-
lisher node and ends when all consumer nodes that are
interested in that event have received it.

N1

P1

P2

C1 C2
C3

N2

N3

N4 N5

S S

e1

S N4

S N3

S N1 , N2

S N3

S C3S C2

e1

e1

e1

e1

e1

e1

(a)

N1

P1

P2

C1 C2
C3

N2

N3

N4 N5

S1

Adv(S2)

Adv(S1)

Adv(S1)

S1

Adv(S1)

Adv(S1)

Adv(S2)

S1 S1

S1

S1

(b)
Figure 1: (a) A sample publish/subscribe network. Sub-
scriptions are represented underneath the consumers that
registered them, and routing table entries are listed next to
the node they are associated with. (b) Subscription adver-
tisements are propagated upward from the consumers to the
publishers. They may be transformed along the propagation
paths due to aggregation (here, we have S1 ⊇ S2).

Example 1 Consider the network in Figure 1(a), with
two publisher nodes P1 and P2, and three consumer nodes
C1, C2, and C3. The other nodes N1, N2, N3, N4, and
N5 are internal nodes. Nodes C2 and C3 have consumers
interested in receiving events matching subscription S.
Suppose that e1, an event matching subscription S, is
published at node P1. Event e1 will follow the path high-
lighted by the arrows.
Principle of the Algorithm. When some consumer
registers or cancels a subscription, the nodes of the over-
lay must update their routing tables accordingly; to do
so, they exchange pieces of information that we call sub-
scription advertisements, or simply advertisements. An
advertisement carries a subscription, and corresponds ei-
ther to a registration or a cancellation. From the point
of view of node N , an advertisement for subscription
S received from a neighbor node N ′ indicates that a
consumer at N ′ or downstream from N ′ has registered
or canceled subscription S. The subscription algorithm
works by propagating advertisements recursively across
the overlay, from the consumers toward the producers,
following the best path (see Section 3). Note that sub-
scriptions may be transformed along the propagation
path due to aggregation, i.e., a subscription received as
part of an incoming advertisement may be different from
the subscription carried by the resulting outgoing adver-
tisement.

The general principle of the algorithm is shown in Al-
gorithm 1, and illustrated in Figure 1(b). The algorithm
starts when a consumer registers or cancels a subscrip-
tion S. It builds an advertisement corresponding to this
subscription and sends it to its consumer node C. The al-
gorithm ends when the publisher node has been reached.
When a subscription should be registered by multiple
producers, the advertisements are sent along the paths
to each of the producers.

Algorithm 1 Sketch of the protocol at node N
1: when receive adv(S) from N ′ via interface Idown
2: update routing table
3: generate outgoing advertisement adv(S′)
4: send adv(S′) via Iup upward to the producer
5: end when

Subscription Aggregation. Subscription aggrega-
tion is a key technique that allows us to minimize the
size of the routing tables by eliminating redundancies
between subscriptions, and consequently to improve the
routing performance.

Consider the situation illustrated in Figure 1(b). At
node N1, two subscriptions S1 and S2 were advertised
by consumer nodes C1 and C2, respectively. From the
point of view of node N3, this means that some con-
sumers downstream N1 are interested in receiving events
matching S1 or S2. Now, assume that S1 ⊇ S2, that is,
any event matching S2 also matches S1. The mechanism
of subscription aggregation is based on the following ob-
servation: when an event e arrives at node N3, it is only
necessary to test e against S1, because, by definition, any
event matching S2 also matches S1, and any event that
does not match S1 does not match S2 either.1 Because
of that property, S2 becomes redundant and can be “ag-
gregated” with S1 (in particular, S2 does not need to be
propagated upstream from N1 to N3).

We distinguish between two forms of subscription ag-
gregation. If S1 and S2 are registered through the same
interface Ik (e.g., at Node N3 in Figure 1(b)), we say
that S2 is represented by S1 at interface Ik. If they are
not registered through the same interface, we say that
S2 is substituted by S1 (e.g., at Node N1 in Figure 1(b)).
In both situations, only S1 is advertised upstream.

5 The Subscription Algorithm

In this section, we formally present our content-based
routing protocol.
5.1 Data Formats
Routing Tables. Each node N maintains a routing
table that consists of a set of entries. Each entry cor-
responds to one distinct subscription (two identical sub-
scriptions share the same entry). We will write entry(S)
to refer to the entry corresponding to subscription S. It
maintains information about all the registrations for sub-
scription S that have been received by node N . More
precisely, the information in entry(S) represents N ’s
view of its neighbor’s interests in subscription S. More-
over, entry(S) also contains the information required to
implement the aggregation principle introduced in Sec-
tion 4.

An entry entry(S) in the routing table of node N has
the following format:

S ; (T 1
S , · · · , TnS) ; RS ; PtrS

1An IP networking analogy would be that of network prefixes,
where S1 is a prefix of S2.

where S is the subscription and n is the number of in-
terfaces of node N . T kS represents the population of con-
sumers downstream interface Ik that are interested in
events matching S. Each T kS consists of a set of three in-
tegers that we will refer to as T kS .x, T kS .y, and T kS .z (to be
described shortly). T kS is defined by T kS .x+ T kS .y + T kS .z
and is always greater than or equal to 0 (it is strictly
greater than 0 iff there are consumers downstream inter-
face Ik interested in receiving events matching S). Fi-
nally, RS represents the total number of subscriptions
that have been “aggregated” in S (either through repre-
sentation or substitution), and PtrS , if non-null, points
to another entry in the routing table that S is substituted
by.

The sum of T kS .x and T kS .y represents the population
of subscriptions S downstream interface Ik, i.e., the num-
ber of consumers interested in receiving events matching
S (the distinction between T kS .x and T kS .y will be dis-
cussed later). T kS .z corresponds to the number of sub-
scriptions “aggregated” in S (either through representa-
tion or substitution) downstream interface Ik.

Advertisements. As mentioned previously, advertise-
ment messages are exchanged between routers to regis-
ter or cancel a particular subscription. From the point
of view of node N , receiving an advertisement message
adv(S) from interface Ik means that a change about the
population of subscriptions S has occurred downstream
interface Ik. Node N must update its routing table to
take this change into account; in particular, T kS needs
to be updated. N also needs to generate and send an
advertisement to the upstream neighbor node.

An advertisement message adv(S) is a sequence of
triples with the following format:

S ; nS ; rS
where S is the subscription advertised, and nS is the
number of times S should be registered (nS > 0) or can-
celed (nS < 0). rS represents the number of subscrip-
tions, distinct from S, that have been substituted by S
downstream Ik, and that should be registered (rS > 0) or
canceled (rS < 0) at node N . Finally, adv(S) may con-
tain additional triples, with the same format, indicating
additional modifications to perform to the routing tables
upstream.

Events. Events are messages whose content can be
matched against consumer subscriptions. In our XNet

system, events are formatted as XML documents. Once
the routing table have been populated, routing an event
is a trivial task. When node N receives event e sent by
producer P from interface Iup, it matches e against the
subscriptions in his routing table (in our system, efficient
matching is implemented using the algorithms presented
in [7]). For each interface Ikdown such that there is at least
one subscription S with T kS > 0, node N propagates e
downstream that interface. Note that there cannot be
cycles because each node always receives events through
its Iup interface located on the best path (see Section 3)
from the producer to the node, and never propagates
them along that path.

5.2 Representation and Substitution
Before describing the subscription algorithm, we need

to describe more formally the representation and substi-
tution relations, and how they are implemented.

Definition 1 (Representation) Consider entries for
subscriptions S1 and S2 at non-consumer node N such
that S1 ⊃ S2, T kS1

> 0 and T kS2
> 0, then S2 must be rep-

resented by S1 at interface Ik. This operation consists
in modifying their entries as follows:

1. T kS1
.z ← T kS1

.z + T kS2

2. RS1 ← RS1 + T kS2

3. RS2 ← RS2 − T kS2
.z

4. T kS2
← 0

Thereafter, we say that S2 is represented by S1 at inter-
face Ik.

The representation operation implements the sub-
scription aggregation mechanism introduced in Section 4.
Indeed, having both T kS1

and T kS2
greater than zero is re-

dundant, because it is not necessary to test an event
against S2 to know if it has to be forwarded down that
interface. Therefore, when S2 has been represented by
S1 at interface Ik, T kS2

becomes null, which is equiva-
lent to say that no client is interested in receiving events
matching S2 downstream interface Ik.

Note that if some subscriptions were previously rep-
resented by S2 at interface Ik, they now become repre-
sented by S1 at Ik. Indeed, T kS2

represents the sum of the
instances of S2 registered at Ik and all the subscriptions
that are represented by S2 at Ik. At the time S2 is repre-
sented by S1 at Ik, S1 takes control of all instances of S2
and all the subscriptions that it represents (steps 1 and 2
in Definition 1), and S2 loses control of the subscriptions
it used to represent (steps 3 and 4).
Definition 2 (Substitution) Consider entries for
subscriptions S1 and S2 at node N such that: S1 ⊃ S2,
PtrS1 = null, and PtrS2 = null. Then S2 must be
substituted by S1. This operation consists in modifying
their entries as follows:

1. PtrS2 ← S1

2. RS1 ← RS1 +
∑
k≤n T

k
S2
.x+RS2

Thereafter, we say that S2 has been substituted by S1,
and S2 must subsequently be advertised by S1, i.e., any
incoming advertisement (S2;n; r) yields an outgoing
advertisement (S1; 0;n + r). Note that a subscription
may be substituted by only one other subscription.

The signification of a substitution operation can be
understood by observing the following scenario. Sup-
pose that the conditions for substituting S2 by S1 are
met, but we do not perform the substitution operation.
If an incoming advertisement for S2 (registering nS2 sub-
scriptions) arrives at nodeN , the outgoing advertisement
sent to the upstream neighbor node N ′ at interface Ij
will be advup(S2). Then, S2 will be represented by S1

at interface Ij of N ′. Thus, by substituting S2 by S1 at
node N , we anticipate this representation. The outgoing
advertisement advertises S1 and specifies that S1 is to
represent nS2 additional subscriptions at interface Ij .

Although it adds some complexity to the protocol,
the subscription substitution mechanism is necessary to
guarantee perfect routing when canceling a subscription
that acts as a substitute for some other subscriptions.
In addition, it can help save bandwidth by propagating
smaller advertisements.

Note that there may be multiple substitution relations
between subscriptions. That is, subscription S can be

substituted by S′, which is in turn substituted by S′′,
etc. We call such a sequence a substitution chain. For
any subscription Si, we denote by h(Si) the subscrip-
tion at the top of the chain, i.e., the subscription S with
PtrS = null. We denote by tree(S) the set of all the
subscriptions Sj that have been substituted, directly or
indirectly, by S (including S). Figure 2 shows a subscrip-
tion tree, where links represent substitutions (the child
is substituted by its parent). For instance, tree(S1) con-
tains all subscriptions, tree(S3) contains S3, S4, and S5,
and tree(S5) only contains S5.

S1

S2 S3

S5S4

S1: /stock
S2: /stock[symbol="IBM"]
S3: /stock[symbol="LU"]
S4: /stock[symbol="LU"][price<10]
S5: /stock[symbol="LU"][volume>1000]

Figure 2: The substitution relations apply recursively. Sub-
scriptions can be organized in a tree, where a link indicates
that a child is substituted by its parent.

A substitution operation can only be performed be-
tween two subscriptions if none of them has already been
substituted, in other words between two tops of chains.
Let S1 and S2 be two such subscriptions. When S2 is
substituted by S1, RS1 is incremented by

∑
k≤n T

k
S2
.x,

which represents the number of subscriptions S2 (step 2
in Definition 2). Indeed, as S2 was not substituted be-
fore, T kS2

.y = 0 for all k. Besides, RS1 is also incremented
by RS2 , which represents the number of subscriptions
that are represented by S2 at all interfaces, plus the ones
that have been substituted by S2, if any. Thus, recur-
sively, RS1 represents all the subscriptions in tree(S1),
plus those that are represented by any of them. This is
true for any subscription.
5.3 Protocol Description

Updating the routing table constitutes the main task
of the subscription algorithm. The table must be up-
dated at node N each time an advertisement for a sub-
scription S arrives from an interface Ik, i.e., when a
change has occurred in the population of the subscrip-
tions S downstream interface Ik. The routing table at
node N must be updated so that its entries are accurate
enough to enable perfect routing. Moreover, the algo-
rithm must make full use of subscription aggregation at
all times. The details of the algorithm are given in Al-
gorithms 2, 3, and 4, and described in the rest of this
section.
Algorithm 2 — Routing Table Update

1: if PtrS 6= null then

2: TkS .y ← TkS .y + nS
3: for all S′ ancestor of S in tree(h(S)) do
4: RS′ ← RS′ + nS + rS
5: end for
6: advout ← (h(S); 0;nS + rS)
7: else
8: TkS .x← TkS .x+ nS
9: advout ← (S;nS ; rS)

10: end if
11: TkS .z ← TkS .z + rS
12: RS ← RS + rS

When an advertisement for a subscription S arrives at
interface Ik of node N , we first update T kS . Then we try
to establish some relations with the other subscriptions
in the routing table, if possible. We now identify and
discuss the various situations that may occur.

Establishing Subscription Relations. First we con-
sider the following two properties (proofs in [8]):
Property 1 When an advertisement for the registration
of subscription S arrives from node N ′ at interface Ik of
node N , S cannot be represented by any subscription at
that interface.
Property 2 When an advertisement for the registration
of subscription S2 arrives at node N and S2 can be sub-
stituted by another subscription S1, then no subscription
can be substituted by S2.

Now consider an advertisement adv(S) for subscrip-
tion S arriving at interface Ik of node N . If that adver-
tisement corresponds to a subscription cancellation, it
means that a registration advertisement for S has been
received earlier at interface Ik (consumers cannot cancel
subscriptions that they have not previously registered).
Otherwise, if entry(S) exists and is such that T kS > 0,
then some advertisement for the registration of S has
been received earlier at interface Ik. In both situations,
the possible aggregation (representation or substitution)
relations between S and the other subscriptions have al-
ready been established.

Thus, we will only try to establish some relations when
(i) adv(S) corresponds to a registration and (ii) there is
no entry for S or entry(S) is such that T kS = 0. More-
over, if S has an entry in the routing table, then some
advertisement for the registration of S has been received
earlier and substitution relations have already been es-
tablished. We therefore try to build the following two
relations when conditions (i) and (ii) above are met.

First, if there is no entry for S in the routing table,
we try to substitute S by another subscription. If that is
possible, then according to property 2, no other subscrip-
tion can be substituted by S (lines 2−3 in Algorithm 4).
Otherwise, we try to substitute other subscriptions by S
(lines 5− 7 in Algorithm 4).

Second, we try to represent other subscriptions by S
at interface Ik (Algorithm 3). Recall that, according to
property 1, S cannot be represented by another subscrip-
tion.

Establishing the aggregation relations between S and
the other subscriptions in the routing table may re-
quire modifying existing relations. We now identify these
cases.

Modifying Subscriptions Relations. Consider an
advertisement for the registration of subscription S ar-
riving at interface Ik of node N , and suppose that we
have T kS = 0. A subscription can only have one substitu-
tion relation. Thus, establishing a substitution relation
between S and some other subscriptions does not require
extra modifications to be performed to the routing table.

On the other hand, a subscription can have multiple
representation relations with other subscriptions. Con-
sider the case where a subscription Sj is to be represented
by S at interface Ik. There are Tj = T kSj instances of
subscription Sj . We have two cases:

First case: Sj ∈ tree(S). The Tj instances of sub-
scription Sj are now represented by S. For each sub-
scription Sk ancestor of Sj in tree(S), the Tj instances
of subscription Sj are no longer substituted by Sk. Thus
subscription Sk must have its R field decremented by Tj
(lines 6− 8 in Algorithm 3). However, the subscriptions
ancestor of S in tree(h(S)) (if any) are still a substitute

for the Tj instances of subscription Sj , and do not need
to have their entry modified.

Second case: Sj 6∈ tree(S). Then the Tj instances of
subscription Sj (that are now represented by S at Ik)
also have for substitutes every subscription ancestor of
S in tree(h(S)) (if any). Thus those subscriptions must
have their R field incremented by Tj (lines 23 − 25 in
Algorithm 3).

Algorithm 3 — Subscription Representation
1: declare A = 0
2: for all Sj subscriptions that can be represented by S at Ik do

3: declare Tj = TkSj
4: Represent Sj by S at Ik

5: if Sj ∈ tree(S) then
6: for all Sk ancestor of Sj in tree(S) do
7: RSk ← RSk − Tj
8: end for
9: else

10: if Sj ∈ tree(h(S)) then
11: for all Sk ancestor of Sj in tree(h(S)) do
12: RSk ← RSk − Tj
13: end for
14: else
15: for all Sk ancestor of Sj in tree(h(Sj)) do
16: RSk ← RSk − Tj
17: end for
18: if Sj 6= h(Sj) then
19: append (h(Sj); 0;−Tj) to advout
20: A← A+ Tj
21: end if
22: end if
23: for all Sk ancestor of S in tree(h(S)) do
24: RSk ← RSk + Tj
25: end for
26: end if
27: remove entry(Sj) if

∑
p≤n T

p
Sj

= 0

28: end for
29: for all Sk ancestor of S in tree(h(S)) do
30: RSk ← RSk + nS + rS
31: end for
32: RS ← RS + rS
33: TkS .z ← TkS .z + rS
34: if h(S) 6= null then

35: TkS .y ← TkS .y + nS
36: advout ← (h(S); 0;nS + rS + A) [+ appended triples]
37: else
38: TkS .x← TkS .x+ nS
39: advout ← (S;nS ; rS + A) [+ appended triples]
40: end if

Then, if Sj belongs to tree(h(S)), all subscriptions
ancestor of Sj in tree(h(S)) (if any) must have their R
field decremented by Tj (lines 11− 13 in Algorithm 3).

On the other hand, if Sj does not belong to tree(h(S)),
then all the subscriptions ancestor of Sj in tree(h(Sj))
must have their R field decremented by Tj (lines 15− 17
in Algorithm 3). In addition, we necessarily have h(Sj) 6=
Sj (otherwise, Sj would have been substituted by S).
Then, at the incoming interface of the upstream neigh-
bor node, the Tj instances of subscription Sj are repre-
sented by subscription h(Sj). This is incompatible with
the fact that those Tj instances are now represented by
S at node N . Thus, we must indicate that h(Sj) should
represent Tj fewer instances of subscription Sj at that
node, whereas h(S), should represent Tj additional in-
stances of Sj . This information is appended to the out-
going advertisement in the form of two additional triples
(h(S); 0;Tj) and (h(Sj); 0;−Tj) (lines 19 − 20, 36 in Al-
gorithm 3).

Dealing with Registrations. In this section, we de-
tail the routing table updates performed by a node N
when it receives from downstream interface Ik a registra-
tion advertisement for a subscription S: (S;nS , rS). The

process is different according to the value of entry(S) in
the routing table.

First case: entry(S) exists and T kS > 0 (Algorithm 2).
As previously mentioned, no new relations can be estab-
lished. All we have to do is to update T kS and RS , as
well as the entries of the subscriptions ancestor of S in
tree(h(S)).

Algorithm 4 — Subscription Substitution
1: create a null entry(S)
2: if ∃S′, S′ ⊃ S, PtrS′ = null then
3: substitute S by S′

4: else
5: for all Sk that can be substituted by S do
6: substitute Sk by S
7: end for
8: end if
9: call algorithm 3: “Subscription Representation”.

Second case: entry(S) exists and T kS = 0 (Algo-
rithm 3). We have to look for all the subscriptions that
can be represented by S at interface Ik. We must also
modify the existing relations and include those modifica-
tions in the outgoing advertisement, if necessary. When
this is done, we update T kS and RS , as well as the entries
of the subscriptions ancestor of S in tree(h(S)) (lines
29− 40).

Third case: entry(S) does not exist (Algorithm 4).
We try to substitute S by another subscription that is
not substituted (lines 2− 3). If that is possible, then we
look for other subscriptions that can be substituted by
S (lines 5− 7). When this is done, we are in the second
case and we apply Algorithm 3.

Additional updates: The incoming advertisement may
contain additional triples (S′; 0;U). These triples are
generated by Algorithm 3 (lines 19) at downstream
neighbor node and are such that U < 0 and PtrS′ = null.
We are thus in the case where entry(S′) exists and
T kS′ > 0, and we can apply algorithm 2 for each S′.

N1

C1 C2

N3

S1 S2 S3
S2

S1 (1,0,0) 1 null

S2 (0,1,0) 0 S1

S3 (1,0,0) 0 null

S1 (1,0,1) (0,0,0) 4 null
S2 (0,0,0) (2,1,0) 0 S1

S3 (1,0,0) (0,0,0) 0 null

S1 (1,0,4) 4 null
S3 (1,0,0) 0 null

S0 1 0

S1 (1,0,1) (0,0,0) 1 null
S3 (1,0,0) (0,0,0) 0 S

0
S0 (0,0,0) (1,0,3) 4 null

S1 (1,0,1) 1 null
S0 (1,0,4) 4 null

S2 (3,0,0) 0 S1
S2 (3,0,0) 0 S0

S0 (1,0,0) 3 null

S0 1 0

S0 1 3
S1 0 -3

S0 1 3
S1 0 -3

Figure 3: Example of the subscription algorithm. Regis-
tered subscriptions are represented below their correspond-
ing client nodes. Routing tables (shown next to the nodes)
are updated as a result of the registration of subscription
S0 (updated tables are shown with a thick frame). Here,
we have S0 ⊇ S2, S1 ⊇ S2, and S1 ⊇ S3. There are no
relationships between S0 and S1, and between S2 and S3.

Example 2 Figure 3 illustrates the operation of the sub-
scription algorithm on the publish/subscribe network of
Figure 1(a). Four consumers have already registered
some subscriptions. A consumer at client node C2 regis-
ters subscription S0, resulting in updates of the routing
table at each node on the path from C2 to each publisher.
For the sake of clarity, we have only represented inner
nodes N1 and N3.

At nodes C2, N1, and N3, entry(S0) does not exist.
Thus, algorithm 4 (which in turn calls algorithm 3) is
called to update the routing table. The following relations
are established: At node C2, S2 is substituted by S0. At
node N1, S3 is substituted by S0, S2 is represented by
S0 at the downstream interface to C2, and entry(S2) is
removed. At node N3, S3 is represented by S0 at the
downstream interface to N1 and its entry is removed.

Dealing with Cancellations. The cancellation algo-
rithm is formally described in [8].

6 Protocol Evaluation

To test the effectiveness of our content-based routing
protocol, we have conducted simulations using real-life
document types and large numbers of subscriptions.

Simulation Setup. We have generated a network
topology using the transit-stub model of the Georgia
Tech Internetwork Topology Models package [18]. The
resulting network topology, shown in Figure 4, contains
64 routers. We then added 24 consumers at the edges of
the network and a single producer.

64

65 66

67

68

69

70

71

72

73

74

75

76

77

78

79
80

81

82

83
84

85

86
87

88

34

33

32

31

30

29

2827

9
26

8
25

7 24
6

23

5
22

4

21

3

20

19

2

18

1

17

0

16

15

14

13

12

11

10

63
62

61

59

60

58

57

56

55

54

53

52

51

49 50

48

4746

45

44

43

42
41

40

39

38

37

36
35

Figure 4: Simulated network topology with 64 routers (cir-
cles), 24 consumers (boxes), and 1 producer (hexagon).

We have simulated consumer load by registering sub-
scriptions at the consumer nodes. The subscriptions
were expressed using the XPath language [17]. To gen-
erate the set of XPath expressions, we have developed
an XPath generator (described in [7]) that takes a Docu-
ment Type Descriptor (DTD) as input and creates a set
of valid XPath expressions based on a set of parameters
that control: (1) the maximum height h of the tree pat-
terns; (2) the probabilities p∗ and p// of having a “∗”
or a “//” wildcard operator at a node of a tree pattern;
(3) the probability pλ of having more than one child at
a given node; and (4) the skew θ of the Zipf distribution
used for selecting element tag names. For our experi-
ments, we have generated sets of tree patterns of various
sizes, with h = 10, p∗ = p// = 0.1, pλ = 0.1, and θ = 1.

We have used the NITF (News Industry Text For-
mat) DTD [9] to generate our sets of XPath expressions.
The NITF DTD, which was developed as a joint stan-
dard by news organizations and vendors worldwide, is
supported by most of the world’s major news agencies
and is used in several commercial applications. It con-
tains 123 elements with 513 attributes (as of version 2.5).
Note that the results of these experiment can easily be

generalized to multiple DTDs. Indeed, as DTDs gener-
ally use distinct grammars, an XML document valid for
a given DTD is unlikely to match a subscription for an-
other DTD; thus, using multiple DTD essentially boils
down to running separate experiments with each DTD
and combining the results.

We have generated sets of subscriptions of various
sizes (from 100 to 50, 000 subscriptions). For each size,
we have generated one set containing only distinct sub-
scriptions, and a second set with possibly multiple oc-
currences of each subscription. We will refer to these as
unique and multiple sets, respectively.

We have compared three routing protocols that imple-
ment perfect content-based routing. First, the match-
first routing protocol that matches published events
against all subscriptions and computes a destination list
used to route events (see Section 2). As previously dis-
cussed, this protocol imposes a high storage and pro-
cessing load on the publisher nodes and does not scale
well. Second, we implemented a simple routing proto-
col that does not use subscription aggregation, except
for suppressing multiple occurrences of a subscription.
With that protocol, the size of the routing table at a
node is equal to the number of distinct subscriptions that
consumers registered downstream. Finally, our XRoute

routing protocol that makes extensive use of subscription
aggregation to minimize the size of the routing tables.

As all these protocols implement perfect routing, they
will exhibit the same bandwidth usage. Therefore, we are
interested in comparing their space requirements. Be-
sides lowering the memory usage at the routers, keeping
routing tables small is essential to implement efficient fil-
tering: as the filtering speed typically decreases linearly
with the number of subscriptions (whether matching sub-
scriptions sequentially, or using sophisticated algorithms
as in [7]), small routing tables can dramatically improve
the overall performance of a content network.

We have specifically measured the average and the
maximum sizes of the routing tables at the inner nodes
with each protocol. The average sizes gives an indication
of the overall efficiency of our aggregation techniques,
and the maximum sizes can help dimensioning the re-
sources allocated to routers in the network (in particular
at the producer nodes, which typically have the largest
routing tables). We study the variation of these sizes
according to the number of subscriptions injected in the
system.

Results and Interpretations. Figure 5 shows the av-
erage size of the routing tables of the XRoute and the
simple routing protocols, with both unique and multiple
sets. It appears clearly that, in both cases, XRoute re-
duces the average size of the routing tables dramatically
(by more than a factor of 5).

Figure 6 shows the relative space gain of XRoute vs.
simple routing. We can observe that the gap between
both protocols widens significantly with large number of
consumers, demonstrating that our content-based rout-
ing protocol is extremely scalable. Note that XRoute is
even more efficient with multiple subscriptions instances
because of the increased number of covering relations
(even though the simple routing protocol also benefits
from multiple sets).

Figure 7 shows the maximum size of the routing tables
of the XRoute, simple, and match-first protocols, with
multiple subscriptions instances. Here again, we observe
that XRoute is very space-efficient: it outperforms the

0

500

1000

1500

2000

2500

3000

3500

4000

0 10000 20000 30000 40000 50000

775

3940

1621

252

A
ve

ra
ge

 s
iz

e

Number of consumers

Simple, unique
Simple, multiple
XRoute, unique

XRoute, multiple

Figure 5: Average size of the routing
tables with the XRoute and simple
routing protocols, with unique and
multiple sets.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10000 20000 30000 40000 50000

0.19
0.15

A
ve

ra
ge

 s
iz

e

Number of consumers

Unique
Multiple

Figure 6: Average size ratio of
XRoute vs. simple routing.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 10000 20000 30000 40000 50000

50000

14653

1145

M
ax

 s
iz

e

Number of consumers

Match first
Simple

XRoute

Figure 7: Maximum size of the
routing tables with the XRoute,
match-first, and simple routing pro-
tocols.

other protocols, by factors of up to 14 (w.r.t. simple) and
43 (w.r.t. match-first). One can also notice that, with
the simple protocol, the maximum size of the routing
tables is approximately 10 times larger than its average
size; in contrast, with XRoute, the maximum size is
less than 5 times bigger that the average size. Thus, our
protocol seems to better balance the load on the routers.

7 Conclusion

We have developed a novel protocol for content-based
routing in overlay networks. Our protocol, XRoute,
implements perfect routing, optimizes usage of network
bandwidth, and minimizes the size of the routing tables
in the system. To the best of our knowledge, our content-
based routing protocol is the first to take full advantage
of subscription aggregation and support registration can-
cellation, without impacting routing accuracy.

Although our protocol was designed for, and tested
with, tree-structured XPath subscriptions, it can be
readily applied to other subscription models. The ex-
perimental evaluation that we conducted shows that our
protocol dramatically reduces the sizes of the routing ta-
bles and scales to very large consumer populations.

We are currently deploying our content-based routing
protocol in the XNet XML content dissemination sys-
tem, and integrating it with our highly-efficient XTrie

filtering algorithms [7] in application-level routers. We
are also trying to extend the protocol to take advantage
of lossy aggregation (as described in [6]) for further com-
pression of the routing tables, but at the price of some
deterioration in the routing accuracy and bandwidth us-
age.

References

[1] M. Altinel and M. Franklin. Efficient Filtering of XML
Documents for Selective Dissemination of Information.
In Proceedings of the 26th International Conference on
Very Large Data Bases (VLDB 2000), pages 53–64,
Sept. 2000.

[2] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao,
R. Strom, and D. Sturman. An efficient multicast pro-
tocol for content-based publish-subscribe systems. In
Proceedings of the 19th International Conference on Dis-
tributed Computing Systems (ICDCS’99), 1999.

[3] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith.
Efficient filtering in publish-subscribe systems using bi-
nary decision. In International Conference on Software
Engineering, pages 443–452, 2001.

[4] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and
Evaluation of a Wide-Area Event Notification Service.

ACM Trans. on Computer Systems, 19(3):332–383, Au-
gust 2001.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Content-based addressing and routing: A general model
and its application. Technical Report CU-CS-902-00,
Department of Computer Science, University of Col-
orado, Jan. 2000.

[6] C.-Y. Chan, W. Fan, P. Felber, M. Garofalakis, and
R. Rastogi. Tree Pattern Aggregation for Scalable XML
Data Dissemination. In Proceedings of the 28th Inter-
national Conference on Very Large Data Bases (VLDB
2002), Hong Kong, China, August 2002.

[7] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi.
Efficient Filtering of XML Documents with XPath Ex-
pressions. VLDB Journal, 11(4):354–379, 2002.

[8] R. Chand and P. Felber. A scalable protocol for content-
based routing in overlay networks. Technical Report
RR-03-074, Institut EURECOM, Feb. 2003.

[9] I. P. T. Council. News Industry Text Format.

[10] G. Cugola, E. D. Nitto, and A. Fugetta. The jedi event-
based infrastructure and its application to the develop-
ment of the opss wfms. IEEE Transactions on Software
Engineering, 27(9):827–850, Sept. 2001.

[11] Y. Diao, P. Fischer, M. Franklin, and R. To. YFil-
ter: Efficient and Scalable Filtering of XML Documents.
In Proceedings of the 18th International Conference on
Data Engineering (ICDE 2002), San Jose, CA, February
2002.

[12] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Ker-
marrec. The many faces of publish/subscribe. ACM
Computing Surveys. To appear.

[13] F. Fabret, H. Jacobsen, F. Llirbat, J. Pereira, K. Ross,
and D. Shasha. Filtering Algorithms and Implementa-
tions for Very Fast Publish/Subscribe Systems. In Proc.
of ACM SIGMOD, pages 115–126, Santa Barbara, Cal-
ifornia, May 2001.

[14] B. Segall, D. Arnold, J. Boot, M. Henderson, and
T. Phelps. Content Based Routing with Elvin4. In
AUUG2K, Canberra, Australia, June 2000.

[15] R. Shah, R. Jain, and F. Anjum. Efficient Dissemination
of Personalized Information Using Content-Based Mul-
ticast. In Proceedings of INFOCOM 2002, New-York,
June 2002.

[16] A. Snoeren, K. Conley, and D. Gifford. Mesh Based
Content Routing using XML. In Proceedings of the
18th ACM Symposium on Operating System Principles
(SOSP 2001), pages 160–173, Alberta, Canada, October
2001.

[17] W3C. XML Path Language (XPath) 1.0, Nov. 1999.

[18] E. Zegura, K. Calvert, and S. Bhattacharjee. How to
Model an Internetwork. In Proceedings of INFOCOM
1996, San Francisco, March 1996.

