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ABSTRACT
Despite the many research efforts invested recently in peer-
to-peer search engines, none of the proposed system has
reached the level of quality and efficiency of their centralized
counterpart. One of the main reasons for this inferior per-
formance is the difficulty to attract a critical mass of users
that would make the peer-to-peer system truly competitive.
We argue that decentralized search mechanisms should not
aim at replacing existing engines, but instead complement
them by adding novel functionalities that would be difficult
to provide in a centralized manner. This paper introduces
an example of such a complementary search mechanism and
presents the design of a distributed collaborative system for
leveraging user feedback and document/user profiling infor-
mation.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Relevance
feedback

General Terms
Algorithms, Design

1. INTRODUCTION
Efficient search mechanisms are unanimously recognized

as crucial components of massively distributed information
systems such as the Web or file-sharing networks. In this
context, the last few years have seen the emergence of an
intense research activity in the area of peer-to-peer (P2P)
based search, with the objective of replacing centralized
search services such as Google, Yahoo!, or Live Search by
large-scale P2P search engines.
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However, despite the many research efforts invested so far,
none of the currently released P2P Web search engines (e.g.,
Faroo or YaCy1) has been able to reach a level of quality and
efficiency that would allow them to truly compete with their
centralized counterparts.

We believe that the lack of widespread adoption of P2P
Web search engines is a direct consequence of the so-called
“bootstrap problem” [7]: the added value of a distributed
search engine becomes only perceivable when the system has
attracted enough users to fully sustain its specific function-
alities. As long as such a critical mass of users is not reached,
the distributed system’s performance is noticeably inferior
to that of the centralized engine, which in turn prevents at-
tracting the necessary number of users. Given the nature
and objectives of search engines, the major potential advan-
tages of distributed approaches over centralized ones (better
scalability, better privacy enforcement, better resistance to
censorship) cannot make up for the subpar quality of the
search results.

As a consequence, we concur with the authors of [7] that
the most promising approach for distributed search engines
is not to launch them as autonomous systems aiming at re-
placing their centralized counterparts, but rather to couple
a distributed engine with one (or several) centralized en-
gine(s), as a companion system providing additional func-
tionalities that are impossible—or difficult—to implement
with a centralized approach. Such a companion system can
later run autonomously when the users recognize its perfor-
mance and functionalities as good enough.

In this position paper, we present an example of what
such a coupled set up might be, in the specific case where
the targeted added value functionality is the collaborative
exploitation of the feedback information provided by topical
communities of users. This information is used to construct
a search mechanism that leverages (1) community-based in-
formation, reducing the risks of manipulation and fragility
that are potentially faced by centralized search engines, and
(2) user-specific information that helps targeting the results
to some specific user’s interests. This latter objective is fur-
ther coupled with the goal of maximizing the so-called info-
diversity, that is, to allow specifically tailored results for the
largest possible set of users with distinct interest profiles.

Our system has similarities with meta-search engines [14],
which send queries to several search engines and allow users
to search more of the information system. Nonetheless, these
systems compile results using merging and ranking functions
that, without knowledge of the ranking methods internally
used by the search engines, are known to produce dimly rel-

1http://www.faroo.com, http://YaCy.net



evant and fairly polluted results. Our approach is not to
combine results from search mechanisms based on similar
metrics (data popularity, structural information, etc.) but
to present on one side the results obtained by such metrics
and, on the other side, the results obtained from the col-
laborative construction of user-based relevance metrics and
document/user interest profiling.

While we do not specifically focus in this paper on other
aspects of distributed search systems, we expect them to
provide perceivable benefits once the system has reached a
critical mass of users. Examples of such features are scala-
bility and privacy enforcement. Scalability comes from the
aggregation of resources: the more users participate, the
more resources are available for providing the service, i.e.,
the architecture scales gracefully with this number of re-
sources. Privacy is another important concern for users, as a
considerable portion of them care that search engines collect
certain non-personally identifiable data about their queries.2

All search engines (e.g., Yahoo, Google or Live Search) can
use search data of their users to keep track of their inter-
ests and online activities. We propose a fully distributed
architecture with an appropriate privacy-preserving design,
which we consider as a sound approach for avoiding tracking
and censorship.

The rest of the paper is organized as follows. Section 2
presents the targeted system and its architecture, and dis-
cusses its key components. Section 3 highlights the most
important research challenges raised by the design and im-
plementation of this architecture. Related work is discussed
in section 4. Section 5 concludes our paper.

2. THE CFRS SYSTEM
This section presents our proposed Collaborative Feed-

back based Retrieval System (CFRS). First, we present a
view of the service as it is presented to the user. Second, we
highlight the components required to implement the service.
We then describe the architecture of the system and discuss
its main components.

2.1 The User Perspective
After being downloaded and installed by the user, the peer

client software automatically connects to the CFRS. When-
ever a user submits a query, this query is sent transparently
to both a centralized search engine and the CFRS. The user
obtains two results list: one from the search engine, one from
the CFRS. In the result list from the CFRS, documents that
match best the user’s interest domains are ranked higher.

A typical example is when a user submits the query“Java”.
The first results returned by the Google search engine are
for the programming language, the island in Indonesia, and
a band named Java. A person, who has issued requests
for tourism-related content in the past, and never about
computer programming, would probably prefer to get the
island-related content first. Such a user-centric ranking is
not feasible with only structural information (links between
content, content popularity, etc.). Second, the same request
“Java” made by a programmer returns a set of resources
that have high structural rank (e.g. Pagerank) but that are
not necessarily the ones that would be useful first (the Java
API documentation page in this case). Using information
about pages ranked higher (i.e., visited more often) by users
for this query would help the system propose more accurate
results.

2http://mashable.com/2007/12/11/poll-search-privacy

Perceivably, results from the CFRS rise in quality when:
(1) the user submits more queries (as the system is able to
determine his interest profile) and (2) all users submit more
queries and relevance tracking information (as they indicate
which data is deemed interesting by users as a whole). After
the user selects and accesses an element in any of the two
lists, information about this access is sent to the CFRS,
which will in turn use it for improving the quality of replies
to the same query made by other users.

2.2 Architecture
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Figure 1: Functional view of the system: query &
relevance tracking information submission.

Figure 1 presents a functional view of the system. Queries
to some existing search engine and to the CFRS are sent in
parallel; results are then ranked by structural information
or user-based relevance information. Queries to the CFRS
are accompanied by the interest profile of the user, which is
used to customize the result list according to his interests.
Relevance information is gathered on the user’s machine by
observing accesses to elements returned by any of the search
methods.

On the user side it is necessary (1) to build appropri-
ate interest profiles for improving search results relevance
(user interest profiling); (2) to present the results returned
by the CFRS (user interface); and (3) to provide a mecha-
nism for inserting new relevance information, based on the
user’s local accesses to elements from the results lists (rele-
vance feedback tracker).

On the collaborative retrieval service side, mechanisms are
needed (1) to direct requests and relevance tracking infor-
mation to the relevant node(s) in the network (routing) and
(2) to compute lists of relevant items for queries, based
on relevance tracking information and user interest profiles
(storage and ranking, denoted by storage layer in the paper).

The architecture of the system and the main interactions
between its elements are depicted in Figure 2. The next
sections describe its major components (shown in grey in
the figure).

2.3 Main System Components
This section presents the design and analysis of the key

components of the system: the user interest profiler, the
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Figure 2: System architecture.

relevance feedback tracker, routing and storage layers and
the user interface.

2.3.1 User Interest Profiling
Users are reluctant to do extra work when searching dis-

tributed content and usually submit short queries. This can
lead to ambiguous or inadequate results. Therefore, auto-
matically exploiting user-specific information to personal-
ize retrieval result ranking has received considerable atten-
tion [9]. Several data sources can be considered for person-
alizing retrieval, notably the history of queries and accessed
documents, and search independent user-centric informa-
tion (shared documents, bookmarked items, etc.). Some
approaches [23, 24] obtained noticeable improvements by
employing automatically created models to re-rank search
results with user profiles. Using the overlap of shared doc-
uments as a measure of proximity for interest profiles has
been successfully used in the context of search mechanisms
for P2P file sharing systems [8].

In our approach, we rely on user profiles, which correspond
to sets of representative keywords, extracted from visited
Web pages and user’s query history, and are used by the
CFRS system to better estimate what the user is actually
searching for.

In addition, as the profiles are transmitted with the queries,
they need to be small and encoded (in order to preserve pri-
vacy). For this purpose, in the CFRS system, the profiles
are represented in the form of space-efficient probabilistic
data structures, the Bloom filters [4].

As described in [5], the very simple structure of the Bloom
filters makes several useful operations straightforward to im-
plement. A Bloom filter representing the union of two sets
(S1 and S2) is obtained by the logical OR of their bit vec-
tors. Bloom filters are also used to approximate the size
of the intersection between two sets S1 and S2. It follows
that Jaccard ( |S1

⋂
S2|

|S1
⋃

S2| ) or Dice ( 2|S1
⋂

S2|
|S1|+|S2| ) similarities be-

tween 2 sets are easily estimated with Bloom filters. These
similarities allow us to rank the documents in the result list
of a query, based on a profile sent with the query.

Profile maintenance. We assume that each user has
several topical interests. Each topic is represented by a dif-
ferent profile, built and maintained locally at the user’s side.
The first time a user accesses the system, his profile set is
empty. However, to use the system efficiently from the start,
an initial user profile could be built from his bookmarked
documents or some local specific document collection.

When the user selects a document in the result list ob-
tained for a query Q, keywords are extracted, either from

the document itself, or from the document summary (ti-
tle, snippet) appearing in the result list. These keywords
are weighted and the most representative ones are selected.
The terms of the query are also added into the set if they are
not already present in the set of top keywords. A Bloom fil-
ter DP is then generated from the selected keyword set and
inserted in the local profile storage. The following insertion
mechanism is considered: if the maximal size of the local
profile set is not reached, the new document profile DP is
simply inserted as a local user profile UP . Otherwise, the
new profile is first temporarily inserted, and we compute the
maximal similarity smax = max{sim(UPi1, UPi2)}, where
the UPi are the profiles in the local storage. The pairs of
profiles with maximal similarity are merged into a single one
of the form UP = UPi1

⋃
UPi2.

Profile usage. Profiles are used when submitting queries
to the CFRS. At query submission, the system finds in the
set of local profiles the one that has the highest similar-
ity with the query, and sends it along with the query to
the storage layer. Section 2.3.4 gives more detail on how
queries and profiles are processed by the storage layer. The
relevance feedback tracker, to be described next, also uses
interest profiles. When the user accesses a document from
the result lists (returned by centralized search engine or dis-
tributed collaborative service), a profile is build from this
document and is sent together with the relevance feedback
information.

2.3.2 Relevance Feedback Tracker
When a user browses the result list for a query, the ti-

tle, document reference and snippet help him to determine
relevant document w.r.t his query and interests. Accessed
documents and user interest profiles are thus the important
feedback information that is exploited by the CFRS. When
the user selects one element in the results list for a query Q,
the following information is tracked: (1) the query Q is used
to route the feedback information to P (Q), the peer respon-
sible for processing it; (2) the document reference D — this
is the identifier of the document (its nature depends on the
centralized search mechanism being used, e.g., an URL for
Web searching, a file hash for P2P file sharing, etc.) and the
document descriptors (title, snippet); (3) the document pro-
file DP which is extracted from the content or description
of D, in a form of a Bloom filter. Meanwhile, the profile of
accessed documents is inserted into the local interest profiles
as described in the previous section.

2.3.3 Routing Layer
Each query Q is associated with some node P (Q). This

node stores all information pertaining to Q: a set of docu-
ments references, the associated relevance tracking and in-
terest profiling information. Our design is based on the
standard API for structured P2P system proposed by [6].
This design is a specialized form of a distributed hash table
(DHT), which associates a key-based routing layer (KBR)
and a storage layer. The role of the KBR layer is to locate
the node responsible for some query’s key. To that end, it re-
lies on a structured overlay (e.g., an augmented ring), where
each node is assigned a unique identifier and the responsi-
bility of a range of data items identifiers. In our case, each
query Q has an identifier determined by hashing its terms
to a key h(Q). The node P (Q) whose range covers h(Q)
is responsible for maintaining information related to Q and
provide the appropriate sorted set of document references
when asked to by some distant node. The main APIs are:
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The application issues a request or inserts relevance track-
ing information for some query Q to the local instance of
the storage layer, which in turn uses the KBR Send call
for reaching P (Q). On each routing step towards the des-
tination, the storage layer can be notified by the Transit
call that a message is transiting via the local node, towards
P (Q). It can in turn modify the content of this message,
or even answer the request on behalf of P (Q). This latter
mechanism is used in our design to implement load balancing
and fault tolerance (as described in Section 3.2), by exploit-
ing the routing paths convergence property of the underlying
structured overlay.

Informally, the property of path convergence results from
the greedy routing algorithm used by many KBRs. Our
system will be based on the routing layer of Pastry [17], for
its stability and its performance (number of hops, usage of
network distance for choosing peers, etc.). In Pastry, nodes
and items have identifiers of d digits (each digit is a number
in base b, with b = 4 in the common case) and are organized
on an augmented ring. Each node in the ring constructs a
routing table that contains references to a set of other peers
(chosen according to the prefixes of their identifiers). When
routing a request to its destinations, each intermediary node
will select as next hop a peer from its routing table with an
identifier that has a longer common prefix with the target
key than itself. As each routing step “resolves” at least one
digit, at most d = O(log N) routing steps are required (N is
the number of nodes in the network).

An interesting property of such a greedy routing strategy
is that routing paths towards a destination converge to the
same set of peers, and does so with a higher probability as
digits are resolved: the more digits have been resolved, the
less peers remain that have a longer common prefix with the
target key. Routes from all nodes to some key in the net-
work collide in the last hops, as illustrated below. The path
convergence property is particularly useful for the design of
load balancing and fault tolerance mechanisms [16, 20].
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A“standard”DHT provides a raw put/get interface to the
application [6]. Elements are stored as blocks on the node
responsible for their key, and retrieved as blocks as well. Our
design differs in the important following point: our storage
layer does not store information blindly, but provides an
interface and functionalities that are specific to the storage
and processing of ranking information. This has a strong
impact in particular on the design of load balancing and
fault-tolerance mechanisms that would not be conceivable
with a standard DHT.

2.3.4 Storage Layer
The storage layer at the peer P (Q) responsible for the

query Q is in charge of (1) the management of the relevance

feedback information received by P (Q) for Q, and (2) for the
generation of the results to be sent back to a user submitting
the query Q to the system.

Concepts. The main problem for the design of an efficient
storage layer is the potential heavy skewness of the relevance
feedback generation process (see also 3.2).

Under such conditions, it is therefore unrealistic to keep all
the available relevance feedback information (as peers with
highly used queries would quickly run out of main mem-
ory storage). Some sort of storage control mechanism must
be implemented. Relying for this on some document-query
relevance measure for evaluating the quality of relevance
feedback items containing the considered document-query
pair is potentially problematic. Indeed, (1) the most effi-
cient document relevance scoring techniques (e.g. the link-
based PageRank used by Google) are notably costly in a
distributed set up; and (2) document relevance seems, by na-
ture, not well adapted to the type of information processed
by our system. Because they are all directly generated by
users and all represent some form of user interest, the pro-
cessed relevance feedback items should rather be considered
of quite comparable intrinsic quality. Thus, discriminating
between them needs to rely on other criteria, in our case,
popularity and semantic coverage.

Popularity. A relevance feedback information associat-
ing a document D to a query Q is popular, if it is frequently
produced by many users, and thus results in a high arrival
rate at the peer responsible for Q. More precisely, the pop-
ularity of a relevance feedback item relating D to Q is the
rate p(D) of the stochastic process modeling the arrival at
P (Q) of relevance feedback information for D. An impor-
tant part of the storage management mechanism described
hereafter is therefore dedicated to make the selection of the
stored items adaptively sensitive to the p(D) rates.

Semantic coverage. Another important aspect to con-
sider when selecting interesting relevance feedback informa-
tion is the amount of semantic content the associated doc-
ument brings w.r.t. the other documents already present
in the system through other relevance feedback items. The
goal is then to maintain a set of relevance feedback items
providing a satisfactory coverage of the topics expressed in
the documents present in the relevance feedback items as-
sociated with a given query. More precisely, in line with
what was already mentioned in section 2.3.1 about User in-
terest profiling, we measure the “semantic redundancy” of
a relevance feedback item by the maximal similarity of the
associated document profile with the document profiles of
the documents already stored in the system. A second im-
portant part of our storage management mechanism design
is therefore dedicated to make the relevance feedback item
selection sensitive to document profile similarities. In this
perspective, the goal is to focus on relevance feedback items
with maximal relative similarities that are minimal, so as to
maintain a maximal semantic coverage in the set of stored
relevance feedback items.

Finally, in order to achieve a globally satisfactory stor-
age management mechanism, it is also crucial to provide
some ways to arbitrate between the two considered criteria
(popularity and coverage). In our approach, we rely on the
assumption that semantic coverage is less crucial for cur-
rently popular relevance feedback items, but very important
for items that used to be popular in the past but progres-
sively came out of trend. The underlying idea is that, for
current “hot topics” (i.e., topics expressed in documents as-



sociated with currently popular relevance feedback items),
the users are expecting a much higher level of detail than for
topics that used to be popular in the past, for which only
the main involved issues might be considered. In a nutshell,
for selecting relevance feedback items corresponding to cur-
rent hot topics, popularity is crucial, while for selecting the
items that keep track of past hot topics, semantic coverage
is more adequate. In consequence, our storage management
mechanism aims at selecting the currently most popular rele-
vance feedback items without taking semantic coverage into
account, but in parallel, aims at preserving the relevance
feedback items that used to be popular in the past without
taking into account their current popularity.

Implementation. This section describes the targeted im-
plementation of our relevance feedback information manage-
ment mechanism. For readability purposes, the expression
“relevance feedback”is often abbreviated to RF, for example,
relevance feedback items are often simply called RFitems.

As already mentioned earlier in the section 2.3.2, the RF
information concerning a query Q received from the network
by the peer responsible for Q consists of a triple (Q, D, DP ),
where D is the information available about the considered
document (mainly the document URL uniquely identifying
the document, and a document summary containing the ti-
tle and the snippet as it is quite standard in Web search
engines), and DP is the Bloom filter representing the doc-
ument profile. When acquired from the network, an RF
information is first transformed into an internal data struc-
ture, an RFitem, which stores the (Q, D, DP ) triple (plus
other attributes required for the processing, such as its oc-
currence frequency or its maximal semantic similarity) in an
easily computable way.

The general goal of the RF information management mech-
anism is then to process all the triples received by P (Q) in
order to select the ones that should be stored at P (Q) for
retrieval purposes. From a more computational perspec-
tive, the essential aspect is that the storage management
mechanism requires a strictly bounded storage space that
is controlled by a “maximal storage space” parameter (de-
noted by S in the rest of this section). There is no reason
why this parameter should be the same on all the peers. On
the contrary, it is probably advisable to adapt it when pos-
sible, for example to the observed average RF information
arrival rate at the peer. Having a strictly bounded storage
consumption is clearly a necessary feature to realistically
consider a deployment of the CFRS system on a true set of
peers, but it also strongly impacts how the peer performs
its RF information management: the bigger the value for
S, the higher the quality of the storage management. More
precisely, with a larger storage space, the peer will be able
to store more popular RFitems, and to keep a larger set of
past popular RFitems, thus improving its overall semantic
coverage. The adaptability of the algorithm makes it able
to cope with large ranges of possible storage space: for what
ever provided value for S, it will try to perform in a way that
fits best the true distribution of the RF information receive
by the peer.

The fixed size storage space is split into two distinct parts:
the main store, and the archive. The purpose of the main
store is to progressively identify and store the popular RFit-
ems received by the peer, while the archive serves to identify
and store the past popular RFitems providing an acceptable
semantic coverage. Figure 3 shows the main components of
the storage layer and how they process the RFitems.
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Figure 3: Main components of the storage layer.

The main store. The main store is decomposed into a
variable size FIFO (First In, First Out) queue and a vari-
able size associative memory (hereafter called the popular-
unpopular store, and abbreviated to “the POPstore”).

The queue is a temporal storage that serves as an “incu-
bator” for the identification of popular RFitems. It contains
the sequence of references to all the RFitems received by the
peer during the time interval covered by the queue. RFit-
ems themselves are stored in the POPstore, which is a map
between URLs and RFItems. Both the queue and the POP-
store are of variable size, which means that they grow or
shrink independently (within the S bound imposed to the
whole storage space) depending on the storage requirements
imposed by the occurrence distribution of the received RF-
items.

Each time a new RFitem r is acquired from the net-
work, the POPstore is queried to check whether r is already
present. In this case, its occurrence frequency is incremented
and a reference to r is pushed into the queue. Otherwise, r
is inserted into the POPstore with an occurrence frequency
set to 1. If not enough storage space is available (either for
the push or for the insertion), the oldest RFitem reference
is poped from the queue, and the occurrence frequency of
the corresponding oldestRFitem in the POPstore is decre-
mented.

If the updated occurrence frequency of the poped oldest-
RFitem roldest reaches zero (i.e., there is no more reference
to it in the queue), roldest is removed from POPstore. In
addition, if its maximal frequency (i.e., the maximal occur-
rence frequency observed for roldest during its lifetime in
POPstore) is greater than a predefined popularity threshold
Freqmin, roldest is inserted in the archive with the current
value of its maximal frequency. Otherwise, roldest is simply
abandoned.

If the processing of the poped oldestRFitem roldest did not
free any storage space (i.e., its frequency it still non zero),
the whole pop cycle is reiterated for the new currently oldest
RFItem, until an RFitem with a frequency of zero is removed
from the POPstore. The new acquired RFitem is eventually
inserted in the POPstore and a its reference is pushed in the
queue.

The archive. The archive is another variable size as-
sociative memory (indexed by the RFitem URLs) used to
store past popular RFitems that have been rejected from the
POPstore because their occurrence frequency in the queue
has dropped to zero, but that were once popular (i.e., heir
maximal occurrence frequency maxFreq is above the Fre-
qmin popularity threshold) is above the Freqmin popularity



threshold). The purpose of this additional store is twofold.
First, it is used to cope with the “burst” phenomena (i.e.,
a topic becoming suddenly extremely popular) that are fre-
quently observed (e.g. on the Web), and can lead to the
“flooding” of popularity based storage mechanisms with a
limited number of very popular topics that expel all the
other topics from the system. To some extent, the archive
serves as a long term memory, while the queue-POPstore
pair operates with a much shorter horizon (limited by the
current time span covered by the queue). Second, the archive
is the data structure that implements the semantic coverage
based filtering mechanism.

As already mentioned, the semantic coverage based filter-
ing mechanism relies on the notion of maximal document
similarity that is derived from the document profiles asso-
ciated with the stored RFitems. For this purpose, (1) each
of the RFitems present in the archive is associated with a
semantic redundancy score corresponding to the maximal
similarity between its document profile and the documents
profiles of all the popular RFitems in POPstore and all the
RFitems in the archive; (2) the archive provides the possi-
bility to efficiently access the most recent of the RFitems
with the highest semantic redundancy it contains (hereafter
called the closest RFitem and denoted by closestRFitem);
and (3) each time a past popular RFitem needs to be in-
serted, if not enough storage is available for this operation,
the current closestRFitem is first removed from the archive
(and abandoned), and then the new past popular item is
inserted.

As the computation of the required RTitem scores is a
relatively costly procedure, it is not performed each time a
change impacting the scores happens, but only when the ra-
tio between the number of changes (insertions or removals)
that happened in the POPstore and the archive since last
score update w.r.t. the POPstore+archive size exceeds a
predefined threshold γ, which thus allows to control the
tradeoff between score accuracy and computational cost.

Finally, as the archive is an adaptive variable size data
structure, it is important to provide some control on the
storage space it consumes (w.r.t. the one used by the POP-
store that competes for the same storage resource). For this
purpose, our design provides a parameter α that imposes
that at least a fraction α of the size of the POPstore is re-
served for the archive.

Answering queries. When the peer P (Q) receives the
request (under the format (Q, UP )), the storage layer ex-
tracts from the popular RFitem in the POPstore and the
past popular RFitem in the archive the list of of the k-most
similar RFitem w.r.t the user profiles UP , and sends back
the resulting list of documents descriptors (URL, title, snip-
pet).

2.3.5 User Interface
Gathering information about the user interest and for rel-

evance feedback tracking is based on some software pieces
at the client side. There are several ways of implementing
such a tool. These include, but are not limited to the follow-
ing. First, one can use an extension to some browser (e.g.,
Firefox) that captures accesses to widely used search engines
such as Google. This extension would be made available as
a plugging. Second, open-source file-sharing software such
as eMule can be used and their search mechanism instru-
mented easily. As systems such as eMule already propose a
routing layer, this routing layer can directly be used by the
CFRS system.

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

Q
ue

ry
 P

op
ul

ar
ity

 (
re

qu
es

ts
)

Queries (sorted by decreasing popularity)

Figure 4: Wikipedia queries popularity distribution.

3. DESIGN CHALLENGES
This section discusses the most important research and

system design challenges: on the distributed system side,
performance, load balancing and fault tolerance; then chal-
lenges related to ranking and user profiling.

3.1 Latency and Throughput
The time required for querying the CFRS needs to be

competitive with the time required to obtain results from
the original search engine (e.g., within a second for Web
search, a few seconds for file sharing search). This is a low
latency requirement: query messages need to be treated with
a high priority. On the other hand, insertions of relevance
tracking information do not require this soft real-time qual-
ity of service. Such messages can be delayed for some time
without implying a severe loss in the quality of the service
as experienced by the user.

One should note that relevance-tracking messages from
the peers sent through the KBR are of small size (the only
space consuming element being the bloom filters used to
encode the user interest profile). Sending each message sep-
arately is not cost-effective. Grouping low-priority messages
can reduce the global overhead. This allows to use links
more efficiently and to meet a high throughput objective. A
similar priority-based mechanism has been successfully used
in [10].

3.2 System Scalability and Load Balancing
The CFRS system is created for managing thousands of

users simultaneously, and to store the information they cre-
ate and access in a scalable manner. The underling KBR
protocol based on Pastry [17] is particularly scalable: the
state kept by each peer is O(log N) and routes are also
O(log2b N). Lists maintained by the storage layer are of
fixed size. The real problem one can face with such a stor-
age layer is that of heavily sparse loads, which are common
in distributed accesses patterns.

The skewness of the load. The most important chal-
lenge faced when designing a distributed search engine is the
high unbalance of the load, which results from the skewness
of users’ interests. In most distributed systems, one can ob-
serve that the users interests follow a Zipf-like distribution.
An example is given by Figure 4, which plots the distribution
of query popularity on Wikipedia in September 2004. Only
the 20,000 most frequent requests among 2,000,000 unique
queries are plotted. One can notice that a few queries are
extremely popular, while infrequent queries appear on the
long tail of the distribution. This has an immediate impact
on our design: the peers responsible for storing the most ac-
cessed queries will get an unbearable amount of load, which
calls for some load balancing mechanisms.

Balancing by delegating. The basic idea of our load



balancing mechanism is that of delegation. When some peer
P (Q) gets overloaded by requests to a popular query Q, it
replicates its responsibility for managing information and
answering requests related to Q. A wide range of techniques
has been proposed for balancing load in structured overlays
(e.g., [12, 16, 18, 20]). All these proposals however target
scenarios where the number of accesses is much greater than
the number of updates to the data. These systems support
accesses to non-mutable data by placing replicas on nodes
that lie on the path towards its key.

Our system requirements are different. First, the amount
of writes (insertion of interest tracking information) and the
amount of reads (queries) are of the same order. Caching
only read accesses is thus not possible: routing every inser-
tion for a query Q to the peer P (Q) would involve notifying
all copies, resulting in a load similar to the one avoided by
caching access requests. It is thus necessary to also cache
insertions, that is, to allow copies of information about a
query to be modified independently to the “master” copy.
We call such a copy a delegate: a replica onto which modi-
fications are possible with only loose synchronization to its
master copy.
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Figure 5: Delegation mechanism for load balancing.

Figure 5 presents the principle of delegations: a message
from a peer (either a request or an insertion of relevance
tracking information) is sent by the peer on the left side,
and is routed towards the peer P (Q), on the right side. As
the next to last peer on the path is a delegate of P (Q) for Q,
it notices that a request for Q is going through its KBR layer
and intercepts it. It replies on behalf of P (Q) or inserts the
information in its local copy. Delegates are chosen as follows:
when P (Q) is overloaded for a given query Q (the amount
of received requests for Q reaches some threshold), it enters
“pre-delegation”mode for Q and monitors incoming requests
for Q. When enough such requests are known, the peer Pd

that have transmitted the most requests for Q is chosen as
a new delegate. This simple stateless model is preferred to
a costly collection of statistics about all queries managed by
the peer. It is based on the fact that routing paths towards
P (Q) form a tree, and incoming links of this tree forward
in expectation an amount of queries that is roughly propor-
tional to the number of incoming requesters on its sub-tree.
Delegations are revoked by similar mechanisms: a delegate
revokes if the amount of requests for the corresponding Q is
below some threshold.

Delegates can in turn use the same mechanism for re-

delegating Q as the master copy on P (Q) and the delegates
form a tree. Synchronization between the copies is per-
formed periodically when the number of changes, denoted
delta on Figure 5, reaches a configurable threshold. Peer-
wise synchronization is used to aggregate the two copies
(lists of documents and associated information) in a new
list.3 This list is then forwarded along the tree, resetting all
deltas to 0.

3.3 Fault Tolerance
Constructing ranking information is a time-consuming pro-

cess. As the system runs on a large-scale distributed system,
it is likely to face a high level of churn. One needs to en-
sure that information about queries is not lost when a peer
fails or leaves the network. We use a replication mechanism
but count delegates as copies: if the replication factor is 3,
and a query Q is already delegated twice, only one replica
is needed. Replicas are loosely synchronized on a periodic
basis. Nodes hosting replicas, as well as delegates, period-
ically ping the master peer. If the master copy of Q fails,
the new peer responsible for the query receives the latest
information pertaining to Q from the replicas. We use the
leaf set for storing replicas as in Pastry [17] and PAST [18].

3.4 User Profiles
As previously mentioned, the user profile is built from the

history of accessed documents. We plan to evaluate several
recently proposed techniques to select representative key-
words for a user profile [7, 23, 24]. When using profiles in
the clustering algorithm, we have to deal with the problem
of too general or too specific profile representations w.r.t to
the user’s interest topics. Important parameters include the
time window that controls the evolution of user profiles, the
number of profiles maintained, as well as the number of key-
words in a profile. The settings of the Bloom filters (number
of bits, number of hash functions, number of inserted ele-
ments) also need to be analyzed for finding good trade-offs
between false positive ratio and profiles’ accuracies.

Notice that in the feedback content, we do not take into
account the relevance scores provided by the search engine
because they are too heterogeneous and difficult to aggre-
gate. We could, however, derive interesting information
from the rank of document in the results lists, the order
in which the users visits the documents, or the duration be-
tween successive accesses in the result list.

4. RELATED WORK
Many research efforts have been conducted for determin-

ing the feasibility of P2P Web search, mostly focusing on
scalability and bandwidth consumption [3, 11, 13, 21, 22].
None of these, however, has addressed the bootstrapping
problem or the added value of collaborative approaches. The
authors of Chora [7] and Sixearch [1] use decentralized archi-
tectures for sharing and leveraging users’ search experiences
and addressing context limitations of centralized search en-
gines. Note that using distributed techniques for enhancing
the quality of service of existing centralized systems has been
already considered sound in other contexts, such as for avail-
ability in [15]. In that paper, the authors define the concept
of a “P2P-izer”: a complementary P2P system working with
some centralized system. We go one step further as the P2P

3Either by inserting “new” elements in the master list or
by re-ranking the union of the two lists and keeping the k
highest items.



system is actually adding value to the system and not only
strengthening it.

The personalization of search results for some user based
on his interest profile was proposed by [23, 24]. None of
these systems use interest profiles for improving search re-
sults in a collaborative manner and not for just one single
user but all of them. Recent work [2, 19] explores the use of
social annotations to improve Web search, based on online
bookmarking platforms such as del.icio.us. A drawback of
this approach is that such services requires more effort from
the user to bookmark and annotate the items he accesses.
An automatic system is certainly more effective at attracting
users.

A decentralized storage specifically designed for P2P Web
search has been proposed in [10] for term frequency–inverse
document frequency (TF-IDF). The authors present the prio-
rity-based and packing-based routing techniques that our
system also uses. Nonetheless, they do not provide any
mechanism for dealing with the skewness of terms popu-
larity, and they do not deal either with the terms extrac-
tion, nor use user-centric information to answer the queries.
Similarly, Lopes et al. have proposed in [12] a storage mech-
anism for large, non-mutable data on top of a DHT. This
mechanism, while presented for TF-IDF, can be applied to
any collection of large data. It uses B+-trees to balance the
storage load over several peers in the DHT. Finally, a set of
proposals uses the inverse routing paths convergence prop-
erty: for load balancing [20], for replication and performance
in BeeHive [16].

5. CONCLUSION
In this paper, we have shown how decentralized and col-

laborative mechanisms can efficiently complement existing
large-scale search systems. The objective is twofold: avoid
the typical bootstrap problem faced when designing distributed
variants of centralized system; and demonstrate that collab-
orative approaches can provide added value and new services
for the users.

We have presented the basic architecture and building
blocks of a novel collaborative ranking service, which lever-
ages user-centric information such as interest profiling and
relevance tracking in order to return search results lists tai-
lored to the user interests. These results are expected to be
more relevant to the user that those returned by centralized
search mechanisms based only on structural or popularity
ranking. Result lists are based on the interest profile of the
user, and special care is taken to ensure that the system
keeps as much information diversity as possible to fulfill the
requests from large sets of different users.

Our work builds upon a solid, fully distributed and spe-
cially designed P2P system. This system combines classical
key-based routing with an application specific storage layer,
as well as specifically designed load balancing mechanisms
that go beyond typical “blind”approaches used in other P2P
systems, by taking into account the specific needs and char-
acteristics of the storage layer.

We are currently evaluating our system on a prototype
implementation by observing its behavior along several met-
rics: (1) quality of the produced results, both analytically
and based on sample user opinions, (2) overhead incurred by
using the system at the client and on the distributed system,
and (3) performance and flexibility of the load balancing,
routing, and storage layers. Our tests are performed using
both synthetic and real traces for both user-related behav-
iors (queries and accesses) and system-related characteristics

(churn, failures, etc.). Deployment is being conducted both
in emulated networks and on PlanetLab.
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