
Stabilizing Peer-to-Peer Spatial Filters

Silvia Bianchi
University of Neuchâtel, Switzerland

silvia.bianchi@unine.ch

Ajoy Datta
UNLV, School of Computer Science, USA

datta@cs.unlv.edu

Pascal Felber
University of Neuchâtel, Switzerland

pascal.felber@unine.ch

Maria Gradinariu
LIP6, INRIA-Université Paris 6, France

maria.gradinariu@lip6.fr

Abstract

In this paper, we propose and prove correct a distributed
stabilizing implementation of an overlay, called DR-tree,
optimized for efficient selective dissemination of informa-
tion. DR-tree copes with nodes dynamicity (frequent joins
and leaves) and memory and counter program corruptions,
that is, the processes can connect/disconnect at any time,
and their memories and programs can be corrupted. The
maintenance of the structure is local and requires no addi-
tional memory to guarantee its stabilization. The structure
is balanced and is of height O(logm(N)), which makes it
suitable for performing efficient data storage or search.

We extend our overlay in order to support complex
content-based filtering in publish/subscribe systems. Pub-
lish/subscribe systems provide useful platforms for deliver-
ing data (events) from publishers to subscribers in a de-
coupled fashion in distributed networks. Developing effi-
cient publish/subscribe schemes in dynamic distributed sys-
tems is still an open problem for complex subscriptions
(spanning multi-dimensional intervals). Embedding a pub-
lish/subscribe system in a DR-trees is a new and viable so-
lution. The DR-tree overlay also guarantees subscription
and publication times logarithmic in the size of the net-
work while keeping its space requirement low (compara-
ble to its DHT-based counterparts). Nonetheless, the DR-
tree overlay helps in eliminating the false negatives and
drastically reduces the false positives in the embedded pub-
lish/subscribe system.

Keywords: Content-based routing, publish/subscribe,
peer-to-peer, self-organization, stabilizing dynamic R-trees.

1 Introduction

Unlike conventional routing, where packets are routed
based on a limited, fixed set of attributes (e.g., source/des-
tination IP addresses and port numbers), content-based pub-
lish/subscribe systems route messages on the basis of their

content and the interests of the message consumers. Con-
sumers typically specify subscriptions, indicating the type
of content that they are interested in, using some predi-
cate language. For each incoming message, a content-based
router matches the message contents against the set of sub-
scriptions to identify and route the message to the (sub)set
of interested consumers. Therefore, the “destination” of a
message is generally unknown to the data producer and is
computed dynamically based on the message contents and
the active set of subscriptions.

Traditional content routing systems are usually based on
a fixed infrastructure of reliable brokers that filter and route
messages on behalf of producers and the consumers. This
routing process is a complex and time-consuming opera-
tion, as it often requires the maintenance of large routing
tables on each router and the execution of complex filter-
ing algorithms (e.g., [2, 10, 15]) to match each incoming
message against every known subscription. The use of sum-
marization techniques (e.g., subscription aggregation [7, 9])
alleviates those issues, but at the cost of significant control
message overhead or a loss of routing accuracy.

Another approach to content routing is to design it free
of broker infrastructure, and organize publishers and con-
sumers in a peer-to-peer overlay through which messages
flow to interested parties. By using an adequate structure
and gathering consumers with similar interests to form se-
mantic communities, messages can be quickly disseminated
within a community without incurring significant filtering
cost [11].

Obviously, for such techniques to be efficient, one needs
to properly structure the overlay to: avoid false negatives
(a registered consumer failing to receive a message it is in-
terested in); minimize the occurrence of false positives (a
consumer receiving a message that it is not interested in);
and self-adapt to the dynamic nature of the systems, with
peers joining, leaving, and failing.

In this paper, we propose to use R-tree based spacial fil-
ters to construct a peer-to-peer overlay optimized for se-

1

d

1

S2

S5

S6 S7

S8

S3

S4

A
tt

ri
bu

te
 2

Attribute 1

b

a

c

S

6

S5 S7

S2S1 S8

S4

S3

S

Figure 1. Sample subscriptions (S1, . . . , S8)
and events (a, . . . , d) with two attributes (left)
and associated containment graph (right).

lective dissemination of information. Our overlay extends
the classical R-tree structures in several ways: First, it
is distributed and completely decentralized. Second, it is
specifically designed to meet the requirements of the pub-
lish/subscribe model. In particular, the DR-tree is con-
structed to preserve the containment relationship that may
exist between different subscriptions. Third, it includes
self-stabilizing protocols that guarantee consistency despite
failures and rapid changes in the peer populations. In short,
in this paper we make the following contributions: we de-
sign a novel DHT-free, stabilizing overlay and extend it
to embed publish/subscribe systems with complex (spacial)
filters. Our overlay guaranties publish/subscribe in loga-
rithmic time. The recovery time in face of joins/leaves or
memory corruptions is logarithmic in the size of the net-
work. The overlay self-organizes in a balanced tree with
a memory cost per node polylogarithmic in the size of the
network. We prove the correctness of our overlay in spite of
transient faults, joins, and leaves. Additionally, we analyti-
cally analyze the overlay resistance to churn.

The rest of the paper is organized as follows: Section 2
introduces the considered publish/subscribe model, Section
3 revisits the R-trees characteristics and includes the design
and the correctness analyze of our DR-tree overlay. Section
4 discusses related work and concludes the paper.

2 Background and Overview

2.1 System Model

We consider a distributed dynamic system composed of
a finite yet unbounded set of processes. The network is de-
scribed by a weakly connected graph, referred to as commu-
nication graph. Its nodes represent processes of the system
and its edges represent established communication links be-
tween processes.

In order to connect to the system, a process executes an
underlying connection (join) protocol. A process p is called
active if there exists at least one process q which is already
active in the system and aware of p. The set of neighbors of
a process p is the set of processes q such that the link (p, q)

is up (p and q are aware of each other and can communicate
with each other through an underlying communication pro-
tocol). The logical graph defined by the neighbor relation
is referred to as overlay. We assume the system to be sub-
ject to frequent and unpredictable changes: processes can
join or leave arbitrarily often, and they can fail temporarily
(transient faults) or permanently (crash failures).

Messages sent by publishers contain a set of attributes
with associated values (similar to a dictionary or hash map).
Each node in the system has associated a set of subscrip-
tions or content-based filters. For the sake of simplicity, we
initially assume that this set contains a single element. A
content-based filter is a conjunction of predicates over the
attributes field, i.e., S = f1 ∧ . . . ∧ fj , where fi is de-
fined as a tuple fi = (ni opi vi) with ni the name of the
attribute, opi an operator, and vi a constant value. The op-
erator opi can be chosen from a set of basic operators that
depends on the attribute type. For example, possible oper-
ators for numerical attributes are {=, <, >,≤,≥}. In this
work we consider complex filters expressed as the conjunc-
tion of two or more range predicates. For example a fil-
ter expressed on the attributes a and b may be of the form
(vi < a < vj) ∧ (vk < b < vl). Geometrically, these com-
plex filters define poly-space rectangles. An event speci-
fies a value for each attribute and corresponds geometrically
to a point. Without restraining the generality, we illustrate
our algorithms on two-dimensional filters corresponding to
rectangles in a two-dimensional space. Figure 1 (left) shows
a set of sample subscriptions and events defined on two at-
tributes. Note that, if one attribute is undefined, then the
corresponding rectangle is unbounded in the associated di-
mension.

Publish/subscribe systems can take advantage of the
property of subscription containment, 1 which is defined as
follows: subscription S1 contains another subscription S2

(written S1 � S2) iff any message m that matches S2 also
matches S1. Conversely, we say that S2 is contained by S1

and we write S2 � S1. Note that the containment relation-
ship is transitive and defines a partial order. Geometrically,
subscription containment corresponds to the enclosure re-
lationships between the poly-space rectangles. Figure 1
(right) shows the containment relationships for the sample
subscriptions.

2.2 R-tree Index Structure

R-trees were first introduced in [18]. An R-tree is a
height-balanced tree handling objects whose representation
can be circumscribed in a poly-space rectangle. Each leaf-
node in the tree is an array of pointers to spatial objects.
Each entry in a leaf-array is labeled with the index of the
pointed object. An R-tree is characterized by the following
properties:

1The term covering is also commonly used in the literature.

2

1 S4S2 S7 S3 S8 S5 S6

1B 2B

3B 4B 5B 6B

S

Figure 2. R-tree for the subscriptions of Fig-
ure 1.

• Every leaf node contains between m and M entries,
each of which corresponds to a spatial object. Every
entry is tagged with the smallest rectangle that contains
the object.

• Every non-leaf node has between m and M chil-
dren, except for the root that has at least two chil-
dren. Each entry in a non-leaf node is tagged with the
smallest rectangle—called minimum bounding rectan-
gle (MBR)—that spatially contains the rectangles in
the child node.

• The height of an R-tree containing N objects is
�logm(N)� − 1.

• The worst space utilization for each node except the
root is m/M .

In a classical R-tree structure, the actual objects are only
stored in the leaves of the tree and interior nodes only main-
tain MBRs. An R-tree constructed from to the sample sub-
scriptions of Figure 1 is shown in Figure 2 and its spacial
representation in Figure 3. Note that all subscriptions are
stored in the leaves; the role of interior nodes B1, . . . , B6

is to keep track of the bounding rectangles that contains
their descendants. In distributed settings, obviously, inte-
rior nodes must be managed by specific peers in the system.

2.3 Selective Data Dissemination via R-trees

Consider a message traversing a distributed R-tree struc-
ture, where the nodes of the trees are mapped to the sub-
scribers of a publish/subscribe system. An event received
by a node will be forwarded to each of its children whose
MBR contains the event. Obviously, as the event flows
down the trees, it may be received by subscribers that are
not interested, i.e., whose filter does not overlap with the
message (even though the MBR does). We call such an
event a false positive. If the filters of all the descendant
of a subscriber n are contained within n’s filter, then n’s
MBR will be identical to its filter and n will experience
no false positive. It is therefore important to preserve the
containment relationships, ideally embedding the contain-
ment graph in the R-tree (note that a full embedding is often
impossible while at the same time maintaining the R-tree
height balanced).

By construction of the MBRs, the R-tree structure does
not produce false negatives during dissemination, i.e., all

A
tt

ri
bu

te
 2

6

Attribute 1

B
5B

4B

3B

1B 2B

Figure 3. Spatial representation of the R-tree
of Figure 2.

the subscribers that have subscribed for an event will receive
the event.

3 Self-stabilizing Dynamic R-trees

In this section we extend the R-trees index structures
to self-stabilizing peer-to-peer content-based spatial filters.
That is, subscribers self-organize in a balanced virtual tree
overlay based on the semantic relations between their filters.
We refer to the resulting distributed structure as DR-tree. In
order to simplify the presentation we consider that each fil-
ter is a rectangle and can be represented using coordinates in
a two dimensional space. This representation well captures
the range filters difficult to express in the most popular pub-
lish/subscribe systems (e.g., [1, 19, 7, 14]). The extension
to complex filters represented with poly-space rectangles
is straightforward. The overlay preserves the R-trees in-
dex structure features: bounded degree per node and search
time logarithmic in the size of the network. Moreover, the
proposed overlay copes with nodes dynamicity, as well as
memory and counter program corruptions.

Unlike the traditional R-trees, each node in our structure
is under the responsibility of a physical process. The DR-
tree structure is defined by the logical links between sub-
scribers depending on the relations between their filters. A
subscriber responsible for an internal node of the tree filters
events for all subscribers in its subtree. In order to maintain
the balanced nature of the tree (as will be explained further
in the overlay description) a subscriber is present in all the
levels of its subtree. More precisely, a subscriber p is recur-
sively its own child in the subtree rooted at p. Therefore,
a subscriber has different children sets for each level where
it is active. Consequently, a process may have to maintain
more than one parent link and children set.

Considering again the sample subscriptions of Figure 1,
a possible logical organization of the subscriptions (i.e.,
processes) in the system is shown in Figure 4. Some sub-
scriptions are both leaf and interior nodes of the DR-tree.
The choice of which subscriptions are promoted as interior
nodes will be discussed shortly. The logical tree has a single
virtual root (subscription S3) that appears at all level. The

3

1 S4S2 S7 S3 S8 S5 S6

S1

S1

S2 S3

S3

S5

S3
root

level 1

level 2

level 3 S

level 0

Figure 4. DR-tree for the subscriptions of Fig-
ure 1.

5S2

S7 S8S4

S1 S3

S6

S

Figure 5. Communication graph for the DR-
tree of Figure 4.

physical organization of the subscribers is shown in Fig-
ure 5. Each node is neighbor with its children and parent in
the logical tree.

Events flow through the tree according to the values of
the MBRs of the nodes at each level: an interior node for-
wards the event to each of its children whose MBR contains
the event. An event produced by a node n is disseminated
along all subtrees for which n is a root; further, it it propa-
gated upwards the root of the DR-tree and down every sib-
ling subtree encountered on the path to the root. Consider
for instance the production of event a (see Figure 1) by the
process associated to node S2 in the DR-tree of Figure 4.
The instance of node S2 at level 2 sends the event down to
child S4, and upward to S3. Node S3 checks if the event is
contained by the MBR of any of its children at levels 1 and
0 and, as this is not the case, does nothing. Therefore, the
event is received only by S2, S3, and S4, thus producing no
false positive and necessitating only 2 messages.

3.1 Overlay Organization

As previously mentioned, the DR-tree structure guaran-
tees that no false negative occurs during event dissemina-
tion, i.e., every consumer receives the events it is interested
in. However, the organization of the subscribers has a strong
influence on the routing accuracy and the number of false
positives in the system, i.e., the messages erroneously re-
ceived by consumers. In the worst case, the propagation of
an event may degenerate into a broadcast reaching all con-
sumer nodes irrespective of their interests. It is therefore
essential to organize the nodes carefully so as to minimize
the occurrence of false positives.

A straightforward approach to avoiding false positives is
to organize the subscribers according to containment rela-
tionships, such that the filter of a node contains the filters of

its descendants. Indeed, if an event matches the containee, it
has to match the container; conversely, if it does not match
the container, it cannot match the containee.

A direct mapping of the containment graph to a tree
structure [11] is often inadequate. First, it requires a virtual
root with as many children as subscriptions that are not con-
tained in any other subscription. Second, depending on the
subscription workload, the resulting tree might be heavily
unbalanced with a high variance in the degrees of internal
nodes.

Another approach consists in building one containment
tree per dimension and add a subscription to each tree for
which it specifies an attribute filter [3]. This solution tends
to produce flat trees with high fan-out and may generate a
significant number of false positives.

Instead, we need to organize the subscriptions in the DR-
tree structure while preserving existing containment rela-
tionships. In particular, we want to preserve the following
property:

Property 3.1 (Weak Containment Awareness) Given
two filters S1 and S2 with S1 � S2, then (the topmost
instance of) S1 is not an ancestor of (the topmost instance
of) S2 in the DR-tree.

This property guarantees that a containee filter will not
be a parent of a container filter, as it would degrade rout-
ing accuracy. This property is guaranteed by our root elec-
tion mechanism, which promotes as parent the node whose
MBR has the largest coverage area (see below). Observe
that the DR-tree of Figure 4 preserves this property.

In addition, it is desirable to implement a stronger variant
of the containment awareness property:

Property 3.2 (Strong Containment Awareness) Given
two filters S1 and S2 with S1 � S2, then either (the topmost
instance of) S2 is an ancestor or sibling of (the topmost
instance of) S1 in the DR-tree, or there exists S3 such that
S1 � S3, S2 �� S3, S3 �� S2, and (the topmost instance of)
S3 is an ancestor or sibling of (the topmost instance of) S1

in the DR-tree.

This property ensures that a containee filter is a descen-
dant of its containers. Because of the height-balancing
mechanism, it might not be possible to register a containee
deep enough in the tree as child of one of its container; in
that case, it can be inserted as a sibling of the container. The
second clause of the property deals with the case of a filter
having two container filters that do not cover each other (re-
member that the containment relationship is a partial order).
Therefore, the containee may become a descendant of either
of its container. This case is illustrated in Figure 1, with S4

being contained in both S2 and S3. The DR-tree of Fig-
ure 4 preserves the strong containment awareness property

4

true positives false positives

S2

S1

S3 S2

S1 S3

S2

S1

S3

1: containment. 2: intersecting MBRs. 3: disjoint MBRs.

Figure 6. Principle of root election. In all
cases, S1 is the best candidate to be elected
as root.

but, in the general case, the order of node insertion and re-
moval may lead to sub-optimal configurations in which this
property is occasionally violated.

3.2 Overlay Maintenance
Data Structures. Each process p in the overlay maintains
constant non-corruptible data representing its subscription

filterp = Sp = ((xp, yp
), (xp, yp))

where xp and y
p

represent the minimal abscissa/ordinate,
and xp and yp the maximal abscissa/ordinate of the rectan-
gle that circumscribes the process filters. Additionally, each
process p maintains the following variables:

• Cl
p is the set of children of p at level l. This set is

periodically updated whenever new processes join or
existing children leave the structure at level l. This
set is also updated during the reshuffling periods (i.e.,
periods when nodes of the tree compact their children
set).

• mbrl
p = ((xl

p, y
l
p
), (xl

p, y
l
p)) represents the minimum

bounding rectangle that includes all the MBRs of all
children at l, and is computed as:

((min
q∈Cl

p

(xl+1
q), min

q∈Cl
p

(yl+1
q

)), (max
q∈Cl

p

(xl+1
q), max

q∈Cl
p

(yl+1
q)))

The MBR of a leaf node is identical to its subscription.

• parentlp is the parent of node p for each level l where
p is present. The parent of the DR-tree structure root
process is the process itself.

• underloadedl
p is a boolean flag that indicates whether

node p is underloaded at level l. The value of this flag
is true if the size of the children set is less than m, i.e.,
|Cl

p| < m. It turns to false whenever the size of the
children set at l is at least m.

Joins. We assume that, at connection time, a subscriber
invokes an oracle that accurately provides a subscriber al-
ready in the structure. The join process may start from any
node, but the odds of finding a good position for the new

subscription are best when starting from the root. There-
fore, the joining subscriber is recursively redirected upward
the tree until it reaches the root.

Upon reception of a connection request, a subscriber p
already in the structure adjusts its MBR in order to include
the new subscription (if adjustment is needed) and chooses
in its children set the child whose MBR needs the less ad-
justment to encompass the filter of the joining subscriber.
In addition, it pushes the request to the chosen child. This
downward propagation process stops on the last non-leaf
level.

Assume that the join request reaches subscriber q on the
last non-leaf level. If the number of alive children of q is
less than M , then q adds the new subscriber to its children
set. Otherwise, q executes a split-children module that di-
vides its children set in two groups, each having at least m
elements (note that m must be chosen such that M ≥ 2m).
The invocation of this module aims at preserving the maxi-
mal and the minimal bounds on the nodes degrees. One of
the subtree returned by the split procedure stays as the chil-
dren of the invoking subscriber, p, and this process adjusts
its MBR accordingly. The other subtree is pushed back-
ward to p’s parent. If the size of the parent children set is
less than M , then the parent adds the root of the sub-tree
to its children list. Otherwise the parent recursively invokes
a split-children module. Note that this process eventually
stops with the split of the root, which generates the creation
of two subtrees and the election of a new root.

There are three classical methods for splitting a children
set, which are supported by our DR-tree structure:

• The linear method [18] chooses two children from the
overflowing node such that the union of their MBRs
waste the most area and place each one in a separate
node. The remaining children are assigned to the nodes
whose MBR is increased the least by the addition. This
method takes linear time.

• The quadratic method [18] chooses two children from
the overflowing node such that the union of their
MBRs would waste the most area if they were in the
same node, and place each one in a separate node. The
remaining MBRs are examined and the one whose ad-
dition maximizes the difference in coverage between
the MBRs associated with each node is added to the
node whose coverage is minimized by the addition.
This method takes quadratic time.

• The R*-tree splitting method [5] attempts to reduce not
only the coverage, but also the overlap. Instead of just
splitting the node when it overflows, it also tries to
allocate some entries to a better suited node through
reinsertion.

Which node is elected as parent of a subtree has influ-
ence on the routing accuracy of the resulting DR-tree, even

5

Compute MBR(p, l)≡
mbrl

p ← ((min
q∈Cl

p

(xl+1
q), min

q∈Cl
p

(yl+1
q

)), (max
q∈Cl

p

(xl+1
q), max

q∈Cl
p

(yl+1
q)))

Is Better MBR Cover(p, q, l)≡
return |mbrl+1

q | > |mbrl+1
p |

Is Good MBR(p, l)≡
return mbrl

p = ((min
q∈Cl

p

(xl+1
q), min

q∈Cl
p

(yl+1
q

)), (max
q∈Cl

p

(xl+1
q), max

q∈Cl
p

(yl+1
q)))

Adjust Parent(p, q, l)≡
parentl

q ← parentl
p

forall s ∈ Cl
p do parentl+1

s ← q

Cl
q ← Cl

p

Compute MBR(q, l)

Adjust Children(p, q, l) ≡
mbrl

p ← mbrl
p

⋃
mbrq

Cl
p ← Cl

p

⋃{q}
parentl

q ← p

Figure 7. Functions used by the Join, Leave,
and Repair modules

though it does not affect the size of the MBR of the new
root. In order to preserve the containment awareness prop-
erties and minimize the likeliness for false positives, we
elect as root the node whose current MBR is largest, i.e.,
which provides most coverage over the MBR of the new
root. If one filter covers all the others, then it trivially be-
comes the new root (case 1 in Figure 6): the containment
awareness properties is preserved and we have no false pos-
itives. If filters intersect or are disjoint, we elect the node
with the largest MBR (cases 2 and 3 in Figure 6) in order
to minimize the size of the area corresponding to false pos-
itives.

The detailed pseudo-code of the join process is shown in
Figures 7 and 8.2

Dynamic Reorganizations. There are two situations
where nodes may dynamically reorganize to improve the
accuracy of the underlying DR-tree structure. First, each
internal node in the tree periodically checks if it is the best
cover for sub-tree. If one of its children provides better cov-
erage (e.g., because its MBR has grown after the insertion of
a new node), then the nodes exchange their position. This
scenario can occur during join, splitting, and if the tree is
corrupted (to be discussed later).

Second, under bias event workloads, it may happen that
the organization of the DR-tree (computed statically so as
to minimize MBR coverage) may perform poorly because
small false positive regions are hit by many events while
larger areas see none. To deal with such situations, each
node computes its number of false positives, and the number

2The implementation of functions Choose Best Child (select the sub-
tree in which to insert a new node) and Split Node (separate a leaf set into
two sets and return both parents) are not shown as they depend on the split-
ting method and type of structure being used (linear, quadratic, R*).

upon receive JOIN(q, l) at node p
if ¬Is Leaf(Choose Best Child(p, filterq , l),l + 1) then

mbrl
p ← mbrl

p

⋃
filterq

send JOIN (q, l + 1) to Choose Best Child(p, filterq , l)
else

send ADD CHILD (q, l) to p

upon receive ADD CHILD(q, l) at node p

if |Cl
p| < M then

Adjust Children(p, q, l)
if Is Better MBR Cover(p, q, l) then

Adjust Parent(p, q, l)
else

(left, right)← Split Node(p, q, l)
if Is Root(left, l) then

Create Root(left, right)
else

send ADD CHILD (right, l − 1) to parentl
left

Figure 8. Pseudo-code of Join Phase exe-
cuted at node p

upon receive LEAVE(q, l) at node p
send CHECK CHILDREN(l) to p

if q ∈ Cl
p then

Cl
p ← Cl

p \ {q}
Compute MBR(p, l)

send CHECK PARENT(l) to p

if |Cl
p| < m ∧ ¬ Is Root(p, l) then

send CHECK STRUCTURE(l − 1) to parentl
p

Figure 9. Pseudo-code of Leave Phase exe-
cuted at node p

of false positives that each of its children would have expe-
rienced if it had been in its place. If the former is higher than
the latter, i.e., the child is interested in many events that its
parent does not care about, then both nodes exchange their
positions.

Controlled Departures. We now describe the repair al-
gorithm executed whenever a subscriber leaves properly the
system by sending a leave message to the parent of its top-
most instance in the DR-tree. Upon receiving a leave mes-
sage the parent removes the subscriber from its children
set. For simplicity, we rely on the stabilization mechanisms
(to be presented shortly) for repairing the subtree rooted at
the departing node. Much more efficient variants are pos-
sible if the leave module drives the repair process and re-
connects whole subtrees. If, due to the removal, the chil-
dren set drops below the m limit, then the node sends a
CHECK STRUCTURE message to its parent. The algorithm
executed upon the reception of this message is presented
next. The detailed pseudo-code of the departure process is
shown in Figure 9.

3.3 Overlay Stabilization

The overlay stabilization process implements the self-
stabilization of the mbr variables and the tree structure, and
checks that the overlay respects the DR-tree specification.
This verification is performed periodically due to the dy-
namicity of the environment. That is, at each subscriber in

6

the DR-tree, the following events are triggered periodically
for each level where the subscriber is active: CHECK MBR,
CHECK PARENT, CHECK CHILDREN, CHECK COVER and
CHECK STRUCTURE.

Correction of the MBR values. In a correct state, the
MBR of a leaf node equals its filter while the MBR of a non-
leaf node is the smallest rectangle that covers the MBRs of
its children. Upon the reception of a CHECK MBR event
each subscriber checks the correctness of its mbr value and
repairs it in case of anomaly (see Figure 10).

upon receive CHECK MBR(l) at node p

if Is Leaf(p, l) ∧mbrl
p �= filterp then

mbrl
p ← filterp

if ¬ Is Leaf(p, l) ∧¬Is Good MBR(p, l) then
Compute MBR(p, l)

Figure 10. Repair MBRs at node p

Correction of the DR-tree structure. Transitory faults
or uncontrolled departures may have a dramatic impact on
the DR-tree structure. Therefore, we reinforce the system
by adding modules that deal with the different scenarios of
corruption. The DR-tree structure is corrupted if: (a) the
variable parent or the children set are corrupted; (b) the
child of a node has a filter with better cover than its par-
ent; or (c) the size of the children set drops under the limit
m. Each one of these situations is corrected by one of the
modules shown in Figures 11, 12, 13 and 14 as explained in
the following. Note that the insertion of new nodes in the
structure cannot create corruptions of the DR-tree state.

Due to a transient fault the parent variable may have
any value. In order to stabilize the DR-tree structure in this
respect, each node verifies via module 11 if it is present in
the list of children of its parent. If that is not the case, then
the node sets itself as parent and initiates a join process.

The module shown in Figure 12 checks the status of
the variable “underloaded” which may have been corrupted
during execution or may have an incorrect value due to sud-
den departures. In case of corruption the variable is reset to
a correct value. Furthermore, if a node discovers that one of
its children has another parent, then it simply discards the
child.

upon receive CHECK PARENT(l) at node p

if p �∈ Cl−1
parentl

p
then

(n, l)← Get Contact Node()
send JOIN (p, l) to n

Figure 11. Repair Parent at node p

Due to some modifications in the tree structure, the child
of a node may better cover the node sub-tree than the node
itself. In that case, the node and the child exchange their
roles. Note that the MBR of the new parent must be up-
dated, as well as the MBRs of all ancestor nodes on the
path to the root. This correction is performed by the mod-
ule proposed in Figure 13.

upon receive CHECK CHILDREN (l) at node p

while ∃q ∈ Cl
p, parentl+1

q �= p do
Cl

p ← Cl
p \ {q}

Compute MBR(p, l)
if |Cl

p| < m ∧ ¬underloadedl
p then

underloaded← true
if |Cl

p| > m ∧ underloadedl
p then

underloaded← false

Figure 12. Repair Children Set at node p
upon receive CHECK COVER(l) at node p

if ∃q ∈ Cl
p, Is Better MBR Cover(p, q, l) then

Adjust Parent(p, q, l)

Figure 13. Repair Cover at node p

By specification, each node has to have at least m chil-
dren. Due to uncontrolled departures, the children set of a
particular node may drop below the m limit. In the follow-
ing this node is refered to as underloaded. In order to avoid
the creation of an underloaded tree, each node verifies peri-
odically if it has underloaded children (Figure 14). If such
children exist the node starts a compaction process. That is,
the subtrees corresponding to underloaded nodes are com-
pacted in a unique subtree and MBRs are recomputed ac-
cordingly. If, after the compaction process, a node p still
has at least one underloaded child q, then the children of
q are dispatched to one of p’s unsaturated children (nodes
that have less than M children). If that is not possible, a
reinsertion message is sent to q’s children that couldn’t be
reinserted, so that they execute again the join process.

3.4 Overlay correctness

In this section we present the correctness of the com-
puted overlay. We first show that join and controlled depar-
ture operations do not corrupt the DR-trees structure. Then
we show the stabilization of the structure once the local
variables are corrupted by a transient fault or disconnection
of subscribers without notification. Proofs can be found in
a companion technical report [6].

Definition 3.1 The DR-tree is in a legal state iff the follow-
ing conditions are verified :

• each non-root and non-leaf node in the tree3 has at
most M and at least m children;

• for each process p in the overlay, the parent and chil-
dren variables are coherent:

– if p is the parent of node q at level l then q belongs
to the children set of p at l − 1;

– if q is the child of p at level l then q has parent
variable set to p for level l + 1;

• for each node p at level l there is no child q such that
q offers a better cover for the subtree of p at l;

3Note that a process can be responsible for several nodes in the tree.

7

Search Compaction Candidate (p, q, l)≡
send CHECK CHILDREN (l + 1) and CHECK MBR(l + 1) to all k ∈ Cl

p

cand← ∅

while ∃t ∈ Cl
p \ {q}, |Cl+1

t

⋃ Cl+1
q | ≤ M do

cand← cand
⋃ {t}

if cand = ∅

then return⊥
else return t ∈ cand, |mbrl+1

t −mbrl+1
q | = min

s∈cand
|mbrl+1

s −mbrl+1
q |

Best Set Cover(set, s, t, l)≡
mbr set ← ((min

q∈set
(xl

q), min
q∈set

(yl

q
)), (max

q∈set
(yl

q), max
q∈set

(yl
q)))

if |mbr set − filters| < |mbr set − filtert|
then return s
else return t

Elect Leader(s, t, l)≡
send CHECK CHILDREN (l + 1) and CHECK MBR(l + 1) to all k ∈ Cl

s

⋃ Cl
t

return Best Set Cover(Cl
s

⋃ Cl
t, s, t, l)

Merge Children(s, t, l)≡
Cl

s ← Cl
s

⋃ Cl
t

parentl
t ←⊥

forall k ∈ Cl
t do parentl+1

k ← s
Compute MBR(s, l)

Compact(s, t, l)≡
if Elect Leader(s, t, l) = s then

Merge Children(s, t, l)
else

Merge Children(t, s, l)

upon receive CHECK STRUCTURE (l) at node p

send CHECK CHILDREN (l + 1) to all q ∈ Cl
p

while ∃q ∈ Cl
p, underloadedl+1

q do
cand← Search Compaction Candidate(p, q, l)
if cand =⊥
then send INITIATE NEW CONNECTION (l + 1) to q
else Compact(q, cand, l + 1)

upon receive INITIATE NEW CONNECTION (l) at node p
if ¬ Is Leaf(p, l) then

send INITIATE NEW CONNECTION to all q ∈ Cl
p

else
(n, l)← Get Contact Node()
send JOIN (p, l) to n

Figure 14. Repair DR-tree structure at node p

• the MBR value of each non-leaf node p at level l is the
union of the MBR values of its children at level l + 1.

Definition 3.2 (legitimate configuration) Let S be the sys-
tem executing the algorithms described in section 3.2. The
system is in a legitimate configuration iff the virtual struc-
ture defined by the parent variables and the children sets is
a legal DR-tree.

Lemma 3.1 In a legitimate configuration the height of the
DR-tree is O(logm(N)) while the memory complexity for
the structure maintenance is O(M log2(N)/ log(m)).

Lemma 3.2 (stabilization after joins) Let c be a legiti-
mate configuration and let p be a subscriber joining the
system in c. Let c′ be the new configuration of the system
after p executes the join operation (Figure 8). c′ is a legiti-
mate configuration and is reached in O(logm(N)) steps.

Lemma 3.3 (stabilization after compaction) The system
executing a compaction action reaches a legitimate config-
uration in O(N logm(N)) steps.

Lemma 3.4 (stabilization after controlled leaves) Let c
be a legitimate configuration and let p be a subscriber
leaving the system via a controlled departure in c. Let c′

be the new configuration of the system after p executes the
controlled departure operation (Figure 9). c′ is a legitimate
configuration and is reached in O(N logm(N)) steps.

Lemma 3.5 (stabilization after uncontrolled leaves) Let
c a legitimate configuration and let p be a node leaving
the system via an ucontrolled departure (failure) in c. The
system reaches a legitimate configuration c′ in a finite
number of steps. It stabilizes in O(N logm(N)).

Lemma 3.6 (stabilization after memory corruption)
Let c be an initial arbitrary configuration of the system.
The system reaches a legitimate configuration c′ in a finite
number of steps.

The DR-tree integrates modules that repair the overlay
as soon as a corruption is detected. The recover process
is totally dependent on the value of the “timeout” and the
stabilization time of the structure. As shown in the pre-
vious lemmas, for most of the faults the recovery time is
O(N logm(N)) (note again that the recovery time can be
significantly reduced by reconnecting whole subtrees after
a failure). However, in environments prone to high churn
the structure may never be able to self-repair. Therefore,
it is interesting to study the limits of our overlay. The fol-
lowing lemma computes the bound on the expected time the
DR-tree gets disconnected due to frequent departures. We
recall that joins have no impact on the overlay connectivity.

Lemma 3.7 (DR-tree churn resistance) Let ∆ be an in-
terval of time during which no stabilization operation is
triggered and let λ be the rate of departures.4 The expected

time before the DR-tree disconnects is ∆
N e

(N−∆λ)2

4∆λ .

4 Discussions and Conclusion

Publish/Subscribe systems have been studied extensively
in the last few years starting with pioneering work of [1]
and several surveys (e.g., [16]) report the contributions in
this area.

Implementing Publish/Subscribe in dynamic environ-
ments where continuous service has to be guaranteed de-
spite high churn (frequent connections/disconnections) re-
mains an important challenge. Some recent systems have
proposed to exploit the features of DHT-based peer-to-peer
overlays [8, 21, 17]. The main goal is to offer guarantees
with respect to the publish/subscribe latency and the re-
silience to high churn. The first objective was successfully
achieved since DHT’s offer logarithmic latencies. How-
ever, it was shown [4] that these overlays have limited
scalability and low resistance to churn. Additionally, the

4We consider arrivals and departures modeled by a Poisson distribution.

8

mapping of complex filters to uni-dimensional name spaces
results in poor performance. Consequently, several de-
signs of DHT-free peer-to-peer publish/subscribe systems
were proposed [12, 11, 3, 20]. The main advantage of
these approaches is their scalability, although most of them
suffer from two problems: the loss of accuracy (appari-
tion of false negatives or false positives) and their poor la-
tency for unfriendly scenarios of connection/disconnection.
Note that none of the previously mentioned systems is self-
stabilizing.

In this paper we designed a self-stabilizing overlay, DR-
tree, that combines the best of both worlds. Our over-
lay deals with complex (multi-dimensional) filters via a
data-structure similar to R-trees. DR-tree is a distributed
and fault-tolerant implementation of R-trees structure, fully
adapted to embed a publish/subscribe system with complex
filters, which copes with the dynamicity of the system and
memory corruption. The overlay is designed such as it erad-
icates the false negatives and drastically drops the false pos-
itives (our experiments show that the false positive rate is
in the order of 2 − 3% with most workloads [6]). More-
over, as its DHT-based counterparts, it provides logarithmic
guaranties for the publish/subscribe operations using only
polylogarithmic memory per node. We proved the correct-
ness of our overlay under static and dynamic assumptions.
Note that DR-trees generalize P-trees [13], which are the
dynamic version of B+-trees.5

References

[1] M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, and T.D.
Chandra. Matching events in a content-based subscription system. In
Proceedings of the 8th ACM Symposium on Principles of Distributed
Computing (PODC 1999), pages 53–61, 1999.

[2] M. Altinel and M.J. Franklin. Efficient filtering of XML documents
for selective dissemination of information. In Proceedings of the 26th
International Conference on Very Large Databases (VLDB 2000),
pages 53–64, 2000.

[3] E. Anceaume, A.K. Datta, M. Gradinariu, G. Simon, and A. Vir-
gillito. A semantic overlay for self-* peer-to-peer publish subscribe.
In Proceedings of the 26th International Conference on Distributed
Computing Systems (ICDCS 2006), 2006.

[4] R. Baldoni, S. Bonomi, A. Rippa, L. Querzoni, S.T. Piergiovanni,
and A. Virgillito. Evaluation of unstructured overlay maintenance
protocols under churn. In Proceedings of the 26th International Con-
ference on Distributed Computing Systems (ICDCS 2006), 2006.

[5] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-
tree: an efficient and robust access method for points and rectangles.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 322–331, 1990.

[6] S. Bianchi, A.K. Datta, P. Felber, and M. Gradinariu. Self-stabilizing
peer-to-peer spatial filters. Technical report, LIP6, Universite Paris
6, 2007.

[7] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and evalua-
tion of a wide-area event notification service. ACM Transactions on
Computer Systems, 19(3):332–383, 2001.

5B+-trees are ancestors of R-trees designed to handle ranges and in-
equalities.

[8] M. Castro, P. Druschel, A.M. Kermarrec, and A. Rowston. Scribe: A
large-scale and decentralized application-level multicast infrastruc-
ture. IEEE Journal on Selected Areas in Communications (JSAC),
20(8):1489–1499, 2002.

[9] C.-Y. Chan, W. Fan, P. Felber, M. Garofalakis, and R. Rastogi.
Tree pattern aggregation for scalable XML data dissemination. In
Proceedings of the 28th International Conference on Very Large
Databases (VLDB 2002), 2002.

[10] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient fil-
tering of XML documents with XPath expressions. VLDB Journal,
Special Issue on XML, 1(4):354–379, 2002.

[11] R. Chand and P. Felber. Semantic peer-to-peer overlays for pub-
lish/subscribe networks. In Proceedings of the International Confer-
ence on Parallel and Distributed Computing (Euro-Par 2005), 2005.

[12] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola. Epidemic algo-
rithms for reliable content-based publish/subscribe: An evaluation.
In Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS 2004), 2004.

[13] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram.
Querying peer-to-peer networks using P-Trees. In Proceedings of the
the 7th International Workshop on the Web and Databases (WebDB
2004), pages 25–30, 2004.

[14] G. Cugola, E. Di Nitto, and A. Fugetta. The JEDI event-based infras-
tructure and its application to the development of the OPSS WFMS.
IEEE Transactions on Software Engineering, 27(9):827–850, 2001.

[15] Y. Diao, P. Fischer, M. Franklin, and R. To. YFilter: Efficient and
scalable filtering of XML documents. In Proceedings of the 18th
International Conference on Data Engineering (ICDE 2002), 2002.

[16] P.Th. Eugster, P. Felber, R. Guerraoui, and A.M. Kermarrec.
The many faces of publish/subscribe. ACM Computing Surveys,
35(2):114–131, 2003.

[17] A. Gupta, O.D. Sahin, D. Agrawal, and A. El Abbadi. Meghdoot:
Content-based publish:subscribe over P2P networks. In Proceedings
of the ACM/IFIP/USENIX 5th International Middleware Conference
(Middleware 2004), 2004.

[18] A. Guttman. R-trees: a dynamic index structure for spatial searching.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 47–57, 1984.

[19] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content
based routing with Elvin4. In Proceedings of the AUUG2K, 2000.

[20] S. Voulgaris, E. Rivire, A. Kermarrec, and M. van Steen. Sub-2-Sub:
Self-organizing content-based publish subscribe for dynamic large
scale collaborative networks. In Proceedings of the 5th International
Workshop on Peer-to-Peer Systems (IPTPS 2006), 2006.

[21] S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R. Katz, and J. Kubiatow-
icz. Bayeux: An architecture for scalable and fault-tolerant wide-area
data dissemination. In Proceedings of the International Workshop on
Network and OS Support for Digital Audio and Video, 2001.

9

