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Abstract— In the past few years, several DHT-based abstrac-
tions for peer-to-peer systems have been proposed. The main
characteristic is to associate nodes (peers) with objects (keys) and
to construct distributed routing structures to support efficient
location. These approaches partially consider the load problem
by balancing storage of objects without, however, considering
lookup traffic. In this paper we present an analysis of structured
peer-to-peer systems taking into consideration Zipf-like requests
distribution. Based on our analysis, we propose a novel approach
for load balancing taking into account object popularity. It
is based on dynamic routing table reorganization in order to
balance the routing load and on caching objects to balance
the request load. We can therefore significantly improve the
load balancing of traffic in these systems, and consequently
their scalability and performance. Results from experimental
evaluation demonstrate the effectiveness of our approach.
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I. INTRODUCTION

Peer-to-peer (P2P) networks are distributed systems where
every node—or peer—acts both as a server providing resources
and as a client requesting services. These systems are inher-
ently scalable and self-organized: they are fully decentralized
and any peer can decide to join or leave the system at any
time.

Numerous peer-to-peer networks have been proposed in the
past few years. Roughly speaking, they can be classified as
either structured or unstructured. Unstructured P2P networks
(e.g., Gnutella [1], Freenet [2]) have no precise control over
object placement and generally use “flooding” search pro-
tocols. In contrast, structured P2P networks as also called
distributed hash-tables (DHTs) (e.g., Chord [3], CAN [4],
Pastry [5]), use specialized placement algorithms to assign
responsibility for each object to specific nodes, and “directed
search” protocols to efficiently locate objects. DHTs mostly
differ in the rules they use for associating the objects to nodes,
their routing and lookup protocol, and their topology.

Regardless of the nature of the system, a P2P network
must scale to large and diverse node populations and provide
adequate performance to serve all the requests coming from
the end-users. A challenging problem in DHTs is that, due
to the lack of flexibility in data placement, uneven request
workloads may adversely affect specific nodes responsible
for popular objects. Performance may drastically decrease as
overloaded nodes become hot-spots in the system.

Several strategies have been proposed to improve load
balancing by adjusting the distribution of the objects and the
reorganization of the nodes in the system. However, such
techniques do not satisfactorily deal with the dynamics of

the system, or heavy bias and fluctuations in the popularity
distribution. In particular, requests in many P2P systems
have been shown to follow a Zipf-like distribution [6], with
relatively few highly popular objects being requested most of
the times. Consequently, the system shows a heavy lookup
traffic load at the nodes responsible for popular objects, as
well as at the intermediary nodes on the lookup paths to those
nodes.

This paper presents a study of the load in structured peer-
to-peer systems under biased request workloads. As expected,
simulation results demonstrate that, with a random uniform
placement of the objects and a Zipf selection of the requested
objects, the request load on the nodes also follows a Zipf
law. More interestingly, the routing load resulting from the
forwarded messages along multi-hop lookup paths exhibits
similar powerlaw characteristics, but with an intensity that
decreases with the hop distance from the destination node. One
important point that must be noted here is that the process of
downloading files is out of band and therefore not considered
in this study.

Based on our analysis, we propose a novel approach for
balancing the system load, by taking into account object
popularity for routing. We dynamically reorganize the “long
range neighbors” in the routing tables to reduce the routing
load of the nodes that have a high request load, so as to
compensate for the bias in object popularity. In addition, we
propose to complement this approach by caching the most
popular objects along the lookup routes in order to reduce the
request load in the nodes that hold those objects.

Our solution has the following characteristics:
• minimum impact on the overlay: neither changes to the

topology of the system, nor to the association rules
(placement) of the objects to the nodes are necessary;

• low overhead: no extra messages are added to the system,
except for caching. If a node has free storage space, it
can dedicate a part of it for caching, which will lead
to better load balancing in the system. Other nodes can
simply ignore the caching requests;

• high scalability: the decision to reorganize routing tables
or cache objects are local;

• high adaptivity: the routing table reorganization and
caching adapt to the popularity dynamics of the objects
in the system.

The paper is organized as follows. In Section II we introduce
the characteristics of the structured peer-to-peer system taken
into consideration in this work. Then we present simulations
showing that a Zipf distribution of requests results in an



uneven request and routing load in the system. In Sections III
and IV we present, respectively, our approach for popularity-
based load balancing and its evaluation. We discuss related
work in Section V, and Section VI concludes the paper.

II. PRELIMINARIES

A. System Model

In the past few years, several structured P2P systems have
been proposed that basically differ in the hash space (ring,
Euclidean space, hypercube), the rules for associating the
objects to the nodes, and the routing algorithm.

In our work, we assume a classical DHT overlay composed
by N physical nodes and K objects mapped on to a ring with a
maximum capacity of 2m, which corresponds to the maximum
number of nodes and objects.

Each node and object has an m-bit identifier, obtained
by respectively hashing the IP address and the name. For
consistent hashing, we used the SHA-1 cryptographic hash
function, such that, with high probability, the distribution of
the assigned identifiers on the ring is uniform, i.e., all nodes
receive roughly the same number of keys.

Lookup is based on prefix routing (also similar to Pastry),
with at most O(log2bN) messages necessary to route a request.
The identifiers use a sequence of digits with base 2b and
each node has a routing table and a leaf set. The requests are
forwarded to the node in these tables that shares the longest
common prefix with the requested object.

The routing table is built using the following rule: each entry
must contain a node whose ID has a common prefix of a given
length (depending on the row number of the entry) with the
current node ID, and a different value for the following digit.
Note that there are typically more than one node satisfying
the rule for an entry. In Pastry, the selection of the node for
each entry is based on a proximity metric. In our system we
propose to reorganize the routing tables by selecting the nodes
with the lowest load. Our solution can be applied to any DHT
with neighbor selection flexibility [7].

For the purpose of this study, we assume that the system
has the following characteristics:

• stability: as churn is not expected to affect the load
balancing significantly, no node joins nor leaves the
system. As a consequence, we do neither consider a
retry mechanism upon lookup failure, nor a bootstrap
mechanism to join the system. We briefly discuss the
implications of churn in Section IV;

• homogeneity: same characteristics for all nodes (CPU,
memory, storage size), same bandwidth for all links, and
same size for all objects;

• no locality: no topology aware routing in the system.

B. Implications of Zipf-like requests

Similarly to Web requests [8], the popularity of the objects
in many DHTs follows a Zipf-like distribution [6]. This means
that the relative probability of a request for the ith most
popular object is proportional to 1/iα, where α is a parameter
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Fig. 1. Overlay and routing structure.

of the distribution, resulting in hot-spots for the nodes that
hold the most popular objects.

In case of file sharing applications, many studies have
observed that the request distribution has two distinct parts.
Very popular files are equally popular, resulting in a linear
distribution and less popular files follow a Zipf-like distribu-
tion. This usually happens because of the immutability of the
objects in file sharing where the clients will request the object
only once and then download it (out of band) [9], [10], [11].

In both cases, the amount of traffic received and forwarded
by some nodes is much higher than for other nodes. In this
context, the paper analyzes the worst case (Zipf-like distri-
bution) and focuses on improving the degraded performance
caused by hot-spots.

Each node ni has a capacity for serving requests ci, which
corresponds to the maximum amount of load that it can
support. In our study, we consider the load as the number
of received and forwarded requests per unit of time. Some
nodes hold more popular objects than others (i.e., have a
higher number of received requests), thus being overloaded,
with a load �i � ci. Other nodes hold less or no popular
objects thus presenting a small load compared to their capacity
ci � �i. With a random uniform placement of the objects
and a Zipf-like selection of the requested objects, the request
load on the nodes also follows a Zipf law. Consequently, we
expect that the routing load resulting from message forwarding
along intermediary nodes to the popular objects also exhibits
powerlaw characteristics.

To better understand this problem, we have performed
simulations to gather request load information associated to
the nodes in the system. At each node, we keep track of
the number of requests received for a local object, as well
as the number of requests forwarded for a destination located
i hops away from the current node. Figure 2 illustrates part of
the results of a simulation for an overlay network with 1,000
nodes, 20,000 objects randomly and uniformly distributed, and
100,000 requests following a Zipf-like distribution.

The value of an i-hop away entry represents the number of
requests that it forwards for nodes at a distance of i hops. Node
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105 receives only few requests, but it forwards many requests.
Conversely, node 6,065 holds a popular object. It thus receives
many requests, but forwards only few requests since it is not
on a path to a popular object. Node 12,410 presents both a
high request load and a high routing load. Obviously, nodes
6,065 and 12,410 become hot-spots.

Figure 3 compares the number of requests received by each
node, as well as the number of requests it must forward for
a destination node that is 1 hop and 6 hops away. All three
sources of load follow a Zipf-like distribution, but with an
intensity that decreases with the distance from the destination.

In the next section we present our load balancing solution
that aims to equilibrate the routing and request load of the
nodes in the system.

III. ADAPTIVE LOAD BALANCING

A. Routing Tables Reorganization (RTR)

The key principle of our approach is to dynamically reorga-
nize the “long range neighbors” in the routing tables in order
to reduce the routing load of the nodes that have a high request
load, so as to compensate for the bias in object popularity.

As previously mentioned, each entry of a routing table can
be occupied by any one of a set of nodes that share a common
prefix. In our approach, we reorganize the routing table by
choosing the nodes with the lowest (request and forwarding)
load in order to offload the most heavily-loaded nodes. The
overloaded nodes (as a consequence of a popular object, or too
many forwarded requests or both) are removed from the other
nodes’ routing tables in order to reduce their load. Instead, the
entry will contain another node, from the same region (same
prefix), which is less loaded. This way, the nodes that have a
high request load will have a small forwarding load, and the
nodes with low request load will share the forwarding load.

Figure 4 shows an example of routing table update with no
load balancing and Figure 5 illustrates the update based on
our load balancing mechanism. In the figures, “++” indicates
a high load and “−−” a low one. In the example, node N4

holds a popular object resulting in a high request load. Since
it is a heavily-loaded node, it will be removed from the other
nodes routing tables. Node N24 will update its first entry with
node N9, which is less loaded than node N4. Consequently,
the load of node N4 will decrease, and the load of node N9

will increase, thus equilibrating the load in the system.
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The routing table updates are performed dynamically while
routing the requests, without increasing the number of mes-
sages. The algorithm is shown in pseudo-code in Algorithm 1,
for a node ni that forwards a request.

Every node keeps track of the approximate load �k of each
other node nk in its routing table. Before forwarding (or
sending) a request message, each node adds its load to the
message (line 17). The ith node in the request path receives
the load information of i other nodes in the request message. A
node ni that receives the request, besides handling it, uses the
load information in the message to possibly update its routing
table. Each node nj in the message can match exactly one
entry in the routing table of node ni. If the load is lower for
node nj than for node nk found in the routing table the entry
is updated with nj (lines 5-8).

Algorithm 1 Pseudo-code for the RTR algorithm at node ni

0: {Receive request}
1: for each (nj , �j) in the message do
2: entry ← matching entry for nj in the routing table
3: nk ← current node at entry
4: if nj �= nk then
5: if �j <= �k then
6: Replace nk by nj at entry
7: Store �j at entry
8: end if
9: else

10: Store �j at entry
11: end if
12: end for
13:

14: if ni not owner of requested object then
15: nk ← next node to forward request
16: �k ← �k + e
17: {Add (ni, �i) to the request message to be forwarded}
18: end if

The load information corresponding to the entries in the
routing table of node ni is not accurate, since the node cannot
know at each moment the real values for the load of each
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entry. In order to compensate for this limitation, we use several
techniques:

• even if the loads for the two nodes nj and nk are equal,
the entry is updated, since load lj is nj’s real load but lk
is only an estimation of nk’s load (line 5-8);

• if ni receives the load information of a node that is
already in its routing table (node nj is the same as node
nk), its load is updated (line 10);

• when node ni forwards (sends) a request to a node nk, ni

updates the load information for nk in the routing table
using an estimation e of the load of nk (line 16).

In our experiments, we use an estimation e of 1, since we
know exactly that the load of nk will increment by at least 1
from the request that ni forwards.

This algorithm does neither add extra messages, nor sig-
nificant complexity to the system. It is based on local load
estimations, as well as the information received with each
request.

When a new node ni joins the system and populates its
routing table, it takes as initial value for li the average of the
loads of its new neighbors. Node departures do not require
special handling.

As extensions of the algorithm, we might consider a com-
bined metric: proximity (as proposed in Pastry [5]) and load
information. This could be a trade-off between proximity-
aware routing and load-aware routing. In addition, we might
consider adding load information also to the response message
of the lookup for an object. Of course, the more information
about the system is available, the better lookup traffic can be
balanced.

B. Caching

The routing table reorganization permits us to balance the
forwarding traffic of the nodes in the overlay, but the traffic
resulting from the received requests still leads to a bottleneck
at the destination node. In this section we propose caching as
a complementary feature to the routing table reorganization,
in order to minimize the number of received requests at the
nodes holding popular objects. As a consequence, the request
traffic for each cached object will be shared among the node
owning the object and the nodes holding the replicas.

Basically, there are two ways to initiate caching: by the
client that requests the object and by the server that holds

the object [12]. Client-initiated caching is not adequate for
applications such as file sharing because a client usually
requests an object only once. Therefore, in our approach, the
server replicates the object to be cached on some other node(s)
in an attempt to reduce its request load. When a request arrives
at a node that holds a replica of the requested object in its
cache, that node can directly respond to the request.

We refer to two kinds of objects that a node holds:

• owned object: an object that belongs to the node accord-
ing to the initial mapping of objects to nodes;

• cached object: a replica of an object owned by another
node.

Algorithm 2 Pseudo-code for the caching algorithm, after node ni

receives a request from nj

1: increment req recv counter
2: increment req recv[requested object][nj ]
3: {Reaching threshold: }
4: if req recv counter = T then
5: {Compute weights: }
6: for all objects o on node ni do
7: if o is the last cached object then
8: w[o]← req recv[o]/T
9: else

10: w[o]← w[o] ∗ β + (req recv[o]/T ) ∗ (1− β)
11: end if
12: end for
13: if ni is loaded then
14: m p o← o, where w[o] is max
15: nc ← n, where req recv[m p o][n] is max
16: {Will issue a caching request: }
17: send a request to nc to cache m p o
18: end if
19: {Reset counters: }
20: for all objects o on node ni do
21: req recv[o]← 0
22: end for
23: req recv counter ← 0
24: end if

The algorithm is shown in pseudo-code in Algorithm 2.
We make use of two types of counters for the received
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requests at each node: a per-object counter (for the number
of received requests for each object held by the node) and a
per-node counter (for the total number of received requests).
The counters are incremented at each received request (lines 1-
2). A threshold is defined for the per-node counter. Each time
the threshold is reached (line 4), a weight is computed for
each object held by the node based on the per-object counters
(lines 5-12); then, the counters are reset (lines 19-23). The
most popular object on the node is the object with the highest
weight (line 14).

To compute the popularity of an object, we use a weighted
moving average, where the weight is computed as a combi-
nation of its previous value and the value computed over the
last period (line 10). We use a β value of 0.9, such that both
terms count in the computation of the object’s weight, but the
old value (which is a stable information) counts more than
the new one. After a caching request has been issued for an
object, only the new value is considered (line 8).

For the caching mechanism, the following considerations
must be taken into account: storage size of the cache and its
policies, when to cache an object and where to store it. In the
following we detail all these aspects.

1) The cache and its policies: Each node has a cache
(storage capacity) for C replicas. Whenever a caching request
is received and the storage capacity is exhausted, the replica
entry with the lowest weight is discarded and the new replica
is stored.

2) When to cache an object: A caching request is issued
each time the threshold T is reached in case the node is loaded
(lines 13-18). Obviously, if the node is not loaded, no caching
request is issued, at least until the next threshold.

To know whether a node is loaded or not, we perform two
checks:

• if the node is globally loaded. We use the load infor-
mation of the nodes in the routing table; this is not an
up-to-date information, yet a rather good estimation of
the load of some nodes in the system. A node is globally
loaded if its load is bigger than the average load of these
nodes;

• if the node has a lot of received requests. A node would
have a balanced load if the number of received requests is
equal to the number of forwarded requests divided by the
average path length. Therefore, we compute the average
path length of the requests that the node received between

two consecutive thresholds. To justify a caching request,
a node must satisfy the following condition:

recv requests > fwd requests/path avg,

where the counters for the number of received and
forwarded requests are reset after each threshold.

If both conditions are satisfied, a node will issue a caching
request.

3) Where to store the replica: Since every message contains
information about the request path, the most suitable method is
to cache along that path. This can be done (1) on all the nodes
in the request path, (2) close to the destination node, (3) at the
node that requested the object, or (4) randomly. We choose to
do the caching at the last node in the request path. This has
the advantage that the object is cached in the neighborhood of
its owner where the possibility for a request to hit a replica is
much bigger than elsewhere in the system.

Since the requests for a given object may come from any
node in the system, the last hop will not always be the same.
The node chosen for caching the object is the one that most
frequently served as last hop for this object in the lookup paths
(line 15).

Figure 6 presents an example of the caching mechanism.
Many nodes send requests for the object O10 (step 1). After
N11 receives the requests, it checks the caching condition
(step 2) and, if true, computes its most popular object, O10,
and the node where to store a replica, N8. Then, it issues a
caching request for object O10 to node N8 (step 3). Finally,
N8 caches the object O10 (step 4).

IV. EXPERIMENTAL EVALUATION

In this section we evaluate our approach by the means of
simulations. First, we present results of the experiments when
we apply only routing table reorganizations. Next, we analyze
the effect of caching. Finally, some statistics with different
Zipf distributions are presented.

A. Routing Table Reorganization - RTR

The simulated system is an overlay network with 1,000
nodes and 20,000 objects randomly and uniformly distributed,
and 500,000 requests following a Zipf distribution with pa-
rameter α = 1. The routing mechanism is based on Pastry
with a leaf set size of 4 entries. The identifiers are a sequence
of m = 16 bits in base 2b = 2.
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To analyze the load balancing algorithms, we use the same
experimental setup while applying different routing strategies:

• run0: as a base for comparison, the experiment is run
with no load balancing;

• run1: dynamic run, where the routing tables are dynam-
ically updated while handling the requests;

• run2: same as run1, with the difference that the experi-
ment starts with the routing tables obtained after run1.

The results using routing table reorganizations are shown in
Figure 7 after run2. The graph shows the load for the first 100
most loaded nodes, while the inner graph presents a global
view of the load of all nodes in the system.

The left hand side of the graphs shows that the most loaded
nodes are the ones with the highest number of received re-
quests (see the vertical lines). Their load cannot be minimized
by the routing table reorganizations, because the number of
received requests cannot be decreased (our solution applies to
the routing load only, not to the request load). The inner graph
confirms that most of the nodes have roughly the same load,
thus reaching a good level of load balancing.

In the next subsection we present the results for the routing
table reorganization strategy complemented by caching, in

order to reduce the load observed at the left hand side of
the graph.

B. Routing Table Reorganization and Caching - RTR&C

In our experiments, we used a cache with storage size C =
3 and a threshold of T = 500 requests. The results using
both solutions (routing table reorganization and caching) are
shown in Figure 8, after run2. The experiments were done in
the same conditions as before, which allows us to distinguish
the benefits of using caching as a complementary solution.
Comparing Figure 7 with Figure 8, we note the improvement
in load balancing for the most loaded nodes (left-hand sides of
the graphs), where the load dramatically decreases; the load for
the nodes at the right-hand side of the graph slightly increases,
which demonstrates that nodes share the load more evenly.

A potential source of overhead resides in the additional mes-
sages sent for caching. For the results presented in Figure 8,
there are 243 extra messages. This is negligible if we take into
consideration the number of requests issued (500,000).

The two principal variables in the system are the size
of the cache C and the value of the threshold T . Table I
presents some statistics of the results obtained while running
the experiment with different values for the cache size and the



Exp Cache Tshd Msg Avg Var

run0 - - - 2,403 7,243

run1
RTR - - - 2,505 2,336

RTR & C 1 500 253 2,248 1,285
RTR & C 3 500 274 2,214 1,231
RTR & C 1 1,000 123 2,322 1,373
RTR & C 3 1,000 123 2,308 1,312

C 3 500 639 1,870 6,093

run2
RTR - - - 2,563 2,056

RTR & C 1 500 261 2,099 369
RTR & C 3 500 243 2,059 304
RTR & C 1 1,000 151 2,196 465
RTR & C 3 1,000 134 2,167 380

C 3 500 904 1,657 5,871

TABLE I

STATISTICS

threshold in the same system. The statistics are for the three
experiments: run0, run1 and run2. Besides the load average
and variance, we also show the number of messages necessary
for the caching requests.

We observe that the variance of the system load decreases
from 7,243 to 2,056 when using the RTR strategy (Figure 7).
The load average slightly increases because changing the
routing tables in the destination nodes’ closest area might
increase in some cases the path length; it remains, however, in
O(log2bN). The variance decreases even more to 304 when
using the RTR&C solution (Figure 8). The load average also
decreases, the path becoming shorter in this case.

A smaller value of the threshold means a higher frequency
of caching requests, and consequently more messages. How-
ever, there is no notable improvement.

The cache does not need a large storage capacity to be
effective. We obtained the same results when using C = 3 and
C = 100. There is a small improvement when using C = 3
over C = 1 because the most popular objects can remain
permanently in the cache.

For comparison purposes, we also ran an experiment using
just caching (C), with no routing table update strategy. The
results show that there is no significant improvement (the
variance is still high, 5,871 after run2). This means that
caching is no satisfactory solution when used alone.

In these experiments we used a Zipf distribution with
parameter α = 1 for the request workload. The results using
other values for α are shown in the next subsection.

C. Zipf-like requests with different parameter

The solution proposed in this paper for load balancing is
independent of the α parameter of the Zipf distribution. Based
on [11] and [8], we performed some experiments varying the
value α. The caching storage size is set to C = 3 and the
threshold to T = 500 requests.

Table II presents the statistics for α = 0.5 and α = 2. The
results are also plotted in Figures 9 and 10, respectively. For
α = 0.5, the problem is found in the routing load, which is

α = 0.5 α = 2.0

Exp Msg Avg Var Msg Avg Var

run0 - 2,392 6,639 - 2,321 16,568

run1
RTR - 2,339 708 - 2,625 13,185

RTR & C 110 2,336 684 546 990 2,215

run2
RTR - 2,336 96 - 2,683 11,661

RTR & C 252 2,318 74 328 719 574

TABLE II

STATISTICS USING α = 0.5 AND α = 2.0 ZIPF PARAMETER

almost perfectly solved by our routing load balancing solution.
The complementary solution (caching) is not necessary here.
As shown in the graph, the results using the RTR solution and
the results using the RTR & C solution tend to overlap. In the
case of α = 2, the number of received requests for the most
popular objects is very high compared to the other objects;
the problem is thus only partially solved by the routing load
balancing strategy and caching becomes necessary.

V. RELATED WORK

A. Node and Object Reassignment

1) Single ID per Node: Karger et al. [13] propose to
balance the address space by activating only one of O(log
N ) virtual servers at a given time and to balance objects
by relocating the nodes to arbitrary addresses. Since the
reassignment of IDs is done by join and leave operations, this
solution increases the churn of the system. Byers et al. [14]
propose to use the power of two choices where each object is
hashed onto d ≥ 2 different IDs and placed in the least loaded
node. The algorithm provides a partial traffic balancing by
having each node request at random one of the d possible
nodes, which all maintain redirection pointers. Since these
nodes do not hold the objects, additional messages are issued.
The k-Choices load balancing algorithm proposed in [15]
presents a similar approach. All these approaches focus on
objects and nodes distribution imbalance. Therefore, even if
they can avoid more than one popular object to be stored in the
same node, the request distribution at the destination remains
skewed as a consequence of the popularity of some objects in
the overlay.

2) Multiple ID per Node: Karthik et al. [16] propose three
different schemes for load balancing based on the transfer of
virtual servers from heavily loaded to lightly loaded nodes.
Godfrey et al. [17] complement this idea by also taking
into consideration the dynamism and the heterogeneity of
the system. The proposed algorithm combines elements of
the many-to-many scheme and one-to-many scheme proposed
in [16]. This solution suffers from additional network traffic
and temporary storage for virtual servers to be reloaded. Zhu
et al. [18], [19] improve communication costs at the expense
of a more complex structure (k − ary tree) that must be
maintained. Again, these solutions do not take into account



object popularity. However, the virtual servers can be balanced
such that a node does not hold more than one popular object.

B. Caching and Replication

Solutions addressing the uneven popularity of the objects
are based on replication and caching. Lv et al. [12] propose
three replication strategies. With the “owner replication” the
requesting node keeps a copy. The number of replicas in-
creases thus proportionally to the number of requests to the
object. In [20] and [21], a threshold is used to minimize the
number of replicas. These strategies work well only when
a node requests the same object many times. The second
strategy, “random replication”, creates copies on randomly
chosen nodes along the lookup path. Simulation results [12]
have demonstrated that the third strategy, “path replication”,
which replicates objects on all nodes along the lookup path,
performs best. As an example, [22] proposes DHash replica-
tion of k successors and caching on the lookup path. Yamamoto
et al. [23] propose the path adaptive replication method,
which determines the probability of replication according to
a predetermined replication ratio and storage capacity. Our
solution is similar to this approach except that we do not
determine the probability of the replication. In case the node
does not have enough capacity to store the replica, it ignores
the caching request. Ramasubramanian et al.’s [24] strategy
replicates objects based on the Zipf parameter α in order to
minimize the resource consumption. This solution requires to
exchange several messages to decide the replication level for
each object. Swart [25] proposes to use a second hash function
to obtain a subset of r +1 virtual servers and place the object
on the r nodes with the lowest load. Since DHTs exhibit path
convergence [7], this solution is less adapted to the popularity
problem than path replication.

VI. CONCLUSIONS

In this paper, we proposed a novel approach to balancing
the traffic load in peer-to-peer systems. For the routing and re-
quest load balancing, we proposed, respectively, routing table
reorganizations and adaptive caching based on the popularity
of the objects. Our solution requires neither changes to the
topology, nor to the association rules (placement) of the objects
to the nodes. Only caching requires some extra messages to be
exchanged. Results from experimental evaluation demonstrate
a more balanced traffic and, consequently, improved scalability
and performance.
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