
Scalable Filtering of XML Data for Web Services

P. Felber C.-Y. Chan, M. Garofalakis, R. Rastogi
Institut EURECOM Bell Labs, Lucent Technologies

06904 Sophia Antipolis, France Murray Hill, NJ 07974, USA

Abstract

With the advent of XML as the de facto language
for data interchange and the rapid emergence of Web
services, Web applications have to deal with increas-
ing amounts of XML traffic, such as SOAP requests.
In order to scale to large number of clients and high
data traffic, back-end systems to which Web services
are mapped face the challenging task of efficiently fil-
tering, classifying, and routing incoming XML re-
quests to the appropriate component in the infras-
tructure. As the destination of each XML request
depends on its actual type and content, Web ser-
vice applications have to incorporate highly-efficient
content-based routing technology. In this paper, we
address the issue of scalable filtering of XML data.
We describe sophisticated techniques for matching
data against large number of tree-structured filters
expressed using the XPath language. We propose a
hierarchical XML routing architecture that supports
extremely high loads, and we present experimental re-
sults that demonstrate its performance.

Keywords: XML, XPath, content-based routing,
filtering.

1 Introduction

The Extensible Markup Language (XML) [7] is
emerging as the universal format for exchanging
structured data over the Internet. In particular, as
the Web becomes more and more used for application
to application communication, an increasing number
of Web service applications are being deployed and

make application functionality available over the In-
ternet in a standardized, programmatic manner. Web
services utilize XML-based open standards, such as
WSDL [9] for service definition and SOAP [8] for ser-
vice invocation. The services can be reached using
the SOAP protocol, and requests can be properly
constructed using the information available in the
WSDL description present with the Web service. A
wide range of domain-specific specifications are also
based on XML, e.g., for business to business inter-
actions or financial data. Even HTML, arguably the
most widely used data format in the Internet, has
been recently rewritten as an XML-based specifica-
tion [6].

The rapid growth of XML traffic associated with
Web services motivates the need for scalable mecha-
nisms to filter, classify, and route XML message. En-
terprise application servers, for instance, must scale
to large numbers of clients, high throughput, and sup-
port a variety of XML-based protocols (see Figure 1).
XML data is received by a Web server (generally as-
sociated with a firewall) and filtered by one or sev-
eral XML routers. These routers are responsible for
dispatching XML data, according to its type or con-
tent, to the appropriate backend server, possibly us-
ing some elaborate scheme such as load-balancing or
selective multicast. XML routers can also act as a
sophisticated firewall, by filtering out unauthorized
or invalid XML messages[3, 4].

With content-based routing, the recipient of an
XML message depends on the actual type and con-
tent of the data. Therefore, back-end servers can be
specialized to process only some type of XML data
in a very efficient manner. For instance, some server

1

...

XML

Secure XML

Clusters

Servers

XML Routers

Internet

E
xt

ra
ne

t
Fi

re
w

al
l

Li
st

en
er

In
tr

an
et

Figure 1: XML Routing for Enterprise Web Servers.

could be responsible for all SOAP requests, or only
for SOAP requests related to stock quotes, or just
for the stock quotes of some companies. The resulting
services become more scalable and cost-effective than
those based on traditional load-balancing schemes,
which require each server to be able to process any
type of request. Although not specific to Web ser-
vices, efficient techniques for content-based XML
data routing are of great importance in that context
because of the large amount of XML traffic associated
with Web services.

2 XML for Web Services

Web services provide an extensible and interoperable
framework for application to application communica-
tion, thanks to the use of universal data formats and
protocols, such as XML and XPath.

2.1 XML

The Extensible Markup Language (XML) is emerg-
ing as the universal format for exchanging (semi-
)structured data over the Internet and increasing
amounts of data are made available in XML format.
Because of its simple structure, XML is easy to inter-
pret and process by applications. By being vendor-
and platform-neutral, as well as agnostic about how

content appears, XML makes it simple to integrate
existing applications and to represent data in various
human-readable formats.

XML defines an unambiguous mechanism for con-
straining structure in a stream of information. XML
documents can optionally include a type definition
(XML schema or DTD1), which defines the document
structure by describing its legal building blocks.

Consider the following sample XML document (ex-
ample 5 of [8]) that represents a SOAP request asking
the current value of the stock of a company.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://.../soap/envelope/"
SOAP-ENV:encodingStyle="http://.../soap/encoding/">

<SOAP-ENV:Header>
<t:Transaction

xmlns:t="some-URI"
SOAP-ENV:mustUnderstand="1">

5
</t:Transaction>

</SOAP-ENV:Header>
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">
<Symbol>DEF</Symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The document structure is specified by the means
of start and end tags (tags are enclosed between <

1Note DTDs are becoming deprecated in favor of XML
schemas, and are explicitly disallowed for defining Web ser-
vice message formats.

2

and >, and end tags start with /). Start tags contain
an optional list of attributes, which are essentially
key-value pairs. Text data can be enclosed between
tag pairs, as between the Symbol tags. We will refer
to this text as the tag’s value or content.

XML documents have a hierarchical structure as
illustrated by the tree-based representation of our
sample XML document in Figure 2(a). Attributes
(with their names prefixed by the symbol @) are rep-
resented as children of their associated tag; values
(shown within quotation marks) are represented as
children of their associated attribute or tag.

Roughly speaking, we can distinguish between
structural elements—tags and attributes—and the
actual data values associated with these elements.
Connections between structural elements are repre-
sented using solid lines, and between elements and
values by dashed lines. Intuitively, the type of an
XML document is defined by its tags and attributes,
while the data associated with its tags and attributes
define its value.2 By disconnecting the dashed lines
from the tree representation of an XML document,
we obtain its type. Two SOAP request asking the
value of different stocks would have the same type,
but different values. Figures 2(b) to (d) show addi-
tional XML tree examples.

2.2 XPath

The structured, extensible nature of XML allows for
a powerful combination of type-based and value-based
content filtering. To that end, XML filters should be
able to express constraints on both the type and the
value of data. Because of its simplicity and standard-
ization, the W3C XPath [5] addressing language—or
a subset thereof—is the most widely used for that
purpose.

XPath treats XML documents as a tree of nodes
and offers an expressive way to specify and select
parts of this tree. An XPath expression contains one
or more location steps, separated by slashes (/). In
its more basic form, a location steps designate an
element name followed by zero or more predicates

2Formally, the type of an XML document is specified by an
associated schema.

specified between brackets. Predicates are generally
specified as constraints on the presence of structural
elements, or on the values of XML documents us-
ing basic comparison operators (=, <, ≤, >, ≥).
XPath also allows the use of wildcard (*) and an-
cestor/descendant (//) operators, which respectively
match exactly one and an arbitrarily long sequence
of element names. In the context of data filtering, an
XML document matches an XPath expression when
the evaluation of the expression yields a non-null ob-
ject.

Consider the following sample XPath expressions.

(i): //m:GetLastTradePrice/Symbol
(ii): //m:GetLastTradePrice/Symbol[text()="DEF"]
(iii): /SOAP-ENV:Envelope/SOAP-ENV:Body/*//Symbol[text()="DEF"]
(iv): //t:Transaction/@SOAP-ENV:mustUnderstand
(v): //t:Transaction[@SOAP-ENV:mustUnderstand=1]
(vi): //Stock/Symbol[text()="GHI"]
(vii): //Stock/Price[text()>15]
(viii): //Stock[Symbol/text()="GHI"][Price/text()>15]

XPath expression (i) designates documents that
have two consecutive nodes m:GetLastTradePrice
and Symbol at any level in the document (the ini-
tial // specifies that any number of nodes can appear
before the first element). XPath expression (ii) ad-
ditionally constraints the value of the Symbol node
to be equal to "DEF" (text() selects the text node
below the current node). Both of these expressions
match the XML document in Figure 2(a). XPath
expression (iii) designates SOAP messages that have
a Symbol node with value "DEF" at least two lev-
els deep inside the message’s body (below the Body
node). Note that this expression specifies an absolute
path from the root of the XML document. It matches
the XML documents in Figures 2(a), (b), and (d).

Attributes are specified in XPath expressions in
a very similar way to tag nodes, but are pre-
fixed with @. XPath expression (iv) designates
documents that have a Transaction node with a
SOAP-ENV:mustUnderstand attribute, and XPath ex-
pression (v) further mandates this attribute to have
the value "1".

XPath can also be used to express more complex
filters where the structural constraints are not lim-
ited to single paths. Consider a filter that selects
SOAP messages with quotes for symbol "GHI" that
have a price higher than "15". The first constraint

3

t:Transaction

SOAP-ENV:Header@xmlns:SOAP-ENV @SOAP-ENV:encodingStyle

"5"@SOAP-ENV:mustUnderstand

"1"

@xmlns:t

"some-URI"

SOAP-ENV:Envelope

SOAP-ENV:Body

m:GetLastTradePrice

Symbol

"DEF""some-URI"

@xmlns:m

"http://.../soap/envelope/" "http://.../soap/encoding/"

(a)

SOAP-ENV:Envelope

SOAP-ENV:Body

m:GetLastTradePriceDetailed

Symbol Company Price

"DEF" "DEF Corp" "34.1"

(b)

SOAP-ENV:Envelope

SOAP-ENV:Body

m:GetLastTradePriceResponse

PriceAndVolume

LastTradePrice DayVolume

"34.5" "10000"

(c)

SOAP-ENV:Envelope

SOAP-ENV:Body

m:GetLastTradePriceResponse

Stock Stock

PriceSymbol PriceSymbol

"11.5""GHI""34.1""DEF"

(d)

Figure 2: XML trees for sample SOAP messages. (a), (b) and (c) Examples 5, 6 and 8 of [8] (attributes
have been omitted). (d) SOAP message with multiple response values.

can be expressed with XPath expression (vi), and the
second one with expression (vii). A simple conjunc-
tion of these two XPath expression is not sufficient,
however, to obtain the desired filter: the document
in Figure 2(d) contains both expressions (matching
paths are highlighted), but the price that matches
the second expression is not that of symbol "GHI".
The correct filter must further constrain the match-
ing Symbol and Price nodes to share the same Stock
parent node. Such structural constraints are achieved
using tree-structured expressions, which are expressed
in XPath by defining multiple predicates on the same
node. XPath expression (viii) is one possible embod-
iment of the desired filter.

3 Scalable Architectures for
Web Services

The combination of semi-structured data and tree-
structured filters offers a very flexible and expres-
sive framework for content-based routing, when com-
pared to the traditional keyword-based information
retrieval techniques used for unstructured data. It
does however also increase the complexity of filtering
and makes efficient matching algorithms a prerequi-
site to scalable content routing.

4

3.1 Efficient Filtering of XML Data

We have developed a novel index structure, termed
XTrie, that supports the efficient filtering of XML
documents based on XPath expressions. Our XTrie
index structure offers several novel features that
make it especially attractive for Web Service applica-
tions with strong scalability and performance require-
ments. First, XTrie is designed to support effective
filtering based on complex, tree-structured XPath ex-
pressions (as opposed to simple, single-path specifi-
cations). Second, the XTrie structure and algorithms
are designed to support both ordered and unordered
matching of XML data. Third, by indexing on se-
quences of elements organized in a trie structure and
using a sophisticated matching algorithm, XTrie is
able to both reduce the number of unnecessary index
probes as well as avoid redundant matchings, thereby
providing extremely efficient filtering.

The XTrie for a given set of XPath expressions
is constructed as follows. Each XPath expression
is first decomposed into a minimal number of sub-
strings, where a substring is a non-empty sequence
of elements that are separated by the parent/child
operator (/) that is optionally prefixed by an an-
cestor/descendant operator (//) and wildcards (*).
The collection of decomposed substrings are then or-
ganized using a sophisticated trie structure and an
auxiliary table. The trie allows enables both space-
efficient indexing as well as time-efficient retrieval of
XPath expressions, while the table stores additional
information used for detecting valid matches.

The trie is a rooted tree constructed from the set of
distinct substrings in the given set of XPath expres-
sions, where each edge is labeled with some element
name. As the trie factorizes substrings with common
prefixes, its size generally remains small. Each node
in the trie has pointers to other nodes and to rows
in the auxiliary table. The table contains one row
for each substring of each indexed XPath expression.
Each row has a set of values that describes the po-
sitional and structural constraints of the associated
substring. Figure 3 shows an XTrie index for the
sample XPath expressions in Section 2.2.

Informally, the matching algorithm of XTrie on an
incoming XML document works as follows: the XML

document is first parsed using the event-based SAX
parser, which reports occurrences of XML elements
(start tags, text, etc.) as the XML document is be-
ing parsed. The matching algorithm tries to map
sequences of start tags, attributes, and text values
to paths in the trie by following its edges. For each
matching substring detected, the auxiliary table is
used to verify the substring’s positional constraints
with respect to its previously-matched parent and
sibling substrings, as well as any associated predi-
cates. Information about partially-matched XPath
expressions is maintained at runtime in a data struc-
ture that stores the occurrence, depth, and scope of
substrings previously encountered. When end tags
are parsed, the runtime information is updated to
invalidate substring matches that are “out of scope”.
An XPath expression is completely matched when all
its substrings have been encountered with their as-
sociated constraints and predicates validated. Note
that by using the event-based SAX parser, which does
not require the construction of an in-memory repre-
sentation of the input document for matching, XTrie
is capable of filtering streaming XML data as well.
An exhaustive description of the XTrie algorithms
can be found in [2].

3.2 Parallel XTrie

Large Web service applications usually impose very
demanding performance requirements as they need to
handle large numbers of XPath expressions and pro-
cess huge amounts of requests. An effective approach
to improve the scalability of XTrie is to parallelize
its processing so that the time- and space-consuming
task of filtering data can be shared by multiple XML
routers. Parallelization can be easily achieved by us-
ing a cluster of XML routers organized according to
one of two simple strategies.

• Sharing XML workload (“data-sharing” strat-
egy). Each XML router in the cluster manages
the complete set of XPath expressions, and each
XML document is dispatched to only one router
according to some load-balancing strategy (Fig-
ure 4(a)).

• Sharing XPath expressions (“filter-sharing”

5

Price

1 GHI

Stock

SymbolSymbol

DEF

DEF

m:GetLastTradePrice
Symbol

t:TransactionSOAP-ENV:Envelope

SOAP-ENV:Body @SOAP-ENV:mustUnderstand

0 0

0

0 0

01

2

3 4 5

6 7

8

9- - - - -

-

-- - -

- -

α β Parent Rel Num
Row Level Rank Child Next

1 0 [2,∞] 1 0 0 //m:GetLastTradePrice/Symbol

2 0 [3,∞] 1 0 0 //m:GetLastTradePrice/Symbol/DEF

3 0 [2, 2] 1 1 0 SOAP-ENV:Envelope/SOAP-ENV:Body

4 3 [3,∞] 1 0 0 *//Symbol/DEF

5 0 [2,∞] 1 0 0 //t:Transaction/@SOAP-ENV:mustUnderstand

6 0 [3,∞] 1 0 0 //t:Transaction/@SOAP-ENV:mustUnderstand/1

7 0 [3,∞] 1 0 10 //Stock/Symbol/GHI

8 0 [2,∞] 1 0 11 //Stock/Price

9 0 [1,∞] 1 2 0 //Stock

10 9 [3, 3] 1 0 0 //Stock/Symbol/GHI

11 9 [2, 2] 2 0 0 //Stock/Price

(a) (b)

Figure 3: XTrie for the sample XPath expressions of Section 2.2. (a) Trie. (b) Auxiliary table.

strategy). XPath expressions are shared equally
among all XML routers in such a way that each
distinct expression is managed by exactly one
router (Figure 4(b)). Incoming XML documents
are filtered by all the routers.

Note that the above two strategies are designed
for optimizing different scalability requirements. The
first strategy maximizes the filtering throughput by
enabling the maximum number of documents to be
concurrently processed. In contrast, by processing
each input document with all the routers in the clus-
ter (with each router responsible for a small and dis-
joint subset of XPath expressions), the second strat-
egy minimizes the filtering latency time.

3.3 Hierarchical XTrie

One approach to obtain both reasonable filtering
throughput as well as filtering response it to try to
combine the strengths of the above two strategies into
a hybrid strategy that organizes the cluster of XML
routers into a hierarchical configuration. Each incom-
ing XML document is first sent to the root router,
which performs a very coarse filtering to decide the
subset of its child routers to send the document to for
more refined filtering. This top-down propagation
and filtering of the XML document continues from
one level to the next until the document reaches the
leaf level, where it is filtered by a subset of leaf routers
to decide the target backend servers to dispatch the
document to.

An example of this hierarchically organized XTrie
is shown in Figure 4(c), where each router manages
a set of filters (i.e., XPath expressions). Leaf routers
are organized using the filter-sharing strategy, so that
each leaf router manages a disjoint subset of the work-
load of XPath expressions (referred to as end filters).
Each internal router manages a collection of sets of
intermediate filters, with one set corresponding to
each of its child routers; each set of intermediate
filters provides a coarse-level “summary” of the set
of filters managed by its corresponding child router.
Specifically, each filter F in a child router must be
“covered” by some filter in F ′ in its parent router
such that any XML document that matches F will
also match F ′. For instance, the XPath expression
//Symbol covers each of the XPath expressions (i),
(ii), (iii), (vi), and (vi) in Section 2.2. This prop-
erty guarantees that whenever a document matches
some end filter in some leaf router, the document will
always be routed to that leaf router by the internal
routers. This “hierarchical” strategy therefore com-
bines the advantages of the filter-sharing and data-
sharing strategies: like the former, each document is
being processed by multiple routers to improve filter-
ing latency; and like the latter, multiple documents
can be processed concurrently to improve filtering
throughput.

The main challenge of the hierarchical strategy lies
in the clustering of XPath expressions into subsets to
be assigned to leaf XML routers, and the clustering
of the collection of XML routers at one level into

6

Expressions

XML Data

XPath

...

XML Routers

32 41

1

2

3

4

Trie

Trie

Trie

Trie

(a)

Expressions
XPath

XML Routers

...

XML Data
4

2 3

1

Trie

Trie

Trie

2 41

31 42 3

1 4

2

3
Trie

2 3

1 4

(b)

XML Routers

etc

.....

.....

.....

etc

etc

.....

XML Data

etc etc etcetc etc

3 41

11

1

1 2

0Trie

4

n321

11 12 1n 31 3n n1 nn

4

3

Trie Trie

2

4

3

TrieTrie Trie

Trie

Trie

4

TrieTrie

2

Trie

321

3

4

Trie

2

//Price//*//t:Transaction //* //*//*/*/*/*/*/*//SOAP-ENV:Fault

/*/SOAP-ENV:Envelope /Quote
/Order/nitf

(c)

Figure 4: Strategies for parallel filtering of XML documents with XTrie. (a) Sharing XML workload.
(b) Sharing XPath expressions. (c) Hierarchical filtering (highlighted paths are traversed by the sample
SOAP message of Section 2.1).

subsets to be assigned to parent routers at the level
above. This clustering must be performed in such a
way that (1) each subset can be represented concisely
by a small set of intermediate filters installed in the
parent router, and (2) each XML document is prop-
agated down to only a small subset of leaf routers.
The first condition ensures efficient filtering at inter-
nal routers since each of them manages only a small
set of filters, while the second condition optimizes the
filtering throughput by ensuring that only the rele-
vant subset of routers are used to process each XML
document.

Clustering XPath Expressions. There are a
number of simple ways that can be used to cluster
XPath expressions. One straightforward approach is
to partition absolute XPath expressions based on the
element names of their root nodes. This clustering
technique is effective because XML documents that
have distinct root nodes are guaranteed to have dif-
ferent types (schema). An example of this partition-
ing is illustrated in the first level of the hierarchi-
cal XTrie in Figure 4(c). The topmost router filters
XML documents according to their root tags and for-
ward them to the appropriate subset of child routers

7

downstream. For instance, router 1 is responsible
for all SOAP requests, and router 3 is responsible
for both quote and order requests. The sub-tree at
router n contains all XPath expressions that do not
have an explicit root tag (i.e., they begin with //
or /*). Thus, in Figure 4(c), each XML document
will always be propagated to router n, as well as to
any router associated with the document’s root tag.
More generally, non-absolute XPath expressions can
be partitioned using element names that are specific
to individual schemas.

Clustering XPath expressions according the type of
the XML documents they refer to is very effective in
practice, but it only permits building a coarse grained
router hierarchy. This may prove inefficient when, for
instance, some types of document occur much more
frequently than others. It is therefore desirable to
also cluster XPath expressions in the context of a
single schema. For instance, router 11 in Figure 4(c)
manages SOAP error messages, and router 12 filters
SOAP messages that have transaction identifiers. An
approach that yields good results is to cluster XPath
expressions according to “exclusive” sets of element
names that never or rarely appear in the same XML
document. Finding exclusive elements is straightfor-
ward when the XML schemas are known in advance;
it can also be achieved by observing XML data flow-
ing through the routers and gathering information
about the patterns that are unlikely to occur in the
same document.

Generating Intermediate Filters. Unlike the
end filters managed by leaf routers, which correspond
to the input set of XPath expressions, the interme-
diate filters at each internal router are “artificially”
constructed to cover the set of XPath expressions in
its child routers. In order to provide effective coarse-
level filtering, the set of intermediate filters need to
satisfy two conflicting requirements: (1) it should be
small to enable fast filtering; and (2) it should provide
a tight covering in the sense that it should minimize
the number of documents matching some intermedi-
ate filter in a router but not matching any filters in its
corresponding child router. In other words, it should
minimize the unnecessary forwarding of documents

to irrelevant downstream XML routers.
When XPath expressions are clustered according to

the element names, the construction of the intermedi-
ate filters is trivial. However, when the set of XPath
expressions managed by a router is more diverse,
finding a set of intermediate filters is a challenging
task. In [1], we have proposed an efficient aggrega-
tion algorithm that makes effective use of document-
distribution statistics in order to compute a precise
and compact set of coarse-level XPath expressions for
a given set of XPath expressions. This algorithm can
be straightforwardly applied to the generation of in-
termediate filters. When the set of XPath expres-
sions to aggregate have strong similarities—which is
expected from an effective clustering scheme—our ag-
gregation algorithm can produce intermediate filters
several orders of magnitude smaller without signifi-
cant loss in precision.

4 Performance Evaluation

To test the effectiveness of our XML routing tech-
nology for Web services, we conducted an extensive
performance study of the XTrie filtering algorithm
using real-life document types and large numbers of
tree patterns. Based on these results, we evaluated
the performance of the various architectures for par-
allelizing XTrie. Because the filtering time of an XML
message is several orders of magnitude slower than its
actual transmission over the network, we did not take
into account the transmission time. Our experimen-
tal study thus shows the asymptotic performance of
the parallel XTrie architectures. Experiments were
conducted on a 1.5 GHz Intel Pentium 4 machine
with 512 MB of main memory running Linux.

For the experiments presented here, we selected 10
real-world document types used in major commercial
applications, with the number of distinct elements
ranging from 77 to 2727 elements, and with up to
8512 distinct attributes. Most of these types have
recursive structures, which can be nested to produce
XML documents with arbitrary number of levels. For
each type, we generated a representative set of XML
documents with approximately 100 tags and 20 lev-
els, as well as sets of XPath expressions containing

8

approximately 10% of * and // operators.
We ran experiments with two variants of the XTrie

algorithm: the first variant is optimized for single-
path XPath expressions, where each node has at most
one child; the second variant is optimized for ordered
matching of tree-structured XPath expressions. We
compared the scalability of XTrie parallelization for
the three strategies presented in Section 3: the data-
sharing, the filter-sharing, and the hierarchical strate-
gies. The results shown were obtained from simula-
tion, based on the experimental results of the XTrie
algorithms.

4.1 Raw XTrie Performance

The performance of the non-parallel XTrie algorithms
decreases linearly with the number of XPath expres-
sions, as well as with the length of the XML doc-
uments. In particular, the XTrie variant optimized
for single-path XPath expressions filters around 100
messages per second with 20, 000 XPath expressions,
and 27 messages with 200, 000 XPath expressions.
The performance of the variant for tree-structured
expressions is approximately one order of magnitude
slower. Detailed experimental results can be found
in [2].

4.2 Data-Sharing and Filter-Sharing
Strategies

Figure 5(a) compares the throughput performance of
the data-sharing and filter-sharing strategies (with
logarithmic scales) for 200, 000 XPath expressions.
As expected, the throughput of the data-sharing
strategy scales linearly with the number of XML
routers. In contrast, the throughput of the filter-
sharing strategy increases more gradually with the
number of XML routers until a maximum through-
put of 170 messages per second (since all XML routers
filter each message, throughput is limited by con-
stant cost of parsing XML documents, irrespective of
the numbers of XPath expressions managed by each
router).

A comparison of the latency performance of the
parallel XTrie strategies is shown in Figure 5(b) for
the same set of 200, 000 XPath expressions. For

the data-sharing strategy, increasing the number of
XML routers does not improve the latency perfor-
mance since only one of the routers is used to filter
each incoming document. On the other hand, for the
filter-sharing strategy, the filtering latency decreases
proportionally to the number of XPath expressions
managed per router.

Our performance results clearly validate our ex-
pectations about the strengths of the different par-
allelization strategies. The appropriate strategy to
adopt for a Web service application depends on the
desired performance objective.

4.3 Hierarchical Strategy

We evaluated the performance of the hierarchical
strategy with absolute XPath expressions (i.e., they
are relative to the root node) and a clustering scheme
where the first-level router filters documents based on
their root tags. This initial routing step is extremely
efficient because XML documents do not need to be
parsed (the root tag is the first element that appears
in a document) and the filtering degenerates into a
simple hash-table lookup. As all the input XPath ex-
pressions are absolute, an XML document is routed
to at most one subtree during the first-level routing.

In practice, two major factors prevent hierarchical
filtering from being optimal. First, the average num-
ber of leaf routers ultimately reached by each XML
document—its fanout—is generally greater than 1
and reduces parallelism. Second, there may be con-
tention on some leaf routers that are traversed more
often than others. To account for these factors, we
evaluated the performance of the hierarchical config-
uration with different values for the average fanout f .
Results are shown in Figure 5(c). Although the hi-
erarchical strategy requires additional routers for in-
termediate filtering (we used at least 20 in our exper-
iments), it quickly achieves better throughput than
the other strategies. The ideal case with f = 1 scales
the best; the data-sharing strategy should be pre-
ferred for fanouts higher than 5.

A promising alternative, in practice, is to combine
the hierarchical and data-sharing strategies. A sim-
ple approach consists of using a one-level routing hi-
erarchy that partitions the XPath expressions based

9

1

10

100

1000

10000

100000

1 10 100 1000

Th
ro

ug
hp

ut
 (d

oc
/s

)

Number of XML Routers

Data-Sharing (Single)
Data-Sharing (Tree)

Filter-Sharing (Single)
Filter-Sharing (Tree)

(a)

0

100

200

300

400

1 10 100 1000
La

te
nc

y
(m

s)
Number of XML Routers

Data-Sharing (Single)
Data-Sharing (Tree)

Filter-Sharing (Single)
Filter-Sharing (Tree)

(b)

1

10

100

1000

10000

100000

1 10 100 1000

Th
ro

ug
hp

ut
 (d

oc
/s

)

Number of XML Routers

Data-Sharing
Filter-Sharing

Hierarchical (f=1)
Hierarchical (f=2)
Hierarchical (f=5)

Hierarchical (f=10)

(c)

Figure 5: Parallel XTrie filtering performance with 200, 000 single-path XPath expressions. (a) Throughput.
(b) Latency. (c) Throughput of hierarchical filtering (single-path XTrie algorithm).

on their root nodes, and then load-balancing XML
documents, according to the data-sharing strategy,
to clusters of XML routers dimensioned according
to the document distribution. As previously men-
tioned, the first-level filtering phase is extremely ef-
ficient and permits lowering the space requirements
on leaf routers. In addition, with absolute XPath ex-
pressions, the fanout is guaranteed to never exceed 1.
This approach does therefore offer a good tradeoff be-
tween the high scalability of the hierarchical strategy
and the simplicity and efficiency of the data-sharing
strategy.

5 Conclusion

Content-based routing of XML document is an im-
portant issue in Web services. In order to scale
to large number of clients and high data traffic,
Web service applications face the challenging task
of efficiently filtering, classifying, and routing in-
coming XML requests to the appropriate component
in the infrastructure. This can be achieved by the
combination of highly-efficient filtering algorithms
and scalable strategies for parallel filtering. These
strategies offer various tradeoffs in terms of through-
put, latency, resource consumption, and complexity.
They can be combined together to best adapt to the
specifics of individual services.

References

[1] C.-Y. Chan, W. Fan, P. Felber, M. Garofalakis,
and R. Rastogi. Tree Pattern Aggregation for
Scalable XML Data Dissemination. In Proceed-
ings of the 28th International Conference on Very
Large Data Bases (VLDB 2002), Hong Kong,
China, August 2002.

[2] C.-Y. Chan, P. Felber, M. Garofalakis, and
R. Rastogi. Efficient Filtering of XML Documents
with XPath Expressions. In Proceedings of the
18th International Conference on Data Engineer-
ing (ICDE 2002), San Jose, CA, February 2002.

[3] The HTRC Group. Data Routing In
the Age of Information, October 2001.
http://www.htrcgroup.com.

[4] E. Kuznetsov. XML-Aware Networking. XML
Journal, 3(8), August 2002.

[5] W3C. XML Path Language (XPath) 1.0, Novem-
ber 1999.

[6] W3C. Extensible HyperText Markup
Language (XHTML) 1.0, January 2000.
http://www.w3.org/TR/xhtml1.

[7] W3C. Extensible Markup Language (XML) 1.0,
October 2000. http://www.w3.org/TR/REC-
xml.

10

[8] W3C. Simple Object Access Protocol (SOAP)
1.1, May 2000. http://www.w3.org/TR/SOAP.

[9] W3C. Web Services Description
Language (WSDL) 1.2, July 2002.
http://www.w3.org/TR/wsdl12.

11

