
Distributed Lookup in Structured Peer-to-Peer
Ad-Hoc Networks

Raphaël Kummer, Peter Kropf, and Pascal Felber

Computer Science Department , University of Neuchâtel,
Emile-Argand 11, CP 158,CH-2009 Neuchâtel, Switzerland
{raphael.kummer,peter.kropf,pascal.felber}@unine.ch

http://www.unine.ch/iiun

Abstract. Various peer-to-peer (P2P) architectures for ad-hoc networks
have been proposed over the last few years. Most of them are unstruc-
tured and use some form of flooding to locate content, because the phys-
ical constraints of the underlying network make the construction of ar-
bitrary application-layer overlays impractical.
In this paper, we study the problem of applying distributed hash tables
(DHT) to ad-hoc networks. Our approach to efficiently lookup content in
such networks exploits physical proximity of peers when establishing and
maintaining the DHT based routing tables. The efficiency of our method
is demonstrated by simulation of large networks.

1 Introduction

Peer-to-peer (P2P) systems, in which peer nodes form a cooperative network
and share their resources (storage, CPU, bandwidth), have attracted a lot of
interest lately. Roughly speaking, P2P networks can be classified as either struc-
tured or unstructured. Unstructured P2P networks (e.g., the Gnutella [1] and
KaZaA [2] file sharing systems) have no precise control over the file placement
and generally use “flooding” search protocols, which typically generate a large
number of query messages. In contrast, structured P2P networks (e.g., Chord [3],
CAN [4], Pastry [5], P-Grid [6]) use specialized placement algorithms to assign
responsibility for each file to specific peers, as well as “directed search” protocols
to efficiently locate files.

Structured P2P networks using deterministic algorithms are based on the
distributed hash table (DHT) paradigm. Each data item is identified by a key
(data identifier). The DHT maps keys to the nodes of an overlay network and
provides facilities for locating the current peer node responsible for a given key.
DHT designs differ mostly by the way they maintain the network and perform
lookups: there is a fundamental trade-off between the degree of the network
(the number of neighbors per node, i.e., the size of the routing tables) and its
diameter (the average number of hops required per lookup) [7].

Directed search protocols are particularly efficient, because they accurately
route queries toward the peers responsible for a given file. They require few
communication stages generating only little traffic, and do not produce false

negatives (i.e., the search fails only if there is no matching file in the system).
Therefore, they are particularly attractive for systems with limited resources,
where the cost of sending a message is non-negligible (e.g., in terms of energy)
and flooding is considered prohibitive.

Ad-hoc networks could greatly benefit from the efficiency of a directed search
protocol to locate content. They do, however, suffer from limitations that make
the maintenance of a DHT impractical. Most notably, a node in an ad-hoc net-
work can communicate directly only with its physical neighbors, i.e., with the
nodes that are within its (radio) communication range, and communication be-
tween remote nodes must traverse multiple intermediate nodes. DHTs assume
that the peers form a fully connected network and that the neighborhood of
a node can be chosen according to its location in a “logical” overlay, rather
than to “physical” considerations. A simple mapping of a DHT design to an ad-
hoc network would be unrealistic, as every node would need to keep track and
communicate with a set of “logical” neighbors many steps away in the physical
network. There is a fundamental gap between the logical proximity defined by
the DHT overlay and the physical proximity imposed by the underlying ad-hoc
infrastructure.

In this paper, we study the feasibility of DHT lookup in ad-hoc networks.
We propose a DHT design that combines a minimalist logical overlay structure
together with adaptive routing mechanisms to quickly locate content. Nodes are
organized in a logical ring, similarly to Chord [3] or Pastry [5], but we do not
use logical long-range neighbors whose maintenance costs would be prohibitive.
Instead, we rely on the physical neighbors of the nodes traversed by requests
routed through the physical network to quickly converge toward the destination
in the logical overlay. We propose additional extensions, in which we consider
an extra level of visibility in the physical neighborhood (neighbors of neighbors)
and maintain a history of previous requests to dynamically identify and exploit
possible shortcuts.

We have extensively studied our algorithm by the means of simulations in
static deployment scenarios. We did not take into account mobility nor churn as
we are mostly interested in evaluating the feasibility of DHT lookup in ad-hoc
networks. Results demonstrate that our approach is indeed efficient and scales
well to large peer populations. It represents a promising alternative to existing
solutions based on unstructured P2P networks.

The remainder of this paper is organized as follows. Section 2 discusses related
work. We detail our algorithm in Section 3 and present results from experimental
evaluation in Section 4. Finally, Section 5 concludes.

2 Related Work

Peer-to-peer overlays have emerged from file sharing applications on top of the
Internet, leveraging from its routing infrastructure and the intrinsic peer-to-peer
property of the IP protocol. As already discussed in Section 1, the situation is
different in the case an ad-hoc networks. In particular, the DHT paradigm with

its notion of regular topology (often a ring) and the shortcuts (fingers) introduced
at the overlay layer, makes a direct mapping to ad-hoc networks difficult. Various
approaches are known from literature to achieve such mappings.

While GRACE (Global Replication And Consistency) [8] has not been specifi-
cally designed with ad-hoc networks in mind, it enables for mobile collaboration
by combining DHT properties with a layered architecture. GRACE supports
mobility in wide-area networks. The different layers or consistency levels are
interconnected through “consistency neighbors” that are logically close to each
other. Requests are routed along these neighbors. The lookup algorithm of the
system is based on Pastry [5]. This approach still relies on the standard Internet
infrastructure.

Pucha et al. [9] implement Pastry on top of the Manet routing protocol DSR
(Dynamic Source Routing)[10]. Three modifications are proposed as compared
to the implementation on the Internet: (1) the node join procedure is modi-
fied by expanding the ring search for locating distinguished bootstrap nodes in
charge of arrivals; (2) the Pastry ping metric is replaced by a distance metric to
reduce network load; and (3) the DSR protocol is modified to inquire about the
proximity used in the adapted Pastry routing.

Ekta [11] and MADPastry [12, 13] integrate the DHT paradigm with ad-
hoc network routing. Both approaches introduce the necessary functions at the
network routing layer. The principal idea of Ekta is to move the DHT protocol
from the overlay level to the network layer of the Manet : a one-to-one mapping
between IP-addresses and logical (DHT) node IDs is applied. MAPastry is built
on top of the AODV protocol (Ad-hoc on-demand vector routing) [14]. This
protocol aims to avoid full broadcasts as much as possible because these are
costly in ad-hoc networks when targeted to the entire network. MADPastry
creates clusters composed of physically close nodes sharing, at the same time, a
common overlay prefix. The nodes in a cluster are thus physically and logically
close. Routing is then based on the logical overlay node IDs.

All the approaches above suffer from the size of the routing tables and the
complexity of setting up and managing connections with all the nodes that they
contain. In contrast, in our design, we only need to keep track of two remote
nodes, as explained in the next section.

Cramer et al. [15] propose the Chord based Proximity Neighbor Selection
strategy (PNS-CHORD). Here, the nodes are connected to their logical succes-
sors on the ring and through logical shortcuts to further nodes as usual in Chord.
These logical long-range neighbors are chosen according to physical proximity
in the ad-hoc network and are either one or two steps away.

Because the construction of the routing tables is based on physical proximity,
it may happen that the logical path pursued by a request traverses the same node
multiple times. This may only be prevented when the nodes keep track of the
requests that pass by and subsequently adjust their routing tables in case the
same request passes twice, but on different logical shortcuts. Our approach takes
into account of this situation and prevents thus such loops through the according
learning process.

Cell Hash Routing (CHR) [16] is a specialized ad-hoc DHT. CHR uses posi-
tion information to construct a DHT of clusters instead of organizing individual
nodes in the overlay. This approach groups nodes according to their physical lo-
cation. The routing between the clusters is done by position-based routing with
the GPSR [17] routing algorithm. A major limitation of this approach is that
nodes are not individually addressable, but only via the clusters.

Finally, we are aware of a parallel effort to our’s by Rowstron et al. at Mi-
crosoft Research (Cambridge) that similarly aims to combine ad-hoc routing
and logical DHT-like addressing (Virtual Ring Routing, VRR). Based on the
(yet unpublished) information that we have obtained directly from the authors,
their approach differs from ours in several ways. First, they build and proac-
tively maintain bidirectional routes between nodes. In contrast, our algorithm
always tries to find the best route at each node and sends the request along this
path. It is therefore possible to take into account locally profitable situations.
Second, VRR also maintains existing routes in a proactive way. Our solution
does not maintain existing routes, but previous routing decisions are kept in a
cache and can thus be reactivated if appropriate. This results in more efficient
routes to emerge at each step along a path and allows to faster reacting on
topological changes. Finally, VRR nodes use information of the physical paths
traversing the nodes for improving the routing. Our experiments, however, have
shown that such a caching policy results in small improvement, only. Indeed, the
cached entries are effective only when a request’s path goes through the node
having registered them. In our approach, the nodes also capture communications
of the nodes in the physical neighborhood. The information acquired this way
implicitly includes routing decisions and thus allows avoiding paths to traverse
the same physical area twice. It has to be noted that this information is obtained
without any further communication overhead, since it may be captured for free
due to the characteristics of wireless networks, i.e. radio transmission.

3 The Ad-Hoc Lookup Algorithm

A DHT system maps keys to nodes in a peer-to-peer infrastructure. Any node
can use the DHT substrate to determine the current live node that is responsible
for a given key. Every node and key has a specific position in a logical identi-
fier space, and the mapping between keys and nodes is determined according to
a proximity metric in the logical space. DHT nodes typically rely upon “long-
range neighbors” to quickly route messages to remote locations in the identifier
space. For instance, Chord [3] organizes the nodes in a logical ring. Each node
is connected to its closest neighbors (successor and predecessor) in the identi-
fier space. These connexions are necessary to guarantee successful routing: it is
always possible to traverse the whole ring by following successor links, albeit at
a very high cost. Each node additionally has a number of long-range neighbors,
called fingers, that refer to nodes located at exponentially increasing distance in
the logical space. Using these links, a node can quickly reach a remote location:
the expected path length (number of hops) of a lookup is in O(logN), where N

is the number of nodes in the system. Long-range neighbors are not necessary
for the safety and reliability of the system (successor links are sufficient), but
they provide liveness properties that allow for efficient lookup.

In an ad-hoc network, nodes can directly communicate only with their phys-
ical neighbors, i.e., nodes that are within their communication range. Messages
sent to remote nodes require multiple steps1. In the following, we assume that
(1) the ad-hoc network forms a connected graph and (2) there is an underlying
ad-hoc routing protocol that allows us to route messages between any two nodes.
We do not make any assumption on the ad-hoc routing protocol, except that it
always succeeds and that it is possible to take actions at intermediate nodes on
the routing path (e.g., to change the course of a message). One may note, that
when a DHT overlay is implemented over a classical Internet structure, the IP
routing also takes care of delivering messages over multiple physical steps for
one logical link (hop).

Mapping a DHT design such as Chord, Pastry, or P-Grid on an ad-hoc net-
work would place nodes that are physically close at arbitrary locations in the
logical space. Therefore, successor, predecessor, and long-range links would refer
to remote nodes that can only be reached by multiple physical steps. Besides
being inefficient in terms of physical path length, such an approach is impracti-
cal because each node would have to maintain accurate routing information for
O(logN) long-range neighbors. This can become a major problem when the size
of the network grows or if nodes often become unreachable (due to disconnec-
tions or failures). Moreover, mobility and churn, though not considered in this
study, make a direct mapping of a DHT design to ad-hoc networks unrealistic.

The intuition underlying our design is to only maintain a minimalist logi-
cal overlay without long-range neighbors, that is responsible for safety only. For
efficient lookup, we rather rely on the physical neighborhoods of the nodes tra-
versed during lookup to spontaneously find long-range links in the logical space;
therefore, we have a probabilistic form of liveness property because long-range
links may be encountered on a random basis. Our conjecture is that lookup re-
quests can be routed more efficiently and with much lower management costs
than when deterministically maintaining O(logN) long-range neighbors.

Similarly to Chord or Pastry, we organize the nodes in a logical ring, as
shown in Figure 1. The node responsible for a given key is the closest one in
the identifier space. Each peer n only needs to keep track at all times of its
successor succ(n) and predecessor pred(n) on the ring, which imposes limited
management overhead, only. Additional robustness can obviously be gained by
considering several successors and predecessors, but we do not consider failures
in this paper.

Each node is assigned a random identifier in the logical space, e.g., by hash-
ing the node’s IP address using a cryptographic hash function such as SHA-1.
Therefore, the physical neighbors of a given node are expected to be randomly

1 In this paper, we denote by hop a logical link on the DHT overlay, and by step a
physical link of the ad-hoc network.

distributed in the logical space (see Figure 1). This diversity property is impor-
tant for the efficiency of our lookup algorithm.

1
2

3

4

5

6

7
8

10

11

12

9
Logical links

Physical links

Physical network

1
3

76

9
4 2

5
1112

10 8

Fig. 1. Illustration of the DHT model for ad-hoc network.

3.1 Basic Lookup

We first describe the basic version of our algorithm, before discussing improve-
ments to enhance lookup performance. The pseudo-code is shown in Algorithm 1.

In our approach, DHT lookup is closely integrated with the routing of mes-
sages through the ad-hoc network: when a message is sent to a remote node
multiple steps away, it might diverge from its path at some intermediate if it
finds a shorter way to its final destination.

Every lookup message contains the identifier of the key being searched (de-
noted by k in the pseudo-code). In addition, when a lookup message is routed
to a remote node across the physical network, it contains the identifier of its
destination (nd in the pseudo-code).

Upon receiving a lookup message, a node ni proceeds as follows. First, ni

searches among its physical and logical neighbors, as well as itself and nd, which
node is closest to the key (line 2). If ni is closest, then it is responsible for the
key and it replies to the originator of the request (line 4).

If the request is on its way to a remote node nd closer to the key than any of
ni’s neighbors, we simply forward the message to the next node on the multi-step
path to nd (lines 6–7).

Otherwise, the node nj closest to the key is part of ni’s physical or logi-
cal neighborhood and will become the new destination. There are two cases to
consider: if nj is a logical neighbor, we issue a multi-step request toward nj

(lines 9–10); otherwise, we directly send the request to that node (line 12). In
both cases, we bypass the regular routing process and take a shortcut toward
the destination key.

Algorithm 1 Basic DHT lookup algorithm at node ni for key k

δ(k1, k2): distance between keys k1 and k2

id(n): logical identifier (key) of node n
Vi: physical neighbors of ni

Li = {pred(ni), succ(ni)}: logical neighbors of ni

1: procedure Lookup(k, nd)
k : looked up key
nd : next logical hop

2: nj = arg minn∈Vi∪Li∪{ni,nd} δ(id(n), k)
3: if nj = ni then { We are responsible for k }
4: return ni

5: else if nj = nd then { Continue to nd }
6: nk ← next step on physical path to nd;
7: send Lookup(k, nd) to nk;
8: else if nj ∈ Li then { Go to logical neighbor }
9: nk ← next step on physical path to nj ;

10: send Lookup(k, nj) to nk;
11: else { Go to physical neighbor }
12: send Lookup(k, nj) to nj ;
13: end if
14: end procedure

3.2 Convergence and Termination

We shall now study the convergence and termination of our algorithm, under the
assumption that the system is in a stable state with no node joining or leaving.

Let us consider node ni receiving a lookup request for key k, possibly on
its way to a remote node nd. To guarantee convergence, our algorithm tries to
always reduce the logical distance to k. To that end, it looks among its neighbors,
nd, and itself, the node nj closest to the key.

First observe that, if ni is closest to the key, then it must be responsible for
the key. Otherwise, either its predecessor or successor would be closer.

There are four cases to consider:

– If ni is closest to the key, then it is responsible for the key and the lookup
ends.

– If a physical neighbor is closest to the key, then it directly receives the
request.

– If a logical neighbor is closest to the key, then it becomes the new target nd

of the request.
– If nd is closest to the key, then the algorithm does not change the destination

of the request.

In the first three cases, the distance to the key decreases, either because we
reach the node responsible for the key, or because we send the request to a node
closer to the key. In the last case, we do not decrease the distance to the key

but we proceed toward nd and, if the request reaches nj , one of the first three
cases will apply. The assumptions on the underlying ad-hoc routing protocol
guarantees that a request sent to a node will eventually reach that node; thus,
the last case cannot apply forever. It follows that our algorithm converges and
terminates in a finite number of steps.

3.3 Increasing Visibility

The visibility of a node, in terms of physical neighborhood, is limited by the
communication range. As nodes can communicate directly with their physical
neighbors, a simple improvement is to have nodes exchange information about
their neighborhood. That way, visibility gets extended to the “neighbors of neigh-
bors” (NoN).

This extension has a limited cost in terms of message overhead, because
NoN lists are sent only upon change and require a single broadcast. Yet, it has
the potential to significantly improve lookup efficiency because it increases the
probability of finding a suitable long-range link while routing requests across the
ad-hoc network.

3.4 Exploiting Request History

Ad-hoc networks are characterized by the fact that every node must participate
in request routing and forwarding. Therefore, a node sees traffic for which it is
not the target. We can thus exploit information about past requests to acquire
knowledge of remote nodes and improve lookup efficiency.

Each node maintains a cache that stores, for each observed request, the
searched key k and the destination of the message nd. Thereafter, the cache
entry (k, nd) can act as a long-range neighbor: when a node receives a request
for a key closer to k than the node that would be selected by Algorithm 1, the
request is redirected toward nd instead.

This extension does not require any extra message to be sent. Further, as all
the physical neighbors of a node can listen to its messages (radio communications
are broadcast), information about past requests can be gathered passively. The
cache uses a least-recently used replacement policy and we have limited its size
to 256 entries in our implementation.

4 Evaluation

4.1 Experimental Setup

An experimental system has been implemented to analyze the efficiency of the
ad-hoc lookup protocol and to demonstrate the feasibility of exploiting the known
performance of the DHT lookup paradigm when applied to ad-hoc networks.

The simulated system is an overlay network of a fixed number of nodes
arranged in a rectangular area as physical space. Recall that our study neither

targets to investigate mobility nor churn. Therefore, the experimental setup con-
siders only static scenarios.

The nodes are randomly distributed in the physical space and are randomly
assigned their identifiers in the DHT space. To take into account the limited
radio range of a node in the ad-hoc network, two nodes are only considered
to be connected if their separating distance (relative to the dimensions of the
rectangular area) is smaller than a maximum range limit. A density parameter
allows to control the average number of connections of a node in the system.

To forward a request to the next hop in the logical space, appropriate rout-
ing in the physical space needs to be simulated. The implemented simulation
routing strategy is similar to ad-hoc routing algorithms such as LAR [18]. The
positions of all nodes are known to the simulator, which allows to refrain from
implementing routing tables. When a node receives a request to be forwarded to
some destination node at the logical level, it chooses as the next step the node in
its physical neighborhood that is the closest to the position of the the (logical)
destination node. The network generation described above allows for degener-
ated situations where this routing process does converge to the destination (e.g.,
when reaching a “dead-end”). To cope with this situation and avoid the com-
plexity of simulating a complete ad-hoc routing protocol, a bypass method is
used in which the request is directly delivered to the destination node. For such
a communication, the current average number of steps for the corresponding
logical link is accounted for in the statistical analysis.

The experiments have been conducted for different network sizes and the
different variations of the ad-hoc lookup algorithm.

A. Simulation Setup.

Network size : 1,000, 10,000, 100,000.
Connectivity : the average number of physical connections of a node (network

density) varies between 13 and 16.
Lookup requests : for each experiment, the paths of at least 2,000 randomly

generated requests are statistically evaluated.
Steady state : to evaluate the variants of the ad-hoc lookup algorithm using

the caching mechanism, the simulation runs a warm-up phase during 2,000
(2K), 50,000 (50K), or 100,000 (100K) requests in order to reach a steady
state before the statistical information is collected for the analysis.

B. Simulation Experiments.

Basic : the basic DHT lookup algorithm
Neighbors-of-neighbors (NoN) : the basic algorithm evaluating the physi-

cal neighbors and their physical neighbors to choose the next step.
Cache (C) : the NoN algorithm using a cache memorizing previous forwarding

choices.
Warm-up (Wup) : the simulation system executes a warm-up phase to reach

a steady state prior to issuing the analyzed requests.

The data used for the analysis is collected by the requests themselves along
their itinerary through the ad-hoc network. This allows us to also analyze the
paths through the physical network for individual requests and hence compute
average values.

4.2 Discussion and Results

Each request is evaluated at each node independently of whether the node is an
intermediate node of the logical path or an intermediate node for reaching a node
on the logical path. In either case, the algorithm tries to forward the request to
the node approaching the most the destination. Logical paths may thus be altered
by the algorithm. Table 1 shows the percentages of altered paths (or shortcuts
taken) determined during the different simulation scenarios. The versions using
the cache use shortcuts for more than 50% of the requests. For large networks,
however, this percentage decreases. This is not surprising, because the density
(average number of physical connections) is the same for all networks. In case of
large networks, there are hence less possibilities for profitable shortcuts.

Table 1. Average use of logical shortcuts.

Network size Basic NoN C Wup-0 C Wup-2K C Wup-50K C Wup-100K

1,000 38% 37% 51% 54% 54% 54%

10,000 39% 41% 49% 56% 59% 59%

100,000 35% 37% 42% 46% 53% N/A

One observes that the average values for networks of size 1,000 and 10,000
are roughly the same when applying the warm-up phase. This suggests that our
lookup algorithm provides a stable lookup time in average after some running
time (warm-up phase in the simulation), and up to some network size.

Figure 2 shows the average number of physical steps required to serve a
request. The use of the NoN and cache with warm-up strategies reduces the
number of physical steps by ∼ 20% respectively ∼ 50%. The introduced logical
shortcuts can thus be considered as very effective.

The average costs of one logical hop in terms of physical steps are roughly
the same for all variants of the algorithm (see Table 2). The performance of
the lookup algorithm increases thus when the number of logical hops for a re-
quest decreases. Figure 3 demonstrates that our ad-hoc lookup algorithm indeed
reduces the number of logical hops to serve a request.

We observe that our algorithm always achieves the lookup in less than log N
hops or even less than 1

2 log N hops. This clearly demonstrates the efficiency
of the approach and confirms that the introduction of the cache further im-
proves performance. Moreover, the various warm-up phases applied show that
the ad-hoc lookup algorithm stabilizes over time: the longer it runs, the better it

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1000 10000 100000

ph

ys
ic

al
 s

te
ps

 p
er

 r
eq

ue
st

of nodes

Basic
NoN
C Wup-0
C Wup-2K
C Wup-50K

Fig. 2. Average number of physical steps to achieve a request

 0

 5

 10

 15

 20

 1000 10000 100000

of

 lo
gi

ca
l h

op
s

of nodes

log N
1/2 log N
Basic
NoN
C Wup-0
C Wup-2K
C Wup-50K

Fig. 3. Average number of logical hops per lookup

Table 2. Average cost of a logical hop in terms of physical steps

Basic NoN C Wup-0 C Wup-50K

1,000 9.07 9.22 8.77 7.84

10,000 28.45 28.06 25.94 24.09

100,000 89.89 85.80 83.95 82.16

performs. There exists of course a limit where no further improvements will be
possible when running the system longer and longer. To gain insight to the com-
plex question how, whether and under which conditions (network topology) this
limit remains a difficult graph theoretic question. Our empirical investigation
suggests only that our algorithm exposes a stable behavior over time. Moreover,
it must be remembered that the average search costs using the logical links only
has a performance of the order of O(N). In comparison, Figure 3 clearly shows
the superiority of exploiting the properties of the physical links in the algorithm.

The ad-hoc lookup algorithm finds logical shortcuts through the selection of
physical nodes closest to the destination and with the help of the information
gained from previous requests kept in the cache. Intuitively this suggests that
shortcuts determined at the beginning of a logical path should approach the
destination the most. Indeed, the probability that some node in the physical
neighborhood is closer to the destination node than the next node on the log-
ical path decreases with the number of logical hops traversed. In other words,
the percentage of logical hops that terminate without a shortcut being taken
increases when approaching the destination. This characteristic is demonstrated
in Figure 4. The figure shows the percentage of terminated logical hops as a
function of the distance from the node responsible for the searched key.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

%
 o

f l
og

ic
al

 h
op

s
en

de
d

Distance from destination node

Basic 1000 nodes
 Basic 10000 nodes

NoN 1000 nodes
NoN 10000 nodes

C 1000 nodes Wup-2K
C 10000 nodes Wup-2K
C 1000 nodes Wup-50K

C 10000 nodes Wup-50K

Fig. 4. Percentage of terminated logical hops

Finally, Figure 5 shows the path of the same request in the same network of
10,000 nodes but with different versions of our algorithm. Coordinates represent
the geographical position of the nodes. Clearly, the best result is obtained when
using the NoN version of the algorithm with caching.

Logical path
Physical path
End of logical path
Start of logical path
Origin of the request
Destination of the request
Redirection on a cached path

Fig. 5. Path of a request with Basic (top left), NoN (top right), C Wup-2K (bottom
left), and C Wup-50K (bottom right) in a two-dimensional space.

5 Conclusion

Apart from very few known approaches, P2P systems for ad-hoc networks have
essentially used unstructured designs and flooding-based search protocols. It is
indeed challenging to build a structured overlay with a directed search protocol
on top of an ad-hoc network, because nodes have only limited communication
capabilities: they can exchange messages only with the nodes that are within
their (radio) communication range.

In this paper, we have studied the feasibility of building a DHT for ad-hoc
networks. The premise of such a design is to improve lookup performance and re-
duce the message overhead as compared to flooding-based protocols which yield
linear or worse performance. In our approach, we only maintain a minimalist log-
ical overlay structure but rely on the physical neighbors of the nodes traversed
during ad-hoc routing to quickly reach the object being looked up. Our simu-
lation results have demonstrated that a sub-linear lookup performance can be
preserved when relying on an ad-hoc network infrastructure rather than on the
standard Internet. It must however be noted that, to the best of our knowledge,
the observed sub-linear performance still has to be confirmed by an analytical
study.

References

1. : The Gnutella web site, www.gnutella.com (2006)
2. : The KaZaA web site, www.kazaa.com (2006)
3. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A

scalable peer-to-peer lookup service for internet applications. In: SIGCOMM ’01:
Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, New York, NY, USA, ACM Press
(2001) 149–160

4. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer communica-
tions, New York, NY, USA, ACM Press (2001) 161–172

5. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Middleware. (2001) 329–350

6. Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,
Punceva, M., Schmidt, R.: P-Grid: a self-organizing structured P2P system. SIG-
MOD Record 32(3) (2003) 29–33

7. Xu, J., Kumar, A., Yu, X.: On the fundamental tradeoffs between routing table
size and network diameter in peer-to-peer networks. IEEE Journal on Selected
Areas in Communications 22(1) (2004) 151–163

8. Bosneag, A.M., Brockmeyer, M.: GRACE: Enabling collaborations in wide-area
distributed systems, 14th IEEE International Workshops on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprise (WETICE’05) (2005) 72–77

9. Pucha, H., Das, S.M., Hu, Y.C.: How to implement DHTs in mobile ad hoc
networks?, the 10th ACM International Conference on Mobile Computing and
Network (MobiCom) (2004)

10. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
In: Mobile Computing. Volume 353., Kluwer Academic (1996)

11. Pucha, H., Das, S.M., Hu, Y.C.: EKTA: An efficient DHT substrate for distributed
applications in mobile ad hoc networks., 6th IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA 2004) (2004) 163–173

12. Zahn, T., Schiller, J.H.: MADPastry: A DHT substrate for practicably sized
MANETs., 5th Workshop on Applications and Services in Wireless Networks
(ASWN2005) (2005)

13. Zahn, T., Schiller, J.H.: DHT-based unicast for mobile ad hoc networks., Fourth
Annual IEEE International Conference on Pervasive Computing and Communica-
tions Workshops(PerComW’06) (2006) 179–183

14. Perkins, C.E., Belding-Royer, E.M.: Ad-hoc on-demand distance vector routing.
In: WMCSA. (1999) 90–100

15. Cramer, C., Fuhrmann, T.: Proximity neighbor selection for a dht in wireless
multi-hop networks. In: Proceedings of the 5th IEEE International Conference on
Peer-to-Peer Computing, Konstanz, Germany (2005) 3–10

16. Araùjo, F., Rodrigues, L., Kaiser, J., Liu, C., Mitidieri, C.: CHR: a distributed
hash table for wireless ad hoc networks, 25th IEEE International Conference on
Distributed Computing Systems Workshops (2005) 407–413

17. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless net-
works. In: MobiCom’00: Proceedings of the 6th annual international conference
on Mobile computing and networking, New York, NY, USA, ACM Press (2000)
243–254

18. Ko, Y.B., Vaidya, N.H.: Location-aided routing (LAR) in mobile ad hoc networks.
Wirel. Netw. 6(4) (2000) 307–321

