
Peer-to-peer Distribution Architectures

providing Uniform Download Rates

Marc Schiely, Pascal Felber

Computer Science Department
University of Neuchâtel

CH-2007, Neuchâtel, Switzerland
marc.schiely@unine.ch, pascal.felber@unine.ch

Abstract. Peer-to-peer (P2P) networks have proved to be a powerful
and highly scalable alternative to traditional client-server architectures
for content distribution. They offer the technical means to efficiently dis-
tribute data to millions of clients simultaneously with very low infrastruc-
tural cost. Previous studies of content distribution architectures have pri-
marily focused on homogeneous systems where the bandwidth capacities
of all peers are similar, or simple heterogeneous scenarios where different
classes of peers with symmetric bandwidth try to minimize the aver-
age download duration. In this paper, we study the problem of content
distribution under the assumption that peers have heterogeneous and
asymmetric bandwidth (typical for ADSL connections), with the objec-
tive to provide uniform download rates to all peers—a desirable property
for distributing streaming content. We discuss architectures that fulfill
this goal and achieve optimal utilization of the aggregate uplink capacity
of the peers. We develop analytical models that provide insight on their
performance in various configurations, and we compare them to archi-
tectures with non-uniform rates. Our results indicate that heterogeneous
and asymmetric peers can achieve uniform download rates with little
additional complexity and no performance penalty.

1 Introduction

The distribution of large or streaming content remains a challenging problem in
today’s Internet. A single source quickly becomes saturated when the number
of clients requesting the content grows, which leads to degradation or loss of
service. Solutions based on content delivery networks (CDNs) are prohibitively
expensive and rather static in nature, while protocols like IP multicast suffer
from several flaws and are not widely deployed.

P2P systems, in which peer computers form a cooperative network and share
their resources, offer a promising alternative for content distribution. They re-
duce the load of the primary servers by leveraging the bandwidth of the peers,
those receiving part of the content providing it to others. Their low cost, in-
herent scalability, and resiliency to “flash crowds” (a huge and sudden surge of
request traffic that usually leads to the collapse of the affected server) make such
systems very attractive for large scale deployments.



This work focuses on P2P architectures designed for distributing content
among large populations of clients. Unlike previous studies, we assume that
the peers have heterogeneous and asymmetric bandwidth (typical for ADSL
connections) and we aim at providing a uniform download rate to each of them.
This property is crucial for applications like media streaming, for which users
expect an uninterrupted stream of data at a constant rate.

We consider simple models with two classes of peers that differ in their uplink
capacities. We study several architectures that achieve optimal utilization of the
aggregate uplink capacity of the system and share it equally between all the
peers. It obviously follows that fast peers must share more bandwidth than they
receive, but we can balance this unfairness by placing them nearer to the source
for increased reliability and shorter latency.

We develop analytical models that provide interesting insight on the per-
formance of content distribution architectures with uniform download rates in
various configurations. We compare them with other architectures providing non-
uniform rates and we conclude that uniformity can be achieved with little addi-
tional complexity and no performance penalty.

The rest of the paper is organized as follows: We first discuss related work
in Section 2 and we present the system model in Section 3. Then, we analyze
three different architectures providing uniform download rates in Section 4 and
compare them in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

There exist two main approaches for dealing with differences in uplink bandwidth
in overlay multicast systems. Narada [1], CollectCast [2] and GnuStream [3]
use bandwidth measurements to improve the overlay structure by dynamically
replacing links. In contrast Scattercast [4], SplitStream [5], Overcast [6] and
ALMI [7] use degree-constraint structures to deal with heterogeneity. If a peer’s
degree is saturated when a new peer wants to connect, then some reorganization
needs to take place. CoopNet [8] uses both of these techniques. It deploys multiple
parallel trees and reorganizes them based on performance feedbacks.

All of these systems do not try to uniformly distribute the download rate to
all peers. Instead, they send distinct streams at different rates, or they consider
bounded streams and use buffers to deal with timing problems. Our goal is to
minimize these buffer requirements by evening out the download rate at all peers.

In [9], the authors investigate the impact of heterogeneous uplink bandwidth
capacities on Scribe [10]. Their experiments show that heterogeneity may create
distribution trees with high depths, which is not desirable. After proposing sev-
eral ways to address the problem they conclude that heterogeneity in DHT-based
multicast protocols remains a challenging open problem.

Analytical models have been proposed for peers with homogeneous band-
width capacities [11, 12], as well as and for heterogeneous peers but for non-
uniform download rates [13]. Different architectures for homogeneous and het-
erogeneous bandwidth constraints are analyzed. In contrast to this work, the



authors make the assumption that the downlink and uplink capacities are sym-
metric and do not consider uniform download rates.

To the best of our knowledge, no analytical models have been proposed to
study P2P content distribution architectures providing uniform download rates
to heterogeneous peers with asymmetric bandwidths.

3 System Model and Definitions

For the rest of this paper we use the following model. We assume that nodes
in the network have different upload capacities. We analyze content distribution
architectures with two classes of nodes, referred to as fast and slow peers accord-
ing to their upload bandwidth. All nodes in a class have the same bandwidth.
The data stream is sent by a single source which has the same bandwidth as
fast nodes. To simplify the analysis, we assume that the source receives the data
at the same uniform rate as the other peers before distributing it within the
content distribution network. We shall ignore latency in our model.

As is the case for typical ADSL connection, we assume that the slow peers
are essentially limited by their uplink capacity and have sufficient download
bandwidth to receive the data at the same uniform rate as the other peers.1 We
consider Nf fast peers in class F with upload bandwidth Bf and Ns slow peers
in class S with upload bandwidth Bs (Bf > Bs). For the sake of simplicity, we

assume in our analysis that Bs =
Bf

k
with k being an integer value. The total

number of peers is N = Nf + Ns.
We analyze the behavior of different architectures when transmitting a large

content. We assume that the file being transmitted is split into C chunks that
can be sent independently: as soon as a peer has received a chunk, it can start
sending it to another peer. We consider one unit of time to be the time necessary
for transmitting the whole content at the uniform rate r that is provided to all
peers. Each chunk is thus received in 1

C
unit of time. For clarity, we shall describe

the different architectures with the assumption that we transmit the whole file
at once and we shall introduce chunks later in the analysis. As total download
time is a function of the number of chunks, our main objective of supporting
streaming data corresponds to situations where C → ∞.

A peer may receive chunks from the source via different paths. For instance,
in the case of SplitStream [5], the source splits the content into several layers and
sends each of them along distinct trees spanning all the nodes. Two chunks sent
at the same time by the source may thus traverse a different number of peers and
be received at different times. This implies that each peer may have to buffer
some chunks until all of those sent at the same time have been received. We
compute δT as the maximal difference in distance between a peer and the closest
common node along the paths to the source via distinct incoming links. This
value indicates the buffer space needed at the peer. For instance, in Figure 1,
the first node of the right chain receives chunks from the source in 1 (directly),

1 As we shall see, this rate is no higher than the uplink capacity of the fast peers.



2 (via one peer), and 3 (via two peers) units of time and we have δT = 3−1 = 2.
Clearly, small values of δT are desirable and we shall also compare the different
architectures with respect to this property.

Uniform Rate. As previously mentioned, our goal is to provide the same down-
load rate to all peers in the network. Obviously, the maximal rate r that can be
achieved corresponds to the aggregate upload bandwidth of all nodes divided by
the number of peers (Bs < r < Bf ). It is easy to see that a tree cannot be used
to fulfill this goal because a slow node does not have enough upload bandwidth
to serve even a single other peer at rate r > Bs.

A trivial approach is to form chains of peers, in which a combination of slow
and fast peers team up and share their bandwidths at each level of the chain.
Figure 1 shows such an architecture with 50% fast nodes and 50% slow nodes
(Nf = Ns = N

2 ), and slow nodes having half of the upload bandwidth of fast

nodes (Bs =
Bf

2 ). The source is the topmost node and the numbers show the
transmission rate on the corresponding link, as a fraction of Bf . Fast nodes are
displayed in gray. The time units indicated in the figure do not explicitly take
chunks into account: at t = 1, the second peer in the left chain has received the
content at rate 3

4 ; at t = 3, the first peer in the right chain has received the
content via three links, each at rate 1

4 ; etc. All time units should be divided by
C when considering chunks. The download rate r is calculated as:

r =
1

N
(
N

2
Bf +

N

2

Bf

2
) =

3

4
Bf

We can observe that an unused upload bandwidth of 3
4Bf remains because

the source does not download any content. We shall ignore it in the rest of the
paper.

If we generalize the upload bandwidth of the slow peers to a fraction of the
upload bandwidth of the fast peers Bs =

Bf

k
and compute the download rate r

for a scenario where Nf = Ns = N
2 , we obtain:

r =
1

N
(
N

2
Bf +

N

2

Bf

k
) =

k + 1

2k
Bf

We now relax the assumptions on the distribution of fast and slow nodes. If
the number of fast peers is Nf , then the number of slow peers is Ns = N − Nf .
Again the upload bandwidth of the slow peers is a fraction k of the upload
bandwidth of the fast peers. The optimal download rate is then:

r =
1

N
(NfBf + (N − Nf)

Bf

k
)

= (
Nf

N
+

1

k
(1 −

Nf

N
))Bf (1)

If slow peers do not serve any content, i.e., k → ∞, then Equation (1)
becomes:



lim
k→∞

(
Nf

N
+

1

k
(1 −

Nf

N
))Bf = Bf

Nf

N

In a scenario where Nf = Ns this leads to a binary tree where the slow nodes
are the leaves and the fast nodes are the inner nodes, each serving two other
nodes at rate r =

Bf

2 (as studied in [11]).
In the rest of the paper, unless explicitly mentioned, we consider equal pop-

ulations of slow and fast peers (Ns = Nf).

4 A Study of Three Architectures

We now study and compare three different architectures that provide a uniform
download rate to all peers.

4.1 Linear Chain Architecture

The first architecture considered in this paper forks several independent chains
of peers that distribute content in parallel. The chains are constructed in three
phases.

Phase 1 - Growing phase. The objective of the growing phase is to serve several
peers (say m) in parallel starting from a single source. Obviously, such an ex-
pansion can only be achieved by fast peers, as they have more upload capacity
than the target download rate r. Using this free capacity allows us to build the
service capacity mr necessary to serve m peers in parallel.

Informally, the growing phase proceeds as follows. The first fast node (the
source) starts a chain by serving one other fast peer with rate r. The remaining
bandwidth Bf−r will be used further down the chain. The second fast peer again
serves another fast peer with rate r, which also leaves it with Bf − r remaining
bandwidth. This process continues until the sum of the remaining bandwidths
of the first p fast nodes is sufficient to serve another peer, i.e., p(Bf − r) ≥ r.
Given that Bs = 1

k
Bf , p can be computed as:

p =

⌈

k + 1

k − 1

⌉

In the formula above, depending on the value of k, some bandwidth may be
lost in the integer conversion. This can be avoided by expanding to k nodes at
once. The number of peers pk necessary for this expansion can be computed by
solving pk(Bf − r) = r(k − 1), which gives:

pk = k + 1

In the rest of the paper, we shall assume expansions to k chains using pk

peers (instead of 2 chains using p peers). Each fast peer can in turn fork another



t=2

t=14

t=1

t=0

t=13

t=12

t=11

t=10

t=9

t=8

t=7

t=6

t=5

t=4

t=3

F

F

F

F

F

F

F

F

F

F

F

S

S

S

1/4

S

S

S

S

3/4

1/4

1/2

1/4
S

S

S

S

S

F

Fig. 1. Linear chains with
one expansion step and k =

2 (Bs =
Bf

2
).

t=0

t=13

t=14

S

SS F

F

F

S

S

S

S

S

S

S

SS

S

S

S

F

F

t=1

t=2

t=3

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=4

3/4

1/4

1/4 1/4

3/4

1/21/2

1/4

1/4

1/4

F

F

F

F

F

F

F

F

F

F

Fig. 2. Linear chains with
two expansion steps and k =

2 (Bs =
Bf

2
).

t=13

t=0

t=14

F F

F F

FF

t=1

t=2

t=3

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=4

5/8

2/8 2/8

1/8

3/8 3/8

F

F

F

F

F F

FF

S

S

S

S

S

S

S

2/81/8

2/8

2/8

1/8

S

S

S S

S

S

S

S

F

Fig. 3. Linear chains with
one expansion step and k =

4 (Bs =
Bf

4
).

k chains with the help of pk − 1 other fast peers. By repeating this process,
the number of chains can be multiplied by k every iteration. Each expansion
obviously requires pk units of time. Examples with k = 2 (r = 3

4Bf ) and k = 4
(r = 5

8Bf ) are shown in Figures 1, 2, and 3. It is important to note that the
peers are organized as a directed acyclic graph (DAG).

Phase 2 - Parallel phase. The parallel phase starts when the growing phase has
finished its expansion to m peers. It constructs two sets of m

2 linear chains, com-
posed respectively of fast and slow peers. Each chain of slow peers is combined
with a chain of fast peers. A slow peer serves its successor at rate Bf/k. A fast
peer serves its successor at rate r and the next slow peer in the companion chain
at rate Bf − r. Thus, each peer is served at rate r. Phase 2 proceeds until all
fast peers are being served (see Figures 1, 2, and 3).

Phase 3 - Shrinking phase. In the last phase, we are left with a set of slow
peers to serve at rate r. As a slow peer cannot serve another peer by itself, the
bandwidth of several peers must be combined, which leads to shrinking down
the number of parallel chains. This phase is almost symmetrical to the growing



phase, in that we can serve pk slow peers from each set of k chains. We repeat
this process until all slow peers have been served (see Figures 1, 2, and 3).

Analysis. We can easily notice that delays of δT = k are encountered during
the growing phase. The case of the shrinking phase is more subtle, as δT grows
larger if we keep it perfectly symmetric to the growing phase. By allowing some
asymmetry, we can both bound the delays by the same value δT = k and reduce
the total length of the shrinking phase.

We now compute the number of peers that can be served within a given time
interval. After pk steps, k peers can start again another chain. If we define s as
the number of expansion steps, we can calculate the number of peers in the first
phase N1 to be:

N1 =

s−1
∑

i=0

kipk = pk

ks − 1

k − 1

The shrinking phase is built in a symmetric manner. Therefore the number
of nodes N3 in the third phase is the same as in the growing phase: N3 = N1.
Given the constraint that N1 + N3 ≤ N , the maximal value of s is:

smax = logk

(

N
k − 1

2pk

+ 1

)

The number of nodes N2 that can be served in phase 2 in a given time interval
T is:

N2 = ks(T − 2spk + 1)

Indeed, there are ks parallel nodes and phase 2 lasts for the given time interval
minus the duration of the growing and shrinking phases. The number of peers
served in a time interval T with s growing steps (1 ≤ s ≤ ⌊smax⌋) is then:

N(T, s, k) = 2pk

ks − 1

k − 1
+ ks(T − 2spk + 1)

We observe that the number of peers served in a given time interval grows
with s, thus producing more efficient content distribution architectures (compare
N(14, 1, 2) = 24 in Figure 1 and N(14, 2, 2) = 30 in Figure 3).

Solving the equation for T gives the number of units of time necessary to
serve N peers:

T (N, s, k) =
N(k − 1) − 2pk(ks − 1)

ks(k − 1)
+ 2spk − 1 (2)

Assuming that the content is split into chunks, the total download time for
the complete file is then 1+ 1

C
T (N, s, k), i.e., the time necessary to transmit the

whole file at rate r plus the propagation time of the chunks through the content
distribution network. Using Equation (2) leads to:



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

10
7

10
8

N
u

m
b

e
r 

o
f 

ro
u

n
d

s

Number of clients N

C=10
2
 k=2
k=4

C=10
4
 k=2
k=4

C=10
6
 k=2
k=4

Fig. 4. Download time of the linear chain
architecture for different values of k and C

(s = 4).

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

10
7

10
8

N
u

m
b

e
r 

o
f 

ro
u

n
d

s

Number of clients N

s=4

s=6

s=8
s=smax

Fig. 5. Download time of the linear chain
architecture for different values of s (k = 2,
C = 102).

T (N, s, k, C) = 1 +
1

C

(

N(k − 1) − 2pk(ks − 1)

ks(k − 1)
+ 2spk − 1

)

Figure 4 shows the time necessary to complete the download with the linear
chain architecture for different values of k and C. We observe that performance
improves with larger numbers of chunks, because all peers can be active most
of the time. In contrast, with few chunks only a fraction of the peers will be
uploading at any point in time, while the others have either already forwarded
the entire file or not yet received a single chunk. Therefore, the value of k, which
influences the depth of the content distribution architecture, has more impact
on performance when the number of chunks is small. We notice indeed that the
download times start degrading earlier with small values of k because they yield
deeper architectures.

Figure 5 compares the download times for different values of s (the value smax

corresponds to the maximal number of expansion possible with the given peer
population). As expected, performance improves with higher values of s because
they produce flatter architectures. The optimal value smax exhibits extremely
good scalability.

4.2 Mesh Architecture

The linear chains architecture can be improved in several ways if we allow peers
to be organized as a directed graph with cycles. We can reduce the duration
of the growing phase and thus the length of the paths (and consequently the
latency); we can simplify network management by only using connections with
identical bandwidth capacities; and we can limit the size of buffers at each peer
to a constant value.



The resulting mesh architecture is shown in Figure 6 (for k = 2 and one
expansion step) and Figure 7 (for a general value of k and two expansion steps).
A node does not only receive data from its parent, but also from its siblings. The
source has 2k fast peers as children and sends data at rate

Bf

2k
to each of them;

the remaining bandwidth
Bf

2 is provided by their siblings. The first-level fast

peers together serve k2 children with their remaining bandwidth of
Bf

2 ; again,

the remaining bandwidth k−1
2k

Bf is provided by the siblings. Second-level peers
have enough bandwidth to completely serve k2 children. Each third-level child
can in turn expand to k2 peers in three steps.

t=6

t=7

t=8

t=9

t=10

t=11

t=12

F

S S

SS

F

F

F

F

S

SSSS

S S S S

SS

S S

SS

F

F

F

FS SF

FS SF

1/4

F F F

FFFF

F

F

F

t=0

t=1

t=2

t=3

t=4

t=5

1/4

F

Fig. 6. Mesh with one expansion step

and k = 2 (Bs =
Bf

2
).

t=5

t=9

t=8

t=10

t=11

t=12

t=7

t=6

1/(2k)

2
k

2

k
2

k
2

k
2

k
2

t=0

t=1

t=2

t=3

t=4

k
2

k
2

k
2

k
2

k
2

k
2

k
2

2k

k
2

1/(2k)

(k−1)/(2k)

r

1/2

k
2

k
2

S

2k

r

2k 2k

1/k

r

2k2k

1/(2k)

1/k

k

2k 2k 2k2k

F

Fig. 7. Mesh with two expansion steps

and any k (Bs =
Bf

k
).

As in the previous architecture, one can build linear chains after the expan-
sion phase before reducing the architecture to one peer. The shrinking phase is
symmetric to the growing phase, as shown in Figure 6.

Using only connections with identical rate
Bf

2k
simplifies significantly the man-

agement of the architecture. The throughput is controlled by the source and peers
only differ in their number of outgoing connections: the outdegree is always 2k
for fast nodes and 2 for slow nodes. All peers have an indegree of k + 1.

Analysis. One can note in Figure 6 that the first level fast peers receive chunks
from the source at t = 1 and from their sibling at t = 2; similarly, second level



peers receive chunks at t = 2 and t = 3; on the third level, all chunks are received
simultaneously at t = 3. A similar observation can be made with the shrinking
phase and it follows that constant delays of δT = 1 are encountered in this
content distribution architecture.

For computing the number of nodes which can be served in time T we again
analyze the three phases. As we have seen, a fast peer can expand to k2 peers
in three units of time with the help of 2k + k2 other fast peers. If we define s to
be the number of expansion steps, then the number of peers served in the first
phase is:

N1 = 1 + (2k + 2k2)

s−1
∑

i=0

k2i = 1 + 2k
k2s − 1

k − 1

The shrinking phase again is symmetric in the number of nodes so the number
of nodes in the third phase N3 is equal to N1, thus N3 = N1. Given the constraint
that N1 + N3 ≤ N we can compute the maximal value of s:

smax =
1

2
logk

(

(N − 2)(k − 1)

4k
+ 1

)

In phase 2, k2k2(s−1) parallel nodes can be served in the remaining time
T −6s−1. In total the number of peers served within T units of time for a given
number of s expansion steps 1 ≤ s ≤ ⌊smax⌋ is then:

N(T, s, k) = 2 + 4k
k2s − 1

k − 1
+ k2s(T − 6s − 1)

Solving the equation for T and introducing the number of chunks C gives:

T (N, s, k, C) = 1 +
1

C

(

1

k2s

(

N − 2 − 4k
k2s − 1

k − 1

)

+ 6s + 1

)

Figure 8 shows the time necessary to complete the download with the use of
the mesh architecture for different values of C and k. As expected, the download
times follow the same general shape as for the linear chains architecture in
Figure 4 but performance is significantly improved due to the faster expansion
of the mesh architecture. We can observe in Figure 9 that a higher number
of expansion steps s also produces flatter architectures and therefore reduces
the download time. The maximal expansion for a given peer population smax

yields the best download times, which is almost constant, independent of the
population size.

4.3 Parallel Trees

The third architecture studied in this paper consists in constructing multiple
trees spanning all the nodes and sending a separate part of the content in parallel
to each tree similarly to SplitStream [5] and PTreek [11] (as Nf = Ns, we shall



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

10
7

10
8

N
u

m
b

e
r 

o
f 

ro
u

n
d

s

Number of clients N

C=10
2
 k=2
k=4

C=10
4
 k=2
k=4

C=10
6
 k=2
k=4

Fig. 8. Download time of the mesh archi-
tecture for different values of C (k = 2,
s = 4).

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

10
7

10
8

N
u

m
b

e
r 

o
f 

ro
u

n
d

s

Number of clients N

s=4

s=6

s=8
s=smax

Fig. 9. Download time of the mesh archi-
tecture for different values of s (k = 2,
C = 102).

2 2 3

1 2 3

4

6

7

5

76547654

1 1

3

t=0

t=1

t=2

t=3

1/4

1/4

1/4

1/4

1/4

S

Fig. 10. Parallel trees with N = 8 and k = 2 (Bs =
Bf

2
).

use binary trees). If we construct k + 1 trees that distribute content at rate
Bf

2k
,

then every peer will receive data at the same uniform rate r.

We construct parallel trees by placing each fast peer (except the source) as

interior node in k trees. Fast nodes will thus serve 2k other peers at rate
Bf

2k
k

(i.e., at aggregate rate Bf ). The slow nodes are placed as interior nodes in a

single tree and must thus serve two other nodes at rate
Bf

2k
(i.e., at aggregate

rate
Bf

k
). As the number of leaves in a complete binary tree is equal to the

number of interior nodes plus one and the source is a fast node, the constraint
Nf = Ns is met. Figure 10 illustrates the parallel tree architecture (peers are
numbered for clarity). Note that every peer except the source appears in all
trees.

Analysis. We first need to determine the depth d of the trees. At each level i
in the tree, we have 2i nodes (the root is at level 0). Thus, the number of nodes

in a binary tree of depth d is
∑d

i=0 2i = 2d+1− 1. Considering the special role of
the source, the N − 1 remaining nodes can be placed in parallel trees of depth
d = ⌊log2(N − 1)⌋.



It follows from the construction of the trees that delays of δT = ⌊log2(N −1)⌋
are encountered in this content distribution architecture. Delays grow with the
number of peers, in contrast to the other architectures studied in this paper.

The number of nodes that can be served by the parallel tree architecture in
a given time interval T can be computed as follows (the first term represents the
source):

N(T ) = 1 +

T−1
∑

i=0

2i = 2T

Solving this equation to T and introducing the number of chunks C leads to
the time used to distribute a file to all nodes:

T (C, N) = 1 +
1

C
⌈log2N⌉

10
0

10
1

10
3

10
4

10
5

10
6

10
7

10
8

10
9

N
u

m
b

e
r 

o
f 

ro
u

n
d

s

Number of clients N

C=10
2

C=10
4

Fig. 11. Download time for the parallel
trees architecture for different values of C.

Figure 11 shows the time necessary to complete the download with the par-
allel tree architecture for two values of C (improvements become unnoticeable
when C grows larger). As the download time is a function of the depth of the
trees, which increases logarithmically with the number of peers, performance
degrades only slowly with the population size.

5 Comparative Analysis

In this section we compare the three architectures presented in this paper with
the linear chain architecture analyzed in [13] (referred to as Linear). In contrast
to our architectures, in Linear the peers have symmetric bandwidth capacities.
The peers are organized in separate chains according to their bandwidth capacity



10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10*10
8

8*10
8

6*10
8

4*10
8

2*10
8

N
u

m
b

e
r 

o
f 

ro
u

n
d

s

Number of clients N

Linear

Linear Chains

Mesh Architecture

Trees Architecture

Fig. 12. Download time for different ar-
chitectures with k = 100, C = 100 and
s = smax. Linear shows the completion
times for a population of 109 peers with
symmetric bandwidth.

10
-1

10
0

10
1

10
2

10
3

10
4

10*10
8

8*10
8

6*10
8

4*10
8

2*10
8

N
u

m
b

e
r 

o
f 

ro
u

n
d

s

Number of clients N

Linear

Linear Chains

Mesh Architecture

Trees Architecture

Fig. 13. Download time for different archi-
tectures with k = 4, C = 100 and s = smax.
Linear shows the completion times for a
population of 109 peers with symmetric
bandwidth.

and there is no cooperation between fast and slow nodes. Fast peers can therefore
finish the download faster.

As we can see in Figure 12, this difference leads to a stepwise function with
the fast nodes completing their download faster than the slow nodes (Nf = Ns).
In contrast, the uniform architectures all scale well and yield an almost constant
download rate independent of the population size. As expected, uniform linear
chains are less efficient than the mesh and parallel tree architectures due to the
longer paths.

In Figure 13 we can observe that with a smaller difference between fast and
slow peers (lower value of k) the download time of Linear grows, whereas it
decreases for the linear chains and the mesh architecture (remember that a unit
of time is defined as a function of the uniform rate r). We can further see that
the mesh architecture performs slightly better than parallel trees in Figure 12,
unlike in Figure 13. This is due to the fact that the mesh architecture expands
as a function of k2s whereas the expansion of parallel trees does not depend on
k. Thus the mesh will grow faster when k is large. Higher values of C do not
produce interesting results as the difference between the various architectures
quickly becomes unnoticeable.

6 Conclusion

Content distribution is an important problem for many distributed applications
deployed in the Internet. Cooperative techniques based on peer-to-peer networks
offer the technical capabilities to quickly and efficiently distribute large or critical
content to huge populations of clients. When dealing with streaming or time-
sensitive data, the content must be provided at a rate which is sufficient for its
intended purpose (e.g., displaying a streaming movie).



In this paper, we have studied the problem of providing uniform download
rates to a population of peers with asymmetric and heterogeneous bandwidth
capacities. The architectures that best achieve this goal among those studied
in the paper are the mesh and the parallel tree, but the latter requires peers
to buffer data for a duration proportional to the depth of the trees. As the
number of chunks grows, i.e., when the stream duration becomes very long, the
differences between all the architectures become insignificant.

Although we only focused on analytical models for simple content distribution
architectures, we believe that our analysis provides some important insights as
how to set up peer-to-peer networks for distributing streaming data. It can also
guide the design of cooperative applications that organize the nodes in a more
dynamic manner than chains or trees. In particular, the system needs to build up
upload capacity as fast as possible (which corresponds to maximizing the number
of expansion steps) and the content should be partitioned into a large number
of chunks (but not too many chunks as each one adds some coordination and
connection overhead). By properly combining high and low capacity nodes, one
can provide a high quality of service to every peer and even out their differences
in a truly cooperative manner.

Acknowledgments. This work is supported in part by the Swiss National
Foundation Grant 102819.

References

1. Chu, Y., Rao, S., Zhang, H.: A case for end system multicast. In: Proceedings of
ACM Sigmetrics. (2000)

2. Hefeeda, M., Habib, A., Boyan, B., Xu, D., Bhargava, B.: PROMISE: peer-to-
peer media streaming using CollectCast. Technical Report CS-TR 03-016, Purdue
University (2003)

3. Jiang, X., Dong, Y., Xu, D., Bhargava, B.: Gnustream: A P2P media streaming
system prototype. In: Proceedings of the International Conference on Multimedia
and Expo (ICME),. (2003)

4. Chawathe, Y.: Scattercast: An adaptable broadcast distribution framework. Mul-
timedia Systems 9 (2003) 104–118

5. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.:
SplitStream: High-bandwidth multicast in a cooperative environment. In: Proceed-
ings of the ACM Symposium on Operating Systems Principles (SOSP). (2003)

6. Jannotti, J., Gifford, D., Johnson, K.L., Kaashoek, M.F., O’Toole, J.W.: Over-
cast: Reliable multicasting with an overlay network. In: Proceedings of the 4th
Symposium on Operating System Design and Implementation (OSDI). (2000)

7. Pendarakis, D., Shi, S., Verma, D., Waldvogel, M.: Almi: An application level
multicast infrastructure. In: Proceedings of USITS. (2001)

8. Padmanabhan, V., Wang, H., Chou, P.: Resilient peer-to-peer streaming. In:
Proceedings of IEEE ICNP. (2003)

9. Rao, S., Padmanabhan, V., Seshan, S., Zhang, H.: The impact of heterogeneous
bandwidth constraints on dht-based multicast protocols. In: Proceedings of the
4th International Workshop on P2P Systems (IPTPS). (2005)



10. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: Scribe: a large-scale and
decentralized application-level Multicast infrastructure. IEEE Journal on Selected
Areas in Communications 20 (2003) 1489–1499

11. Biersack, E., Rodriguez, P., Felber, P.: Performance analysis of peer-to-peer net-
works for file distribution. In: Proceedings of the 5th International Workshop on
Quality of future Internet Services (QofIS’04). (2004) 1–10

12. Yang, X., de Veciana, G.: Service capacity of peer-to-peer networks. In: Proceedings
of IEEE INFOCOM. (2004)

13. Carra, D., Cigno, R.L., Biersack, E.: Introducing heterogeneity in performance
analysis of p2p networks for file distribution. Technical Report DIT-04-113, Uni-
versity of Trento (2004)


