
Semi-Automatic Parallelization of
Java Applications

Pascal A. Felber

Institut EURECOM
06904 Sophia Antipolis, France

felber@eurecom.fr

Abstract. Some types of time-consuming computations are naturally
parallelizable. To take advantage of parallel processing, however, appli-
cations must be explicitly programmed to use specific libraries that share
the workload among multiple (generally distributed) processors. In this
paper, we present a set of Java tools that allow us to parallelize some
types of computationally-intensive Java applications a posteriori, even
when the source code of these applications is not available. Our tools op-
erate using techniques based on bytecode transformation, code migration,
and distributed parallel method executions.

1 Introduction

Motivations. The Java language is widely considered as inadequate for compu-
tationally-intensive tasks. The obvious reason lies in the “poor” performance of
Java programs, which run significantly slower than their C or Fortran counter-
parts. There are a number of reasons, however, why Java may be used for such
applications.

First, Java is easy to learn, safe, and scalable to complex programming prob-
lems. Its popularity and wide adoption have attracted significant interest from
the scientific and engineering community and led to the development of tools
and libraries adapted to high performance and parallel computing [1–3].

More importantly, Java’s processor and operating system independence make
it possible to deploy distributed parallel applications on heterogeneous plat-
forms and harness the processing power of idle workstations in the Internet.
This has the potential to extend the reach of parallel distributed applications
far beyond specialized clusters of homogeneous machines traditionally used for
high-performance computing.

Finally, Just-In-Time (JIT) compilers that translate Java bytecode into na-
tive instructions have made significant advances to improve performance, and
modern JIT compilers have been estimated to reach up to two thirds of the speed
of C code [4]. IBM’s Ninja project has also demonstrated that, when compiling
Java applications specifically for parallel architectures, one can achieve between
80 and 100% of the performance of highly optimized Fortran code [5]. Combined
with quasi-static techniques [6, 7], Java code can be as efficient as C or Fortran
code.

Overview and Contributions. The goal of the work presented in this paper
is to provide mechanisms to seamlessly parallelize some kinds of Java applica-
tions and execute them on distributed processors, without requiring the appli-
cation programmer to explicitly use dedicated message-passing libraries. These
mechanisms can be applied to code that has not been programmed with paral-
lelization in mind and whose source is not available. Parallelism is implemented
at the coarse level of method invocations, by transforming a computationally-
intensive operation into a set of shorter equivalent operations executed on mul-
tiple machines. Transformations are performed according to simple “rewriting”
rules specified by the application deployer.

Our parallelization mechanisms consist of two major components: (1) a wrap-
per generator that instruments Java bytecode at load time and effectively wraps
selected methods with user-specifier filters; and (2) a parallelization engine that
instantiates application classes on multiple processes, dispatches method invo-
cations to these processes, and finally collects and aggregate replies. Although
the program does not need to be modified, some rewriting rules need to be spec-
ified by the application deployer. Parallelization is therefore transparent to the
application, but not completely automatic (hence semi-automatic).

We would like to emphasize that our techniques can only be used with some
types of Java applications with loosely-synchronous tasks. The focus and con-
tributions of this work are less on raw speed or features, which may be better
achieved using C and dedicated message-passing libraries, than on transparency
and applicability of our parallelization techniques to legacy Java code. They pro-
vide an easy way to harness the processing power of idle workstation to increase
the performance of applications with no built-in support for parallel processing.

To the best of our knowledge, this work is the first to address the prob-
lem of automatic parallelization of Java applications by instrumenting bytecode
and transparently executing computationally-intensive programs on distributed
processors.

Related Work. Automatic parallelization of a program is generally achieved
using parallel compilers that generate code optimized for parallel architectures [8,
9]. In the context of the Java programming language, javar [10] is a source code
transformation engine that makes implicit loop parallelism and multi-way re-
cursive methods explicit by means of the multi-threading mechanism provided
by the Java virtual machine. The resulting code can execute faster on parallel
machines that run multiple threads on separate processors. Javab [11] performs
essentially the same transformations, but on the program’s bytecode rather than
its source code. JOIE [12] is another toolkit for Java bytecode transformations,
but it has been designed to modify the behavior of the code rather than optimiz-
ing its execution for a given target environment. IBM’s Ninja project [5] includes
a prototype Java compiler that performs high order loop transformations and
parallelization completely automatically, resulting in runtime performance sim-
ilar to Fortran code in a variety of benchmarks.

The development of parallel applications targeted for execution on distributed
processors traditionally requires parallelism to be dealt with explicitly. These

applications are traditionally implemented using specialized message-passing li-
braries such as PVM [13] and MPI [14], which manage communications between
sets of collaborating processes executing on multiple machines. PVM and MPI
have mappings for several programming languages, and have recently been ex-
tended to support Java [15, 16]. Although powerful and robust, theses message-
passing libraries are also complex to program, even in their Java incarnation.
JavaParty [17] simplifies this process by introducing language constructs for the
development of distributed and parallel Java applications, but the programmer
still needs to deal explicitely with parallelism. COPS [18] goes one step further
by using parallel design patterns to automatically generate the structural code
necessary for a Java application to run in parallel.

Organization. The rest of this paper is organized as follows. Section 2 presents
an overview of our Java parallelization framework. Section 3 describes the wrap-
per generator used to transparently instrument Java bytecode and intercept se-
lected method invocations. Section 4 presents the parallelization engine respon-
sible for managing communications between distributed processors. Section 5
illustrates our tools using a concrete example, and Section 6 elaborates on their
performance. Finally, Section 7 concludes the paper.

2 Program Parallelization

There are several approaches to make a program execute faster using parallel
processing. For instance, a multi-threaded program can benefit from parallel
architectures by having each thread run on a distinct processor. In this paper, we
focus on coarse-grain parallelization, where multiple distributed computers work
together to perform time-consuming computations. As the time necessary for
communication between collaborating computers is not negligible, this approach
works well when computations require significant processor resources, in the
order of seconds, and each processor can compute its share independently of
other processors (loose synchronization).

Several types of applications can benefit from distributed parallel processing.
For instance, complex database queries can be executed by having each proces-
sor looking through part of the data, or executing part of the query. Complex
computations, such as cryptographic key discovery, or synthesis image genera-
tion, can also be parallelized by having each processor explore part of the space
of input values (using “divide-and-conquer” algorithms).

The idea underlying our Java application parallelization framework is to in-
strument the classes responsible for time-consuming computations, instantiate
them on multiple machines, and re-direct the invocations to computationally-
intensive methods to all the instances for parallel execution. Method interception
is achieved by the means of a wrapper generator toolkit, which constitutes the
lowest layer of our parallelization framework. At the next level, the Java paral-
lelization engine takes care of load sharing and communication with distributed
processors. Finally, the deployer has to provide application-specific adapters that

1100
0100

1001
0111

Bytecode Engine

Java

Handle

Result

3. Invocation

Objects

2. Instantiation

Regular

Engine
Parallelization

Generator
Wrapper Parallelization

O (not(load-time)
instrumentation

1. Bytecode

Adapters

O

Java Application

(instr’d)

instr’d)Filters

Fig. 1. Semi-Automatic Parallelization of a Java Application.

essentially define “rewriting rules” for splitting requests and merging replies. The
overall system architecture is shown in Fig. 1.

Rewriting rules are application-specific. They specify for each application
how a computationally-intensive request can be split into multiple simple sub-
requests that can execute in parallel. In addition, they specify how the results
of these individual sub-requests can be combined to produce the complete result
expected from the initial request. A typical rule for the computation of a synthe-
sis image would rewrite request arguments and assign non-overlapping areas of
the image to each target processor; the results from each processor would later
be combined into a single image by appending them in the right sequence.

Our approach is transparent to the application being parallelized, as it does
not require source-code modifications, but it is not fully automatic, in the sense
that the application deployer has to specify the rewriting rules. All the informa-
tion pertaining to the rewriting rules, the classes to instrument, the addresses of
the distributed processors, etc. are specified using Java properties and configu-
ration files.

3 The Java Wrapper Generator

We have developed a tool, called the Java Wrapper Generator (JWG), which uses
load-time reflection to transparently insert pre- and post-filters to any method
from a Java class. These generic filters allow developers to add crosscutting
functionality to compiled Java code and extend it with various features, such as
debugging, profiling, proxying, runtime validation, security, or aspect-oriented
extensions. In this section, we briefly present the major features of our wrapper
generator, used by the parallelization engine to add parallel distributed behavior
to sequential centralized Java programs.

3.1 Filters

The Java wrapper generator allows Java developers to transparently insert pre-
and post-filters to any method of a Java class. Filters are custom classes written

by the user and attached to specific methods at the time the class is loaded
by the Java virtual machine, by instrumenting the bytecode (1. in Fig. 1). It is
therefore not necessary to access the source code of the Java class.

Pre- and post-filters can be installed at the following levels, from the most to
the least specialized: an instance method filter applies to a specific method of a
given instance; an instance filter applies to all methods of a given instance; a class
method filter applies to a specific method of a given class; a class filter applies to
all methods of a given class; and finally, a global filter applies to all methods of
all classes. Upon invocation of an instrumented method, the wrapper generator
runtime searches all installed filters in decreasing order of specialization, until it
finds a valid filter. If no filter is found, then no filtering takes place.

Pre-filters are invoked at the beginning of each instrumented method. In the
special case of constructors, pre-filters are invoked after the call to the construc-
tor of the superclass or the class itself, i.e., after the constructor of the Object
base class has been called. Pre-filters receive as parameters the target object
(for non-static methods) or class (for static methods), and the method name,
signature, and arguments. A pre-filter can modify the values of the method argu-
ments, but the number and types of the arguments must remain consistent with
the method’s signature. A pre-filter can terminate in three different manners:
(1) the filtered method continues normally after execution of the filter (normal
termination); (2) the filtered method terminates immediately with the return
value provided by the filter, which must be of a type consistent with the method
signature (short-circuit); and (3) the filtered method terminates immediately by
throwing the exception provided by the filter, which must be consistent with the
exceptions declared by the method (exceptional termination).

Post-filters are invoked at the end of each instrumented method. They are
also invoked upon abrupt completion (return statement in the middle of a
method) or when an exception occurs during method execution. Post-filters re-
ceive as parameters the target object (for non-static methods) or class (for static
methods), the method name, signature, and arguments, and the return value or
exception resulting from the method’s execution. A post-filter can modify the
arguments (which may be used to return data to the caller) and the return value
or exception. In addition, a return value can be replaced by an exception, and
vice versa, as long as the type of the return value or exception remains consistent
with the method’s signature.

The association of filters with specific classes, objects and methods can be
performed declaratively (via a configuration file) or programmatically. Further-
more, the wrapper generator provides a simple API to dynamically install and
remove filters during program execution.

3.2 Bytecode Instrumentation

Bytecode instrumentation is performed using the BCEL bytecode engineering
library [19] and a custom “class loader”, with overrides the default behavior of
the Java class loading mechanism. The code of selected methods is modified to
include calls to user-specified pre- and post-filters. The functionality added to

the bytecode is minimal: it includes parameter transformation (simple types are
transformed in their equivalent object types), filter invocation, and exception and
result management. Additional logic is implemented in regular Java libraries.

The names of the classes and methods to be instrumented can be specified
at deployment time via a configuration file. Although instrumented methods
can have no filter attached to them, unmodified code executes faster and it is
therefore desirable to restrict the scope of instrumentation to only those classes
that need it. Methods that are not instrumented during class loading are not
filterable.

4 The Java Parallelization Engine

The Java parallelization engine builds on top of the wrapper generator described
in the previous section. It is responsible for sharing the workload and managing
communication with the distributed processors.

4.1 Architectural Overview

The parallelization engine consists of two major components (see Fig. 1). A
client-side library that attaches itself transparently to the application being par-
allelized, and a server-side daemon program that provides its processing power
to the application. Both of these components are independent of the target appli-
cation. Application-specific functionality is specifies by the means of “adapters”,
which act as the glue that binds the client-side parallelization engine and the
target application.

Although we could have re-used specialized toolkits such as PVM [13] and
MPI [14] to implement the parallelization engine and handle our communica-
tions, we have rather chosen to develop lightweight mechanisms adapted to our
specific requirements. Server applications, also called “workers”, listen to incom-
ing TCP connections from parallelized clients. (Note that we could have used
Java RMI instead, but raw TCP has less overhead and makes it easier to quickly
detect and recover from worker failures.) Each worker can service multiple clients
concurrently, using Java’s multi-threading features. Once a connection is estab-
lished between a client and a worker, the client can send requests to be processed
by the worker. There are three types of requests: object creation, object invo-
cation, and object deletion. These requests control all interactions between the
parallelized Java program and the remote processors utilized by the paralleliza-
tion engine.

4.2 Distributed Invocations

The parallelization engine filters the constructors of each parallelized object,
and issues a remote object creation request to multiple workers when such a
constructor is called (2. in Fig. 1). The bytecode of the classes to instantiate (or
alternatively a URL/URI to that bytecode) is sent together with the creation

request, which leads to the instantiation of a non-instrumented copy of the object
in each worker process. The worker returns a handle—a string identifying the
object in the server process—to the client; this handle is subsequently used
in client requests to identify objects on the server. The parallelization engine
transparently keeps track of the object handles associated with each parallelized
object at each worker. An instrumented copy of the object is also created locally;
this copy can be used for serving requests that do not need to be parallelized.

Regular invocations to a parallelized object are also intercepted by the paral-
lelization engine. The method invocation is first passed to an adapter for rewrit-
ing (to be described shortly), and then sent to each worker along with the handle
of the object on that worker (3. in Fig. 1). Once the request has been processed
by each worker, replies are sent to the client, combined using the adapters, and
returned to the invoker.

Finally, when a parallelized object is no longer needed and its finalize
method is called, the parallelization engine sends a deletion request to each
worker along with the handle of the object to delete. All objects and resources
allocated for a given client are also automatically reclaimed when the connection
to that client is closed.

4.3 Adapters

Adapters are regular Java objects that implement the Adapter interface. They
implement a split method, which takes the original request targeted to the
non-parallelized version of an object, and transforms it into a request to be sent
to a single worker in the parallel version of the program. Likewise, the join
method combines the replies sent back by individual workers into a single reply
returned to the original program. Both the split and join methods are given
the total number of workers, as well as the index of the worker concerned by
the current request/reply; this information enables adapters to deterministically
determine which part of the request must be processed by each worker. For
instance, given n workers, the workload can be split into n equals parts, with
the worker at index i being responsible for the ith part. It is also possible to
configure the parallelization engine to call each worker multiple times in the
context of a given client invocation, and to implement more dynamic scheduling
algorithms, such as guided self scheduling [20].

The parallelization engine creates one adapter per worker. An adapter is
assigned to a single worker during its lifetime, and is guaranteed that each invo-
cation to join directly follows the matching invocation to split. These proper-
ties enable adapter objects to maintain consistent state information about the
workers they are responsible for.

The split method is given information about the method being invoked,
as well as its parameters. A simple rewriting rule would change the arguments
to specify the part of the workload affected to a given worker. An adapter may
have to consistently rewrite the arguments of several methods, including the
constructor of the parallelized object, to ultimately achieve the desired partial
computation.

The join method is given information about the target method, the parame-
ters that were received as part of the non-parallel invocation, and the results from
the execution on the worker. A typical rewriting rule would copy the relevant
portion of the data received from the worker into the parameters/return value
associated with the original invocation. Examples of join and split method
implementations are given in the next section, in Listing 1.2.

4.4 Failures

When the client application fails, all TCP connections with the workers are
closed and the resources associated to that client are automatically reclaimed.
When one of the worker fails, the client runtime will transparently re-submit
the partial request assigned to that worker to another worker. Optionally, it
can also recursively split and share the aborted partial request among all non-
failed workers. By default, no new connections are opened at runtime and failed
workers are not replaced during the lifetime of the client. This does not pose a
problem in practice as the lifetime of clients is generally much shorter than that
of the workers and failures are expected to be rare events. In addition, clients
can initially connect to a larger number of workers that they actually need, to
account for possible failures.

4.5 Limitations

As previously discusses, one of the major contributions of our work lies in the
automatic parallelization of binary Java applications. The steps involved in the
parallelization process are the discovery of the classes and methods to paral-
lelize, the specification of rewriting rules in the form of adapter objects, and the
deployment of the parallelized application with multiple worker processes.

Because of its transparency feature, our parallelization framework has sev-
eral limitations. First, it only applies to applications that are naturally paral-
lelizable, and for which the gain of parallelization exceeds its cost. Note that
this is also true of distributed parallel application deployed with specialized
message-passing libraries such as PVM [13] and MPI [14]. Our transparency goals
also limit our scope to applications that can be parallelized by intercepting and
rewriting selected invocations. This is more often the case with well-engineered
object-oriented applications, which have a modular structure and encapsulate
functionality (e.g., compute-intensive tasks) inside objects with a well-defined
interface.

Programs that have a complex structure, for instance because they exten-
sively use callbacks or exchange complex objects that are not serializable as part
of invocation arguments, may also not be parallelizable without modifications to
their source code. Note again that such program would also need major reengi-
neering to be deployed on top of PVM or MPI. Finally, classes that use native
libraries and are not written in 100% pure Java cannot be instrumented by the
wrapper generator.

5 Example

In this section, we illustrate the use of our framework by showing the steps
necessary to parallelize a computationally-intensive Java program that generates
fractal images.

5.1 The Mandelbrot Set

An example of an time-consuming, easily-parallelizable application is the com-
putation of the Mandelbrot set. The Mandelbrot set is a fractal structure defined
in the complex plane by the following equation: zn = (zn−1)2 + z0. The set itself
is the area where limn→∞ zn < ∞.

It is demonstrated that if |zi| > 4, then zn will eventually reach ∞. An
approximation of the set can be computed by iterating the formula. Points where
|zi| > 2 are not part of the set, and the remaining points may be part of the set.
The resulting set is traditionally displayed in a two-dimensional picture.

This computation is time-consuming: for each point the formula is iterated
until |zi| > 2, or a constant number of iterations have been performed. Because
the adherence of each point to the set is determined only by the point’s position,
the computation is easy to parallelize.

5.2 The Application

We have taken an existing Mandelbrot application written in Java [21]. Roughly-
speaking, this application consists of several classes responsible for the graphical
user interface, and a MandelComputer class responsible for computing a region of
the Mandelbrot set. The application has been programmed with no parallelism
in mind: the computation of the complete region displayed on the screen is
performed by a single instance of the MandelComputer class.

1 public class MandelComputer {
2 public MandelComputer(int w, int h /∗ ... ∗/);
3 public final void computeRegion(short[] buf, int l, int w, int t , int h);
4 }

Listing 1.1. Structure of the class responsible for the computa-
tion of the Mandelbrot set. This class will be instrumented for
parallelization.

Although the actual parallelization of a Java application does not require
access to its source code, one needs to understand enough of the application
structure to determine which classes and methods to instrument and how to
define the rewriting rules. To that end, one can use javap, a tool provided
with Sun’s Java compiler that lists the signatures of the methods defined in a

class file. Note that it can be difficult to understand the actual semantics of
the methods and their parameters when source code is not available, without
adequate documentation or a decompiler. The structure of the MandelComputer
class is shown in Listing 1.1 (for the sake of clarity, we have slightly modified
the method signatures).

A MandelComputer object is instantiated with a given width and height, as
well as parameters such as the maximal number of iterations. Once instanti-
ated, the object computes a region of the Mandelbrot set upon invocation of its
computeRegion. The top-left corner, the width, and the height of the region are
given as parameters. The result of the computation is stored in an array, also
handed as parameter to the method.

5.3 The Adapter

Once the classes to parallelize have been defined, one needs to write the adapter
object responsible for the rewriting of the requests and replies sent to and re-
ceived from individual workers. Listing 1.2 shows the code of the adapter for our
Mandelbrot application. Note that this code has less that 40 lines.

In the split method, we only rewrite the parameters for invocations to
computeRegion.1 This is achieved by splitting the area into horizontal bands of
equal sizes, with each worker being responsible for one such band. Arguments
are modified to update the new coordinates of the top of the band, its height, as
well as to provide a properly-dimensioned array for storing the computed data.
For performance reasons, we also store the location in the full region where the
band assigned to the current worker will be stored; this index will not have to
be re-computed in the join method.

In the join method, we simply copy the data computed by the worker at the
right position in the array originally provided by the client application.

5.4 Deployment

Deployment of the parallelized application merely consists of starting multiple
workers on distributed processors, and launching the Mandelbrot application.
The addresses of the workers, the maximum number of workers to use, the name
of the adapter classes, and the name of classes and methods to filter, are all
specified using configuration files and Java properties.

As bytecode modification is performed using a custom class loader, the Java
application must be started using a special launcher program that makes sure
that the application classes are effectively loaded by our class loader. This is
achieved by invoking the Java application as follows:

java [properties...] jwg.Launcher Mandelbrot [arguments...]

1 Note that, for space efficiency, we could also have rewritten the arguments of the
constructor to reduce the dimensions of the Mandelbrot set instantiated on each
worker. However, this strategy would require non-trivial changes to the rewriting
rules for computeRegion.

1 public class MandelAdapter implements Adapter {
2

3 int idx ; // Start index for this worker in returned array
4

5 public void split(int id , int nb,
6 String classname, String method, String signature,
7 Object[] args)
8 {
9 if (method.equals(”<init>”)) {

10 // MandelComputer(int w, int h, ...)
11 // May rewrite constructor (not required for this application)
12 } else if (method.equals(”computeRegion”)) {
13 // computeRegion(short[] buf, int l, int w, int t , int h)
14 int w = ((Integer)args [2]). intValue();
15 int h = ((Integer)args [4]). intValue();
16 int t = id ∗ h / nb;
17 idx = t ∗ w; // Pre−compute index since we have t and w anyway
18 h = (id == nb − 1 ? h − t : ((id + 1) ∗ h / nb) − t);
19 args[0] = new short[w ∗ h];
20 args[3] = new Integer(t);
21 args[4] = new Integer(h);
22 }
23 }
24

25 public void join(int id , int nb,
26 String classname, String method, String signature,
27 Object[] in args , Object in result ,
28 Object[] out args , ResultHolder out result)
29 {
30 if (method.equals(”computeRegion”)) {
31 // computeRegion(short[] buf, int l, int w, int t , int h)
32 short[] dst = (short[])out args [0];
33 short[] src = (short[]) in args [0];
34 int idx = idx ; // Index has been pre−computed in split()
35 for(int i = 0; i < src.length ; i++)
36 dst[idx++] = src[i];
37 }
38 }
39 }

Listing 1.2. Adapter object for parallelizing the Mandelbrot
application.

Other than instrumenting the bytecode, this command has virtually the same
effect as invoking directly the Java application using the following command:

java [properties...] Mandelbrot [arguments...]

6 Performance Evaluation

6.1 Experimental Setup

We have run tests with the Mandelbrot program on a set of 18 identical Sun
Ultra 10 workstation, with a 440 MHz processor and 256 MB of memory, running
Solaris 2.8. We have computed images with a resolution of 720× 512 pixels and
up to 1200 iterations for two distinct regions of the Mandelbrot set. We have run
experiments with the non-instrumented application (centralized), and with semi-
automatic parallelization using from 1 to 15 worker processors. Each worker was

0

5000

10000

15000

20000

25000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
om

pu
tin

g
T

im
e

(m
s)

Number of Workers

Region 1
Region 2

Fig. 2. Performance improvements with
parallel processing.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
pe

ed
up

Number of Workers

Region 1
Region 2

Theoritical Optimum

Fig. 3. Speedup factor with parallel pro-
cessing.

running on a separate machnie, in its own Java virtual machine (version 1.4.1).
For each configuration, we have run the program 12 times on random subsets of
the workstations and taken the mean of the measurements.

6.2 The Gain of Parallelization

The computation times as a function of the number of workers are shown in Fig. 2
(error bars correspond to the 95% confidence intervals). The value for 0 worker
corresponds to the execution of the non-parallelized version of the program. The
graph clearly shows that performance increases as a function of the logarithm of
the number of workers.

We have also computed the speedup factor gained from parallelization, in
comparison with the non-parallelized version of the program. The speedup,
shown in Fig. 3, remains within 25% of the optimum for the first region, and
within 35% for the second region. Two main reasons prevent the speedup to
remain closer to the optimum. First, the time necessary for communications,
and for request and reply rewriting is not negligible and must be accounted for.
Second, our program splits the Mandelbrot set in equal regions sent to each
worker; as some regions require more computations than others, the load is not
distributed equally and speedup cannot be maximized. In our experiments, the
second region appears to be more affected by this problem as its speedup is
smaller than for the first region.

6.3 The Cost of Parallelization

The overhead of the parallelization framework can be observed in Fig. 2 as the
difference between the non-parallelized version of the program and the parallel
version with 1 worker. In our tests, this cost was 501 ms on average. It can be
broken down into the cost of method interception, the cost of request and reply
processing, and the cost of remote invocation. These various sources of overhead
are detailed in Table 4.

Method interception < 1 µs

Request processing 288 ms

Reply processing 44 ms

Remote invocation 169 ms

Total cost 501 ms

Fig. 4. Cost of Parallelization

Method interception only introduces a small performance overhead. In our
experiments, adding empty pre- and post-filters to a method costs less that 1 µs
with a JIT compiler. In addition to processing overhead, instrumented classes
also incur a size penalty due to the extra code added during instrumentation. For
our Mandelbrot application, the size of the MandelComputer class grows from
1, 702 to 2, 646 bytes with two instrumented methods, i.e., an increase of less
than 1 kB. If only a fraction of the classes of an application are instrumented,
we can safely ignore both the time and space penalty of method interception.

Request processing is clearly the most expensive operation during paralleliza-
tion, because it includes the creation of one thread per worker,2 in addition to
the rewriting and marshaling of the request. Reply processing is significantly
cheaper, as it only includes the cost of unmarshaling and rewriting. Finally, the
cost of remote invocation, which includes both the round-trip communication
time and the data un/marshaling on the server, also adds non-negligible over-
head to the parallelized application.

Despite the overhead introduced by the parallelization process, it appears
clearly that the performance improvements resulting from parallelization well
exceed its cost, even when using as few as two workers. Other applications that
can be parallelized using a divide-and-conquer strategy should exhibit similar
performance gains.

7 Conclusions

In this paper, we have presented mechanisms to parallelize certain types of Java
applications, without modifications to their source code. Once parallelized, ap-
plications execute their time-consuming computations on multiple distributed
processors.

Bytecode is first instrumented by our Java wrapper generator, which controls
the flow of Java applications by inserting filters in selected methods. At runtime,
invocations to instrumented methods are intercepted by the Java parallelization
engine, which is responsible for rewriting the requests, sharing the workload
among multiple workers, and aggregating the return values. A small piece of
code—called an adapter—must be provided to the parallelization framework for
handling application-specific request and reply transformations.
2 Thread creation is a costly operation in Java. As an obvious improvement, we could

avoid the cost of thread creation by using a pool of threads.

We have illustrated our mechanisms with an existing Java application that
computes regions of the Mandelbrot set, and we have evaluated the performance
of the resulting parallelized application. Experimental results demonstrate that
the speedup of parallelization increases almost linearly with the number of pro-
cessors, while its cost remains reasonably small.

The major contribution of this work lies in the semi-automatic paralleliza-
tion and distributed deployment of legacy Java code. Our parallelization frame-
work provide an easy way to harness the processing power of idle, heterogeneous
workstation on the Internet to increase the performance of applications with no
built-in support for parallel processing.

References

1. Fox, G., ed.: Special Issue on Java for Computational Science and Engineering–
Simulation and Modeling II. Volume 9 (11) of Concurrency: Practice and Experi-
ence. John Wiley & Sohn Ltd. (1997)

2. Fox, G., ed.: Special Issue on Java for High-performance Network Computing.
Volume 10 (11-13) of Concurrency: Practice and Experience. John Wiley & Sohn
Ltd. (1998)

3. Lobosco, M., de Amorim, C., Loques, O.: Java for High-performance Network-
based Computing: A Survey. Concurrency: Practice and Experience 14 (2002)
1–31

4. Hsieh, C.H., Gyllenhaal, J., Hwu, W.M.: Java Bytecode to Native Code Transla-
tion: The Caffeine Prototype and Preliminary Results. In: Proceedings of the 29th
International Symposium on Microarchitectures. (1996)

5. Artigas, P., Gupta, M., Midkiff, S., Moreira, J.: Automatic Loop Transformations
and Parallelization for Java. In: Proceedings of the International Conference on
Supercomputing (ICS 2000). (2000) 1–10

6. Serrano, M., Bordawekar, R., Midkiff, S., Gupta, M.: Quicksilver: A Quasi-Static
Compiler for Java. In: Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). (2000) 66–82

7. Yu, D., Shao, Z., Trifonov, V.: Supporting Binary Compatibility with Static Com-
pilation. In: Proceedings of the 2nd Java Virtual Machine Research and Technology
Symposium (JVM’02). (2002) 165–180

8. Polychronopoulos, C.: Parallel Programming and Compilers. Kluwer (1988)
9. Wolfe, M.: High Performance Compilers for Parallel Computers. Addison-Wesley

(1996)
10. Bik, A., Gannon, D.: Automatically Exploiting Implicit Parallelism in Java. Con-

currency: Practice and Experience 9 (1997) 579–619
11. Bik, A., Gannon, D.: JAVAB–A Prototype Bytecode Parallelization Tool. Techni-

cal Report TR489, Indiana University (1997)
12. Cohen, G., Chase, J., Kaminsky, D.: Automatic Program Transformation with

JOIE. In: Proceedings of the 1998 USENIX Annual Technical Conference. (1998)
13. Sunderam, V.: PVM: A Framework for Parallel Distributed Computing. Concur-

rency: Practice and Experience 2 (1990) 315–339
14. Hempel, R.: The MPI standard for message passing. In Gentzsch, W., Harms, U.,

eds.: High-Performance Computing and Networking, International Conference and
Exhibition, Proceedings, Volume II: Networking and Tools. Volume 797 of Lecture
Notes in Computer Science., Springer-Verlag (1994) 247–252

15. Yalamanchilli, N., Cohen, W.: Communication Performance of Java-Based Parallel
Virtual Machines. Concurrency: Practice and Experience 10 (1998) 315–339

16. Baker, M., Carpenter, D., Fox, G., Ko, S., Lim, S.: mpiJava: An Object-Oriented
Java interface to MPI. In: Proceedings of the 1st Java Workshop at the 13th IPPS
& 10th SPDP Conference. Lecture Notes in Computer Science, Springer-Verlag
(1999)

17. Philippsen, M., Zenger, M.: JavaParty: Transparent remote objects in Java. Con-
currency: Practice and Experience 9 (1997) 1225–1242

18. MacDonald, S.: From Patterns to Frameworks to Parallel Programs. PhD thesis,
University of Alberta (2002)

19. The Apache Software Foundation: BCEL: Byte Code Engineering Library.
http://jakarta.apache.org/bcel (2003)

20. Polychronopoulos, C., Kuck, D.: Guided Self Scheduling. IEEE Transactions on
Computers 36 (1987) 1425–1439

21. Ziring, N.: JManEx: Java Mandelbrot Explorer. http://users.erols.com/ziring/-
mandel.html (2001)

