
Speculative Out-Of-Order Event Processing with Software
Transaction Memory

Andrey Brito
TU Dresden, Germany
andrey.brito@inf.tu-

dresden.de

Christof Fetzer
TU Dresden, Germany

christof.fetzer@inf.tu-
dresden.de

Heiko Sturzrehm
University of Neuchâtel,

Switzerland
heiko.sturzrehm@unine.ch

Pascal Felber
University of Neuchâtel,

Switzerland
pascal.felber@unine.ch

ABSTRACT
In event stream applications, events flow through a net-
work of components that perform various types of opera-
tions, e.g., filtering, aggregation, transformation. When the
operation only depends on the input events, one can triv-
ially parallelize its processing by replicating the associated
components. This is not possible, however, with stateful
components or when there exist dependencies between the
events. Parallel versions of a number of simple stream min-
ing operators have been designed, but, in general, complex
and user-defined operators are limited by single thread per-
formance. In this paper, we propose leveraging the pro-
cessing capabilities of multi-core processors to improve the
efficiency of stateful components using optimistic paralleliza-
tion techniques (as provided by transactional memory). We
show that, even though some speculative event executions
might need to be disregarded, the overall throughput in-
creases noticeably in the general case and latency can be
reduced by pre-processing out-of-order events. Moreover,
we show how simple conflict predictors can boost the paral-
lelism even more and reduce the amount of resources used
for a given level of parallelism.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.1.3 [Programming Techniques]: Concurrent Program-
ming—distributed programming, parallel programming

General Terms
Algorithms, Design, Performance

Keywords
Event stream processing, complex event processing, software
transactional memory

1. INTRODUCTION
Event stream processing (ESP) applications [2] operate on
data streams with the goal of identifying meaningful events
or summarizing large sets of low-level events into fewer, more
significant ones. Events typically traverse a network of com-
ponents or modules, each of which takes a stream as input,
processes it (e.g., by filtering, aggregating, or transforming
data), and produces a resulting output stream. Scalability
is a big challenge for ESP applications that have to process
infinite streams of events that arrive at a high rate (e.g.,
network monitoring applications).

When event processing is stateless, that is, the output stream
only depends on the input events, the operation of a com-
ponent can be trivially parallelized by executing multiple
instances of the component. An example of such stateless
processing would include basic filters (e.g., remove invalid
events from the stream) and simple transformations (e.g.,
normalize event values).

When processing is stateful, one cannot simply improve per-
formance by replicating the components. First, multiple
copies of the same component would need to maintain a
consistent replicated state, which is in general non trivial
and usually adds significant overhead. Second, events must
most often be processed in a specific order, either because
they have dependencies with one another or because the
effect on the component’s state depends on the processing
order. It is important to note that, even when events ar-
rive in the right order at stateful component, they typically
cannot be processed in parallel.

In this paper, we consider ESP systems with components
connected in a cascade (see Figure 1). We are interested in
parallelizing the operations of the components by exploit-
ing the processing capabilities of multi-core architectures.
Some components are stateless and can be trivially paral-
lelized, but they may reorder the events. Other components
are stateful and must typically (but not necessarily) pro-
cess events in order. We assume that the order of events is
determined when they enter the system, e.g., by associat-
ing monotonically increasing logical timestamps with each
of them.

Figure 1: A simple typical ESP application network.

Example 1. Consider the simple ESP application net-
work shown in Figure 1. The stream is first processed by
an input adapter that transmits events in order to a filter
component. As the filter is stateless (e.g., it parses an XML
event and converts them into a native format), one can have
multiple instance of the component that process events in
parallel. The processing time might not be the same for each
event and the outgoing stream might be “slightly” out of or-
der. For instance, we observe in the figure that event 17 has
overtaken event 12. The unordered stream enters a state-
ful “processor” component (e.g., stream query operator) that
uses speculative execution to account for out-of-order exe-
cutions. It allows events to be processed optimistically but
does not output them until all preceding events have been
completed. The stream then traverses a correlator compo-
nent that forwards events in order to the output adapter.

The approach used in this paper consists of using specula-
tive execution to process events in parallel that should nor-
mally be processed sequentially, even when they are received
out-of-order. In short, we use an underlying software trans-
actional memory (STM) [6] infrastructure to optimistically
process the events in the context of transactions. STM pro-
vides the concept of transactions on the programming lan-
guage level. It has become very popular recently as an ap-
proach to develop concurrent programs for many-core CPUs.
So far, however, STMs do not provide features to pre-order
transactions that execute in parallel. Hence, we have ex-
tended the design of the STM so that we can pre-assign
commit timestamps to transactions, effectively imposing an
order in which they need to complete. Transactions will exe-
cute in parallel but may have to delay their completion (i.e.,
their commit) when ordering is required.

The key intuition behind our approach is that an STM will
dynamically detect dependencies between events, if any, and
will sequentialize the processing only when necessary (possi-
bly delaying, or aborting and restarting some transactions).
Without speculative execution, ESP components would not
only have to execute events sequentially one at a time, but
may have to wait idle when events are not received in the
right order. As we shall see, the increased parallelism of our
approach yields substantial performance benefits.

There is a thin line between being optimistic and being
overly optimistic. Speculative execution of a transaction
that has a high likelihood of having to ultimately abort (e.g.,
because it is “too much” out-of-order) can prove to be coun-
terproductive. We also study the problem of conflict predic-
tion, i.e., mechanisms for deciding whether or not it makes
sense to speculatively process an event at a given time. Ex-
perimental evaluation shows that a good conflict predictor
can have a significant influence on event throughput.

This paper makes the following contributions. We propose
a novel approach for speculative execution of events with
dynamic conflict detection in an ESP system. To the best
of our knowledge, this is the first application of transac-
tional memory for out-of-order event processing. We study
the conditions under which parallel processing can improve
throughput over sequential execution and we introduce the
notion of conflict predictor as a way to drive the paralleliza-
tion process toward the most promising executions. We have
implemented an event processing engine that uses a modified
version of TinySTM [5]. We have conducted an experimen-
tal evaluation of the performance of our implementation on
several workloads.

The rest of the paper is organized as follows. We discuss
the related work in Section 2 and outline the system model
in Section 3. Section 4 describes our speculative execution
algorithm and introduces the notion of a conflict predictor.
Section 5 presents our experimental evaluation and Section 6
concludes the paper.

2. RELATED WORK
In recent years, several works have addressed the scalabil-
ity of event stream processing, but all of them take an ap-
proach different from ours. For example, Koparanova and
Risch [7] have developed GSDM (GRID Stream Data Man-
ager) to handle processing of data produced in real time by
a large amounts of sensors that receive signals from space.
Their approach is to use data partitioning to split the events
between several replicated components and then merge the
results. This approach is, however, applicable only for com-
putations in which the processing can be split into several
units that do not require any synchronization (e.g., in their
case, Fast Fourier-Transforms). In addition, it needs com-

ponents to split and merge the data and these components
need to consider the semantics of the computation. Other
works, like Borealis [1] or more recently StreamFlex [11],
use the assumption that components are normally stateless
and scalability can then be easily achieved through simple
replication.

Another research direction focuses on the problem of efficient
correlation of events. Correlation is strongly dependent on
state and therefore difficult to parallelize. SASE [14] is an
example of an event stream processing system that focuses
on matching event patterns efficiently.

With respect to out-of-order processing of events, one clas-
sical approach is to buffer an event until it is known that
no prior events may arrive. CEDR (Complex Event Detec-
tion and Response) [3] tries to balance insensitivity to event
arrival and system performance. It uses a temporal model
that deals with out-of-order events by allowing results to be
output and later be retracted and revised in case a relevant
event arrives. The main motivation is that in some contexts
an early, but conceivably wrong, result is more valuable than
having buffers and delays to cope with late events. Similarly,
Li and colleagues [8] propose an extension for SASE that al-
lows a pattern to be tardily matched when some late event
arrives.

The idea of optimistically executing tasks that may have
undetected dependencies has been around for a long time.
Steffan and Mowry proposed Thread Level Data Specula-
tion (TLDS) [12] as a way to benefit from multiprocessor
computers when the programs are not designed for explicit
parallelism. They suggested that compiler support could
enable activities in a sequential program to be executed si-
multaneously and then committed from the less speculative
activity to the most speculative one. If some dependen-
cies are detected the speculative activity is terminated and
restarted.

Software Transactional Memory (STM) [6] is another ap-
proach to parallelize programs. On the one hand, TLDS
creates parallel tasks from sequential code, and on the other
hand, STMs are mainly used to help synchronizing already
parallel code. Good synchronization is crucial to perfor-
mance, but implementing it correctly and efficiently requires
strong programming skills. STMs facilitate concurrent pro-
gramming by enabling to specify blocks of code (transac-
tions) that must execute atomically and in isolation without
worrying about how synchronization is implemented. Trans-
actions are executed optimistically under the control super-
vision of the STM and, upon conflict, may be rolled back
and re-executed. Modern STMs typically monitor accesses
the memory and use some form of global time base to effi-
ciently guarantee that data accesses are consistent [10, 13,
5].

The increase of available processing cores per machine has
motivated the development of STMs and in some contexts
they already outperform programs that were laboriously syn-
chronized by hand [4]. In this work, we use TinySTM [5], an
open-source STM, to implement speculative event process-
ing.

3. BACKGROUND AND SYSTEM MODEL
We consider event stream processing (ESP) systems that
consist of a network of components, which manipulate the
events as they flow through them. Each of the components
has a certain number of input and output queues depending
on the operation it has to fulfill. Components behave as
black boxes: their internal operation is not visible to other
components upstream or downstream. In this section, we
discuss how speculative processing is implemented and how
new stateful components can be developed.

3.1 Enhanced ESP Components
A stateful component enhanced with support for speculative
execution is similar to a regular component from the outside:
it supports input and output queues. The main difference
is that events in the input queues may be unsorted. In the
output queue, they will be sorted according to their times-
tamps.

An enhanced ESP component has several threads working
in parallel. The number of threads typically depends on
the processing capabilities (number of cores) of the system
that hosts the component. Each thread can access the input
queues and retrieve events to be processed. The manipula-
tion of the event is performed in the context of a transac-
tion, which means that modifications are invisible to other
threads until the transaction commits.

The STM-enhanced components use an underlying time-
based STM (TinySTM [5]) that utilizes a shared commit
counter to maintain consistent snapshots of memory loca-
tions read by transactions without incurring the cost of in-
cremental validation. Commit timestamps are essentially
used to linearize transactions and detect whether the con-
tent of a memory location can be safely accessed (i.e., is
consistent with the transaction execution order). We rely
on the use of commit timestamps in our speculative paral-
lelization approach.

Unlike the classical behavior of an STM, transactions can-
not complete in any order and threads do not automatically
commit their transactions. Instead, transactions have pre-
assigned commit timestamps (determined according to the
timestamp of the associated events). A thread checks if a
transaction can commit by comparing its timestamp with
the current commit counter of the component. If both are
equal, the transaction commits and the event can be sent to
the output queue. Otherwise, the whole transaction is sus-
pended and inserted in a waiting list. Each time a new event
is processed, the list is checked to see if a waiting transaction
can now be committed. It may happen that a transaction
in the waiting list is aborted due to a conflict with another
transaction; in that case it is restated.

As for a regular ESP component, the developer of an en-
hanced ESP component must provide a function execute()

that implements the actual event processing. In addition,
s/he may provide two functions specific to transactional op-
eration: onCommit() executes upon successful completion of
a transaction, while postCommit() runs after commit. The
main difference between both functions is that executions of
the former are serialized (necessary, for instance, when in-
serting the processed event in the output queue) while mul-

Figure 2: Enhanced ESP component internals.

tiple instances of the latter can execute in parallel (e.g., to
gather statistics or perform cleanup operations). This dif-
ference has strong implications on performance, as we shall
discuss later. Figure 2 illustrates the operations supported
by the enhanced ESP component.

3.2 Assumptions
We base the development of our system on some assump-
tions about the way ESP components behave and about the
environment. First, the events receive a logical timestamp as
they enter the system, these timestamps need to be unique
and continuous (i.e., no gaps). To keep that assumption
valid throughout the system, each time an event is discarded
(e.g., a filter that drops an irrelevant event) a null event in-
serted to carry the timestamp through the system. The null
events are specially important if the components can be de-
ployed in distributed computer nodes, as there is no way to
distinguish a discarded event from a late one.

Second, the algorithms written by the user to process the
events should obey certain constraints. The execute(),
onCommit(), and postCommit() functions should guarantee
progress (lockout-free). In addition, the execute() function
cannot execute external actions as these cannot be rolled
back in case that the transaction aborts.

Third and last, we assume a node has sufficient memory
to keep (out-of-order) events in memory until they can be
processed and committed.

4. STM FOR OUT-OF-ORDER EVENT PRO-
CESSING

In this section, we first give a brief overview on how the un-
derlying TinySTM1 works. More detailed information can
be found in [5]. We then describe the changes we needed
to make to support event processing and how we use this
extended STM implementation for out-of-order event pro-
cessing.

1Available as open source from http://tinystm.org.

4.1 Software Transactional Memory Basics
STMs facilitate optimistic synchronization of threads: trans-
actions are executed speculatively by multiple threads and, if
a read/write or a write/write conflict is detected, one of the
affected transactions is aborted (rollback) and retried. Since
only memory changes are rolled back, most STMs do not
permit the execution of actions with external effects such as
I/O within a transaction. All operations on memory (read,
write, allocation, release) are executed through the STM.

TinySTM has two modes of operation: write-through and
write-back. With the write through approach, memory writes
are intercepted and a copy of the original value is performed
before a location is written to for the first time. Succes-
sive accesses to this location will directly read and update
the modified values. In case the transaction is aborted, the
copy is used to restore the original values. This approach
has the drawback of exposing intermediary values from non-
committed transactions to non-transactional code. In some
applications, this could lead to problems like endless loops
or crashes. In what follows, we assume that the STM uses
a write-back approach.

When using write-back, memory writes within a transac-
tion are intercepted and redirected to a private copy specific
to that transaction, leaving the original value intact. Read
accesses to a previously updated locations are similarly redi-
rected to the private copy. Later, if the transaction commits,
the original values are overwritten by the local copies.

To make sure that a transaction always operates on a con-
sistent snapshot of the memory, TinySTM keeps track of
several items. It maintains meta-data associated with mem-
ory locations. The meta-data is either a version number,
which corresponds to the logical timestamp of the last com-
mitted transaction that wrote the location, or a lock, which
indicates that location has been modified by an active trans-
action. The mapping from memory addresses to meta-data
items is achieved using a hash function and was designed to
reduce the probability of false conflicts.

Each transaction also maintains a read set and a write set
to keep track of all the memory locations that have been
accessed, as well as the list of the memory blocks that have
been allocated or released.

When a transaction tries to read or write a memory location
that is locked, it aborts in the hope that the other transac-
tion will be able to complete while the first one restarts its
execution. When a transaction completes without aborting,
it tries to commit. This will succeed if, at commit time, all
positions read by the transaction form a consistent snapshot.
In that case, modified values are copied to main memory and
the associated meta-data is updated to reflect the commit
timestamp of the transaction. Freed memory blocks are also
permanently deleted. If the transaction aborts, modified val-
ues are disregarded and allocated memory blocks are freed.
The transaction is then restarted.

4.2 Event-Processing STM Features
Using TinySTM for event processing required some changes.
The main new feature is the support for an application-given
commit order. Each event is processed by a transaction and

therefore, we want to commit transactions according to the
logical time stamp of the processed event. Furthermore,
we needed to improve TinySTM to support priorities and a
better conflict resolution. The priority of a transaction is
determined according to the logical timestamp of the event:
transactions that should commit first should be able to“win”
conflicts with other lower-priority transactions. For similar
reasons, an aborted transaction should not be retried unless
all earlier transactions it conflicted with have already been
processed. If a transaction was aborted because of a conflict
with a higher-priority transaction, it does not make sense to
retry the transaction immediately. Aborted transactions go
to a waiting list and will be reprocessed after the conflicting
higher-priority transaction(s) have committed.

Another major change is the way a transaction is speci-
fied. Instead of considering a transaction as a block of code,
we define it as a function call. Thus, the transaction con-
tains the function name and the input parameters. If the
transaction is aborted and later re-executed, the function
will be called again with the same parameters. Local vari-
ables will then be reset while the state of the component
will be protected by the STM. The insertion of wrappers to
protect these accesses is done during the translation of the
higher-level user specification of the component into lower-
level functions.

In addition to the above changes, we had to perform a few
more adaptations to TinySTM:

Conflict Resolution: When a lower-priority transaction
reads a memory location that is being written to by a higher-
priority transaction, as well as in the case of write-write
conflicts, the lower-priority transaction should abort as it
will have no chance to commit. We identify such conflicts
and resolve them based upon the transactions’ priorities.
Higher priority transactions can abort lower priority ones,
but not the opposite.

Work stealing: Threads and transactions are not coupled
because retries are not immediate, a transaction may remain
open for a long time and be continued by another thread.

Ordering: Reads must be validated at commit time for
all transactions, even if they are read-only. Unlike regu-
lar transactions for which only a consistent snapshot of the
memory is required, the values read by event transactions
must still be valid at commit time.

External actions: In TinySTM, a failed transaction will
keep retrying until it commits. As a consequence, state-
ments that appears after the transactional code will be ex-
ecuted only after the transaction commits. In our case, the
transaction may be put aside for a long time and control
flow may return to the user code long before commit. We
have thus introduced two special functions: onCommit() and
postCommit(). The former contains actions that must be
ordered with regard to other transactions (e.g., inserting or-
dered events in a queue) while the latter contains actions
that should be executed after the commit but with no strict
ordering requirements (e.g., clean up actions, monitoring).

Speculation: Not all transactions should be immediately

processed. Initiating the processing of a transactions too
early may lead to bad performance. To handle this issue,
transactions are processed only after passing a test from a
“predictor” that tries to determine good parallel schedules.
We discuss this issue and the predictors in more detail in
Section 4.5.

Garbage collection: Conflict resolution may cause trans-
actions executed by one thread to hold references to trans-
actions running on other threads. As these references could
be invalidated when disposing of the transaction structures
(transaction descriptors, read sets, writes sets) after commit,
we use an epoch based garbage collection to ensure that such
data will not be deleted too early.

4.3 STM Interface
To better describe our out-of-order event processing, we
briefly discuss the main interface functions of our underlying
STM:

initTransaction() initializes a transaction descriptor with
the exception of the start timestamp that is determined
upon the first transactional access (e.g., a read or write).

scheduleTransaction() starts processing a given event. If
the transaction cannot commit immediately (e.g., if not all
preceeding events have been committed yet), it is inserted
in a wait list for a later commit and/or retry, freeing the
current worker to execute another transaction.

tryCommitTransaction() tries to commit a given transac-
tion. If the commit fails, the transactions is marked to be
retried.

getPendingTransactions() searches in the wait list for a
transaction associated with the current timestamp. If found
and the transaction needs to be retried, the transaction is
restarted and its event processing function is executed.

The startTransaction(), scheduleTransaction(), and get-

PendingTransactions() functions are used by the specula-
tive event processing worker discussed below. The tryCommit-
Transaction() function is responsible for checking if a trans-
action may commit immediately or needs to wait. If the
transaction timestamp is adequate, the read set will be val-
idated. Validation needs to be performed only if some other
transaction has committed during the processing of the event.

If the validation fails, the transaction is restarted. Other-
wise, it commits and its modifications to the memory are
made visible to other threads and locks are released.

Upon commit, the onCommit() actions are executed before
the component’s timestamp is incremented to strictly order
their execution with respect to the commit order. Finally,
the component’s timestamp is incremented, potentially un-
locking other transactions in other threads. The wait list
is searched for transactions to reactivate and, finally, the
postCommit() actions are executed.

4.4 A Speculative Event Processing Engine
After compiling the user specification of the component, a
regular event processing engine is composed of the following

components: (1) initialization code that initializes state vari-
ables; (2) the set of variables that form the state of the com-
ponent; (3) a number of input and output queues, which are
connected to the upstream and downstream components, re-
spectively; and, (4) a function that continuously takes events
from the input queues, processes them, and possibly insert
events into the output queues.

For a speculative event processing engine, the initialization
function additionally initializes the STM and a set of specu-
lative workers. The function that implements the processing
is further divided into four components: (1) a function im-
plementing the speculative worker threads (see discussion
below); (2) a function that processes input events, poten-
tially producing output events; (3) an onCommit() function
that is called by the STM and inserts output events in the
output queues; (4) a postCommit() function that frees task
structures and does other non-critical activities such as log-
ging or statistics maintenance.

The speculative worker is illustrated in Figure 2 and works
as follows (see simplified pseudo-code in Algorithm 1). It
first retrieves an event from the input queue with the help
of a predictor (see below). The goal is to select the task
with the lowest timestamp that has a good likelihood to
be committed. If such a task is found, it is processed by
the worker thread in the context of a new transaction. If
the commit fails because of a conflict with a higher-priority
transaction, the transaction will be automatically retried or
inserted in the wait list. Before processing the next event,
the worker checks the wait list for pending transactions to
be committed or retried.

Algorithm 1 SpeculativeWorker()

1: loop
2: task← predictor.getEvent()

3: if task 6= null then
4: initTransaction(task)

5: scheduleTransaction(task)

6: end if
7: task← getPendingTransaction()

8: while task 6= null do
9: tryCommitTransaction(task)

10: task← getPendingTransaction()

11: end while
12: end loop

4.5 Conflict Predictors
In a practical system, it is difficult to distinguish between
being optimistic and overly optimistic. Being overly opti-
mistic can lead to excessive collisions and, consequently, to
performance values below sequential executions. To address
this problem, we introduce conflict predictors. Conflict pre-
dictors (or for short, predictors), can give some information
about the likelihood of an event to generate a conflict. When
experimenting with our system, we have limited speculation
to 10 logical timestamps in the future (w.r.t. last commit-
ted transaction). This works as a predictor that evaluate
events that are more than 10 logical timestamps ahead of
the last committed timestamp as overly speculative. For
our workload and 4 worker threads this was enough to get
good performance improvements. In the general case, how-

ever, using inadequate predictors could degrade performance
to the level of sequential execution or worse just because of
conflicts between a small subset of events.

Predictors can be classified according the type of prediction
they are able to make, we divide them in two classes: predic-
tors that classify events as suitable for speculation or that
should be processed in order (i.e., they return a boolean
value); and predictors that return the predicate that should
be satisfied for the events to be executed without conflicts
(e.g., event et+j should be executed only after event et+i,
with i < j and assuming event et is the last committed
event). The system uses boolean predictors to classify which
events will be processed optimistically and which will be
processed only when their time is reached. Predicate-based
predictors are used to link an event with the one(s) it de-
pends on. This allows delaying the processing of an event
until after the other events it depends upon.

An additional dimension that we use to classify predictors is
the way they are built. We distinguish three classes: user-
provided, generated by static analysis, and dynamic. User-
provided event predictors benefit from user knowledge about
the system. They can exploit semantic information that
would not be available otherwise and do not need to be
complex to achieve good performance. We performed several
experiments using a trivial user-provided predictor that just
limits the speculation to a number of steps in the future. The
predictor is a simple function that takes as parameter the
event to be evaluated and the current timestamp; it returns
true if the timestamp of the event is not too far from the
current timestamp. Such a simple predictor has shown good
speedup in our experiments.

Static analysis on the processing rules can also be used to
generate predictors. For example, static analysis might be
used to generate a predictor that pessimistically predicts the
possible conflicts.

Finally, dynamic predictors would operate based on statis-
tics collected by the system in runtime. One such predictor
could be based on estimations on the density of dependen-
cies, and thus collision, to estimate a recommendation value
for the optimistic processing of an event. Another example
of dynamic predictor, could be one that increments or decre-
ments the number of logical time ticks in the future that
are acceptable for speculation based on the current rate of
aborts. Such a predictor is useful with operators that build
sketches of data, like a histogram. In the case of a simple
histogram, for example, the probability of a conflict depends
only on the ratio between the number of speculations and
the number of buckets. With the dynamic predictor, the
speculation horizon would converge to this value. In Sec-
tion 5, we evaluate the effect of simple predictors on the
performance of our speculative worker.

4.6 Algorithm Correctness
To understand why our algorithm works, consider first that
the events in the incoming stream may be out-of-order but
there should not be any gaps. A missing event would also
prevent the non-parallel ESP application from processing
the stream and hence we do not take into account the loss
of events.

Now assume that a set of non-conflicting events arrives. As
the events do not conflict, none of the associated transaction
will fail (because the STM guarantees that non-conflicting
transactions cannot abort one another). As there are no
gaps, the transaction with the next commit timestamp will
eventually be processed and commit, and let the next one
commit and so on.

We have to address the problem of conflicting transactions.
We should first step back and consider the properties of the
underlying STM. By design, there cannot be deadlocks as,
upon conflict, one of the conflicting transaction aborts and
retries (even if it has already completed its execution and
is just waiting for its turn to commit). Livelocks can hap-
pen if a set of transactions repeatedly aborts one another.
It is the responsibility of the contention manager to ensure
that such scenarios cannot happen. The contention man-
ager is a module that take two conflicting transactions and
decide which may continue and which should abort [9]. In
our implementation, we rely on a “priority” contention man-
ager that sets the priority of transactions according to the
timestamp of the associated event. Upon conflict, the lower
priority transaction is aborted. This contention manager
has the useful property that it bounds the number of re-
tries of transactions. If a transaction with the timestamp to
be committed next arrives at a component after a number
of other conflicting transactions with higher timestamps, it
will be the highest priority transaction in the component
and will eventually commit.

It follows that, given an underlying STM implementation
that is deadlock- and livelock-free, the speculative execution
engine processes events without encountering deadlocks or
livelocks.

5. EVALUATION
5.1 Performance evaluation
We shall illustrate the operation of our ESP system and our
speculative execution algorithm on the sample application
network of Figure 1. This test approach consists of 5 compo-
nents, with an event source (the input adapter), a stateless
component (the filter), a stateful component (the proces-
sor), a correlator and an event sink (the output adapter).
Events generated by the source have monotonically increas-
ing logical timestamps with no gaps. Events are shuffled
when traversing the parallelized filter component and are re-
ceived out-of-order by the processor, which processes them
speculatively and reorders them upon commit. In our evalu-
ation, the output adapter also performs verifications on the
order and values of the events processed by the previous
modules, in particular it checks that the results generated
by the processor component are correct. All tests were run
on an 8-core Intel Xeon machine at 2 GHz running Linux
2.6.18-4 (64-bit).

We consider 6 scenarios for our performance analysis. The
non-speculative scenarios use a sequential processing compo-
nent. Thus, an event can only be processed after the event
with the immediately preceding logical timestamp is com-
mitted. The speculative scenarios use the STM-equipped
processor with 4 worker threads. Thus, up to four events can
be processed at a time. In these experiments, with excep-
tion of the one with ordered event input, we used a predictor

that allowed an event to be speculatively processed only if
the difference between its timestamp and the last committed
timestamp was less then 10. For the speculative execution
with sorted input, we set this value to 500 to evaluate the
maximum achieved parallelism.

The ordering of events depends on the number of filter worker
threads. If there is a single filter thread, no order inversion
occurs. The unordered version uses 4 filter threads. As the
threads concurrently take events from the common input
queue and insert them in the output queue, the order will
be changed.

Algorithms 2 and 3 illustrate the two kinds of processing
functions we are using in the different scenarios. These al-
gorithms resemble sketching operators, like histograms. Al-
gorithm 2 will cause an event et+20 to always conflict with
event et. Algorithm 3 may cause additional conflicts with
events in the form et and et+5 with et+1 and et+6, respec-
tively. A busy waiting loop is used to ensures that the pro-
cessing has a predefined minimum duration.

Algorithm 2 ProcessWithConflict1(Event e)

1: startT ime← getTime()

2: pos← e.ts % STATE_SIZE

3: updateState(state[pos])
4: while getTime() < startT ime + TASK_SIZE do
5: {Ensure a minimum duration for the task.}
6: end while

Algorithm 3 ProcessWithConflict2(Event e)

1: startT ime← getTime()

2: pos← e.ts % STATE_SIZE

3: updateState(state[pos])
4: if (CONFLICTS = 1 ∧ e.ts % 10 = 0) ∨ (CONFLICTS =

2 ∧ e.ts % 5 = 0) then
5: {Also update next state entry (create conflicts).}
6: updateState(state[(1 + pos) % STATE_SIZE])
7: end if
8: while getTime() < startT ime + TASK_SIZE do
9: {Ensure a minimum duration for the task.}

10: end while

The 6 scenarios were defined as follows.

Ord. Seq. Ordered event input, with sequential processor:
in this case, there is only one filter component (and
thus, no order inversion) and single thread processing
component. The processing component task is illus-
trated in Algorithm 2. The STATE_SIZE value has no
effect on the computation.

Unord. Seq. Unordered event input, with sequential pro-
cessor: there are multiple filters and the processing
component is still single threaded. The processing
component task is illustrated in Algorithm 2. Again
the STATE_SIZE value has no effect.

Ord. Spec. Ordered event input, with speculation: again,
only one filter and the processing component try to
optimistically parallelize the event to be processed.

The processing component task is illustrated in Al-
gorithm 2. The STATE_SIZE value, which determines
the frequency of conflicts, is set to 1000. In this case,
there are no conflicts between events being processed
but they are processed in parallel and committed in
order.

Unord. Spec. 1 Unordered event input, with speculation
and 0% conflicts: there are multiple filters and the
processing component tries to optimistically parallelize
events and may process them out-of-order. The pro-
cessing component task is illustrated in Algorithm 2,
with the STATE_SIZE value set to 20, which results in
no conflicts in the horizon allowed by our default pre-
dictor.

Unord. Spec. 2 Unordered event input, with speculation
and 10% conflicts: there are multiple filters, with opti-
mistic parallelization and out-of-order processing. The
processing component task is illustrated in Algorithm 2,
with the STATE_SIZE value set to 20 and CONFLICTS set
to 1.

Unord. Spec. 3 Unordered event input, with speculation
and 20% conflicts: there are multiple filters, with opti-
mistic parallelization and out-of-order processing. The
processing component task is illustrated in Algorithm 3,
with the STATE_SIZE value set to 20 and CONFLICTS set
to 2.

The results of the experiments are illustrated in Figures 3, 4
and 5. For ordered executions, one can observe in Figure 3
that, even though the speculative version has no conflicts
and a very far horizon for speculation, the throughput of
the non-speculative version is initially much higher. This
is due to the overhead of the STM and the synchronization
costs on the ordered commit. However, this overhead be-
comes much less significant as the task size grows. Figure 4
also shows that the overhead of parallelization becomes neg-
ligible with longer tasks and the speed-up of the parallel
processor improves almost linearly with the number of pro-
cessor workers.

For unordered executions, the performance of the non-spec-
ulative version is not better than the speculative ones even
with shorter task durations. A deciding factor in this case is
that the non-speculative version must wait until the proper
event arrives. This is not required by the speculative version.
As the size of the tasks grows, the ordered and unordered
non-speculative versions tend to perform similarly. This can
be explained by the fact that if the processing of the tasks
is long enough, by the end of the processing of the ith event,
the (i + 1)th event will have already arrived and no waiting
will be necessary.

The difference between the three unordered speculative ex-
periments can be seen more clearly in Figure 4. With longer
tasks the various synchronization costs and STM overheads
tend to be negligible and the difference in the amount of
useful work appears clearly: the performance of the 20%-
conflict version is about 26% lower than the speculative ver-
sion with non-conflicts; the performance of the 10%-conflict
is about 18% lower than the no-conflict one. Finally, the
0% version (Unord. Spec. 1) tends to have a performance

0 10 20 40 60 100 150 300 500 1000

0

10000

20000

30000

40000

50000

60000

70000

80000

 Ord. Seq.
 Unord. Seq.
 Ord. Spec.
 Unord. Spec. 1
 Unord. Spec. 2
 Unord. Spec. 3

E
ve

nt
s

/ s
ec

on
d

Task size (microseconds)

Figure 3: Average throughput of the various config-
urations.

similar to the ordered one with a farther speculation horizon
(Ord. Spec.), because with large task sizes events are more
ordered. In this case, the scheduling variations have less im-
pact and thus there are rarely two events with conflicting
timestamps (e.g., et and et+21) being processed by different
threads at the same time.

0 10 20 40 60 100 150 300 500 1000

1

2

3

4 Ord. Seq.
 Unord. Seq.
 Ord. Spec.
 Unord. Spec. 1
 Unord. Spec. 2
 Unord. Spec. 3

S
pe

ed
-u

p
(ti

m
es

)

Task size (microseconds)

Figure 4: Speed up.

Another metric that can be very significant in event stream
processing is latency. The end-to-end latency, from the in-
put adapter to the output adapter, is depicted in Figure 5.
These graphs show that the latency for the non-speculative
version is far lower for ordered events. But this advantage is
quickly disappears when the processing length grows and the
parallelization becomes profitable. For the same reason, the
right-hand side of the graph shows a considerable difference
in latency in the non-speculative executions in comparison
to the speculative ones.

0 10 20 40 60 100 150 300 500 1000
10000

100000

1000000

1E7

 Ord. Seq.
 Unord. Seq.
 Ord. Spec.
 Unord. Spec. 1
 Unord. Spec. 2
 Unord. Spec. 3

La
te

nc
y

(m
ill

is
ec

on
ds

)

Task size (microseconds)

Figure 5: Average end to end latency with the var-
ious configurations.

5.2 Predictor analysis
To illustrate the impact of predictors, we analyzed the per-
formance of 5 very simple predictors in two scenarios that
could exhibit conflicts in optimistic executions. The first
scenario is similar to the fourth scenario in Section 5.1, with
the conflicts defined by Algorithm 2 for STATE_SIZE set to
20. The second scenario defines conflicts similarly to the
sixth scenario in Section 5.1, with STATE_SIZE set to 20 and
CONFLICTS set to 2 in Algorithm 3. The 5 predictors were
defined as follows.

Predictor 0 returns true for every call. This predictor is
useful if conflicts are rare, otherwise, as discussed pre-
viously, the system may enter a steady state in which
all events are processed sequentially.

Predictor 1 returns true only if the event is within 20 log-
ical clock ticks from the timestamp of the last com-
mitted event. It predicts perfectly the conflicts in our
first scenario, but limits its return to a boolean value
indicating if a conflict will occur or not in case the
evaluated event is processed immediately.

Predictor 2 returns true if the event will conflict according
to the collisions specified in Algorithm 3, for STATE_SIZE
= 20 and CONFLICTS = 2. This predictor is able to per-
fectly predict the conflicts for our second scenario, but
as with Predictor 1, limits its evaluation to a boolean
value.

Predictor 3 works as predictor 1, but instead of returning
false when the event is likely to conflict, it returns the
event that should be committed before the evaluated
event can be processed, so that no conflicts would ever
occur. For example, the evaluation of event e23 would
return 3, indicating that event e23 is likely to conflict
with event e3, and thus, should wait for it to be com-
mitted before it is processed. This predictor returns
true if the event will not generate a collision, i.e., the
events which could conflict were already committed.

Predictor 4 has the same knowledge as predictor 2 but, as
predictor 3, returns a value indicating the event that
should be committed before the event that is being
evaluated can be processed without generating con-
flicts.

The speed-up achieved by the predictors in the first scenario
is depicted in Figure 6. In the figure, we have a curve for
each of 5 possible event processing task lengths. For tasks
with short processing times we observe a decrease in perfor-
mance when using predictors. This is indeed expected, be-
cause with such settings the best results are obtained with
sequential processing as the relative overhead of speculation
is significant. The best approach would be not to do any
speculation at all and use a predictor that returns true only
if the event is the next to be committed. With such a pes-
simistic predictor the results would be similar to predictor
0, but with much less CPU utilization.

When increasing the duration of the tasks, we observe no-
ticeable improvements for the more sophisticated predic-
tors. As expected, predictor 3 has better performance as
it is capable of telling when a conflict is going to occur and
what should be done to avoid it without sacrificing any non-
conflicting parallelism. The usage of predictor 4 leads to
sub-optimal performance as it predicts more collisions than
are actually happening.

P0 P1 P2 P3 P4
0,0

0,5

1,0

1,5

2,0

2,5

3,0

S
pe

ed
-u

p
(ti

m
es

)

Predictor

 0
 10
 20
 100
 500

Figure 6: Speed up for different task sizes with Sce-
nario 1.

Results for the second scenario are depicted in Figure 7. The
same reasoning as for the first scenario applies for tasks with
short processing times. For longer tasks, one can clearly see
that predictor 4 produces higher speed-ups, as expected. To
give an idea of the amount of useful work, with predictor 0 all
events are aborted once (and then retried when their times-
tamp is reached); with predictor 3 there are 40% aborts;
with the fourth predictor there are no aborts.

Although having the perfect predictors lead to the best re-
sults, one can observe in the graphs that sub-optimal pre-
dictors also enable impressive improvements. Predictor 3 in

P0 P1 P2 P3 P4
0,0

0,5

1,0

1,5

2,0

2,5

3,0
S

pe
ed

-u
p

(ti
m

es
)

Predictor

 0
 10
 20
 100
 500

Figure 7: Speed up for different task sizes with Sce-
nario 2.

the second scenario is a good example: even thought there
are still 40% unforeseen conflicts, the overall speed up is still
above 1.5. As a matter of fact, one cannot expect perfect
predictors to be available for most practical cases. Some
predictions may depend not only on event parameters, but
also on the current state of the system, which could change
between the time the event is evaluated until it is processed.
With perfect predictors there would be no need for spec-
ulation support. Thus, exactly because of the inability to
perfectly predict conflicts, support from a speculation infras-
tructure is required. The infrastructure we developed can
dynamically monitor the processing and reevaluate events
when conflicts occurs and, in spite of that, exploit as much
parallism as the predictor is able to identify.

6. CONCLUSIONS
We have designed a speculative execution environment for
event stream processing (ESP) components. Events that are
received out of order and/or conflict with one another are op-
timistically processed in parallel. To ensure that the system
remains in a consistent state despite parallelization, we use
an underlying software transactional memory (STM) that
was extended to account for the specificities of ESP. In par-
ticular, the STM can pre-assign timestamps to transactions
to drive the commit order. Evaluation of our system con-
firms that good performance improvements can be achieved
through speculation even if some computations may have to
be disregarded and reexecuted.

We have also proposed using application specific conflict
predictors to drive the system towards more efficient exe-
cutions. These predictors can be specified by the user or
generated automatically by static or dynamic analysis. We
showed that even very simple predictors (e.g., limiting how
far in the future the speculation should go) can improve the
speed-up and that they do not need to be always correct to
be useful.

7. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S.
Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik. The design of the borealis stream
processing engine. In Proceedings of the 2nd Biennial
Conference on Innovative Data Systems Research
(CIDR’05), Asilomar, CA, January 2005.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widow. Model and issues in data stream systems.
In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems (PODS’02), pages 1–16, Madison,
USA, June 2002. ACM Press, New York, NY.

[3] R. Barga, J. Goldstein, M. Ali, and M. Hong.
Consistent streaming through time: a vision for event
stream processing. In Proceedings of the third biennial
conference on Innovative data systems research
(CIDR’07), Asilomar, USA, January 2007.

[4] D. Dice and N. Shavit. What really makes transactions
faster? In Proceedings of the First ACM SIGPLAN
Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing. Jun 2006.

[5] P. Felber, C. Fetzer, and T. Riegel. Dynamic
Performance Tuning of Word-Based Software
Transactional Memory. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), 2008.

[6] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the Twentieth Annual International
Symposium on Computer Architecture, 1993.

[7] M. Koparanova and T. Risch. High-performance grid
stream database manager for scientific data. In Across
Grids 2003, pages 86–92. Springer-Verlag Berlin
Heidelberg, 2004.

[8] M. Li, M. Liu, L. Ding, E. A. Rundensteiner, and
M. Mani. Event stream processing with out-of-order
data arrival. In ICDCSW ’07: Proceedings of the 27th
International Conference on Distributed Computing
Systems Workshops, page 67, Washington, DC, USA,
2007. IEEE Computer Society.

[9] W. N. Scherer III and M. L. Scott. Advanced
contention management for dynamic software
transactional memory. In Proceedings of the 24th ACM
Symposium on Principles of Distributed Computing,
Las Vegas, NV, Jul 2005.

[10] M. F. Spear, V. J. Marathe, W. N. S. III, and M. L.
Scott. Conflict Detection and Validation Strategies for
Software Transactional Memory. In 20th Intl. Symp.
on Distributed Computing (DISC), 2006.

[11] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek.
Streamflex: high-throughput stream programming in
java. In Proceedings of the 22nd annual ACM
SIGPLAN conference on Object oriented programming
systems and applications, pages 211–228. ACM Press,
New York, NY, October 2007.

[12] J. Steffan and T. Mowry. The potential for using
thread-level data speculation to facilitate automatic
parallelization. In HPCA ’98: Proceedings of the 4th
International Symposium on High-Performance
Computer Architecture, page 2, Washington, DC,

USA, 1998. IEEE Computer Society.

[13] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R.
Adl-Tabatabai. Code Generation and Optimization for
Transactional Memory Constructs in an Unmanaged
Language. In International Symposium on Code
Generation and Optimization (CGO), 2007.

[14] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In Proceedings
of the 2006 ACM SIGMOD international Conference
on Management of Data (SIGMOD’06), pages
407–418, Chicago, USA, June 2006. ACM Press, New
York, NY.

