
Programming with Object Groups in CORBA

Pascal Felber and Rachid Guerraoui
Département d’Informatique

Ecole Polytechnique Fédérale de Lausanne,
CH-1015, Switzerland.

Abstract

The Object Group Service (OGS) extends CORBA with the ability
to gather several objects inside a group and to transparently handle the
group membership and the consistent invocations of the group members.
OGS does not require any change to the CORBA specification: it is
portable on any CORBA 2.0 ORB and does not rely on ORB vendor-
specific features. We present the OGS programming model and we dis-
cuss various levels of group transparency and their impact on invocation
overheads.

1 Introduction

Most object-based distributed architectures heavily rely on remote method invo-
cation as a basic abstraction for inter-object communication. This abstraction
simplifies distributed programming by making communication with a remote
object look like communication with a local object. Its limitation, however,
is that it can only be employed for two-ways communication between a client
object and a server object, which is not convenient when the application is com-
posed of distributed objects with a high degree of inter-dependence. In this case,
the communication should reflect the inter-dependence and take place from one
object to a group of objects implementing a given service. The client should
be able to send requests to the group as a whole, rather than being required to
know the group membership and to communicate with members on a one-to-
one basis. This is even more crucial if the server can change its membership or
location during its lifetime.

To provide adequate support for object group semantics in the context of the
Common Object Request Broker Architecture (CORBA) [2], we have designed
and implemented an Object Group Service (OGS), which extends CORBA with
the ability to manage object group membership and communication [2]. Unlike
other tentatives for extending CORBA with object group capabilities, our ap-
proach does not rely on any specific Object Request Broker implementation nor
on any operating system facility (see sidebar ”Related Work”).

OGS is CORBA compliant and can be made completely non-intrusive for
clients of the service. Rather than committing to one level of group trans-
parency, OGS provides flexible programming and configuration models allowing
the developer to trade between transparency with availability and efficiency (see
sidebar ”The Overhead of OGS”) according to the nature of the application.

1

2 A CORBA service

The Object Management Architecture (OMA) [2], specified by the Object Man-
agement Group (OMG), is a conceptual infrastructure for building interoperable
software components, based on open standard object-oriented interfaces.

Commercially known as CORBA, the Object Request Broker (ORB) is the
communication heart of the standard. It is a software bus that enables hetero-
geneous objects to transparently invoke remote operations and receive replies
in a distributed environment. Each object interface is specified in the declar-
ative OMG Interface Definition Language (IDL), which is implementation in-
dependent. Clients use object references to identify remote objects and invoke
operations on them. The Common Object Services (COS) are a collection of
interfaces and objects supporting basic functionalities useful for most CORBA
applications. A CORBA service is basically a set of CORBA objects with their
corresponding IDL interfaces, and these objects can be invoked through the
ORB by any CORBA client. Services are not related to any specific application
but are basic building blocks, usually provided by CORBA environments. Sev-
eral services have been designed and adopted as standards by the OMG, but
nothing has been specified yet concerning object group management and group
communication.

Our Object Group Service (OGS) manages groups of CORBA objects and
provides primitives to communicate atomically with these groups. Clients do
not need to know the number, the identity, or the location of the members of
a group. A client can bind to a group using a group name, and issue a single
request to all group members at once. OGS is inherently distributed, and does
not depend on any global, critical, or centralized component [3].

3 OGS Interfaces

Group
Members

Client

Groupable

GroupAccessor

GroupAdministrator

Groupable

GroupAdministrator

π

Object Group Service

T Has an interface
of type T to...

Distributed
Protocol

Appl.
Obj.

Appl.
Obj.

Appl.
Obj.

Srv.
Obj.

Srv.
Obj.

Srv.
Obj.

Figure 1: OGS Components and Interfaces

Figure 1 presents a simplified view of OGS components and interfaces. OGS
interfaces are associated with the different views of the service: (1) the client’s
view, used to invoke the group, (2) the member’s view, used by a group member
to change its status within the group (e.g., join or leave the group) and to

communicate with other objects in the group, and (3) the service’s view, used
by OGS to invoke operations on the members of a group.

1. Client’s interfaces allow a client to get information about groups and
send multicasts to the members of a group. Clients interact with groups
through an interface of type GroupAccessor which acts as a local repre-
sentative for the group. The GroupAccessor interface defines an operation
for multicasting messages to the group that it represents (multicast()).

2. Member’s interfaces are a superset of client’s interfaces. Objects can addi-
tionally join and leave groups using the join_group() and leave_group()
operations of the GroupAdministrator interface.

3. Service’s interfaces include the Groupable interface, which must be sup-
ported by member objects and enables OGS to issue callbacks to them.
The Groupable interface defines operations for receiving messages, for
group composition notification (view_change()), and for state transfer
(get_state() and set_state()).

Group accessors and administrators are service objects: their interfaces are
called OGS internal interfaces.1 Performing a multicast to the group initiates a
protocol between group accessors and administrators, which ensures that mes-
sages are delivered to the members according to some condition (e.g., total
order). The Groupable interface must be implemented by application objects:
it is an OGS external interface.

4 The Developer’s View

Client Perspective

OGS provides two types of communication: untyped and typed communication.
Untyped communication enables clients to send only values of type any2 as
messages. These messages are received by the group members through their
deliver() operation. While this message-passing type interface is useful and
more efficient in some specific situations, it is generally more convenient for
clients to directly invoke an operation of the server interface. Typed communi-
cation provides this abstraction; for instance, if the members of an object group
support an Account interface that defines the makeDeposit() operation, a client
can directly invoke makeDeposit() with the relevant parameters; OGS inter-
cepts this call using CORBA’s Dynamic Skeleton Interface (DSI), multicasts it,
and invokes the makeDeposit() operation on each member of the group using
CORBA’s Dynamic Invocation Interface (DII). In other words, OGS provides
support for non-intrusive typed communication: OGS allows a client applica-
tion to invoke a group of replicas just as if it were invoking a non-replicated
object.

The object that acts as a group proxy and against which actual client invo-
cations are performed is called a group accessor. A group accessor is an object

1It is important to notice that the term internal does not mean private. An internal inter-
face is accessible to the application developer, but its implementation is provided internally
by the service.

2A CORBA any variable can contain a value of any type.

that encapsulates the structure and behavior of a group reference, and that
remembers and tracks the composition of the group. Ideally, it should be a
temporary object, created on-the-fly when a group reference enters the address
space of the application. This is however not possible without some ORB sup-
port, which is currently available only through vendor-specific extensions (such
as Orbix smart proxies). With OGS, a group accessor can be instanciated either
explicetely by the application (making the use of OGS non-transaprent), or at
deployment time using the ogsutil application provided with OGS. This ap-
plication creates the necessary service objects and registers them in the naming
service under names agreed upon with the clients (see Figure 2). The ogsutil
application first creates a group accessor using an object factory (1, 2), and
registers this accessor in the naming service (3). Upon startup, the clients get
the reference to the group accessor from the naming service (4), and invoke the
object group (5, 6). When using typed communication the group accessor will
appear as having the same interface as the server group, making the use of OGS
completely transparent to the client.

Client OGS

Factory

create()
1

2

5 Group
Accessor

Invocation 6
Group
multicast

Naming
Service

Third
Party
(ogsutil)3 register()

lookup()4

Figure 2: Implicit Service Instantiation

For the purpose of replication, object groups may be handled in a completely
transparent way from the client side (see the replicated calculator example in
the sidebar ”Putting OGS to Work”). The client simply looks for a reference to
the group in the naming service, and invokes this group, as if it were a singleton
object. This enables to increase the reliability of a non fault-tolerant application
(through replication) without touching the original code of the clients. One can
start by developing a CORBA application without OGS; once the interfaces
have been defined, and the application has been implemented and tested without
OGS, group support may be added at a later stage with only minimal additions
to the servers.

If groups are not used for replication, special care has to be taken when
defining the IDL interfaces of the application. In particular, if the client wants
to access all the replies resulting from an invocation to an object group (e.g.,
when using groups for parallel processing), the typed version of OGS cannot be
used directly. In this situation, though, it is possible to preserve transparency by
decoupling the application interfaces so that requests are issued through oneway
multicast invocations,3 and replies are returned explicitly to the caller through

3Note that OGS guarantees atomicity of oneway requests: they are either received by all
members of a group, or by none.

point-to-point invocation, as shown in the Mandelbrot example in the sidebar
”Putting OGS to Work”.

Server Perspective

To benefit from group communication, the programmer has to provide applica-
tion support for OGS. This is performed by having server objects inherit from
the Groupable IDL interface. This interface defines the following operations
that the server objects have to implement to be member of a group.

• Support for message delivery: messages sent using the untyped version of
OGS are delivered to the server objects through their deliver() opera-
tion. If the clients use only the typed version of OGS, this operation may
be left empty since messages will be delivered through invocations on the
server’s application-specific interface.

• Support for view change notification: when a new object joins a group, or
a member object leaves or fails, all member objects are notified through
their view_change() operation. They receive an ordered list of current
group members, which may be used for instance to deterministically assign
a different role to each object of the group (see the Mandelbrot example
in the sidebar ”Putting OGS to Work”).

• Support for state transfer: when a new object joins a group, it atomically
receives the shared state from the other members of the group. This
is generally required to preserve the application consistency. The state
transfer mechanism is implemented by two operations, get_state() and
set_state(), which are atomically invoked on a current and on the new
member respectively.

• Support for operation semantics: the server objects can specify the se-
mantics associated to each operation of their interface. This is performed
by implementing operation_semantics(). A program can for instance
achieve better performance by not mandating total ordering of invocations
to read-only operations. By default, all operations are associated with the
strongest semantics, i.e., totally ordered multicast.

Typical implementations of these operations are described in the sidebar
”Putting OGS to Work”.

5 The Administrator’s View

Invocations to object groups are performed by OGS. This happens by having
clients messages go through group accessor objects, and server messages go
through group administrator objects. Group accessors and administrators form
the visible part of the OGS runtime system. The application administrator can
configure this runtime system in a number of ways, leading to different degrees
of flexibility, efficiency, transparency, or reliability.

Execution Styles

OGS provides mainly two execution styles: a linkable style and a daemon style.
In the first style, the service objects are co-located with application objects, i.e.,
they are linked with the application and they execute in the same address space
(or process). In the second style, the service objects are located in another
process — the OGSd daemon program — which may be on the local or on a
remote host.

Client

OGS Library

ORB Library

Server

OGS Library

ORB Library

Multicast Message

Figure 3: The Linkable Style

The linkable version of OGS is provided as a C++ dynamic library (OGSl) to
be linked with C++ applications, or as a set of Java classes usable from Java ap-
plications (see Figure 3). This execution style is more efficient since invocations
between objects located in the same process are less costly than inter-process
communications (see the sidebar ”The Overhead of OGS”). However, it enforces
the code of the application to be written with the same programming language
as the library.

OGS DAemon

ORB Library

Remote
Invocation

Client

ORB Library

Server

OGS Library

ORB Library

Multicast Message

Figure 4: The Daemon Style

The daemon execution style, with two separate processes, has the advantage
of decoupling the service from the application, enabling several applications
running on the same host to share the same OGS instance. It also allows user
applications written in another programming language, such as Smalltalk, to
use the C++ or Java service. The deamon and linkable execution styles are not
exclusive of each other, and different styles can be employed on the client and
server sides. Figure 4 illustrates the use of the OGS daemon on the client side,
while the service is linked with the application on the server side.

OGS Deployment

Whereas CORBA objects should be independent of their real location, some de-
ployment choices will affect the degree of fault tolerance of an application that
uses OGS. This is more a semantic requirement than an architectural require-
ment since OGS objects, like any CORBA object, can be deployed anywhere.

For instance, when using the daemon execution style, if both the application
and the daemon are located on the same machine, only a crash of the OGS
daemon process can prevent the application from using the service. If they are
on different machines, there is the additional risk of a link or machine failure.
When using the linkable style, the application is not exposed to these problems
and OGS objects can be considered as always available.

6 Concluding Remarks

When designing and implementing OGS, we draw several observations from our
experiences in building support for object groups.

On the conceptual side, one of the major issue comes from group addressing.
Clients do not address objects anymore; they address groups of objects. The
CORBA object model states that an object reference designates univoquely a
single object. Extending this definition to a set of objects requires modifying
the CORBA model. This is one of the reason why OGS uses proxy objects to
represent actual groups.

In addition, there is a mismatch between addressing and identity. CORBA
defines a strong addressing model (object location is embedded in CORBA ref-
erences) and a weak identity model (the result of a comparison for equality
between two object references is “yes” or “maybe”). When working with refer-
ences to object groups, we typically need weak addressing (the reference must
designate the group as an abstract entity independent of the number or location
of its members) and strong identity (for instance to test if an object is member
of a group).

Another mismatch comes from the synchronous nature of CORBA incov-
ations versus the asynchrony requirements of multicast protocols. Although
CORBA defines deferred synchronous and oneway invocations, there is no guar-
antee that such an invocation will not block. In contrast, multicast protocols
have strong requirements in terms of asynchrony. In the implementation of
OGS, we avoid this problem by using multithreading to ensure asynchrony.

On the implementation side, we experienced that the use of typed invocations
had a non-negligible cost. Although very powerful, the DSI and DII are expen-
sive in terms of processing time, leading to a tradeoff between transparency and
performance (see side bar ”The Overhead of OGS”). One of the main lessons
we have drawn from our experimentations with OGS is the importance of dis-
tinguishing different levels of transparency and providing the developer with the
ability to access and tune even the very low-level components of OGS.

OGS Status

The design and implementation effort of OGS was initiated in 1994 in the con-
text of the European ESPRIT project OpenDREAMS (project 20843) and and

was continued in the context of the European ESPRIT project OpenDREAMS-
II (project 25262). Binary code versions of OGS (both for Orbix 2.3 MT and
Visibroker 3.2) are available at http://lsewww.epfl.ch/OGS/.

References

[1] OMG. The Common Object-Request Broker Architecture: Architecture and
Specification – CORBAservices: Common Object Services Specification.
http://www.omg.org.

[2] P. Felber, B. Garbinato, and R. Guerraoui. The design of a CORBA group com-
munication service. In Proceedings of the 15th IEEE Symposium on Reliable Dis-
tributed Systems, pages 150-159, October 1996.

[3] P. Felber, R. Guerraoui, and A. Schiper. The Implementation of a CORBA Object
Group Service. Theory and Practice of Object Systems, 4(2), 1998.

Related Work: From Process Groups to CORBA
Object Groups

The first system to offer explicit notions of group and multicast communication
is the V system [3]. Its design influenced most existing group-based systems.
The Isis system extended the group model of the V system by providing sup-
port for fault-tolerance through mechanisms such as process group membership
and reliable totally ordered multicast [2]. Inspired by Isis, several group com-
munication systems such as Transis, Totem, and Horus [9] have more recently
been developed. These systems mainly differ in the way messages are ordered
(e.g., total order/causal order) and in the way atomicity of message delivery is
ensured in the case of process or link failures.

Until very recently, CORBA and group-based systems were considered very
distinct technologies. Communication in CORBA used to basically rely on inter-
object one-to-one method invocation [2], whereas group-based systems focused
on process groups (vs. object groups) [5]. Extending CORBA with a group
abstraction is a new and challenging task. We have distinguished mainly three
different approaches to accomplish this task, discussed in details in [1]:

• The integration approach consists in embedding group capabilities within
an Object Request Broker (ORB). This approach has been adopted in the
Electra system [6]. Although appealing for its inherent transparency (an
object group is not distinguishable by a client from a singleton object that
implements the same interface), this approach does not comply with the
CORBA object model and results in proprietary systems.

• The interception approach consists in transforming standard IIOP mes-
sages issued by an ORB into group communications. Unlike in the integra-
tion approach, the ORB is not aware of the existence of group mechanisms.
Eternal [1] uses this mechanism: the Eternal Interceptor captures IIOP
messages and the Eternal Replication Manager maps them onto the Totem
multicast group communication system [9]. Eternal intercepts system calls
before they reach the kernel, by performing a low level continual trace of
inter-process communications. These system calls are then modified ap-
propriately and passed to the process group interface for communication
over Totem.

• The service approach provides group communication as a CORBA service
beside the ORB. The ORB is not aware of groups and the service can be
used with any compliant CORBA implementation. The service approach
follows the design of the other functionalities that have been added to
CORBA through IDL-specified services, such as persistence and trans-
actions. We followed the service approach to design and implement our
Object Group Service (OGS) which complies with many of the require-
ments of the OMG Request For Proposal on Fault Tolerant CORBA [8]
(currently under specification).

OGS shares some similarities with the CORBA Event Service [2] (e.g., both
provide support for collaborative work). Nevertheless, the primary goal of OGS
was reliability and, unlike the CORBA Event Service, OGS is not based on any

central component. In contrast, event channels are shared CORBA objects in
the Event Service and thus constitute single points of failures [4].

References

[1] G. Agha and R. Guerraoui (guest editors). Theory and Practice of Object Systems,
4(2), Special Issue on High Availability in CORBA, 1998.

[2] K. Birman and R. van Renesse. Reliable Distributed Computing with the Isis
Toolkit. IEEE Computer Society Press, 1993.

[3] D. Cheriton and W. Zwaenepoel. Distributed process groups in the V kernel. ACM
Transactions on Computer Systems, 3(2), 77-107, 1985.

[4] P. Felber, R. Guerraoui, and A. Schiper. Replicating Objects using the CORBA
Event Service. In Proceedings of the 6th IEEE Workshop on Future Trends of
Distributed Computing Systems (FTDCS’97), 14-19, 1997.

[5] R. Guerraoui, P. Felber, B. Garbinato, and K. Mazouni. System Support for Object
Groups. In Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA’98), 244-258, 1998.

[6] S. Maffeis. Run-Time Support for Object-Oriented Distributed Programming. PhD
thesis, University of Zurich, 1995.

[7] OMG. The Common Object-Request Broker Architecture: Architecture and
Specification – CORBAservices: Common Object Services Specification.
http://www.omg.org.

[8] OMG. Fault tolerant CORBA Using Entity Redundancy, Request For Proposal.
http://www.omg.org/techprocess/meetings/schedule/Fault Tolerance RFP.html.

[9] D. Powell (guest editor). Communications of the ACM, 39(4), Special issue on
Group Communication, 1996.

The Overhead of OGS

Measuring the overhead of OGS comes down to compare the cost of invocations
through OGS (from a client to a group of objects), with the cost of using plain
CORBA invocations (of a single object). This overhead varies in function of
the group size, the communication protocol used, the locality of objects, and
the degree of transparency provided to the application programer. There is a
tradeoff between transparency, availability, and efficiency.

In the current OGS implementation, multicast communication is achieved
using reliable protocols on top of CORBA’s standard Internet Inter-ORB Pro-
tocol (IIOP). Our performance measurements have been performed with the
C++ version of OGS, compiled with VisiBroker 3.2 [3].

System Configuration

Testing took place on a local 10 Mbit Ethernet network, interconnecting 13
Sun SPARCstations running Solaris 2.5.1 or 2.6, under normal load conditions.
Among these workstations, there were four Sun UltraSPARC 30 (250 Mhz pro-
cessor, 128 MB of RAM), and nine Sun UltraSPARC 1 (170 Mhz processor,
64 MB of RAM). For tests involving up to four hosts, only the UltraSPARC 30
workstations were used. All the client and server applications were located on
different hosts, except the OGS daemon which was located on the same host as
the client. The tests have been run with the TCP NODELAY option that sets
all sockets to immediately send requests, instead of buffering them and sending
them in batches.

Test Models

Our performance tests use the various semantics provided by OGS: total order,
reliable, and unreliable; and three different modes of invocations (Figure 5):
untyped invocations with the OGS library, untyped invocations with the OGS
daemon, and typed invocations with the OGS daemon. The arrows in the figure
represent the invocation path followed by the requests and the replies. We have
implemented two total order algorithm: the first one, based one a consensus
algorithm, can order several messages at once and provides a higher throughput
when many clients are issuing requests to a group in parallel; the second one, an
optimistic algorithm based on a sequencer, provides better latency but cannot
order several messages at once and is more costly upon failure of the sequencer.
These algorithms are respectively called “Total Order” and “Optimistic Active
Replication” in the rest of this section.

Table 1 and Figures 6, 7, and 8 summarize the main results of our exper-
iments. The test program operates as follows: a single client executes several
rounds, in each of which it issues a fixed number of synchronous invocations
(typically 100).4 The group size varies from one to ten members. The client
waits for a single reply from the servers before issuing the next invocation. The
total time of each round is divided by the number of invocations issued during
the round to obtain the latency of a single two-ways invocation, as experienced
by the client. We kept the value of the best round.

4Since there is only one client, invocations are not performed concurrently and hence this
test is not a measure of the total throughput of OGS.

Client

IIOP

Server

IIOP

OGS

IIOP

DSI

Client

IIOP

Server

OGS

IIOP

OGS

OGS

DII

Client

IIOP IIOP

Server

OGS

IIOP

OGS

Host A Host B,C,D

Mode 1:
Untyped
Library

Mode 2:
Untyped
Deamon

Mode 3:
typed

Deamon

Invocation
Path

Figure 5: Three Test Models for Client Multicast Invocations

The Cost of Multicast

Figure 6 illustrates the cost of the different OGS untyped invocation primitives,
with the library execution style (mode 1 in Figure 5) and different group sizes.
This figure shows that the cost of total order and reliable multicast primitives
grow faster than the cost of the other primitives. This is due to the fact that
the former primitives are based on a simple reliable multicast algorithm, the
complexity of which is O(n2) for n participants. In contrast, our optimistic
active replication algorithm has been optimized so that is does not use a reliable
multicast primitive [1]. Its cost grows linearly, similarly to unreliable multicast.

The Cost of Indirection

Figure 7 compares the latency of invocations issued through OGS, with a cor-
responding invocation issued directly through the ORB. It illustrates the addi-
tional cost induced by the extra indirection through OGS, as well as the cost
of additional group members. OGS invocations are performed using the library
execution style with untyped invocations. The invocation sent directly through
the ORB is a standard two-way request issued through static stubs and skele-
tons.

Figure 7 shows that the cost of passing through the service is slightly less
than 2 milliseconds per invocation. This overhead is fixed and does not depend
on the number of participants: sending an unreliable request to two objects is
not twice slower than invoking a single object.

Exec. style Semantics #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Untyped OGS / Library Total Order 2.80 7.57 9.61 13.65 18.81 28.07 38.33 47.42 60.97 79.80
Untyped OGS / Library Opt. Active Repl. 2.77 4.74 4.98 5.92 6.58 8.15 8.97 10.42 11.49 13.01
Untyped OGS / Library Reliable 2.70 3.03 3.36 4.72 7.82 13.28 18.22 23.00 27.83 34.60
Untyped OGS / Library Unreliable 2.70 2.90 3.14 3.49 4.24 5.11 5.75 6.46 7.67 8.67

Untyped OGS / Daemon Total Order 3.78 8.60 10.51 14.80 19.91 29.75 39.50 51.02 63.18 82.81
Untyped OGS / Daemon Opt. Active Repl. 3.69 5.89 6.29 7.19 7.51 9.17 10.60 11.91 12.22 13.18
Untyped OGS / Daemon Reliable 3.66 4.14 4.17 6.72 9.32 14.12 19.91 24.60 28.35 36.81
Untyped OGS / Daemon Unreliable 3.69 4.01 4.05 4.89 5.29 5.90 7.07 7.86 9.11 10.05

Typed OGS / Daemon Total Order 23.56 29.75 33.18 36.64 45.15 52.00 64.67 76.62 92.51 107.27
Typed OGS / Daemon Opt. Active Repl. 23.48 24.73 29.65 31.19 32.69 33.86 37.14 42.13 45.15 49.73
Typed OGS / Daemon Reliable 23.24 24.88 28.61 30.38 34.67 39.92 43.21 51.19 60.97 70.99
Typed OGS / Daemon Unreliable 23.33 24.07 26.83 27.79 30.92 32.13 35.65 39.95 43.21 47.15

ORB Unreliable 0.88

Table 1: Performance of Multicast Invocations with Various Group Sizes and
Execution Styles (ms./inv.)

The fixed cost of OGS consists basically of the following actions: OGS ac-
cepts client requests and builds a message that it multicasts to all servers; on
the server-side, OGS extracts the data from the message, passes it to the server,
gets the return value, and builds the reply message for the client; when the first
replies arrives, OGS extracts the result and returns it to the client (the other
replies are discarded). We experienced that most of this overhead comes from
the additional request marshaling and unmarshaling as a result of the indirection
through OGS.

The Cost of Type Transparency

Type transparency makes it possible to reuse existing applications without hav-
ing to modify the client. In the current version of OGS, typed communication
is available only for the daemon execution style. Figure 8 compares the latency
of untyped totally ordered requests (library and daemon execution styles) with
that of typed requests. This figure illustrates that there is a fixed overhead of
about 1 millisecond for using the daemon. This corresponds to the latency of
a single two-way invocation through the ORB. The typed version of OGS adds
an overhead of about 20 milliseconds. This overhead results from the use of
CORBA’s dynamic interfaces (DSI and DII) for type transparency.

Although these dynamic interfaces are powerful since they permit the de-
veloper to receive and send requests on interfaces not known at compile time,
they process requests in an interpretive maneer, and they extensively use values
of type any. Unlike other IDL types, any values are augmented by a typecode
information that contains details about the actual type of the value. This in-
formation increases the size of the messages sent on the network. Moreover,
validity checks upon data extraction slow down the remote invocation process.
Some measurements on VisiBroker 3.2 have shown that the extraction of com-
plex structures from a value of type any costs more that a remote invocation
through the ORB [1]. Since the DSI and the DII are used only once on the
client and the server side, their overhead is fixed and does not depend of the
group size or the complexity of the protocol.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

1 2 3 4 5 6 7 8 9 10

Number of Members

La
te

nc
y

(m
s.

/in
v.

)

Total Order
Opt. Active Repl.
Reliable
Unreliable

Figure 6: Comparison of OGS Multicast Primitives

References

[1] P. Felber. The CORBA Object Group Service: A Service Approach to Object
Groups in CORBA. PhD thesis, Swiss Federal Institute of Technology, Lausanne,
1998.

[2] OMG. The Common Object-Request Broker Architecture: Architecture and Spec-
ification - CORBAservices: Common Object Services Specification. OMG

[3] Visigenic. Visibroker for C++ 3.2 Programmer’s Guide. Visigenic Software, Inc.,
1998.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1 2 3 4 5 6 7 8 9 10

Number of Members

La
te

nc
y

(m
s.

/in
v.

)

ORB
OGS (Unreliable)

Figure 7: The Cost of Indirection in OGS

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 2 3 4 5 6 7 8 9 10

Number of Members

La
te

nc
y

(m
s.

/in
v.

)

Untyped Library
Untyped Daemon
Typed Daemon

Figure 8: Untyped vs. Typed Communication

Putting OGS to Work

We illustrate below the use of OGS on three application examples: a repli-
cated abstract calculator as an example of a critical component in a financial
application, the computation of a Mandelbrot set as an example of a parallel
application with load balancing capabilities, and a reliable distributed chat as
an example of a collaborative work application.

For the sake of simplicity and space limitation, we only describe the code that
is related to OGS. Furthermore, all error-handling code has been removed from
our examples. These examples have been tested with VisiBroker 3.2. The com-
plete code of these examples can be found at http://lsewww.epfl.ch/OGS/.

Replicated Calculator

The calculator maintains a current value (accumulator), and clients perform
arithmetical operations on this value. The available operations are: add, sub-
tract, multiply, divide, and clear. Some operation pairs are not commutative
(e.g., add and multiply), making total ordering of requests necessary. A prac-
tical application of such an abstract calculator is to maintain the balance of a
bank account. Additions correspond to deposits, subtractions to withdrawals,
and multiplications to interest computation.

The application is composed of two parts: the servers that perform compu-
tations and the clients that perform arithmetical operations on the replicated
calculator. The shared state of the servers is the calculator’s current value.
OGS transparently preserves the consistency of the calculator’s state by deliv-
ering requests in the same order to all replicas.

The IDL interface of the calculator application is given below. It simply
consists of a Calculator interface, with one attribute and four operations. The
value attribute represents the current state of the calculator, and should not
be modified directly; therefore, it is declared as read only. The calculator’s
interface inherits from OGS’ Groupable interface.

1 // IDL
2 interface Calculator : mGroupAdmin: : Groupable {
3 readonly attribute float value ;
4

5 float add(in float nb);
6 float sub(in float nb);
7 float mul(in float nb);
8 float div (in float nb);
9 void clr () ;

10 } ;

The C++ interface of the calculator server is defined below. The implemen-
tation of the arithmetical operations are inlined in the C++ interface definition.
To keep the code simple, no check is performed for overflow and division by zero.
The current value of the calculator is kept in the value_ member variable.

1 // C++
2 class Calculator i : sk Calculator
3 {
4 CORBA: : Float value ;
5

6 public :
7 // Operations from interface ‘ ‘ Groupable ’ ’
8 virtual CORBA: : Any∗ get state () ;
9 virtual void set state (const CORBA: : Any& state) ;

10 virtual mGroupAdmin: : OperationSemanticsSeq ∗ operation semantics () ;

11 // .. .
12

13 // Operations from interface ‘ ‘ Calculator ’ ’
14 virtual CORBA: : Float value () { return value ; }
15 virtual CORBA: : Float add(CORBA: : Float x) { value += x; }
16 virtual CORBA: : Float sub(CORBA: : Float x) { value −= x; }
17 virtual CORBA: : Float mul(CORBA: : Float x) { value ∗= x; }
18 virtual CORBA: : Float div (CORBA: : Float x) { value /= x; }
19 virtual void clr () { value = 0. 0 ; }
20 } ;

The calculator server also implements operations from the Groupable in-
terface. In particular, it provides support for state transfer (get_state and
set_state). Since the state of the calculator consists of a single floating point
value, the state transfer methods are very simple. In addition, the calcula-
tor server specifies the semantics associated to each operation by implement-
ing operation_semantics. A read-only operation does not need to be totally
ordered if the clients do not care about receiving a slightly out of date value;
therefore we use an unordered reliable multicast for the value() operation. Note
that, since the operation semantics defaults to total order, only the operations
that have a weaker semantics need to be specified in operation_semantics().

1 // C++
2 CORBA: : Any∗ Calculator i : : get state ()
3 {
4 // Pack the state into an any
5 CORBA: : Any∗ a = new CORBA: : Any() ;
6 ∗a <<= value ;
7 return a ;
8 }
9

10 void Calculator i : : set state (const CORBA: : Any& a)
11 {
12 // Extract the state from an any
13 a >>= value ;
14 }
15

16 mGroupAdmin: : OperationSemanticsSeq ∗ Calculator i : : operation semantics ()
17 {
18 // Return the semantics associated to each operation
19 mGroupAdmin: : OperationSemanticsSeq ∗ oss = new OperationSemanticsSeq (1);
20 oss−>length (1);
21 (∗ oss) [0] . name = ” get value ” ;
22 (∗ oss) [0] . ordering = mGroupAccess : : RELIABLE; // Unordered!
23 return oss ;
24 }

Parallel Mandelbrot

The Mandelbrot set is a fractal structure defined on the complex plane, which is
traditionally displayed in a 2D picture. The computation of a Mandelbrot set is
time-consuming but easy to parallelize. We adopt a client-server approach with
the server providing the processing power while the client displays graphically
the resulting set. To have the image displayed in “real-time” and to reduce the
size of messages, the server transmits the data line by line, as soon as they are
completed, to the client.

In this application, OGS is used to distribute the workload among several
servers. The area of the Mandelbrot set is separated into bands, each of which
is computed on a different server. The set is subdivided into n bands, where
n is the number of members in the group. Each member uses its position in
the current view to decide which band to compute, and sends lines to the client

compute()

Replicated
Server

Client

new_line()

Display

1

2

3

1

2

3

Figure 9: Mandelbrot

which is updated asynchronously. The server is written in C++ and the client in
Java. Figure 9 illustrates the architecture of the Mandelbrot application. OGS
gives the illusion of one single server whereas the work is actually distributed
to several effective servers, making it possible to increase the parallelism degree
without the knowledge of the client. Note that in this application the server is
replicated in terms of processing, but not state.

The IDL interface of the Mandelbrot application is given below. It is made
of a Mandelbrot module containing two interfaces: Client and Server. The
server’s interface inherits from OGS’ Groupable interface.

1 // IDL
2 module Mandelbrot
3 {
4 const long LINE SIZE = 400 ;
5 typedef long Line [LINE SIZE] ;
6

7 interface Client {
8 oneway void new line (in long number , in Line data);
9 } ;

10

11 interface Server : mGroupAdmin: : Groupable {
12 void compute(in Client c l ient ,
13 in long top , in long l e f t ,
14 in long height , in long width ,
15 in long i ter , in long zoom);
16 } ;
17 } ;

The C++ interface of the Mandelbrot server is defined as follows:
1 // C++
2 class Mandelbrot i : sk Mandelbrot : : sk Server
3 {
4 int nb members ;
5 int posit ion ;
6

7 public :
8 // Operations from interface ‘ ‘ Groupable ’ ’
9 virtual void view change (const mGroupAccess : : GroupView& new view);

10 // .. .
11

12 // Operations from interface ‘ ‘ Mandelbrot ’ ’
13 virtual void compute(Mandelbrot : : Client ptr c l ient ,
14 CORBA: : Long top , CORBA: : Long l e f t ,
15 CORBA: : Long height , CORBA: : Long width ,
16 CORBA: : Long iter , CORBA: : Long zoom);
17 } ;

The most meaningful operation of the Groupable interface for the Mandel-
brot server is the view_change() operation. This operation is invoked by OGS
to give the current view to the application which then decides the area of the
Mandelbrot set to compute. This information is stored in the nb_members_ and
position_ member variables and is updated in the code of the view_change
operation.

1 // C++
2 void Mandelbrot i : : view change (const mGroupAccess : : GroupView& new view)
3 {
4 nb members = new view . composition . length () ;
5 posit ion = new view . my index ; // Contains position of this member
6 }

The C++ code (not given here) used to compute the Mandelbrot set pro-
cesses only the area allocated to the local server, and updates the client each
time a new line is completed.

Distributed Chat

Our distributed chat application is similar to the well-known Internet Relay Chat
(IRC) program, but without the centralized server that receives and forwards
messages. It allows participants all over the Internet to talk to one another in
real-time. Users can join chat channels and send message to these channels.
All participants listening to the channel receive the messages. Each participant
has a nickname sent along with the messages to identify the originator of the
message by other users.

The distributed chat application does not have a pure client/server design.
Chat channels are mapped to groups, and participants are both clients and
servers of these groups. The member objects are not copies of a replicated
object; they are distinct entities that collaborate by exchanging messages using
group communication.

Chat
Channel

Alice

Bob

Cecil

Alice: Nice weather today,
 isn’t it?
Bob: Yes indeed :)
Cecil: Not here :(

send()
Alice: Nice weather today,
 isn’t it?
Bob: Yes indeed :)
Cecil: Not here :(

Alice: Nice weather today,
 isn’t it?
Bob: Yes indeed :)
Cecil: Not here :(

Figure 10: Distributed Chat Application

The general architecture of the distributed chat application is illustrated in
Figure 10. Messages issued by a channel member are multicast to all users lis-
tening to the channel. The programming model is symmetrical: after a message
has been multicast, the originator will receive and deliver its own message like
all other group members.

The architecture of this application differs from the other examples, in that
there is only one type of object (the chat object), which is both client and server.
The IDL interface of the chat application is composed of a single operation used
to send a message to the current group, and a read only attribute that stores
the nickname of the local participant.

1 // IDL
2 interface Chat : mGroupAdmin: : Groupable {
3 readonly attribute string nickname ;
4

5 void post (in string sender , in string msg);
6 } ;

The C++ interface of the chat server is defined as follows:
1 // C++
2 class Chat i : sk Chat
3 {
4 char ∗nickname ;
5

6 public :
7 Chat i (char ∗nickname) : nickname (nickname) {}
8

9 // Operations from interface ‘ ‘ Groupable ’ ’
10 virtual void view change (const mGroupAccess : : GroupView& new view);
11 // .. .
12

13 // Operations from interface ‘ ‘ Chat ’ ’
14 virtual char ∗nickname () ;
15 virtual void post (in string sender , in string msg);
16 } ;

A chat object is stateless. It only receives messages, prints them to the
screen, and forgets them. The most meaningful operation of the Groupable
interface is view change notification: each time the membership changes, the
chat object displays the list of participants.

1 // C++
2 void Chat i : : view change (const mGroupAccess : : GroupView& new view)
3 {
4 cout << ”Participants :” << endl ;
5 for (int i = 0 ; i < new view . composition . length () ; i ++) {
6 Chat var chat = Chat : : narrow (new view . composition [i]) ;
7 cout << i << ”: ” << chat−>nickname() << endl ;
8 }
9 }

