
Building Multicast Trees in Ad-hoc Networks

Raphaël Kummer
University of Neuchâtel

Computer Science
Department

Emile-Argand 11, CP 158
CH-2009 Neuchâtel,

Switzerland
raphael.kummer@unine.ch

Peter Kropf
University of Neuchâtel

Computer Science
Department

Emile-Argand 11, CP 158
CH-2009 Neuchâtel,

Switzerland
peter.kropf@unine.ch

Pascal Felber
University of Neuchâtel

Computer Science
Department

Emile-Argand 11, CP 158
CH-2009 Neuchâtel,

Switzerland
pascal.felber@unine.ch

ABSTRACT
Multicast trees are used in a variety of applications, such as
publish/subscribe systems or content distribution networks.
Existing algorithms for ad-hoc networks typically produce
multicast trees requiring many nodes to act as relays even
though they are not part of the multicast group. In this pa-
per, we propose an algorithm for building efficient multicast
trees that strives to minimize the number of non-member re-
lay nodes and the number of transmissions required to reach
all the group members, and to balance the degree of mem-
bers when acting as internal nodes of the multicast tree. Our
algorithm relies upon a lightweight distributed hash table
(DHT) to construct and optimize the multicast trees. We
evaluate the efficiency and scalability of our algorithm by
simulations with various network configurations and sizes.

Categories and Subject Descriptors
C.2.2 [Computer - Communication Networks]: Net-
work Protocols

General Terms
Multicast Trees, MANETs

Keywords
Mobile Networking, Wireless Networks Protocol, Ad-hoc Wire-
less Networks, Mobile Ad-hoc Computing, Multicast trees

1. INTRODUCTION
Multicast communication is widely used in distributed ap-

plications for efficiently delivering data from a source to a
potentially large number of destinations. Multicast algo-
rithms typically create and maintain distribution trees span-
ning all destinations in a way that messages are transmitted
over each link of the network exactly once.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Autonomics 2008 September 23 - 25, 2008, Turin, Italy
Copyright 2008 ICST ISBN #978-963-9799-34-9 ...$5.00.

In mobile ad-hoc networks (MANETs), communication
between remote nodes usually requires multiple hops via re-
lay nodes, thus complicating the task of building efficient
multicast trees. Because relaying messages consumes scarce
CPU cycles and energy, one must minimize the number of
nodes that act as relays.

Centralized tree construction algorithms do not scale well
and offer but limited reliability. We thus investigate decen-
tralized strategies where nodes are organized in a peer-to-
peer (P2P) overlay configuration.

A basic, unstructured approach consists in flooding the
network with data. Alas, this method highly overloads the
network and makes only inefficient use of the (limited) re-
sources.

Superimposing a structured overlay on top of the physical
network can help to construct efficient multicast trees. This
approach has been used, for instance, by Scribe [11]: multi-
cast trees are rooted at “rendez-vous nodes” managed by an
underlying distributed hash table (DHT). Nodes interested
in joining the multicast group route a request via the DHT
and connect to the first member reached on the way to the
rendez-vous node. While this strategy is effective in wired
networks, it cannot be easily transposed to mobile ad-hoc
networks where communication is multi-hop and physical
proximity is an essential consideration.

In this paper we propose a novel algorithm for building
multicast trees in MANETs relying on a lightweight DHT
overlay [7]. The ad-hoc DHT provides efficient lookup in a
logical space by exploiting the physical proximity of nodes
and the properties of the wireless broadcast communication
medium. As in Scribe, the DHT is used for localizing the
source of the multicast and, one tree is created per source.
We use several techniques to connect joining nodes to an ex-
isting member that is physically close and in the direction of
the source. Various refinements are proposed to reduce the
number of relay nodes involved in the relaying of messages
but which are not members of the multicast group.

We have performed extensive simulations of our algorithm
using different scenarios. Results indicate that our algorithm
does produce multicast trees with only a limited number of
non-member nodes relaying the multicasts, and that it scales
well to large networks.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work, and then Section 3 gives an
overview of the system background. We detail our algorithm
in Section 4 and present results from experimental evalua-
tion in Section 5. Section 6 concludes.

2. RELATED WORK
Different logical structures can facilitate appropriate tree

construction in ad-hoc networks. MZR [4] relies upon the
Zone Routing Protocol [5] to build a multicast tree. The
nodes in ZRP define a zone around them and maintain
proactively routes to all nodes within that zone. A reac-
tive route discovery protocol is used when the destination
is outside the sender’s zone. When a source has data to
multicast, it advertises it to all the nodes in its zone, and
then extends the tree to nodes at the border of other zones.
An interested node has to answer to the source and, when
the message reaches a multicast group member, a branch is
created. While the zone structure constrains the flooding
necessary to build the tree, it still floods the whole network
zone by zone. Its bandwidth and energy requirements are
thus significant. In addition, this protocol doesn’t provide
generic lookup facilities as it is the case for our DHT based
algorithm.

Similarly to our approach, XScribe [8] and Georendez-
vous [2] use a DHT to support the multicast tree creation.
XScribe is based on CrossROAD [3], a cross-layer DHT for
ad-hoc networks providing the same interface and function-
alities as Pastry [10], but based on a proactive routing pro-
tocol with lower bandwidth requirements. XScribe exploits
the DHT routing capacities to distribute multicast messages.
Unlike our proposal, this system scales poorly as each source
has to know all the members of the group and sends the
multicast messages directly to each member by unicasting
messages, thus generating high communication load on the
source. It does neither try to optimize resource consump-
tion, such as minimizing the number of relay nodes nor the
number of transmission required.

Georendezvous relies on CHR [1], a specialized ad-hoc
DHT that groups nodes in clusters according to their physi-
cal location. The DHT is used to efficiently localize the cell
responsible for a group. The nodes in this cell manage the
membership for the group and forward the multicast to all
the members. Membership management is centralized in a
cell containing multiple nodes, which are also responsible for
distributing multicast messages. Our approach is expected
to produce more efficient multicast trees, with lower band-
width requirements, and to offer better scalability compared
to centralized approaches like shortest path trees.

3. BACKGROUND
As our algorithm builds source-based multicast trees 1, it

requires an efficient way to locate the node responsible for
a group. Thus, as in Scribe [11], we use a DHT specifically
adapted for mobile ad hoc networks [7] to locate the source
without flooding the network. The DHT provides scalability,
efficient lookup and reliability as detailed in section 4.

3.1 The Underlying DHT
The ad-hoc DHT used by our multicast tree construction

algorithm consists of a minimalist logical overlay where all
the nodes of the ad-hoc network are organized in a ring
(see Figure 1). Each node is assigned a random identifier
in the logical space, e.g., by hashing the node’s IP address
using a cryptographic hash function such as SHA-1. The

1The source initiates the content distribution and is partially
responsible for membership management. See section 4 for
a precise description.

Physical network

Physical links
Logical links
Nodes

4

7
8

9

10

11

12

6

5

2

3

1

4

12

9 11

10

2

3

1

5

7

6

8

Figure 1: Illustration of the DHT model for an ad-
hoc network.

nodes are ordered in the logical ring using a proximity metric
based on their unique identifiers. The DHT maps keys to
nodes in the P2P overlay, and the logically nearest node
on the ring (i.e., in the identifier space) is responsible for
the key. Each peer needs to keep track at all times of one
successor and one predecessor, thus building a logical overlay
without long-range neighbors in the logical space. Unlike
most other DHTs (e.g., Pastry [10] or Chord [12]), the long-
range neighbors are spontaneously provided by the physical
neighborhoods of the nodes traversed during the lookup as
illustrated in Figure 1 with an ad-hoc network and its logical
overlay links and the logical shortcuts (physical links).

At each traversed node, the algorithm searches among its
physical and logical neighbors, the current destination and
itself which node is logically closest to the searched key. If
the current node is the closest one, it is thus responsible
for the key and the lookup ends. Otherwise, the message
is forwarded to the selected node, either through a multi-
step path to a logical neighbor or directly delivered to the
designed physical neighbor (long-range link). Figure 2 shows
an example of a path along logical and physical links.

Lo
C

C Lo

Source (lookup destination)

S

R

Logical links
Physical links

Relay node

Long−range links

S

R Origin of the request (node joining the tree)

Intermediate logically closest node

Figure 2: Path of a request routed by the DHT.

We extended this basic algorithm with two improvements.
The first one considers the neighbors of the physical neigh-
bors to extend the visibility and thus providing more long-
range possibilities to the lookup algorithm. In the second

extension, the nodes keep track of the traffic seen but not
intended to them in a cache. Consequently, the cached in-
formation is used by the extended algorithm to increase its
set of available long-range neighbors thus providing a larger
number of shortcuts in the DHT’s logical space.

For more details, we refer the interested reader to [7].

3.2 Experimental Model
We consider that our algorithm runs on simple, resource

limited devices as used for instance in public spaces or office
buildings for personal or professional communication and
data exchange.

We thus consider that all participating devices (nodes)
are uniformly distributed in a Cartesian space where they
can independently decide to move during a finite period
of time t with a speed S randomly chosen in the interval
0 ≤ S ≤ 2 m/s in arbitrary directions to reflect human
displacements. At the end of the period t, a node decides
whether to stay or to move on.

The speed of the nodes may be altered if necessary to con-
tinue their movements into the defined area when reaching
a border. In our experiments, the nodes have on average
13 to 16 direct neighbors. These communicate together by
broadcasting messages (i.e., each node within the communi-
cation range is then able to listen to them) hence forming a
connected network supported by an implementation of the
ad-hoc on-demand distance vector (AODV) protocol [9] for
multi-hop communication.

We consider that unidirectional communications can be
detected and hidden at the network layer (i.e., all the links
are bidirectional).

We do not consider unexpected departures of nodes. How-
ever, our algorithm may use the underlying DHT lookup fa-
cilities to easily and efficiently find a new parent in case of
unexpected disconnection. Therefore, no additional control
traffic will be generated by the multicast algorithm to deal
with churn.

Finally, we assume that only a small subset of the nodes in
the network is interested in the multicasted content (no more
than 10%). Indeed, if the proportion of multicast members
is too big, broadcasting techniques are better adapted.

3.3 Terminology

In order to facilitate the reading of the following sections,
we fix here the terminology we use to describe the different
roles of nodes running the multicast algorithm. The terms
we use are hierarchically structured and their definitions are
presented in table 1. Additionally, we illustrated the differ-
ent terms relatively to their position in a sample multicast
tree in figure 3 for better comprehension.

4. TREE CONSTRUCTION ALGORITHM
In ad-hoc networks, multicasting messages to a group of

nodes can be essentially achieved in two different ways. The
first approach relies on flooding the network to discover a
source or to build a tree, the second one uses directed search
methods as done for instance in Scribe [11]. As flooding
tends to overload the network, involves many uninterested
nodes and scales poorly, it is preferable to use the second
approach which is more bandwidth and energy efficient.

Thus, to construct a multicast tree, we first lookup the
data source, which acts as a rendez-vous point (i.e., tree

Table 1: Terminology

Term Definition

Nodes All the nodes in the system.
Members All the nodes interested in a

multicast group.
Non-members All the nodes not member of a

multicast group.
Internal members Members inside the tree helping to

distribute multicast messages
(i.e., members with children).

Leaf members Members at the end of a branch of
the multicast tree (i.e., members
without children).

Relay nodes Non-member nodes relaying multicast
messages.

Non-relay nodes Non-member nodes not included in
multicast tree activities.

Logical tree link
Physical route

Source

Internal member
Relay node

Leaf member

Non−relay node

S

S

Figure 3: Sample tree describing the used terminol-
ogy

root) for the multicast group. Hence, we use a DHT [7] to
efficiently locate the source without flooding the network.
The DHT also provides support to our multicast algorithm
for handling the unexpected departure of an internal mem-
ber. Indeed, a member can easily and efficiently find a new
parent by looking up the DHT with the multicast group key.

Our algorithm strives to construct multicast trees that use
internal members as relays. Membership is handled in a de-
centralized way as a joining node might connect to the tree
without the source being aware of it. Consequently, the load
on the source is reduced and we can avoid bottlenecks. One
tree is constructed per active data source. We assume ”best
effort” delivery for multicast messages; additional mecha-
nisms could be incorporated to implement reliable delivery.

4.1 The Basic Connection Algorithm
The core of the algorithm (called basic) consists in build-

ing a multicast tree using DHT lookups, and then applying
various extensions to improve the tree.

To join the multicast tree, a node routes a request to the
identifier associated with the source of the multicast (group

identifier) using a DHT lookup. As for the underlying DHT,
all the nodes are running the multicast algorithm, but they
are not necessarily members. Thus, they can be used to
provide information on the network state by adding some
knowledge in relayed messages.

When receiving a join request on its way to the source, a
node checks if it is a member of the group. If so, it replies
to the joining node and proposes itself as parent in the mul-
ticast tree. Otherwise, it simply forwards the request to the
next node towards the source (according to the DHT lookup
protocol). Thus, the joining node receives, most of the time,
several potential parents (but at least one as the request is
always routed towards the source).

To join the distribution tree as soon as possible, the re-
quester connects to the first parent it receives. Thereafter,
if it receives further responses from potential parents, it
changes only if (1) it has not already received a multicast
from its parent and; either (2a) the distance to the new par-
ent is shorter than to the old parent and the new distance to
the root is no more than twice the old distance; or (2b) the
new parent is at the same distance as the old one but the
distance to the root has shortened. Distances are computed
according to the number of physical hops. At the end of the
process, the node is connected to the multicast tree with
the member that it considers as being the best (shortest
distance) parent among the received proposals. This par-
ent selection method has been designed empirically so as to
perform well in various scenarios, as shown in Section 5.

With this straightforward algorithm, many members are
connected to the source with direct paths and many relay
nodes are located on the paths from the source to the mem-
bers. In order to improve the tree structure and to reduce
the number of relay nodes involved in multicasting, we pro-
pose a number of extensions presented below. The first one
is applied during lookup, while the second and third ones
rely on information added by nodes to the multicast mes-
sages for reorganizing the tree. Finally, the last one listens
to wireless communications for finding potential children.
These extensions are always cumulated when applied (i.e.,
an extension also incorporates the former ones).

4.2 Finding More Potential Parents
The first extension (Ext. #1) of our algorithm takes ad-

vantage of the broadcast communication feature inherent to
MANETs. Indeed, the nodes that are not part of a commu-
nication but within the communication range of the sender
may listen to it and use the information gathered. In partic-
ular, a node listening to a join message will send a response
to the requester if it is a member of the multicast group.
Listening to communications is typically a cheap operation
as it does not generate extra messages, yet it often allows
the improvement of the tree structure. Moreover, listening
to messages avoids pathological situations where two multi-
hop requests cross, but do not traverse a common node.

The requester can accept such connection proposals as
long as (1) it has not received its first multicast message,
and (2) it has no children. Indeed, as soon as it is integrated
into the tree, the risk to partition it becomes too high: a
situation to be avoided.

4.3 Finding Better Parents
Our second extension (Ext. #2) exploits the multi-hop

path of a multicast message which usually traverses several

1

3

2

Source
Internal members
Leaf members

Relay node
Logical tree link
Physical route

Non−relay node

S
S

Figure 4: Sample scenarios where the tree is not
organized optimally.

relay nodes between a parent and a child in the logical mul-
ticast tree. Two messages from one member to two different
members may traverse a number of common relay nodes as
in scenario 1 presented in Figure 4 (grey circle labeled 1).
In fact, if two messages follow the same physical path, their
destinations are likely to be in the same area of the net-
work. Consequently, a node can inform one of the members
that the other one is possibly a better child or parent in
the multicast tree. This extension is interesting because, by
shortening the distance between parents and children in the
tree, we also reduce the network load.

We propose a solution where no additional messages are
needed. When a relay node relays a multicast message
(uniquely identified by a group and a message identifier)
it memorizes the group, the message identifier, and the des-
tination address. If a relay node receives the same message
(same group and message identifier) intended for another
destination, the relay node adds the previously memorized
address to the message before forwarding it. If more than
one relay node has an address to add, only the last one is
kept in the message; hence space overhead is negligible.

The receiver of a multicast message checks if the address of
a member has been added to the message. If so, the receiver
sends a message to that member and proposes to become
its parent. A reconfiguration takes place only if (1) the new
parent is closer than the current parent (i.e., tree structure
improvement); (2) the resulting configuration is a valid tree
(i.e., tree with no disconnected parts or cycles).

This strict validity check avoids partitioning the tree and
losing the connection with the source. The position in the
tree is given by a tag built by the multicast messages along
their path to the leaf nodes. This tag, together with a times-
tamp provides global tree structure information to the node
with a freshness indication.

By not applying such an integrity check, a descendent
node might propose itself as new parent for one of its ances-
tors thus creating a disconnected cycle.

Physical route
Logical tree link
Relay node

Leaf members
Internal members
Source

Non−relay node

S
S

Figure 5: Scenarios of Figure 4 after applying ex-
tensions.

4.4 Removing Redundant Parents
The next extension (Ext. #3) considers the multi-hop

connections between a member and its children in the mul-
ticast tree. It may happen that a node is both a member of
the logical tree as well as a relay node along a multi-hop path
between a member and one of its children as presented in
scenario 2 of Figure 4 (grey circle labeled 2). Obviously, the
resulting structure is a sub-optimal situation that should be
avoided as the affected member receives the same message
from more than one parent. To deal with this situation, a
member that receives the same message from multiple paths
(both as a relay node and as a member) keeps only one con-
nection with the closer parent and discards the others.

If the member is on a multi-hop path to its parent, as
presented in scenario 3 of Figure 4 (grey circle labeled 3),
it may need to take its parent as a child, or it may need to
promote itself as new inner node of the tree along that path
(i.e., change from leaf member to internal member).

In either case, one physical path is discarded or rear-
ranged, and the number of relay nodes is reduced. Figure 5
exposes the effect of these last two extensions on the tree
presented in Figure 4. One can notice that the tree better
fits to the underlying topology and multicast efficiency is
improved.

4.5 Multicast Message Gathering
Finally, the last extension (Ext. #4) aims, as the first

one, to take advantage of the nodes’ operation by broad-
cast communication. Indeed, during their distribution, mul-
ticast messages may travel near a group member without
being actually received or relayed by it. As communications
are broadcast, members can however gather the information
contained in those messages by simply listening to them.

The source decides to intermittently allow the members
from a selected branch to use this grabbed messages by set-
ting a flag in the multicast message sent to this branch. Each
member from the selected branch tries to find the worst case
it can identify in the subset of valid messages allowed to be
used. The message considered as the worst case is the mes-
sage having the largest distance with its sender.

A message is considered valid if (1) it has the same time
stamp as the last multicast message received by the cur-
rent member; (2) the current member has never considered
the destination as the worst case and; (3a) its destination
is outside the current branch or; (3b) the destination is a
descendant of the current member.

When the candidate message is found in accordance with
the above constraints, the current member proposes to the
addressee to become its parent.

By not applying this method continuously, but intermit-
tently only, the tree structure can stabilize. Thus, when less
improvement possibilities exist, our algorithm tries to pro-
vide fresh enhancement opportunities by correcting a highly
unfavorable situation with the gathered information. More-
over, by opting for an unhandled candidate message only,
a node issues one single message to a new potential child,
hence limiting the network load and avoiding to repeatedly
proposing an identical solution.

5. EXPERIMENTATIONS

5.1 Setup
To evaluate our multicast tree construction algorithm,

we have extended the experimental system already used
for testing our ad-hoc DHT [7]. The simulator is divided
into three layers: the routing, the DHT, and the multicast
layer. These layers communicate together through dedicated
interface methods. We assume that the routing protocol
(AODV) is able to process messages faster than the upper
layers thus avoiding performance interferences.

In this paper, we only simulate simple scenarios based on
the experimental model presented in section 3.2. Our study
presents results issued from static and mobile networks.

DHT identifiers are randomly assigned to nodes, and a
group identifier (mapped to a single source) is randomly se-
lected in the same logical space. We let randomly selected
nodes to join that group. We first “warm up” the underlying
DHT by performing several lookups (100 in our tests); this
allows the nodes to populate their routing tables (see [7] for
details). Then, between one and three non-members join
the tree at each simulation step until the desired number of
members is reached. Concurrently, multicast messages are
sent continuously every one to five simulation step through-
out the tree. We stop the simulation once the tree structure
stabilizes (i.e., when the algorithm stops producing changes
to the tree structure).

We experimented our algorithm in networks of 1, 000 and
5, 000 static and mobile nodes in accordance with the exper-
imental model presented in section 3.2. Results are averages
of ten experiments.

Using these configurations, we have evaluated the different
versions of the multicast tree construction algorithm:

• Basic: the construction algorithm with no extension;
(Section 4.1)

• Ext. #1: during join, members listen and propose
themselves as parent when applicable; (Section 4.2)

• Ext. #2: when sending messages, we try to identify
common sub-paths and reconnect members to better
parents; (Section 4.3)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 50 100 150 200 250 300

C
um

ul
at

iv
e

%
 o

f i
nt

er
na

l m
em

be
rs

Degree of relays

Static basic, 1K nodes
Mobile basic 1K nodes
Static basic 5K nodes
Mobile basic 5K nodes

Static Ext. #4 1K nodes
Mobile Ext. #4 1K nodes
Static Ext. #4 5K nodes

Mobile Ext. #4 5K nodes

Figure 6: Cumulative percentage of members acting
as internal members as a function of their degree
(mobile-static comparison).

• Ext. #3: we prevent nodes to receive duplicate mes-
sages when acting both as member and relay node in
a multicast tree; (Section 4.4)

• Ext. #4: we listen multicast messages to propose to
the members with the biggest physical distance to its
actual parent to become its new parent. (Section 4.5)

Extensions are always cumulated in the presented results
(i.e., extension n also incorporates extension m < n).

We compared the performances of our algorithm with two
other well-known approaches: a unicast information distri-
bution (Unicast) method and a shortest path tree (SPT).

In both approaches, the source controls the membership
and the multicast message distribution. The unicast mes-
sages are sent separately to their destination while the SPT
messages are grouped as long as they have a common next
hop thus forming the shortest path tree.

We are essentially interested in evaluating the tree struc-
ture, the degree of internal members, the number of relay
nodes required to route messages, as well as the relative dis-
tance between two members, the total transmission costs
required to reach all members, and the general multicast
cost.

For the general multicast cost measurement, we use the
metric defined by Jaquet and Rodolakis in [6] as

R(n) = multicast cost
average unicast cost

where the normalized multicast cost is expressed in number
of hops (= number of transmissions) in the multicast tree
and the average unicast cost is the average route length from
the source to a random member. To compute the average
cost of unicast in a defined network size, we consider that the
members are all directly connected to the source, then we
compute the average unicast cost in number of transmission
(= number of hops) as unicast cost reference.

 10

 15

 20

 25

 30

 35

 40

Unicast SPT Basic Ext. #1 Ext. #2 Ext. #3 Ext. #4

%
 o

f r
el

ay
 n

od
es

Variant of the algorithm

Network with 5K mobile nodes
Network with 5K static nodes

Network with 1K mobile nodes
Network with 1K static nodes

Figure 7: Percentage of relay nodes involved
(mobile-static comparison).

 0

 5

 10

 15

 20

 25

 30

Unicast SPT Basic Ext. #1 Ext. #2 Ext. #3 Ext. #4

A
ve

ra
ge

 #
 s

te
ps

 b
et

w
ee

n
tw

o
m

em
be

rs

Variant of the algorithm

Network with 5K mobile nodes
Network with 5K static nodes

Network with 1K mobile nodes
Network with 1K static nodes

Figure 8: Average number of physical steps separat-
ing two members (mobile-static comparison).

5.2 Results

5.2.1 Degree of Member Nodes
Figure 6 compares the number of internal members with

their degree. A small Y value means that the tree includes
only a few internal members. In the same way, a small X
value indicates that the nodes have a small degree.

The ideal case would be many internal members having a
small degree. In the tree produced by the basic algorithm,
for both static and mobile configurations less than 30% of
the members participate in the message distribution (i.e.,
more than 60% are only leaf members) and some of them
show quite a high degree (most notably the source). In con-
trast, when the tree structure has been improved by the
different methods presented in Section 4, more than 50% of
the members help to distribute content, thus act as inter-
nal members. The degree of these internal members does
not exceed 7 for all the considered network sizes. Hence,

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Unicast SPT Basic Ext. #1 Ext. #2 Ext. #3 Ext. #4

R
(n

):
 m

ul
tic

as
t c

os
t

Variant of the algorithm

Network with 5K mobile nodes
Network with 5K static nodes

Network with 1K mobile nodes
Network with 1K static nodes

Figure 9: Multicast cost comparison between differ-
ent network sizes (mobile-static comparison).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Unicast SPT Basic Ext. #1 Ext. #2 Ext. #3 Ext. #4

tr

an
sm

is
si

on
s

Variant of the algorithm

Network with 5K mobile nodes
Network with 5K static nodes

Network with 1K mobile nodes
Network with 1K static nodes

Figure 10: Number of transmission comparison be-
tween mobile and static configurations.

our algorithm contributes to evenly distribute the multicast
and membership management load between the members.
Moreover, for both, the basic and Ext. #4 version, the mo-
bile scenario performs better while including more internal
members. As nodes are moving, they potentially get more
optimization solutions because requests have a higher prob-
ability to pass next to or through a member during the con-
nection process.

5.2.2 Non-member Relays
As a result of the increased number of internal mem-

bers relaying messages, the number of relay nodes decreases.
There is a significant improvement (from almost 40% relay
nodes down to less than 13%) as a result of our extensions
for all network sizes and scenarios (see Figure 7). The short-
est path tree and unicast distribution methods use less relay
nodes than our basic version because they use many times
the same routes to reach the members. In contrast, our ba-

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

500 1K 2.5K 5K

R
(n

):
 m

ul
tic

as
t c

os
t

of nodes in the network

Unicast
Shortest path tree

Basic algorithm
Ext#4 Algorithm

Figure 11: Multicast cost evolution (static configu-
ration).

sic algorithm uses internal members to distribute the multi-
casts hence reducing the transmission load of the source but
adding some new paths and relay nodes to support them.
This is confirmed by the transmission cost (see Figure 10)
that is only slightly higher for our basic algorithm than for
the shortest path tree and noticeably lower than for the uni-
cast distribution method.

Finally, in Figure 7, it can be noticed that the basic algo-
rithm in the mobile context needs more relay nodes. How-
ever, the tree built with all the extensions in the mobile
scenario needs roughly the same number of relay nodes as
the static experiments, which is a remarkable result. Recall
that we let the simulation running after the tree has been
built. For the static situation, it allows for a stabilization
of the tree structure. For the mobile situation, as the nodes
continue to move and as we evaluate the tree at the end of
the simulation only, it demonstrates that our algorithm is
not only able to build efficient multicast trees, but also to
maintain the structure. This interesting fact is confirmed by
the other measurements presented in Figures 6 and 8.

5.2.3 Average Distance Between Member Nodes
Our algorithm builds a tree in which members that are

physically close can discover each other and connect by just
passively gathering information as messages are broadcast.
Thus, the physical path length between two consecutive
members is small, as shown in Figure 8, and in all cases
smaller than the one in the shortest path tree and the uni-
cast solutions. This is not surprising as all the shortest path
tree members are leaf members directly connected to the
source. Therefore, the average distance between two mem-
bers (i.e., the average distance to the source) is maximal
since no connection to a physically close member is envis-
aged. Consequently, the tree built by our algorithm is closely
mapped to the underlying physical topology in mobile and
static environments by connecting physically close members
together. This is a major advantage especially in mobile
ad-hoc networks, because while reducing the physical dis-
tance between two members, the time to rebuild a broken
route is diminished, and the probability that a route breaks
is reduced.

5.2.4 Multicast Cost
Figure 9 illustrates that our algorithm is cheaper in dis-

tributing content than unicasting a message to each member.
The improved algorithm also outperforms the shortest path
tree method. Only our basic algorithm has a cost slightly
higher than the shortest path tree. In fact, as already ex-
plained above, our basic algorithm constructs longer paths
than the shortest path algorithm while using internal mem-
bers to participate in multicast distribution. Those nodes
are not necessarily on the optimal route to the leaf mem-
bers, thus requiring some more transmissions as shown in
Figure 10. Nevertheless, our algorithm requires fewer trans-
missions than the shortest path tree or the unicast in all
other cases, thus avoiding unnecessary energy consumption
and increasing the battery lifetime.

5.2.5 Scalability
One should note that when applying the four extensions,

the physical distance between two members, the number of
involved relay nodes and the degree of internal members are
nearly the same for all the considered network sizes. More-
over, the experimentations with the mobile scenarios have
shown that our algorithm not only builds good multicast
trees, but is also able to maintain its good structure for
all the tested network sizes. These two results support the
claim for the scalability of our approach. This is confirmed
by Figure 11, where the multicast cost of our improved al-
gorithm is not only lower but also grows slower than the
multicast cost of shortest path tree and unicast.

5.2.6 Variability of the results
For several experiments presented here we evaluated the

coefficient of variability (COV). This represents the ratio
of standard deviation to the mean. This allows scale-free
comparisons out of variability consideration, as opposed to
variance measurements.

The average number of steps between two members (Fig-
ure 8) has a maximum COV of 0.7% for all network sizes and
configurations with the extended algorithm. This means
that there are no significant differences between the con-
ducted experiments. Similarly, considering the number of
relay nodes (Figure 7), we obtain a maximum COV of 8%.
Only the number of transmissions varies more, what is a
consequence of the applicability of routing algorithm opti-
mizations relative to the network topologies.

6. CONCLUSION
Although much work has been done on the problem of

multicast in MANETs, most of the solutions use some form
of flooding or centralized solutions that are not scalable. In
this paper, we presented an algorithm for the construction
of efficient multicast trees using an underlying ad-hoc DHT
overlay. Our algorithm strives to create trees that involve
as few relay nodes as possible, requiring a limited amount
of transmissions, with short inter-members paths and good
scalability. Simulation results indicate that our algorithm
meets these objectives in the considered network settings
and also maintains a good structure in a mobile environ-
ment.

7. ACKNOWLEDGEMENT
This research was partially supported by the Swiss Na-

tional Science Foundation under grant number 5005-67322
(NCCR-MICS) and by the MiNEMA Research Network.

8. REFERENCES
[1] F. Araujo, L. Rodrigues, J. Kaiser, C. Liu, and

C. Mitidieri. CHR: A distributed hash table for
wireless ad hoc networks. In ICDCSW ’05, pages
407–413, Washington, DC, USA, 2005. IEEE
Computer Society.

[2] N. Carvalho, F. Araujo, and L. Rodrigues. Reducing
latency in rendezvous-based publish-subscribe systems
for wireless ad hoc networks. In ICDCSW ’06, page 28,
Washington, DC, USA, 2006. IEEE Computer Society.

[3] F. Delmastro. From pastry to CrossROAD:
CROSS-layer ring overlay for AD hoc networks. In
PERCOMW ’05, pages 60–64, Washington, DC, USA,
2005. IEEE Computer Society.

[4] V. Devarapalli and D. Sidhu. MZR: a multicast
protocol for mobile ad hoc networks. volume 3, pages
886 – 891, 2001.

[5] Z. Haas. A new routing protocol for the reconfigurable
wireless networks. In IEEE 6th International
Conference on Universal Personal Communications
Record, volume 2, pages 562–566, San Diego, CA,
USA, 1997.

[6] P. Jacquet and G. Rodolakis. Multicast scaling
properties in massively dense ad hoc networks. 11th
International Conference on Parallel and Distributed
Systems, Volume 2:93 – 97, July 2005.

[7] R. Kummer, P. Kropf, and P. Felber. Distributed
lookup in structured peer-to-peer ad-hoc networks. In
R. Meersman and Z. Tari, editors, On the Move to
Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, volume 4276 of Lecture Notes
in Computer Science, pages 1541–1554. Springer
Berlin / Heidelberg, 2006.

[8] A. Passarella, F. Delmastro, and M. Conti. XScribe: a
stateless, cross-layer approach to P2P multicast in
multi-hop ad hoc networks. In MobiShare ’06, pages
6–11, New York, NY, USA, 2006. ACM Press.

[9] C. E. Perkins and E. M. Royer. Ad-hoc on-demand
distance vector routing. MILCOM ’97, 1997.

[10] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In Middleware 2001,
volume 2218 of Lecture Notes in Computer Science,
pages 329–350. Springer Berlin / Heidelberg, 2001.

[11] A. Rowstron, A.-M. Kermarrec, M. Castro, and
P. Druschel. SCRIBE: The design of a large-scale
event notification infrastructure. In Networked Group
Communication, pages 30–43, 2001.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM
’01, pages 149–160, New York, USA, 2001. ACM
Press.

