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a b s t r a c t

We consider models of N interacting objects, where the interaction is via a common
resource and the distribution of states of all objects. We introduce the key scaling concept
of intensity; informally, the expected number of transitions per object per time slot is of the
order of the intensity. We consider the case of vanishing intensity, i.e. the expected number
of object transitions per time slot is o(N). We show that, under mild assumptions and for
large N, the occupancy measure converges, in mean square (and thus in probability) over
any finite horizon, to a deterministic dynamical system. The mild assumption is essentially
that the coefficient of variation of the number of object transitions per time slot remains
bounded with N. No independence assumption is needed anywhere. The convergence
results allow us to derive properties valid in the stationary regime. We discuss when one
can assure that a stationary point of the ODE is the large N limit of the stationary probability
distribution of the state of one object for the system with N objects. We use this to develop
a critique of the fixed point method sometimes used in conjunction with the decoupling
assumption.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We consider models of objects interacting in discrete time, where objects are observable only through their state. Objects
interact with each other and with a resource, which also has a finite number of states. We are interested in the case where
the number N of objects is large compared to the number of possible states for one individual object or for the resource.

A number of papers have addressed such models — see for example [1–4]. In the limit of large number of objects, it
is found that the system can be approximated by a deterministic, usually non linear, dynamical system, called the mean
field limit. The mean field limit is in discrete or continuous time, depending on how the model scales with the number of
objects. More precisely, if the expected number of transitions per object per time slot vanishes when N grows, the limit is in
continuous time; this is the case considered in this paper. Otherwise, the limit is in discrete time — see [3] for such a case.

Our goal is twofold: (1) find results that are widely applicable in practice, i.e. the model should be as little constrained
as possible and (2) the technical assumptions should be reasonably simple to verify. The model of Benaïm and Weibull [2]
(discussed in detail in Section 4.3) comes close to these goals, but its applicability is limited in some cases, as it does not
allow a resource nor, for example, pairwise meetings of objects. The model of Sharma, Ganesh and Key [1] goes one step
beyond and considers concurrent transitions; this was used there to provide the first mean field analysis of the 802.11 MAC
protocol with one base station. The model of Bordenave, McDonald and Proutière [4,5] offers more expression power; it
supports a resource, which was used in [5] to extend the analysis of [1] to multiple base stations.

Still, the model in [5] has some limitations, which we overcome in this paper. First, the required assumptions are complex,
perhaps because [5] allows an infinite, enumerable state space for one object and for the resource. In contrast, we consider
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only the finite case. Second, convergence to the mean field is established using compactness arguments typical of weak
convergence over infinite horizons, which does not allow to make statements for the stationary regime, other than in the
case where the mean field limit has a unique global attractor. Third, the model assumes that objects independently decide
whether they will attempt to make a transition (see Section 4.4 for details). This limits the applicability of their model; for
example, in a pairwise interaction model, exactly two objects do a transition at every time slot; given that two objects have
decided to do a transition, all other objects cannot. We find that this restriction is unnecessary; it appears that convergence
to the mean field derives from exchangeability arguments and not from independence.

In this paper we propose a generic mean field interaction model for N interacting objects and a resource. Informally,
we assume that (1) the model scales with N such that the intensity, i.e. the number of transitions per object per time slot
vanishes, and (2) the coefficient of variation of the total number of objects that do a transition in one time slot remains
bounded. We also make some mild regularity assumptions on the model parameters. All assumptions are simple to verify
(Section 3), and are illustrated by several examples in Section 4. We do not assume any form of independence in the
transitions of objects or of the resource.

In Section 5, we show convergence to a deterministic system, solution of an Ordinary Differential Equation (ODE). We
also explain on one example how to derive the ODE in a straightforward manner (Section 4.1). The convergence is in mean
square and in probability over any finite horizon. The method of proof is inspired by the large body of results for stochastic
approximation algorithms [6–9]. In Section 6 we review and exploit the link between convergence to mean field, the mean
field approximation and the decoupling assumption.1 Then we establish results for the stationary regime (Section 7). For
large N, the stationary distribution of the occupancy measure of all objects tends to be supported by the Birkhoff center of
the ODE (see Section 7 for a definition). If the ODE has a unique global attractor, we recover that the stationary distribution of
the occupancy measure is concentrated at this attractor. Last, we point to the well known fact that uniqueness of a stationary
point of the ODE does not imply convergence to this stationary point, and develop from there a critique of the so-called fixed
point method, sometimes used to analyze systems of interacting objects in stationary regime (Section 8). Proofs are given
in appendix.

Our model is motivated by the case where the intensity (number of transitions per object per time slot) is of the order of
1
N

, but we give a general treatment, which does not make any assumption on the rate of decay of the intensity, as it appears
that this does not make the model any more complex.

2. Notation List

∆ = {Em ∈ RI,
I∑

i=1
mi = 1 and mi ≥ 0 for all i}

Eei = (0, . . . , 1, . . . 0)T where 1 is at the ith position
ε(N) intensity; the number of transitions per object per time slot is order of ε(N);

a typical case is ε(N) =
1
N

; Eq. (6)
ηN stationary probability distribution of YN(t)

EfN( Em, j) drift, the expected change to MN in one time slot; Eq. (4)

Ef ( Em, j) = lim
N→∞

EfN( Em, j)

ε(N)
EF( Em) right-handside of ODE, Eq. (15)

Φτ( Em) flow induced by the ODE, Eq. (16)
I number of states for one object
J number of states for the resource

KN
j,j′( Em) transition matrix for resource, Eq. (3)
MN(t) occupancy measure of XN

n (t), Eq. (2)

M̄N(τ) time-rescaled occupancy measure; defined for τ ∈ R+ and such that M̄N
(

t

N

)
= MN(t) for all t ∈ N

Eµ(τ) mean field limit, deterministic limit of M̄N(τ) for large N
N number of objects

PN
i,i′( Em, j) marginal transition probabilities for one object, Eq. (5)

$N stationary probability distribution of MN(t)
R = {1, 2, . . . , J}, state space for the resource

RN(t) state of resource at time t ∈ N
S = {1, 2, . . . , I}, state space for one object

XN
n (t) state of object n at time t ∈ N

YN(t) = (XN
1 (t), . . . , XN

N(t), RN(t)), state of the entire system.

1 We call “mean field approximation” the independence assumption that is asymptotically true when N is large. This should not be confused with the
approximation that consists in replacing a non-mean field interaction model with a mean field interaction model. This is also sometimes called the mean
field approximation, as e.g. in [10].
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3. Definition of the mean field interaction model with vanishing intensity

3.1. Definition of mean field interaction model

Time t ∈ N is discrete. There are N objects. Object n has a state XN
n (t) in the finite set S = {1, 2, . . . , I}. There is a common

ressource RN(t) in the finite set R = {1, . . . , J}. We assume that YN(t) = (XN
1 (t), . . . , XN

N(t), RN(t)) is a homogeneous Markov
chain on SN

×R. Furthermore, we assume that we can observe the state of an object but not its label n. Mathematically, this
translates into the assumption that the transition kernel KN of YN(t) is invariant under any permutation of the labeling of
the N objects. KN is defined by

KN(i1, . . . , iN, j; i
′

1, . . . , i
′

N, j
′) = P

(
XN

1 (t + 1) = i′1, . . . , X
N
N(t + 1) = i′N, R

N(t + 1) = j′∣∣∣XN
1 (t) = i1, . . . , X

N
N(t) = iN, R

N(t) = j
)

and the assumption is that, for any permutation σ of the index set {1, 2, . . . ,N}:

KN(i1, . . . , iN, j; i
′

1, . . . , i
′

N, j
′) =KN(iσ(1), . . . , iσ(N), j; i

′

σ(1), . . . , i
′

σ(N), j
′). (1)

The process YN(t) is called a mean field interaction model with N objects.
Define the occupancy measure MN(t) as the vector of frequencies of states i ∈ S at time t, i.e.:

MN
i (t) =

1
N

N∑
n=1

1
{XNn (t)=i}. (2)

Since we assume that objects can be observed only through their states, it follows that (MN(t), RN(t)) is also a homogeneous
Markov chain. Its state space is ∆×R, with ∆ = {Em ∈ RI,

∑I
i=1 mi = 1 and mi ≥ 0 for all i}. The process (XN

1 (t),MN(t), RN(t))
is also Markov. This means that the evolution of one object XN

1 (t) depends on the other objects only through the occupancy
measure MN(t) and the resource RN(t).

Note that we do not assume any form of independence between object transitions. The transitions of different objects
may be dependent, as they may be dependent on the transition done by the resource.

3.2. Intensity

We are interested in asymptotic results when the number of objects N is large. For this, we need further assumptions on
how KN scales with N, as different models lead to different scaling results. In this section we give an intuitive introduction
to the concept of intensity of the mean field interaction model; informally, it may be defined such that the probability that
one arbitrary object does a transition in one time slot is of the order of the intensity. A formal definition uses the drift and
is given in the next section.

For example, in the model of Le Boudec, McDonald and Mundinger [3], every object does order of one transition per time
slot; an intensity is the constant 1 and there is an asymptotic result at the natural time scale: under mild assumptions, the
random process MN(t) converges to a deterministic discrete time process Eµ(t) as N → ∞, called the mean field limit. Here
the intensity does not vanish as N grows and the limiting process Eµ(t) is in discrete time.

In contrast, consider the models of Benaïm and Weibull [2] and of Bordenave, McDonald and Proutière [5]; these models
are different, but they have in common that an object does one transition in one time slot with probability 1/N; here an
intensity is ε(N) = 1/N; it vanishes as N grows, and, to obtain an asymptotic result, we need to re-scale the process to
continuous time. The re-scaled process M̄N(τ) (τ ∈ R+) that corresponds to MN(t) (t ∈ N) is such that

M̄N
(

t

N

)
= MN(t) for all t ∈ N

In [2], M̄N(τ) is taken to be the piecewise linear interpolation that satisfies Eq. (14) (and is thus continuous). In [5], M̄N(τ)
is taken to be piecewise constant and right continuous. These are inessential differences, which influence only the details
of the proofs of convergence. It is found in [2,5] that M̄N(τ) converges to a continuous time deterministic process Eµ(τ) as
N→∞. The mean field limit Eµ(τ) is solution of an ODE.

In this paper we generalize the results of [2,5] and consider a larger class of mean field interaction models that have in
common that the intensity goes to 0 when N→∞. In other words, the expected number of object transitions per time slot
per object is o(1), and the expected number of object transitions per time slot is o(N).

3.3. Definition of mean field interaction model with vanishing intensity

We now precisely define the hypotheses we put on the mean field interaction model to ensure convergence to the mean
field. We give a simple set of conditions, that should be easy to verify by inspection. In the appendix we give a more abstract
set of conditions.
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We assume a mean field interaction model as in Section 3.1. We assume the most general model, i.e. transitions of
different objects and of the resource may be dependent (there may be several correlated transitions in one time slot). Our
hypotheses are conditions on how the model parameters scale with N, plus some mild regularity assumptions.

Define KN( Em), the marginal transition matrix for the resource:

KN
j,j′( Em) = P

(
RN(t + 1) = j′|MN(t) = Em, RN(t) = j

)
. (3)

Note that by the assumptions in Section 3.1 KN
j,j′( Em) is indeed independent of t and n.

Also define the drift EfN( Em, j) for Em ∈ ∆ and j ∈ R as the expected change to MN in one time slot:

EfN( Em, j) = E
(
MN(t + 1)−MN(t)

∣∣∣MN(t) = Em and RN(t) = j
)

=
∑

(i,i′)∈S,i6=i′
miP

N
i,i′( Em, j) (Eei′ − Eei) (4)

where PN is the marginal transition probability for an arbitrary object:

PN
i,i′( Em, j) = P

(
XN
n (t + 1) = i′

∣∣∣MN(t) = Em, RN(t) = j, XN
n (t) = i

)
. (5)

The assumptions are as follows.
H1 (The resource does not scale with N). limN→∞ KN

j,j′( Em) = Kj,j′( Em) exists for all Em ∈ ∆, (j, j′) ∈ R2. The matrix K( Em) is
indecomposable2 for all Em ∈ ∆.

H2 (Intensity vanishes at a rate ε(N)). There exists a function ε(N) (the “vanishing intensity”) such that limN→∞ ε(N) = 0
and

lim
N→∞

EfN( Em, j)

ε(N)
= Ef ( Em, j) exists for all Em ∈ ∆, j ∈ R. (6)

H3 (Secondmoment of number of object transitions per time slot). Let WN(t) be an upper bound on the number of objects
that do a transition in time slot t, i.e.

∑
n 1
{XNn (t)6=XNn (t+1)} ≤ WN(t + 1). We assume that

E
(
WN(t)2

)
≤ c1N

2ε(N)2

where c1 is a constant (independent of t, N).

The next assumptions require that KN and EfN depend on N as a smooth function of 1
N

that is well defined at the limit of
N→∞.
H4 (KN

j,j′( Em) is a smooth function of 1
N
and Em). For all (j, j′) ∈ R2, there exists αj,j′ > 0 and a function κj,j′( Em,α) defined on

∆× [0,αj,j′ ] such that κj,j′ has continuous derivatives everywhere (including at the boundary of its domain) and

KN
j,j′( Em) = κj,j′

(
Em,

1
N

)
. (7)

H5 (fN( Em, j) is a smooth function of 1
N
and Em). For all j ∈ R there exists βj > 0 and a function ϕj( Em,α) defined on ∆×[0,βj]

such that ϕj has continuous derivatives everywhere (including at the boundary of its domain) and

EfN( Em, j)

ε(N)
= ϕj

(
Em,

1
N

)
. (8)

Comment 1.
A sufficient (but not necessary) condition for H2 is

H2a limN→∞
PN
i,i′

( Em,j)

ε(N)
= Pi,i′( Em, j) exists for all Em ∈ ∆, j ∈ R and (i, i) ∈ S2, i 6= i′. In other words, the probability transition

for one object scales like ε(N).
This makes a bridge with the intuitive interpretation of the intensity given in Section 3.2. Indeed, let VN(t + 1) be

the frequency of objects that do a transition in time slot t + 1, i.e.

VN(t + 1) =
1
N

N∑
n=1

1
{XNn (t+1)6=XNn (t)}.

Then

lim
N→∞

E
(
VN(t + 1)|MN(t) = Em, RN(t) = j

)
ε(N)

= lim
N→∞

∑
i∈S

∑
i′∈S,i′ 6=i

miP
N
i,i′( Em, j)

ε(N)
=
∑
i6=i′

miPi,i′( Em, j)

2 I.e. it has a unique invariant probability.
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so, if H2a holds, we recover the intuitive interpretation that the expected number of transitions per object per time
slot is of the order of the intensity.

If H2aholds, then one can interpretH3 as follows: the coefficient of variation3 of the number of objects that do a transition
in one time slot remains bounded for large N.
Comment 2.
H4 and H5 may be verified by showing that KN

j,j′( Em) is a combination of a finite number of known functions with continuous
derivatives (such as polynomials, exponentials, logarithms, etc.), which is well defined even if we replace 1

N
by 0. See

Section 4.1 for an example. Note that Kj,j′ = κj,j′( Em, 0) and Ef ( Em, j) = ϕj( Em, 0).

4. Examples

In this section we review new and existing examples and show that they fit in our framework.

4.1. Two-step malware propagation

This is a small, numerical example that serves as illustration in various parts of the paper. An object is a node in a peer
to peer or an ad-hoc mobile network. Nodes can be infected by malware, and the infection may occur in two forms. In a
first form, an infected node becomes dormant — it does not show any symptom. A node may become dormant by contact
with another dormant node or by contact with a web service that contains malware. A dormant node may become active
(i.e. malignant) by meeting with another dormant node; or, in special conditions (for example presence of both nodes close
to a wireless access point) by interaction with an already active node. Nodes that are neither dormant nor active are said to
be susceptible. Susceptible nodes may directly become dormant or active by infectious contact with email.

We can model such a system of N nodes as a mean field interaction model. The state space for objects is S= {“D”, “A”, “S”}
(for dormant, active and susceptible). There is no resource in this simplified model. We denote the occupancy measure with
MN(t) = (DN(t), AN(t), SN(t)).

The interaction can be simulated using the following rules. At every time step, one node, say n, is picked at random
among N.
(1) (Case 1) If n is dormant, it may recover and become susceptible, with probability δD. (Case 2) It may create a rendez-vous

with another dormant node, if it succeeds, both become active. This occurs with probability proportional to the frequency
of other dormant nodes λ(NDN

− 1)/N.
(2) If n is active, it may do one of the following two actions. (Case 3) The former is to change the state of a dormant node.

This occurs with a probability β DN

h+DN . This probability depends on DN via a saturating function: it increases up to some
maximum value β [11]. This expresses a dependency on limited resources. If this transition occurs, the dormant node
that is affected is chosen randomly uniformly. There is no change to n. (Case 4) The second possible action is to return
to the susceptible state, with probability δA.

(3) (Case 5) If n is susceptible, it may become dormant with probability α0+rDN; α0 models infection by email (independent
of the state of the system) and rDN the probability that n becomes infected by contact with a dormant node. (Case 6) Else,
it may directly become active, with probability α.

The sum of all probabilities in any of the cases is less than 1, so it is also possible that node n performs no action.
We now compute the drift EfN(D, A, S), using the equation

drift =
∑
cases

prob of case × effect of case on MN (9)

where “effect” means the contribution to MN(t + 1)−MN(t). The cases, their probabilities and effects can be obtained from
the above description and are in Table 1. Recall that the occupancy measure MN is here denoted with (D, A, S). Thus

EfN(D, A, S) =
1
N


−DδD − 2Dλ

ND− 1
N
− Aβ

D

h+ D
+ S(α0 + rD)

2Dλ
ND− 1

N
+ Aβ

D

h+ D
− AδA + Sα

DδD + AδA − S(α0 + rD)− Sα

 . (10)

We now check the hypotheses. There is no resource so H1 and H4 are trivially true. We have

lim
N→∞

EfN(D, A, S)

1/N
=


−DδD − 2D2λ− Aβ

D

h+ D
+ S(α0 + rD)

2D2λ+ Aβ
D

h+ D
− AδA + Sα

DδD + AδA − S(α0 + rD)− Sα

 = Ef (D, A, S) (11)

thus H2 is satisfied with intensity ε(N) = 1
N

.

3 The coefficient of variation of a nonnegative random variable that is not identically 0 is the ratio of its standard deviation to its mean.
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Table 1
Probabilities and effects for Example in Section 4.1

Case Prob Effect on (D, A, S)

1 DδD
1
N (−1, 0, 1)

2 Dλ ND−1
N

1
N (−2,+2, 0)

3 Aβ D
h+D

1
N (−1,+1, 0)

4 AδA
1
N (0,−1,+1)

5 S(α0 + rD) 1
N (+1, 0,−1)

6 Sα 1
N (0,+1,−1)

Fig. 1. Example in Section 4.1. Evolution over time of proportions of dormant D(t) versus active nodes A(t). The third variable S(t) is not shown since
D(t)+ A(t)+ S(t) = 1. Top: mean field limit, obtained by numerical solution of the ODE in Eq. (17). Bottom: simulation with N = 1000 nodes. The cross is
the stationary point, obtained by solving F(D, A, S) = 0 for (D, A, S) ∈ ∆. We numerically find that it is a global attractor. The small circle is the initial value
(i.e. at time 0). Parameters: β = 0.01, δA = 0.005, δD = 0.0001,α0 = α = 0.0001, h = 0.3, r = 0.1,λ = 0.0001.

The number of objects that do a transition in one time slot is 0, 1 or 2, therefore a bound on its mean square is c1 = 4,
and H3 is satisfied. Finally, EfN(D, A, S) is a rational fraction with respect to Em and 1/N thus H5 is satisfied.

See Fig. 1, bottom panels, for a numerical example.

4.2. One object per time slot. game theory Benaïm and Weibull [2,12]

In the model of [2], the resource RN(t) is absent, i.e. YN(t) = (XN
1 (t), . . . , XN

N(t)). An object is a player, and its state is
i = (r, h) where r is the player’s role (or position) and h is the strategy chosen at this time.

In every time slot exactly one object, randomly chosen among N, does a transition, using the transition matrix A(MN(t)).
The model is completely specified by its initial condition and the matrix A( Em) for all Em ∈ ∆.
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Benaïm and Weibull show in [2] almost sure convergence of M̄N(τ) to a deterministic Eµ(τ) over any finite time horizon
(τ ∈ [0, T]). Further, large τ asymptotic results are also given.

This fits our framework, with PN
i,i′( Em) = 1

N
Ai,i′( Em) for i 6= i′, which shows that an intensity is ε(N) = 1

N
. We can also recover

the intensity by observing that the number of transitions in one time slot per object is Bernoulli (1/N).
The total number of transitions per time slot is constant equal to 1, therefore the bound in H3 is satisfied. Benaïm and

Weibull [12] generalize the model to make A( Em) dependent on N.

4.3. Poisson(1) object per time slot. mac protocol. Bordenave, McDonald and Proutière [5]

The model in [5] is more general than our framework, as it allows the state space S for one object or for the resource
R to be infinite. This is at the expense of considerable complexity. In this section, we study the simplified model obtained
from [5] when we impose that R and S are finite.

This model is used to evaluate the performance of Medium Access Control (MAC) used in Wireless LANs. Here an object
is a wireless transmitter, its state is its backoff or transmit stage; the resource represents the states (idle, in collision, in
transmission) of a small number of channels.

At every time slot, every object decides to try a transition or not, with probability 1/N, independent of each other and of
all past. Given that an object decides to try a transition, the probability that it moves from i to i′, given that the resource is
in state j and the occupancy measure is Em is AN

i,i′( Em, j). As in our model, transitions of several objects and the resource are
typically not independent. It is assumed that AN

i,i′( Em, j) → Ai,i′( Em, j) as N → ∞. The initial distribution of object states is
assumed to be exchangeable.

Bordenave et al. [5] find a weak convergence result for M̄N(τ) to a deterministic process Eµ(τ) over infinite horizons. An
asymptotic result for large τ is also given in the case where the deterministic limit has a unique attractor towards which all
trajectories converge. We show later in this paper results that generalize these findings.

This model fits in our framework, with PN
i,i′( Em) = 1

N
AN
i,i′( Em) for i 6= i′, which shows that an intensity is ε(N) = 1

N
.

An upper bound on the number of objects that do a transition isWN(t), the number of objects that decide to try a transition.
WN(t) ∼ Bin(1/N,N) thus E

(
WN(t)2)

= 2 − 1
N
≤ 2, which shows that H3 is satisfied. The other conditions (or in fact more

general forms, as in the appendix of this paper) are met.

4.4. Pairwise interaction/arbitrary interaction

This appears to be a new type of mean field interaction model, which we define as follows. At every time slot, the resource
RN does a transition independently of the past according to some transition kernel KN . Then an ordered pair of objects (n1, n2)
is picked at random uniformly among the N(N − 1) possible ones. The two objects do a transition independent of the past
according to

P
(
XN
n1

(t + 1) = i′1, X
N
n2

(t + 1) = i′2

∣∣∣ XN
n1

(t) = i1, X
N
n2

(t) = i2,M
N(t) = Em, RN(t + 1) = j

)
= LNi1,i2;i

′
1,i′2,( Em, j)

where LN( Em, j) is a stochastic matrix. We assume that for large N the matrices KN( Em) and LN( Em, j) converge to some K( Em) and
L( Em, j).

This can be used to model pairwise interaction, as for example in [3] where an object is a reputation record held by
one peer about some common subject. When two peers meet, they influence each other’s opinion and may modify their
reputation records. An example can also be found in distributed robotics [13].

This fits in our model. Intuitively, an intensity is 1
N

since an object is picked in one time slot with probability 2
N

. Formally,
the drift is

EfN( Em, j) =
∑
i1,i2

mi1

Nmi2 − 1{i1=i2}
N − 1

Li1,i2;i
′
1,i′2

( Em, j)
Eei′1 + Eei′2 − Eei1 − Eei2

N
(12)

and thus NEfN( Em, j)→ Ef ( Em, j) with

Ef ( Em, j) =
∑

i1,i2,i′1,i′2

mi1mi2Li1,i2;i
′
1,i′2

( Em, j)
(
Eei′1 + Eei′2 − Eei1 − Eei2

)
(13)

which establishes H2. The total number of transitions in one time slot is upper bounded by the constant equal to 2, this
shows H3. The other assumptions are satisfied if the transition matrices are smooth enough.

This model can easily be extended to interaction with arbitrary numbers of objects, provided that the expected number
of objects involved in an individual meeting grows less fast than N. More precisely, assume that in one time slot we pick
BN objects and decide that they do a meeting (BN

= 2 for pairwise interaction). We allow BN to be random, with mean βN

and standard deviation σN . If βN = o(N) and σN/βN = O(1) then the model is a mean field interaction model with vanishing
intensity ε(N) = βN

N
. For example, the number of objects involved in a meeting may be order of

√
N or ln N.
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5. Convergence to mean field

5.1. The mean field limit

We define the re-scaled process M̄N as a continuous time process that satisfies{
M̄N(tε(N)) = MN(t) for all t ∈ N
M̄N(τ) is affine on τ ∈ [tε(N); (t + 1)ε(N)]

(14)

and we similarly define X̄N
n (τ) as a re-scaled version of XN

n (t).
We find convergence results for M̄N(τ) to a deterministic process Eµ(τ), which satisfies the ODE

d Eµ
dτ
= EF( Eµ) with EF( Em) =

J∑
j=1
πj( Em)Ef ( Em, j) (15)

where π( Em) is the invariant probability of the transition matrix K( Em) (i.e. π( Em)K( Em) = π( Em) and
∑

j πj( Em) = 1), which is
unique by H1, and Ef is defined in H2.

5.2. Convergence result

Let Φτ( Em) be the solution at time τ of the ODE (15) with initial condition Em, i.e.
dΦτ( Em)

dτ
= EF (Φτ( Em))

Φ0( Em) = Em.
(16)

It follows from H4 and H5 that Φτ( Em) is well defined for all τ ≥ 0 and Em (see Appendix A for details).
The central result is the following bounding theorem and its corollary, from which we derive both convergence to the

mean field and properties of the stationary regime.

Theorem 1. For all T > 0 there exists constants C1(T), C2(T) and a random variable BN(T) such that

sup
0≤τ≤T

∥∥∥M̄N(τ)− Φτ( Em)
∥∥∥ ≤ C1(T)

(
BN(T)+

∥∥∥MN(0)− Em
∥∥∥)

and

E
(∥∥∥BN(T)

∥∥∥2
)
≤ C2(T)ε(N).

Corollary 1. If MN(0)→ Em in probability [resp. in mean square] as N→∞ then sup0≤τ≤T
∥∥M̄N(τ)− Eµ(τ)

∥∥→ 0 in probability
[resp. in mean square], where Eµ(τ) satisfies the ODE (15) and Eµ(0) = Em.

The corollary can be used to approximate MN(t) for the system with N objects by Eµ(tε(N)) where Eµ is the solution of the
ODE with same initial condition.

A numerical illustration is shown in Fig. 1 for the malware propagation example in Section 4.1. Here the occupancy
measure is (D, A, S) and the ODE for the mean field limit is

dD
dτ
dA
dτ
dS
dτ

 = Ef (D, A, S) (17)

with Ef defined in Eq. (11).

6. Mean field independence and decoupling assumption

When convergence of the occupancy measure to a deterministic limit does occur, we have an additional well known
property, due to Sznitman, called Mean Field Independence, or Propagation of Chaos (see also [14,10,15]). We recall it now as
it is required for the discussion in Section 8.



Author's personal copy

M. Benaïm, J.-Y. Le Boudec / Performance Evaluation 65 (2008) 823–838 831

Theorem 2 ([16]). Consider a mean field interaction model with vanishing intensity and assume that the initial occupancy
measures are such that the assumptions of Corollary 1 hold. Assume in addition that the collection of objects at time
0 (XN

1 (0), . . . , XN
N(0)) is exchangeable. For any fixed k and τ:

lim
N→∞

P
(
X̄N

1 (τ) = i1, . . . , X̄
N
k (τ) = ik

)
= µi1(τ) · · ·µik(τ). (18)

The theorem can be used to do the following approximation:

P
(
XN

1 (t) = i1, . . . , X
N
k (t) = ik

)
≈ µi1

(
t

N

)
· · ·µik

(
t

N

)
(19)

i.e. the distribution of XN
n (t) can be approximated by Eµ( t

N
) and any finite number of objects are approximately independent.

Eq. (19) is called the mean field independence or decoupling property. Note that any two objects are asymptotically
independent of each other, but they still depend on the occupancy measure.

Note that we cannot always assume that the collection of objects is exchangeable at time 0 (and in the rest of this paper
we do not make any such assumption).4

We can still find a relation between the distribution of one object and the mean field limit, if some stronger assumption
holds on the stationary regime of the ODE, as we see in the next section.

7. Stationary regime

We are interested in the stationary regime of MN and how it relates to the stationary regime of the ODE.
A general statement can be made using the concept of Birkhoff Center. For Em ∈ ∆ the omega limit set of Em, denoted ω( Em)

is the set of points Ep = limτk→∞ Φτk( Em) for some τk →∞. It is a nonempty compact invariant subset of ∆. A point Em ∈ ∆ is
said to be recurrent if Em ∈ ω( Em). The Birkhoff center of Φ is the closure of the set of recurrent points. For example, on Fig. 2,
the Birkhoff center is the union of the limit cycle and the stationary point.

YN(t) = (XN
1 (t), . . . , XN

n (t), RN(t)) is a Markov chain with finite state space, therefore it has some invariant probability. Let
ηN be one of them; if YN is irreducible, ηN is unique and can be interpreted as the stationary regime for YN . We denote with
PηN the probability obtained when we initialize YN with ηN . Under PηN ,

(
YN(t)

)
t∈N is thus a (strict sense) stationary sequence.

Let$N be the corresponding probability distribution for MN , i.e.

PηN
(
MN(t) ∈ A

)
=

∫
A
$N(dx)

for any measurable subset A of ∆. We say that a probability$ on ∆ is a limit point for$N if there is sequence Nk →∞ such
that$Nk → $. The last limit is in the weak sense, i.e. for any continuous function h defined on ∆,

lim
k→∞

∫
∆

h(x)$Nk(dx) =
∫
∆

h(x)$(dx).

The following theorem is a quite general result. It is a consequence of Theorem 1 and can be proven as in Corollary 3.2
in [9].

Theorem 3. The support of any limit point of $N is a compact set included in the Birkhoff center of Φ.

In some cases, we can say more.

Corollary 2. Assume the ODE (15) has a unique stationary point Em∗ to which all trajectories converge.
(1) Under the stationary distributions ηN , MN(0) converges in distribution and in probability to Em∗
(2) Assume ηN is exchangeable. For any fixed k and t,

lim
N→∞

PηN
(
XN

1 (t) = i1, . . . , X
N
k (t) = ik

)
= m∗i1 . . .m∗ik .

(Proof in appendix). Item 2 assumes that the distribution of the stationary regime is invariant by permutation of the object
labels. This occurs necessarily if YN is irreducible, since then there is a unique stationary regime, and by the symmetry
assumptions in Section 3.1 it must be exchangeable. Item 2 states that k objects are asymptotically independent in the
stationary regime. This implies (by taking k = 1) that

lim
N→∞

ηN
1 = Em

∗

where ηN
1 is the stationary distribution for one object.

If we assume in addition that the Markov chain YN is irreducible for any N, then we have a result independent of initial
conditions. It follows from Corollary 2 after noticing that, in this case, the sample path averages converge to the stationary
distribution, by the ergodic theorem of Markov chains:

4 This is particularly true if we are interested in the evolution of objects that start from different initial conditions — see [3] for some examples
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Fig. 2. Example in Section 4.1, same parameters as Fig. 1 except h = 0.1. Evolution over time of proportions of dormant versus active nodes active nodes.
Top: mean field limit (ODE), bottom: simulation with N = 1000 nodes. There is a unique stationary point, solution of EF( Em) = 0, (cross), but it is an unstable
equilibrium. All trajectories are attracted to a limit cycle (plain line). The small circle is the initial value.

Corollary 3. Assume the ODE (15) has a unique stationary point Em∗ to which all trajectories converge and YN is irreducible. Then
for any initial condition of YN

lim
N→∞

lim
t→∞

1
t

t∑
s=1

1
{XN1 (s)=i1,...,XNk (s)=ik}

= m∗i1 . . .m∗ik almost surely.

8. A critique of the fixed point method

The mean field independence is often used in the analysis of interacting objects, sometimes with the name of “decoupling
assumption”, in conjunction with a “fixed point” method [17–19]. In this section we describe this method in the context of
mean field interaction models, then point to a potential pitfall.

8.1. The decoupling assumption should be handled with care

Consider a mean field interaction model with N objects. We assume that, for a fixed N, it has a unique stationary
distribution. We are interested in approximating for large N the stationary distribution of state for one object, ηN

1 . The
decoupling assumption can be made if N is large and the model satisfies a scaling law as in Section 3.3. We know from
Theorem 2 that this is equivalent to assuming that the occupancy measure can be approximated by the mean field limit,
which satisfies the ODE d Eµ

dτ =
EF( Eµ). The fixed point method then consists in finding a value Em∗ of the mean field that is

stationary, i.e., that satisfies EF( Em∗) = 0. If there is a single solution to this equation, it is taken as approximation of ηN
1 . This

seems to make sense since
(
ηN

1
)
i is the long term average of time spent by one object in state i, and by Theorem 2, it can

be approximated by µi. We have seen in Corollary 3 that this method is valid if Em∗ is an attractor to which all trajectories
converge. This is for example the case in Fig. 1.
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However, the fact that there is a unique solution to EF( Em∗) = 0 (i.e. a unique fixed point) is not sufficient for this to hold.
Fig. 2 shows a numerical example (same example as on Fig. 1 but with a different value of one parameter). There is a unique
fixed point Em∗ (cross on the figure) and any solution of the ODE starting at this fixed point will remain there. But this fixed
point is an unstable equilibrium. For any other initial condition, the mean field is attracted by a limit cycle. In this case, we
cannot approximate the occupancy measure or ηN

1 by Em∗. Here the Birkhoff center is the union of the limit cycle and the
unstable equilibrium. By Theorem 3 we can say that most of the time, the occupancy measure MN(t) remains close to this
set – as we can verify in the simulation.

In such a case, the decoupling assumption may not hold in the stationary regime. Indeed, one can show with simple
symmetry arguments that, if ηN is exchangeable (for example because the stationary probability ηN is unique), then for
any fixed k

lim
N→∞

PηN
(
XN

1 (t) = i1, . . . , X
N
k (t) = ik

∣∣∣MN(t) = Em
)
= mi1 · · ·mik (20)

i.e. the decoupling assumption holds only conditional to the value of the occupancy measure. On the example of Fig. 2, the
occupancy measure oscillates in the stationary regime along its limit cycle. The distribution of states of two objects follows
these oscillations, in particular, they are correlated and the decoupling assumption does not hold in the stationary regime.

8.2. Bianchi’s formula

This phenomenon is visible in the analysis of the 802.11 protocol known as Bianchi’s formula. It was developed by
Bianchi [20,21] and re-explained in a more general setting by Kumar, Altman, Miorandi and Goyal [17]. In short, consider
only the case where all wireless nodes hear each other. It is shown in these references that it is sufficient to model the backoff
process, as follows. An object is a wireless node and its state is its backoff stage in {0, 1, . . . , K}. There is no resource. At every
time slot, a node in state i makes a transmission attempt with probability qi

N
. If more than one node does a transmission

attempt, there is a collision and all nodes that made a transmission attempt increment their states by 1 mod (K + 1). If
exactly one node makes an attempt, it succeeds and its state changes to 0. This model was introduced in [1] and it is easy to
see that it is a mean field interaction model with intensity 1

N
. The ODE for the mean field limit is

dm0

dτ
= −m0q0 + β( Em) (1− γ( Em))+ qKmKγ( Em)

dmi

dτ
= −miqi + mi−1qi−1γ( Em) i = 1, . . . , K

where β( Em) =
∑K

i=0 qimi and γ( Em) = 1−e−β( Em). The fixed point method consists in finding the stationary points of the ODE;
one finds that Em is a stationary point if and only if

mi =
γ i

qi

1
K∑

k=0

γk

qk

i = 0, . . . , K (21)

where γ is solution of

γ = 1− e−β (22)

β =

K∑
k=0
γk

K∑
k=0

γk

qk

. (23)

Bianchi’s formula in this setting is Eq. (23). It relates the collision probability γ to the attempt rate β. It is shown in [17,5]
that the fixed point problem (23) and (22)has a unique solution, from where it is concluded that Eq. (23) holds in the
stationary regime. As we argued earlier, to establish the validity of the method (and thus of Bianchi’s formula), one would
need to show not only that there is a unique fixed point, but, more importantly, that all trajectories of the ODE converge to
the stationary point. As is visible in Fig. 2, one does not imply the other. It was shown in [5] that there is a unique stable point
to which all trajectories converge, for the infinite variant of this model K = +∞, and when qk is an exponential decreasing
sequence with q0 < ln 2 (and in [1] for K = 1). The validity of Bianchi’s formula appears to remain non demonstrated for
the other cases.

One can relate this issue to the following alternative explanation, introduced in [17]. Eq. (23) is interpreted in [17] as

β =
expected number of transmission attempts in one round

expected number of time slots in one round
(24)

where a round is defined as a sequence of time slots for one object that starts when the object is reaches state i = 0 and
ends when it returns to 0. This is a Palm calculus formula and as such is true in the stationary regime. However, in deriving
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this interpretation, one equates the numerators of Eq. (23) and (24), which amounts to assuming that, within one round,
the collision probability γ remains constant. Since γ is a function of Em, this is true if the Birkhoff center is a single point.
If, in contrast, the stationary regime has a limit cycle, then γ may oscillate and not stay constant within one round; thus
Eq. (23) does not necessarily hold. We recover the fact that when using the fixed point method, it is not sufficient to show
uniqueness of the stationary point; one needs in addition, to show that the stationary point of the ODE is an attractor to
which all trajectories converge.

9. Conclusion

We have given a generic result for the convergence of a model of interacting objects to the solution of an ordinary
differential equation. The assumptions are both very general and simple to verify in practice. A striking feature is that,
contrary to existing results, no independence assumption is required anywhere.

We also shed some light on the relation between the stationary regime of the ODE and that of the original stochastic
system with N objects. The result is essentially positive: at first order, the ODE is a good approximation of the occupancy
measure of the stochastic system, even in stationary regime, in the sense that the occupancy measure spends most of its
time in the Birkhoff center of the ODE.

However, we point out that the decoupling assumption needs to be handled with care. One needs to study the stationary
regime of the ODE; simple results exist only if the ODE has a unique fixed point to which all trajectories converge. In such
a case, the decoupling assumption also holds in the stationary regime, and further, the fixed point is the limit for large N of
the stationary probability of state for one object in the system with N objects. In all other cases this may not be true, even
when there is a unique fixed point.

Appendix. Proof of Theorem 1

The proof is built on a result for stochastic approximation algorithms, which we state first.

A.1. A stochastic approximation algorithm

Let R be a finite set, l ∈ N and ∆ be a compact convex subset of Rl, with a nonempty interior (so that Rl is a smallest
affine space containing ∆). For each ε > 0, let Zε = (Mε(t), Rε(t))t∈N be a discrete time Markov chain living in ∆ ×R such
that

Mε(t + 1)−Mε(t) = εGε(t + 1) (A.1)

and

P(Gε(t + 1) ∈ dx, Rε(t + 1) = j′|Mε(t) = m, Rε(t) = j) = Kεjj′(m)νεm,j(dx) (A.2)

where for all m ∈ ∆, ε > 0, j ∈ R, Kε(m) is a Markov transition matrix on R and νεm,j a probability measure supported by
∆−m
ε

.
We assume in this section that:

H1a f ε
j
(m) converges uniformly in m, as ε → 0, to some function f

j
(m); and Kε(m) converges uniformly in m, as ε → 0 to

some indecomposable Markov matrix K(m).

H2a There exists some constant C > 0 such that∫
Rm
‖x‖2νεm,j(dx) ≤ C

for all ε > 0,m ∈ ∆.

H3a The maps Kε and f ε
j
(m) =

∫
xνεm,j(dx) are Lipschitz continuous uniformly in ε. That is

‖Kε(m)− Kε(m′)‖ + ‖f ε
j
(m)− f ε

j
(m′)‖ ≤ L‖m− m′‖

where L is independent on ε.

The matrix K(m) being indecomposable it admits a unique invariant probability measureπ(m) solution toπ(m) = π(m)K(m).
Let F(m) =

∑
j πj(m)f

j
(m). Sinceπ(m) depends smoothly on K(m), it follows from H1a and H3a that F is Lipschitz-continuous

on ∆. Without loss of generality we may assume (by extending F) that F is defined and bounded on Rl. By standard results it
then induces a global flow {Φτ}τ≥0 on Rl defined by the Cauchy problem dΦτ(x)

dτ = F(Φτ(x)) with initial condition Φ0(x) = x.
Let M̂ε

: R+ 7→ ∆ denote the continuous time process defined by{
M̂ε(tε) = Mε(t) for all t ∈ N
M̂ε is affine on [tε, (t + 1)ε].
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The following proposition is a classical averaging result for stochastic approximation algorithms with constant step size. This
type of result has been proved under various sets of assumptions in the literature (see e.g. (Beneveniste et al. [6], Duflo [7]
for general statements, Kushner and Yin [8] for numerous weak convergence results, Benaim [9] and Benaim and Weibull [2]
for statements similar to Proposition 1 in a slightly more restricted setting).

Proposition 1. For all T > 0 there exist constants C1(T), C2(T) and a random variable Bε(T) such that

sup
0≤t≤T
‖M̂ε(t)− Φt(x)‖ ≤ C1(T)[B

ε(T)+ ‖Mε(0)− x‖]

and

E(‖Bε(T)‖2) ≤ C2(T)ε.

Proof. Set

Uε(t + 1) = Gε(t + 1)− F(Mε(t))

so that

Mε(t + 1)−Mε(t) = ε[F(Mε(t))+ Uε(t + 1)].

The following lemma follows from Lipschiz continuity of F and Gronwall’s lemma (see e.g Benaim [22]):

Lemma 1. For all T > 0 there exists C1(T) > 0 such that

sup
0≤τ≤T

‖M̂ε(τ)− Φτ(x)‖ ≤ C1(T)[B
ε(T)+ ‖Mε(0)− x‖]

where

Bε(T) = ε

(
sup

0≤t≤T/ε

∥∥∥∥∥ t∑
i=1

Uε(i)

∥∥∥∥∥
)

.

It follows from H1a that for ε small enough, Kε(m) is indecomposable. We let πε(m) denotes its invariant probability and

Fε(m) =
∑
i

πεi (m)f ε
i
(m).

Set

U1,ε(t + 1) = Fε(Mε(t))− F(Mε(t)),

U2,ε(t + 1) = Gε(t + 1)− f ε
Rε(t+1)

(Mε(t)),

and

U3,ε(t + 1) = f ε
Rε(t+1)

(Mε(t))− Fε(Mε(t)).

Then

Uε(t) =
3∑

i=1
Uε,i(t)

and

Bε(T) ≤

(
3∑

i=1
Bε,i(T)+ ε

)
where

Bε,j(T) = ε

(
sup

0≤t≤T/ε

∥∥∥∥∥ t∑
i=1

Uε,j(i)

∥∥∥∥∥
)

.

Our next goal is to bound the quantities Bε,j(T).
• By hypothesis (i) and (iv), Fε converges uniformly to F. Hence

lim
ε→0

Bε,1(T) = 0. (A.3)

• Note that

E((Gε(t + 1))|Mε(t) = m, Rε(t) = j) = E(f
Rε(t+1)(m)

|Rε(t) = j) =
∑
i

Kεji(m)f ε
i
(m)
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and

E(‖Gε(t + 1)‖2
|Mε(t) = m, Rε(t) = j) = E(‖f

Rε(t+1)
(m)‖2

|Rε(t) = j)

=
∑
i

Kεji(m)

∫
‖x‖2νεm,i(dx) ≤ C.

This makes
∑n

t=1 U2,ε(t) a martingale whose variance is bounded by 4nC. Thus, by Doob’s inequality

E(Bε,2(T)2) = O(ε). (A.4)

We now pass to B3,ε.
• Given any indecomposable Markov matrix K with invariant probability π and g, h ∈ RR , we let πg =

∑
i πigi and

(Kg)i =
∑

j K ijgj. By indecomposability, the Poisson equation

g − Kg = h− πh with boundary condition πg = 0 (A.5)

admits a unique solution g depending smoothly on h and K (the smoothness easily follows from the implicit function
theorem).

We now let gε(m) denote the solution to the poisson problem (A.5) where K is replaced by Kε(m) and h by f ε
i
(m). Hence

we can rewrite U3,ε(t + 1) as

U3,ε(t + 1) =
6∑

j=4
Uj,ε(t + 1)

where

U4,ε(t + 1) = gεRε(t+1)(M
ε(t))− (Kε(Mε(t))gε(Mε(t)))Rε(t),

U5,ε(t + 1) = [Kε(Mε(t))gε(Mε(t))Rε(t) − (Kε(Mε(t + 1))gε(Mε(t + 1)))Rε(t+1)],

and

U6,ε(t + 1) = [(Kε(Mε(t + 1))gε(Mε(t + 1)))Rε(t+1) − (Kε(Mε(t))gε(Mε(t)))Rε(t+1)].

The term U4,ε(t + 1) is a bounded martingale difference. Hence (with an obvious definition of Bε,4) Doob’s inequality gives

E((Bε,4)2) = O(ε).

The sum
∑

1≤i≤n U
5,ε(i) reduces to

Kε(Mε(1))gεRε(t)(M
ε(1))− Kε(Mε(m))gεBε(n)(M

ε(n))

which is bounded. Hence

Bε,5 = O(ε).

By Lipschitz continuity of the maps Kε and gε

‖Uε,6(t + 1)‖ = O(‖Mε(t + 1)−Mε(t)‖) = O(εGε(t + 1)).

Hence

E(‖Uε,6(t + 1)‖2) = O(ε2)

and

E((Bε,6)2) = O(ε).

Finally we get that

E((B3,ε)2) = O(ε). (A.6)

Putting together estimates (A.3), (A.4) and (A.6) gives the result. �

A.2. Mapping the mean field interaction model with vanishing intensity to a stochastic recurrence model

Consider now a model as in Section 3. First, we show that H4 and H5 imply uniform Lipschitz continuity and uniform
convergence analog to H1a and H3a. For ε ≥ 0 small enough we can define K′εj,j′( Em) and Ef ′ε( Em, j) such that KN

j,j′( Em) = K′
1
N
j,j′( Em)

and EfN( Em, j) = Ef ′
1
N ( Em, j) for N large enough.
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Lemma 2. The functions Kεj,j′( Em) and Ef ε( Em, j) are Lipschitz continuous in Em uniformly in ε and converge uniformly as ε→ 0.
Proof. By H4 and H5, Kεj,j′( Em) is continuously differentiable in both ε ≥ 0 and Em. By compactness, there is a finite bound c2
on the norm of the differential of Kεj,j′( Em), independent of ε and Em. By Taylor’s integral formula,∥∥∥Kεj,j′( Em)− Kε

′

j,j′( Em
′)
∥∥∥ ≤ c2

(∥∥ Em− Em′∥∥+ |ε− ε′|) . (A.7)

Uniform Lipschitz continuity [resp. uniform convergence] follows by letting ε = ε′ [resp. Em = Em′] in Eq. (A.7). �

Second, we show that H3 implies a second moment property analog to H2a:

Lemma 3.

E

∥∥∥∥∥MN(t + 1)−MN(t)

ε(N)

∥∥∥∥∥
2

≤ 2c1

 .

Proof. Let N (t) be the set of objects that do a transition in time slot t; it has at most WN(t) elements and thus∥∥∥MN(t + 1)−MN(t)
∥∥∥2
=

1
N2

∑
(n,n′)∈N (t)2

〈EeXN
n′

(t+1) − EeXN
n′

(t), EeXNn (t+1) − EeXNn (t)〉

≤
2
N2 W

N(t)2. �

Third, we map the mean field interaction model to a stochastic approximation algorithm as follows. First, a minor difference
is that the former is defined for N ∈ N and the latter for ε > 0. We address this by associating a stochastic approximation
algorithm with parameter ε < 1 to a mean field interaction model with parameter Nε = b

1
ε
c. Second, identify ∆ with a

convex subset with non empty interior of Rl with l = I − 1 (thus identify Em and m). Next, a difference between the two
models lies in the dependence on the resource: in the mean field interaction model, the drift EfN( Em, j) is defined as the
expected drift at time t + 1 conditional to the resource having value j before the transition (i.e. conditional to RN(t) = j),
whereas in the stochastic approximation algorithm the probability measure νεm,j is conditional to the value of R after the
transition (i.e. conditional to Rε(t+ 1) = j). We address this by keeping in Rε the current and the previous state, i.e. R = R2

and
Rε(t) =

(
RNε(t + 1), RNε(t)

)
for t ≥ 1

Rε(0) =
(
RNε(0), 1

)
and the stochastic approximation algorithm is defined by letting

Gε(t) =
1

1/ε(Nε)

(
MNε(t + 1)−MNε(t)

)
.

Note that if K is indecomposable, then so is K, and the unique stationary probabilities are related by
πj1,j2

= πj2Kj2,j1 . (A.8)
Thus, by Lemmas 2 and 3, hypotheses H1a to H3a are verified.

Last, note that
∑

j2∈R
f

1
N (m, (j1, j2))K

1
N
j1,j2
= ε(N)fN(m, j1) thus∑

j2∈R

f (m, (j1, j2))Kj1,j2 = f (m, j1)

and by Eq. (A.8)

F(m) = EF(m). (A.9)
Theorem 1 then follows directly from Proposition 1.

A.3. Proof of Corollary 3

Since the ODE has a unique attractor Em∗ to which all trajectories converge, the Birkhoff center is reduced to { Em∗} and thus
any limit point of$N is the Dirac mass at Em∗. Since ∆ is compact, the set of probabilities on ∆ is compact for the topology of
weak convergence.$N has a unique limit point and is in a compact set, therefore it converges to the Dirac mass at Em∗. Since
the distribution of MN(0) under PηN is$N , MN(0)→ Em∗weakly (and in probability as the limit is constant). This shows item 1.

XN
1 (0), . . . , XN

N(0) is exchangeable and its occupancy measure converges weakly to a constant Em∗, therefore, by a theorem
on exchangeable sequences in [16]:

lim
N→∞

PηN
(
XN

1 (0) = i1, . . . , X
N
k (0) = ik

)
= m∗i1 . . .m∗ik .

Item 2 follows by observing that he distribution under PηN are the same at time t and at time 0.
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