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a b s t r a c t

We consider a population distributed between two habitats, in each of which it experiences a growth
rate that switches periodically between two values, 1 − ε > 0 or −(1 + ε) < 0. We study the specific
case where the growth rate is positive in one habitat and negative in the other one for the first half of
the period, and conversely for the second half of the period, that we refer as the (±1) model. In the
absence of migration, the population goes to 0 exponentially fast in each environment. In this paper,
we show that, when the period is sufficiently large, a small dispersal between the two patches is able
to produce a very high positive exponential growth rate for the whole population, a phenomena called
inflation. We prove in particular that the threshold of the dispersal rate at which the inflation appears
is exponentially small with the period. We show that inflation is robust to random perturbation, by
considering a model where the values of the growth rate in each patch are switched at random times:
we prove that inflation occurs for low switching rate and small dispersal. We also consider another
stochastic model, where after each period of time T , the values of the growth rates in each patch is
chosen randomly, independently from the other patch and from the past. Finally, we provide some
extensions to more complicated models, especially epidemiological and density dependent models.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

It is a ubiquitous fact that a population has the ability to
igrate between several patches which have different environ-
ental conditions. A patch is called a source when, in the absence
f migration, the environmental conditions lead to the persis-
ence of the population, and a sink when, on the contrary, they
ead to the extinction of the population. A question of primary
mportance is obviously to understand how environmental con-
itions and migration interact so that a set of patches is or is
ot globally favorable to persistence. Mathematical modeling by
ynamical systems is one of the tools used to address this ques-
ion and the papers that use it are innumerable, so we give up
eporting on them here. We present only those that we consider
mportant for our purpose, which is to investigate the conditions
nder which migration between two patches can increase or
ecrease the abundance of the metapopulation.
The simplest case of a continuous time model, two patches

ith logistic dynamics and linear migration, has been extensively
tudied in the case of a fixed environment (i.e. the parameters

∗ Corresponding author.
E-mail address: edouard.strickler@univ-lorraine.fr (É. Strickler).
ttps://doi.org/10.1016/j.tpb.2023.07.003
040-5809/© 2023 Elsevier Inc. All rights reserved.
of the model do not depend on time) (Arditi et al., 2015, 2018;
DeAngelis et al., 1979; DeAngelis and Zhang, 2014; Freedman and
Waltman, 1977). This very elementary (and therefore unrealistic)
model is now well understood mathematically and it appears that
for certain values of the growth parameters the total population
at equilibrium is not a monotonic function of the migration
intensity (Arditi et al., 2015, 2018; DeAngelis and Zhang, 2014),
a phenomenon that we will find again in the case of variable
environments that we study here.

In the case of migration between a source and a sink it is
intuitively clear that migration from the source to the sink can
prevent the extinction of the population on the latter. On the
other hand, it seems paradoxical that:

Populations can persist in an environment consisting of sink
habitats only.

as announced in the title of the article (Jansen and Yoshimura,
1998) by Jansen et al. Our article is a contribution to the clarifi-
cation of this paradox.

Jansen et al. consider the implicitly spatial discrete-time
model:
N(t + 1) = [mfS1(t) + m(1 − f )S2(t)]N(t). (1)

https://doi.org/10.1016/j.tpb.2023.07.003
https://www.elsevier.com/locate/tpb
http://www.elsevier.com/locate/tpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tpb.2023.07.003&domain=pdf
mailto:edouard.strickler@univ-lorraine.fr
https://doi.org/10.1016/j.tpb.2023.07.003
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hich represents the fact that each individual give m offspring,
hat are then dispersed according to the fractions f and 1 − f
n sites 1 and 2, where they survive at rate S1(t) and S2(t),
espectively. Jansen et al. assume that:

◦ S1 is a sequence of independent random variables taking two
values Sa < 1/m < Sb with probabilities p (bad years) and
1 − p (good years), the parameters being such that on the
long term the patch 1 is a sink.

◦ S2 is constant and strictly smaller than 1/m, so that the
second patch is also a sink

Intuitively persistence is possible with a little dispersion on patch
2 which means building up reserves for bad years. This is indeed
what Jansen et al. show by calculation: for values of m that are
either too large nor too small, the meta-population is persistent.
Migration can therefore have an ‘‘inflationary’’ effect, an ex-

ression coined by Holt in Holt (1997). That ‘‘inflationary’’ effect
oticed by Holt was of another nature. In Holt (1997) the au-
hor also considers a model of the form (1) and assumes that
1 is deterministic but density dependent S1 = S1(N(t)) (the
otations have been changed) as, for example, in the logistic or
icker models. Based on the classical results of May and Oster
see May and Oster, 1976) on the appearance of periodic and then
haotic solutions in discrete density-dependent dynamics, Holt
emarks that when the population has a stable equilibrium in the
bsence of migration, the presence of migration to a sink only

decreases the value of this equilibrium, but, on the other hand,
if the population has periodic solutions, the migration to a sink
an significantly increase the mean of the metapopulation in the
ong run. Since variations in the population N(t) in the density-
dependent model N(t + 1) = S1(N(t), t)N(t) can be interpreted
(if denoting R1(t) = S1(N(t))) as fluctuations in the fitness of
the linear model N(t + 1) = R(t)N(t), Holt concludes that the
presence of autocorrelation in the variations in the sequence of
replacement rates R(t) can be a cause of inflation.

Gonzalez and Holt in Gonzalez and Holt (2002) have also high-
lighted an ‘‘inflationary’’ effect of the environment fluctuations
in the case of the continuous time model: dN

dt = f (t)N(t) + I .
ere it is assumed that in the absence of immigration I(t) the
opulation N(t) tends towards extinction and that its persistence
s ensured only in the presence of immigration I . When the
rowth rate is fixed and negative, f (t) ≡ −µ the population
ends towards a stationary population N∗

=
I
µ
. The objective

f the authors is to compare this equilibrium with the mean
N = limt→+∞

1
T

∫ T
0 N(t)dt of the population when f (t) is no

longer constant and to show that, in a certain sense, N exceeds
∗ all the more as the fluctuations of f are important. To do this

their strategy is to consider piecewise constant periodic functions
for which they can make explicit calculations that describe the
inflation phenomenon; then, as they notice that «square-wave
deterministic variation is of course a rather artificial pattern of
temporal variation» they turn to more realistic models on which
they show by simulation the existence of inflation.

These three studies and others (see Schreiber, 2010 for a more
detailed discussion of this topic) where the spatialization is ‘‘im-
plicit’’ have in common, whether they are discrete or continuous
in time, deterministic or random, to use one dimensional models
where the mathematical properties are easier to determine. The
next step is to consider an ‘‘explicit’’ spatialization with two or
more sites. This is what Roy, Holt and Barfield do in Roy et al.
(2005) where they consider the probabilistic model on n sites:

i(t + 1) = Ri(t)Ni(t) + Ii(t) − Ei(t) (2)

where Ii and Ei represent respectively the immigration and emi-
gration on the site. They demonstrate the inflation effect through
unformal reasonings and numerous simulations. They can con-
clude their discussion with:
2

Given temporal variability and positive temporal autocorre-
lation in local growth rates, moderate rates of dispersal can
enhance the ability of a sink metapopulation to persist; more-
over, given persistence, temporal autocorrelation can inflate
metapopulation abundance.

This pioneering work of Holt and his colleagues has been further
refined and mathematically clarified by Schreiber. In Schreiber
(2010), Schreiber considers the model (2) of Roy et al. in the form:

N i
t+1 =

⎛⎝1 −

∑
k̸=i

dki

⎞⎠ f it N
i
t +

∑
j̸=i

dijf
j
t N

j
t =

n∑
j=1

dijf
j
t N

j
t (3)

From precise mathematical developments based on a probabilis-
tic version of the Perron–Frobenius theorem which allows to
show that for this type of model the concept of growth rate of
the meta population is well defined he can conclude:

When environmental fluctuations have positive temporal au-
tocorrelations and the population is partially mixing, the
metapopulation growth rate can be positive despite the arith-
metic mean of fitness being less than 1 in every patch. (...)Fur-
thermore, in the presence of these positive autocorrelations,
the analysis reveals that the maximal metapopulation growth
rate occurs at intermediate dispersal rates,(...)

Unlike the case of discrete-time stochastic models that we have
just briefly examined, the case of continuous-time determinis-
tic models has been little studied. With the exception of Holt
et al. (2003) which treats one site only, Klausmeier (2008) which
discusses the case of two sites on an example and Evans et al.
(2013) which treats the case where the growths on each site obey
diffusion processes, we only know of a very recent1 article (Ka-
triel, 2022) by Katriel: Dispersal-induced growth in a time-periodic
environment which treats the question of inflation on continuous
time models. Katriel considers the following model (the notations
are modified to remain consistent with the previous notations):
dNi

dt
= ri(t)Ni + m

∑
j̸=i

Lij(Nj − Ni) (4)

where the functions ri(t) are continuous periodic functions of
period T that define the growth rates on n isolated sites, the
Lji = Lij ≥ 0 describe the geometry between the sites (assumed to
e connected) and m measures the strength of the migration. As

in the discrete case, extended versions of the Perron–Frobenius
theorem allows to define the metapopulation growth and relying
on a theorem of Liu et al. (2022) he shows that for inflation to
occur it is necessary that the ri(t) are desynchronized, that the
period T is large enough and that the migration intensity m is
large enough, but not too large. This result is important because
it concerns the case of any number of sites.

In turn, we consider Katriel’s (3) model in the case of only
two sites, which is obviously less general, but for more general,
deterministic discontinuous and then random functions ri(t) and
not necessarily symmetric migrations.

We start from a remarkably simple particular case which we
call the periodic (±1)-model (where ri(t) are piecewise constant
quals to +1 − ε or −1 − ε). This model depends on three
arameters ε, which represents the decay rate of each sink, m,
hich represents the migration rate and the period T . We ex-
licitly compute the growth rate of the metapopulation, and give
xplicit bounds on m and T for inflation to occur. In particular
e show that the threshold m∗ for the appearance of inflation

1 Which was published while our paper was under review.
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an be very small, precisely exponentially small with respect
o the period. This last point may have a practical importance.
ndeed, in a recent paper (Kortessisa et al., 2020b), Kortessisa
t al. (Holt is the last co-author), about the COVID pandemic,
ased on simulations, draw the attention to the possibility of
nflation in case of migration between two patches when the sani-
ary policies are not synchronous; our result confirms analytically
hese simulations and indicates that the migration threshold from
hich the pandemic develops, can be very small.
After having analyzed in detail the mathematical properties

f the periodic (±1)-model we extend them to more realistic
odels, and, most importantly, we show that periodicity is not
ssential in the following sense. Our (±1) deterministic model
an be understood as a situation where two different environ-
ental regimes +1 and −1 follow each other for a fixed duration
. We study what happens when the regimes succeed each other
ver random durations or with random growth rates ri, and
how on various probabilistic models how the results obtained
or the periodic (±1) model can be extended. These last results
annot be deduced from Katriel (2022) which proposes a purely
eterministic framework.
Mathematically we make essential use of the following change

f variable. If N1(t) and N2(t) are the abundances at each patch we
ose

=
log(N1) + log(N2)

2
= log(

√
N1N2)

=
log(N2) − log(N1)

2
= log(

√
N1/N2)

Thus U is the logarithm of the geometric mean of the abundances
and |V | is the logarithm of their geometric standard deviation.2
This change of variable has the merit of translating the ana-
lytical properties of the model(±1) into ‘‘visible’’ and ‘‘robust’’
geometrical properties observed in the (U, V ) plane.

The paper is organized as follows. Section 2 contains a detailed
mathematical treatment of the (±1)-model for both deterministic
nd stochastic environment. Section 3 contains extensions to
ore realistic models; the mathematical treatment is less precise
nd sometimes just outlined. The Section 4 contains an attempt
o give an informal explanation of our view of the inflation phe-
omenon in the case of continuous time models and its relation
o previous work on discrete time models. An Appendix contains
echnical details regarding mathematical proofs. A symbol index
s provided at the end of the Appendix.

. The (±1)-model

.1. Some results of G. Katriel

In Katriel (2022), Katriel considers the model:
dxi
dt

= ri(ωt)xi + m
∑
i̸=j

Lij(xj − xi), 1 ≤ i ≤ N, m ≥ 0 (5)

here the function ri is 2π - periodic continuous and represents
he varying growth rate within patch i, while, for i ̸= j, Lij =

ji ≥ 0 represents the ability of dispersal from patch i to patch j.
e denote Lii = −

∑
j̸=i Lij and assume that the matrix L = (Lij) is

rreducible, meaning that the population can spread in all patches.
ith vector notations we can write (6) in the form:

dX
dt

=
(
R(ωt) + mL

)
X (6)

where R is the diagonal matrix whose diagonal elements are
ri(ωt). We summarize here a part of the results of Katriel (2022).
We let

2 See e.g. https://en.wikipedia.org/wiki/Geometric_standard_deviation.
 s

3

◦ ri =
1
2π

∫ 2π
0 ri(θ )dθ ,

◦ rmax(θ ) = maxi=1..N ri(θ ), and
◦ χ =

1
2π

∫ 2π
0 rmax(θ )dθ .

◦ The growth rate of a positive function t ↦→ x(t) is the limit,
if it exists,

Λ[x] = lim
t ↦→∞

1
t
ln(x(s)).

hen m = 0, all equations of (6) are decoupled,

[xi] = ri,

and depending on whether ri is positive or negative we will
say that the patch i is a ‘‘source’’ or a ‘‘sink’’. As soon as m
is strictly positive, since L is irreducible, from Perron–Frobenius
theory, it follows that all the growth rates Λ[xi] are equal. This
common rate is the growth rate of the metapopulation and is
noted Λ(m, ω).

efinition 2.1 (Katriel (2022)). One says that there is ‘‘Dispersal
Induced Growth’’ (DIG) if, while all ri are strictly negative, we
have Λ(m, ω) > 0.

Comment Note that DIG is the phenomenon which is called
inflation in Evans et al. (2013), Gonzalez and Holt (2002), Holt
et al. (2003), Kortessisa et al. (2020a), Klausmeier (2008), Roy
et al. (2005) and Schreiber (2010) with more or less formalized
definitions associated to each context. In the present paper when
we say ‘‘inflation’’ we refer to the above formalized definition.

The problem is to characterize the set of values of m and ω for
which there is DIG (inflation).

We note:

Λ0(m) =
1
2π

∫ 2π

0
λ(R(θ ) + mL)dθ (7)

here λ(R(θ ) + mL) is the dominant eigenvalue of the matrix
R(θ ) + mL).

heorem 2.2 (Katriel (2022) See Fig. 1).

– If χ < 0, for all m and all ω we have Λ(m, ω) < 0. There is
no DIG.

– If χ > 0 the equation Λ0(m) = 0, m > 0 has a unique solu-
tion m∗ and there exists a function ωc continuous on [0,m∗

],
strictly positive on ]0,m∗

[, such that ωc(0) = ωc(m∗) = 0 for
which:

1. If m < m∗,

ω < ωc H⇒ Λ(m, ω) > 0 there is DIG

ω > ωc H⇒ Λ(m, ω) < 0 there is no DIG

2. If m > m∗,

Λ(m, ω) < 0 there is no DIG

In general it is not possible to compute effectively Λ0(m)
xcept in the case of two sites. In Katriel (2022) the following
ormula for Λ0(m) is given:

0(m) =
1
2

[
r̄1 + r̄2 +

1
2π

∫ 2π

0

√
(r1(θ ) − r2(θ ))2 + 4m2dθ

]
− m

In the present paper we give closed expression of ωc for
pecific r that we precise now.
i

https://en.wikipedia.org/wiki/Geometric_standard_deviation
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Fig. 1. Inflation when χ > 0.

2.2. The two-patches model in the (U, V ) variables

We consider the model:

(r1, r2,m, T )

⎧⎪⎨⎪⎩
dx1
dt

= r1(t)x1 + m(x2 − x1)

dx2
dt

= r2(t)x2 + m(x1 − x2)
(8)

where r1(t) and r2(t) are the growth rates at time t ≥ 0 in patch
1 and 2, respectively. The functions t ↦→ r1(t) and t ↦→ r2(t) can
e deterministic or random. In this paper, we will be interested
n the case where these functions are piecewise constant, and
hange of values at periodic (see Section 2.3) or random times
see Section 2.4). Nevertheless, for the rest of this subsection, the
recise form of r1 and r2 do not matter.
Thanks to the fact that we have only two patches we can

efine

= ln(
√
x1x2) =

1
2
(ln(x1) + ln(x2))

= ln(
√
x1/x2) =

1
2
(ln(x1) − ln(x2))

(9)

This is legitimate since the solutions of (8) remain strictly positive
as soon as the initial conditions are. In these new variables the
system becomes3:

S(r1, r2,m, T )

⎧⎪⎨⎪⎩
dU
dt

=
r1(t) + r2(t)

2
+ m (cosh(2V ) − 1)

dV
dt

=
r1(t) − r2(t)

2
− m sinh(2V )

(10)

One observes that the variable V is decoupled from the variable
U . By the way, once the solution V (t) is known, the solution U(t)
is obtained by the simple quadrature

U(t) = U0 +

∫ t

0

r1(θ ) + r2(θ )
2

dθ + m
∫ t

0
(cosh(2V (θ )) − 1)dθ

(11)

We can already make some remarks. When both sites are sinks
(r̄1 < 0 and r̄2 < 0), if there is no migration, as expected, the
metapopulation is decreasing. As the quantity (cosh(2V ) − 1) is
strictly positive as soon as V is different from 0 we see that the
more V (θ ) will be (on average) different from 0, the bigger the
second integral term will be and so the more U(t) will have the
possibility to become positive. A quick look at the equation of
V shows that the larger |r1(t) − r2(t)| is, the larger it will be ;
and the bigger is m the smaller is V . This immediately tells us

3 We recall the notations sinh(x) =
ex−e−x

cosh(x) =
ex+e−x

.
2 2

4

two ingredients favorable to inflation: r1(t) and r2(t) must be
ifferent, m must be strictly positive for the second integral to
e taken into account, but not too large so that the solutions of
he second equation of (8) are not too small.

Note that there are many ways to transform linear systems in a
ascade of non linear systems like, for instance, polar coordinates,
ut this one seems the most appropriate to the study of migration
etween two patches (see Remark 2 below). Moreover U is the
ogarithm of the geometric mean of the abundances on the two
atches and the absolute value of V is the logarithm of their

geometric standard deviation which have biological meaning.

Remark 1. Assume that r1 and r2 are bounded by R > 0. Then,
rom the second equation in (10), it is easily seen that, as soon
s m > 0, V will eventually enter and remain in the com-
act interval [−sinh−1(R/m), sinh−1(R/m)]. As a consequence,
imt→∞ V (t)/t = 0, and thus (provided the limits exist)

[x1] := lim
t→∞

ln(x1(t))
t

= lim
t→∞

ln(x2(t))
t

=: Λ[x2]

In other words, the long term growth rate is common in the two
patches. Moreover,

lim
t→∞

U(t)
t

=
1
2

(
lim
t→∞

ln(x1(t))
t

+ lim
t→∞

ln(x2(t))
t

)
= Λ[xi]

and so we are interested in the growth or decay of U .

Remark 2. Assume that the following limits exist

r i := lim
t→∞

1
t

∫ t

0
ri(s)ds i = 1, 2

Note that these limits indeed exist if ri are periodic or semi-
Markov (see Remark 5 in Section 2.4.1). Then, r i is the long term
average growth rate on each patch: if m = 0, xi(t) tend to
0 or infinity depending on whether r i is negative or positive.
rom Eq. (11) and the fact that cosh(x) ≥ 1 for all x ∈ R, we

deduce that, for all m ≥ 0,

im inf
U(t)
t

≥
r̄1 + r̄2

2
.

This means that the common growth rate of the two patches is
always higher than the mean of the growth rates within each
patch. This is straightforward in the variables U − V , while it
seems difficult to conclude that from the classical ‘‘polar’’ decom-
position, S(t) = x1(t) + x2(t) et y(t) = x1(t)/S(t), which leads
to
dS(t)
dt

= S(t) (r1(t)y(t) + r2(t)(1 − y(t))) ,

nd thus
1
t
ln(x1(t) + x2(t)) =

S(0)
t

+
1
t

∫ t

0
r1(s)y(s) + r2(s)(1 − y(s))ds.

n Section 3.3, we prove by adapting conveniently the variables
− V , that a similar result holds true in the case of a non

ymmetric dispersal, with a weighted mean of r1 and r2 taking
into account the asymmetry in the dispersal.

2.3. The (±1)model in periodic environment

.3.1. The model
Our idea is to understand the mathematics of the simplest pos-

ible model of the form Σ(r1, r2,m, T ) and complicate it there-
fter. Thus, we consider the system

(ε,m, T )

⎧⎪⎨⎪⎩
dx1
dt

= (+u(t) − ε)x1 + m(x2 − x1)

dx2
= (−u(t) − ε)x2 + m(x1 − x2)

(12)
dt
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here 0 ≤ ε ≤ 1, 0 ≤ m, 0 ≤ T and the function t ↦→ u(t) is
eriodic of period 2T , with:

∈ [0, T [⇒ u(t) = 1, t ∈ [T , 2T [⇒ u(t) = −1

e call the system Σ(ε,m, T ) the periodic (±1)-model. From
hat definition one sees that for u(t) = +1 we are integrating the
ystem

+(ε,m)

⎧⎪⎨⎪⎩
dx1
dt

= (+1 − ε)x1 + m(x2 − x1)

dx2
dt

= (−1 − ε)x2 + m(x1 − x2)
(13)

while for u(t) = −1 we are integrating the system

Σ−(ε,m)

⎧⎪⎨⎪⎩
dx1
dt

= (−1 − ε)x1 + m(x2 − x1)

dx2
dt

= (+1 − ε)x2 + m(x1 − x2)
(14)

Thus we are switching, each T units of time, from system Σ+(ε,m)
o system Σ−(ε,m) and vice versa; such systems are called
switched systems. Switched systems where intensively investi-
gated in the context of control theory during the seventies and
later (see for instance Jurdjevic, 1997) and more recently, in a
probabilistic context, under the name of PDMP (Piecewise De-
terministic Markov Processes) (Bakhtin and Hurth, 2012; Benaïm
et al., 2015; Benaïm and Strickler, 2019; Davis, 1984; Hening and
Strickler, 2019).

Remark 3. Let us remark that the (±1)-model defined by (12) is
a bit more general than it looks since it includes the case of two
identical patches that are simply in ‘‘phase opposition’’, given by
the following switched system:

For t ∈ [0, T ),

{
dx1
dt = rx1 + m(x2 − x1)
dx2
dt = −dx2 + m(x1 − x2)

or t ∈ [T , 2T ),

{
dx1
dt = −dx1 + m(x2 − x1)
dx2
dt = rx2 + m(x1 − x2)

(15)

his system is of the form Σ(r1, r2,m, T ) given in (8), where r1(t)
nd r2(t) are the 2T -periodic functions defined by

r1(t) =

{
r if t ∈ [0, T )

−d if t ∈ [T , 2T )

2(t) = r1(t + T ) =

{
−d if t ∈ [0, T )
r if t ∈ [T , 2T )

e assume that d > r > 0. We have

¯1 = r̄2 =
1
2T

∫ 2T

0
ri(t)dt =

r − d
2

< 0,

χ =
1
2T

∫ 2T

0
max(r1(t), r2(t))dt = r > 0,

which means that each patch is a sink, while χ > 0. According to
the theorem of Katriel (see Theorem 2.2) inflation can occur. Let
ε =

d−r
d+r . We have 1 − ε = θr and 1 + ε = θd, where θ =

2
d+r .

herefore, the change of time t = θs transforms the switched
system (15) into the system

For s ∈
[
0, T

θ

)
,

{
dx1
ds = (1 − ε)x1 + θm(x2 − x1)
dx2
ds = −(1 + ε)x2 + θm(x1 − x2)

For s ∈
[ T

θ
, 2 T

θ

)
,

{
dx1
ds = −(1 + ε)x1 + θm(x2 − x1)
dx2
ds = (1 − ε)x2 + θm(x1 − x2)

This is the periodic (±1)-model given by (12) , with T replaced
by T/θ and m replaced by θm, that is Σ(ε, θm, T/θ )
5

2.3.2. The (±1)model in the variables (U, V )
In the new variables (U, V ) the system becomes

S(ε,m, T )

⎧⎪⎨⎪⎩
dU
dt

= m cosh(2V ) − m − ε

dV
dt

= u(t) − m sinh(2V )
(16)

The non autonomous system

F (m, T )
{
dV
dt

= u(t) − m sinh(2V ) (17)

s a one dimensional switched system between the two au-
onomous equations

+

m

{
dV
dt

= +1 − m sinh(2V ) (18)

and

F−

m

{
dV
dt

= −1 − m sinh(2V ) (19)

We let ϕ+

t (v) and ϕ−

t (v) the solutions to (18) and (19) at time
t ≥ 0, starting from v at time 0. The two differential equations
F+
m and F−

m have respectively the points

V+

m =
1
2
sinh−1(+1/m) V−

m =
1
2
sinh−1(−1/m) (20)

as globally asymptotically stable equilibria (that is, ϕ+

t (v) con-
verges to V+

m and ϕ−

t (v) converges to V−
m ). From Fig. 2 it is evident

that the solutions of F (m, T ) are trapped in the interval [V−
m , V+

m ].
The following proposition is easy to prove with elementary calcu-
lus means. Since we do not know reference for it a proof is done
in Appendix C:

Proposition 2.3. The switched system F (m, T ) has a unique
periodic solution, denoted by Pm,T (t), globally asymptotically stable,
which oscillates between two values P−

m,T , and P+

m,T contained in the
interval [V−

m , V+
m ]; P−

m,T = −P+

m,T and the function T ↦→ P+

m,T is an
increasing function of T which tends to V+

m when T tends to infinity.

Let us denote:

∆(ε,m, T ) =
1
2T

∫ 2T

0
m cosh(2Pm,T (s)) − m − εds. (21)

hen,

roposition 2.4.

lim
t→∞

U(t)
t

= ∆(ε,m, T ). (22)

Hence, U(t) tends to ±∞ according to the sign of ∆(ε,m, T ).

Proof. From the first equation of (16) one has

U(t) = U(0) +

∫ t

0
ϕ(V (s))ds (23)

with

ϕ(V ) = m cosh(2V ) − m − ε (24)

We claim that the following limits exist and are equal

lim
t→∞

U(t)
t

= lim
n→∞

U(n2T )
n2T

.

Therefore, for all n1 ≥ 0,

lim
→∞

U(t)
t

= lim
n→∞

1
n2T

(
U(0) +

∫ n12T

0
ϕ(V (s))ds

+

∫ n2T

ϕ(V (s))ds
)

.

n12T
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ince the solution V (s) converges to the periodic solution Pm,T (t)
or n1 large enough we can replace in the second integral V (s) by

m,T (s) and then

lim
→∞

U(t)
t

= lim
n→∞

1
n2T

(
U(0) +

∫ n12T

0
ϕ(V (s))ds

)
+

1
n2T

(∫ n2T

n12T
ϕ(Pm,T (s))ds

)
.

The first term tends to 0 as n → ∞ and the second reads

1
n2T

(∫ n2T

n12T
ϕ(Pm,T (s))ds

)
=

(n − n1)2T
n12T + (n − n1)2T

1
2T

×

∫ 2T

0
ϕ(Pm,T (s))ds,

which limit for n → ∞ is just

1
2T

∫ 2T

0
ϕ(Pm,T (s))ds =

1
2T

∫ 2T

0
m cosh(2Pm,T (s)) − m − εds.

t remains to prove the claim. For t ∈ [2nT , 2(n + 1)T ), we have

U(t)
t

=
2nT
t

U(2nT )
2nT

+
1
t

∫ t

2nT
ϕ(V (s))ds

hen t goes to infinity, 2nT
t goes to 1, whereas, since V (s) is

ounded, the second term in the right hand side goes to 0. This
ntails the claim and concludes the proof. □

Let us evaluate ∆(ε,m, T ). Since the function V ↦→

m cosh(V ) − m − ε) is even and, as it is easily seen, S+(ε,m) and
−(ε,m) are symmetric with respect to the horizontal axe, we
ave

(ε,m, T ) =
1
T

∫ T

0
cosh(2Pm,T (s)) − m − εds. (25)

ecall (see (16)) that U is solution to

U(t) = U0 +

∫ t

0
(m cosh(V (s)) − m − ε) ds. (26)

Elementary computations shows that

Proposition 2.5. The right member of Eq. (26) is strictly negative
on the interval ]A−

ε,m, A+
ε,m[ and positive outside with

A−

m,ε = −
1
2
cosh−1

(
1 +

ε

m

)
A+

m,ε =
1
2
cosh−1

(
1 +

ε

m

)
.

6

Moreover,

1. m > 1−ε
2ε H⇒ [V−

m , V+
m ] ⊂ [A−

ϵ,m, A+
ϵ,m]

2. m < 1−ε
2ε H⇒ [V−

m , V+
m ] ⊃ [A−

ϵ,m, A+
ϵ,m]

From this proposition one can see what is going on. On Fig. 3
ne sees a simulation in the plane (U, V ) of trajectories in the
ase n◦ 2. On the left, the period is short which results in the
mplitude of the oscillations of the periodic solution being small.
n this case the trajectory of the periodic solution remains largely
nside the stripe V ∈ [V−

m , V+
m ] where dV

dt < 0 which results in the
decrease of U . On the contrary, when the period is large (T = 3
n the simulation on the right) v(t) has time to approach and stay
lose to V−

m or V+
m where dV

dt > 0 which leads to the growth of U .
In other words, since V = ln(

√
x1/x2) measures the ‘‘asym-

metry’’ between the abundances on the two patches, we can see
that when the period is important, the most loaded site is little
diminished by the migration towards the less loaded patch, and,
on the contrary, this last one sees its population strongly increase,
which increases the product x1x2 and then U .

A more precise description of the behavior of ∆(ε,m, T ) is
given by the following proposition which details of the proof are
given in Appendix D.

Proposition 2.6 (Properties of ∆(ε,m, T )).

1. For fixed T > 0, for both small and large values of m,
∆(ε,m, T ) < 0 and thus if there is inflation it must be for
some intermediate value of the migration m.

2. For fixed ε > 0 and m < 1−ε2

2ε , there exists a threshold
T ∗(ε,m) such that for T < T ∗(ε,m), ∆(ε,m, T ) < 0 and
there is no inflation while for T > T ∗(ε,m), ∆(ε,m, T ) > 0
and there is inflation.

3. For every ε > 0, the minimum of T ∗(ε,m) over m is strictly
positive. In other words there exists a threshold T ∗∗ > 0 such
that for T < T ∗∗, for all values of m, ∆(ε,m, T ) < 0 and
there is no inflation.

2.3.3. An explicit formula for ∆(ε,m, T )
By an elementary but not immediate computation (see Ap-

pendix E) one proves the following explicit formula for ∆(ε,m, T )

Proposition 2.7. Let us denote

b = eT
√

1+m2
C = m2b4 + 2m2b2 + 4b2 + m2.

Then one has

∆(ε,m, T ) =
1
2T

ln
m2b4 + 2b2 + m2

+ m(b2 − 1)
√
C

2(1 + m2)b2
− (m + ε)

(27)

On Fig. 4 this formula is used to draw the picture (using the
software Maple) of the graph of ∆(0.5,m, T ) with respect to the
variables (m, T ).
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Fig. 3. The switched system S(ε,m, T ): in blue u(t) = +1, in red u(t) = −1. ε = 0.1 m = 0.2, T = 0.5 (left), T = 3, (right).
Fig. 4. Graph of ∆(0.5,m, T ).
t

mall and large values of m or T . On Fig. 4 one sees that
(0.5, 0, T ) = −0.5 = −ε, which is easily understandable: for

m = 0 one has dx1
dt = ((u(t) − ε)x1,

dx2
dt = (−u(t) − ε)x1) taking

he mean of the two logarithm U
dt = −ε. For T = 0, one sees

hat ∆(0.5,m, 0) is equal to −1 = −ε which is explained by the
eneral fact (see e.g. Freidlin and Wentzell, 1998; Jurdjevic, 1997)
hat if we consider a switched system at a rate which tends to
nfinity (i.e. T → 0) then the solutions tend to solutions of the
ystem which is the mean of the two systems; in our case the
ean of the two systems is:

dU
dt

= m cosh(2V ) − m − ε

dV
dt

=
(u(t) − m sinh(2V )) + (−u(t) − m sinh(2V ))

2
= −m sinh(2V )

(28)

hich, after a transient, are just dU
dt = −ε

The asymptotic behaviors for small and large values of m or T
an also be derived by basic development on the explicit formula
27), as shown by the next proposition.
 d

7

Proposition 2.8. For fixed value of m, one has

lim
T→∞

∆(ε,m, T ) =

(√
1 + m2 − (m + ε)

)
lim
T→0

∆(ε,m, T ) = −ε.

For fixed value of T > 0,

lim
m→0

∆(ε,m, T ) = lim
m→+∞

∆(ε,m, T ) = −ε.

This proposition tells us that, if m < 1−ε2

2ε , then for T suffi-
ciently large, inflation occurs. In addition, if m is fixed and T is
small or if T is fixed and m too small or too large, there is no
inflation.

Threshold value of m for large T . On Fig. 4 one sees that, for large
values of T the dependence with respect to m is very sharp close
to 0; in order to have a better understanding of what is going on
around 0 we ask to Maple to draw the graph of m ↦→ ∆(ε,m, T )
for three values of T : 5, 10, 15. The result is shown on Fig. 5. On
the left one sees that the threshold for the appearance of positive
values of ∆ is very small and on the right we see the same graphs
but with a logarithmic scale for m. From the picture we guess
he following property, which is confirmed by the mathematical
erivation of Appendix F:
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roposition 2.9. When T is large (T → +∞) the threshold value
t which m ↦→ ∆(ε,m, T ) becomes positive is the exponentially
mall value:
∗(ε, T ) ∼ e−(1−ε)T (29)

Recall that if m = 0, there is no inflation. The above proposi-
ion states that the threshold value of m at which inflation occurs
s exponentially small for T large enough. As is appears from
ig. 4, the approximation (29) works extremely well for T larger
han 5. This result is quite striking. For example, for T = 10, the
ystem goes from no inflation for m = 0 to inflation for m = 10−5

emark 4. This proposition gives an affirmative answer to Con-
ecture 3 of Katriel’s paper (Katriel, 2022) in the particular case
f piecewise constant model which takes advantage of explicit
ormulas for the solutions. In a forthcoming paper we shall prove
his conjecture in the general case (Lobry, 2022).

.3.4. Back to the variables x1, x2
One has exp(U(t)) =

√
x1(t)x2(t) and we know that for large

values of t one has −V+
m < V (t) < +V+

m which means 1
r <

x2
x1

<

, with r = exp(V+
m ). From this we deduce that:

(ε,m, T ) is stable ⇐⇒ ∆(ε,m, T ) < 0 (30)

On the other hand let us consider the ‘‘period mapping’’ of
Σ(ε,m, T ), that is to say the linear mapping which, to an ini-
tial condition (x1(0), x2(0)) at time 0, assigns the solution of
Σ(ε,m, T ) at time 2T and let us denote it by(
x1(2T )
x2(2T )

)
= M(ε,m, T )

(
x1(0)
x2(0)

)
(31)

The stability of our system Σ(ε,m, T ) is equivalent to the stability
of the linear discrete system of R2

Xn+1 = M(ε,m, T )Xn (32)

or u = −1, 1, let us denote by Mu
ε,m the matrix

u
ε,m =

(
u − m − ε +m

+m −u − m − ε

)
(33)

ith this notation the matrix M(ε,m, T ) is given by

(ε,m, T ) = eTM
−1
ε,meTM

+1
ε,m (34)

he stability of the discrete system Xn+1 = M(ε,m, T )Xn is
decided by the spectral radius

σ (ε,m, T ) = max |λ (ε,m, T )| i = 1, 2 (35)
i

8

where λi(ε,m, T ) are the two real eigenvalues of M(ε,m, T ) (note
that since M+1

ε,m and M−1
ε,m are symmetric, so is M(ε,m, T ) and its

eigenvalues are real). Thus

Σ(ε,m, T ) is stable ⇐⇒ σ (ε,m, T ) < 1 (36)

In view of (30) and (36) there must be a connection between
∆(ε,m, T ) and σ (ε,m, T ). The connection is given by the follow-
ing proposition, which is proved in Appendix G.

Proposition 2.10.

∆(ε,m, T ) =
1
2T

ln(σ (ε,m, T )) (37)

2.4. The (±1) model in stochastic environment

.4.1. Random choice of switching times
In the previous section, the switching from system Σ+(ε,m)

to Σ−(ε,m) and vice versa, occurs after a fixed deterministic time
. Considering that switching from one system to the other mod-
ls is a change in the environment, it makes sense to deal with the
ase where switching occur after a random time. More precisely,
e consider a sequence of iid4 random variables (Sn)n≥0, with

common law µ on [0, ∞), and a random function t ↦→ u(t) such
that,

t ∈ [T2n, T2n+1[⇒ u(t) = 1 t ∈ [T2n+1, T2n+2[⇒ u(t) = −1

where T0 = 0 and for n ≥ 1, Tn =
∑n

k=1 Sk. From this function u,
we build a stochastic process solution to

Σ (ε,m, µ)

⎧⎪⎨⎪⎩
dx1
dt

= (+u(t) − ε)x1 + m(x2 − x1)

dx2
dt

= (−u(t) − ε)x2 + m(x1 − x2)
(38)

n other words, after the nth switching, we draw a random
ariable Sn+1 with law µ independent from anything else, and
e integrate system Σ+(ε,m) when n is even (Σ−(ε,m) when n

s odd) for a time Sn. The periodic system studied in the previous
ection is the particular case when the law µ is the Dirac mass at
, i.e., Sn = T almost surely for all n ≥ 1.
We let E(Y ) denote the expectation of a random variable Y

nd P(A) the probability of an event A. Since E(S1) represents the
ean time spent in each regime, we assume that E(S1) < +∞.

n addition, we assume that P(S = 0) = 0, in order to avoid
instantaneous change of regime.

4 ‘‘iid’’ means Independent, Identically Distributed.
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As in the case of periodic environment, we perform the change
f variable V =

1
2 (ln(x1) − ln(x2)) and U =

1
2 (ln(x1) + ln(x2)) to

et

(ε,m, µ)

⎧⎪⎨⎪⎩
dU
dt

= m cosh(2V ) − m − ε

dV
dt

= u(t) − msinh(2V )
(39)

The system S(ε,m, µ) is composed of the one-dimensional sys-
tem

F (m, µ)
dV
dt

= u(t) − msinh(2V ) (40)

hich then gives the solution of U ,

(t) = U0 +

∫ t

0
(m cosh(2V (s)) − m − ε) ds (41)

emark 5. The process (u(t))t≥0 is a so-called semi-Markov
rocess. It is in general not a Markov process, but the sequence
f post-jump locations make a Markov chain, which explains the
ame semi-Markov. In the particular case where µ is an expo-
ential law (and only in this case), (u(t))t≥0 is a Markov process,
s well as the processes (V ,U, u) and (V , u). These two latter
rocesses are called Piecewise Deterministic Markov Processes (see
ection 2.4.2 below).

Recall that we say that a sequence of random variables Yn

onverges in distribution (or in law) to a variable Y∞ if for all
ounded continuous function f , E(f (Yn)) → E(f (Y∞)) when n
oes to infinity. For all n ≥ 0, set V̂n = V (Tn).

Lemma 2.11. There exist random variables V−
∞

= V−
∞
(m, µ) and

+
∞

= V+
∞
(m, µ) such that

1. V+
∞

and V−
∞

lie almost surely in [V−
m , V+

m ]; where V+
m and V−

m
are given by (20);

2. V̂2n and V̂2n+1 converge in distribution to V−
∞

and V+
∞

respec-
tively;

3. Let S be a random variable with law µ, independent from V−
∞

and V+
∞
. Then, with probability 1, for all bounded measurable

function f : R × R+ → R,

lim
n→∞

1
n

n−1∑
k=0

f (V̂2k, S2k+1) = E[f (V−

∞
, S)];

lim
n→∞

1
n

n−1∑
k=0

f (V̂2k+1, S2k+2) = E[f (V+

∞
, S)]

Remark 6. If µ = δT is the Dirac mass at T , V−
∞
(m, δT ) =

Pm,T (0) and V+
∞
(m, δT ) = Pm,T (T ), where Pm,T is the unique

periodic solution of the system F (m, T ) (see Eq. (17)) granted by
Proposition 2.3.

This lemma proved in Appendix H, tells us that the location
of V after an even number of jumps is asymptotically close, in
distribution, to a variable V−

∞
, and to a variable V+

∞
after an odd

number of jumps. This enable us to give the asymptotic growth
rate of U , as in Proposition 2.4. Recall that ϕ+

t (v) and ϕ−

t (v) are
he solutions to F+

m and F−
m at time t ≥ 0, starting from v at time

, respectively.
9

Proposition 2.12. Let S be a random variable with law µ, inde-
pendent from V+

∞
and V−

∞
. Set

∆(m, µ) =

E
(∫ S

0 m(cosh(2ϕ+
s (V−

∞
)) − 1)ds

)
+ E

(∫ S
0 m(cosh(2ϕ−

s (V+
∞
)) − 1)ds

)
2E(S)

(42)

hen, for all initial condition V (0),U(0), one has, with probability
one,

lim
t→∞

U(t)
t

= ∆(ε,m, µ) := ∆(m, µ) − ε.

The proof of Proposition 2.12, given in Appendix I, is similar
to the proof of Proposition 2.4, using probabilistic tools and the
law of large numbers given by the third point of Lemma 2.11.

Remark 7. If µ = δT is the Dirac mass at T , we have by
definition of Pm,T that for all s ∈ [0, T ], ϕ+

s (V−
∞
) = Pm,T (s) and

ϕ−
s (V+

∞
) = Pm,T (T + s). Thus,

E
(∫ S

0
m(cosh(2ϕ+

s (V−

∞
)) − 1)ds

)
=

∫ T

0
m(cosh(2Pm,T (s)) − 1)ds

and

E
(∫ S

0
m(cosh(2ϕ−

s (V+

∞
)) − 1)ds

)
=

∫ T

0
m(cosh(2Pm,T (s + T )) − 1)ds

=

∫ 2T

T
m(cosh(2Pm,T (s)) − 1)ds,

o that

(ε,m, δT ) =
1
2T

∫ 2T

0
m(cosh(2Pm,T (s)) − 1 − ε)ds = ∆(ε,m, T ).

Therefore, we retrieve the growth rate computed in the previous
section.

Remark 8. Under some additional assumptions on the law µ, it
is possible to prove that V (t) converges in distribution to a vari-
able V∞ as t goes to infinity (see the forthcoming paper (Hurth
and Strickler, 2022) for general conditions and Section 2.4.2 be-
low for a particular case). In that case, we can express ∆(ε,m, µ)
as

∆(ε,m, µ) = E [m (cosh(2V∞) − 1)] − ε.

2.4.2. The particular case of PDMP
In this section, we detail the particular case where µ is an

exponential law with parameter σ , i.e., µ is absolutely continuous
with respect to the Lebesgue measure with density defined on
R+ by g(x) = σ e−σx. Since E(S1) =

1
σ
, we rather use the

parametrization T = 1/σ in the sequel. In this situation of an
exponential law, as noticed in Remark 5, the process (Vt , u(t))t≥0
is a Piecewise Deterministic Markov process. In addition, some
explicit computations are made possible in that case.

First, it can be proven easily, using e.g. Benaïm et al. (2015,
Theorem 4.6) that V (t) converges in distribution to a random vari-
able V∞, whose law admits a density with respect to the Lebesgue
measure. In addition, this density is explicitly computable, and
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iven by (see e.g Faggionato et al., 2009, Proposition 3.12 for the
eneral formula)

m,T (v) = C(m)
(

1
|F+

m (v)|
+

1
|F−

m (v)|

)

×

(
eV

+
m − ev

ev + eV−
m

ev
− eV

−
m

ev + eV+
m

) 1
2T

√
m2+1

;

(43)

or all v ∈ [V−
m , V+

m ], where C(m) is a normalization constant.
Moreover, the following strong law of large numbers is satisfied.
For all bounded measurable function f : [V−

m , V+
m ] ↦→ R

lim
t→∞

1
t

∫ t

0
f (V (s))ds = E(f (V∞)).

This entails, as noticed in Remark 8, that

lim
t→∞

U(t)
t

= m (cosh(2V∞) − 1) − ε = ∆(ε,m, µ),

hich can be rewritten as

(ε,m, µ) =

∫
[V−

m ,V+
m ]

m (cosh(2v) − 1) ρm,T (v)dv.

emark 9. From the explicit expression (43) of ρm,T , it is
possible to prove that, for fixed m and T , there exist constants
C−(m, T ), C+(m, T ) such that, as v → V+

m ,

ρm,T (v) ∼ C+(m, T )(eV
+
m − ev)

1
2T

√
1+m2

−1
,

hile as v → V−
m ,

m,T (v) ∼ C−(m, T )(ev
− eV

−
m )

1
2T

√
1+m2

−1
.

n particular, ρm,T is bounded in neighborhoods of V+
m and V−

m
f and only if 1 ≥ 2T

√
m2 + 1. This condition is consistent with

he following heuristic: if T is large, the environment does not
witch often, and the process V follows the vector fields F+

m and
−
m for a long time, and thus spend a large amount of time close
o the equilibria V+

m and V−
m . Hence, for large T , one expects that

he distribution Πm,T give a lot of mass near V+
m and V−

m . On the
ontrary, if T is small, the environment switches frequently, and
the process V spend most of time in the middle of the interval
[V−

m , V+
m ], and therefore one expects the distribution Πm,T to

vanish at the extremity of the interval.

2.4.3. When the mean switching time goes to infinity
Let us assume that we have a family of law (µ(T ))T>0 such that,

for all T > 0;
∫

[0,∞) tµ
(T )(dt) = T . In other words, the mean time

spent in each environment is T . We now prove that, when m is
fixed and T goes to infinity, the asymptotic of ∆(ε,m, µ(T )) is the
same as in the periodic case. In particular, form small enough, one
can choose T large enough so that ∆(ε,m, µ(T )) > 0 and there is
inflation. This comes from the fact that, as T goes to infinity, the
time spent in each environment is large enough so that ϕ0

s (v) and
ϕ1
s (v) become, uniformly in v in a compact interval, arbitrarily

close from V+
m and V−

m , respectively.

Proposition 2.13. For fixed m > 0,

lim
T→∞

∆(ε,m, µ(T )) =

√
1 + m2 − m − ε.

n particular, whenever m < 1−ε2

2ε , for T large enough,∆(ε,m, µ(T ))
0 and there is inflation.
10
roof. The proof is similar to the proof of Cesaro’s Lemma. Let
(T ) be a random variable with law µ(T ). We claim that for all

continuous function g : [V−
m , V+

m ] → R,

lim
T→∞

sup
v∈[V−

m ,V+
m ]

⏐⏐E
(∫ S(T )

0 g(ϕ+
r (v))dr

)
E(S(T ))

− g(V+

m )
⏐⏐ = 0,

and similarly with V−
m instead of V+

m when ϕ+ is replaced by
ϕ− in the integral. Applying this result to the function g(v) =

m(cosh(2v) − 1) and using formula (42) proves the proposition
since g(V+

m ) = g(V−
m ) =

√
1 + m2 − m. We now prove the claim.

Since V+
m is globally attractive for the flow ϕ+, for all ε > 0 there

xists M > 0 such that, for all r ≥ M , supv∈[V−
m ,V+

m ]
|ϕr (v) − V+

m | ≤

. Since g is uniformly continuous on [V−
m , V+

m ], this entails that
or M large enough and r ≥ M , supv∈[V−

m ,V+
m ]

|g(ϕr (v)) − g(V+
m )| ≤

ε. Hence, for all v ∈ [V−
m , V+

m ],

⏐⏐E(∫ S(T )

0 g(ϕ+
r (v))dr)

E(S(T ))
− g(V+

m )
⏐⏐

≤
E(
∫ S(T )∧M
0 |g(ϕ+

r (v)) − g(V+
m )|dr)

E(S(T ))

+
E(
∫ S(T )

M |g(ϕ+
r (v)) − g(V+

m )|dr1S(T )>M )
E(S(T ))

≤
2M∥g∥∞

T
+ ε,

where we have used that E(S(T )) = T . This proves the claim. □

.4.4. Random choice of (±1)
In this section, we study another type of random process

inked to the (±1) model. We assume that, in each patch, after
ach T units of time, we select at random, independently from
nything else, whether the growth rate within the patch will be
− ε or −(1 + ε) for the next T units of time. More formally,
e consider the system such that; for all n ≥ 0, for all t ∈

nT , (n + 1)T ),

(ε, p1, p2,m, T )

⎧⎪⎨⎪⎩
dx1
dt

= (zn1 − ε)x1 + m(x2 − x1)

dx2
dt

= (zn2 − ε)x2 + m(x1 − x2)
(44)

where (zn1 )n≥0 and (zn2 )n≥0 are independent sequences of i.i.d.
random variables with values in {−1, 1} such that for i = 1, 2,
P(zni = 1) = pi ∈ (0, 1). Note in particular that the growth rates
of the two patches are totally uncorrelated and that there is no
temporal autocorrelation for the value of the growth rate within
a given patch. In the U − V variables, the system becomes, for
t ∈ [nT , (n + 1)T ),⎧⎪⎨⎪⎩

dU
dt

=
zn1 + zn2

2
+ m cosh(2V ) − m − ε

dV
dt

=
zn1 − zn2

2
− m sinh(2V )

(45)

ote that now, V is switching between three autonomous system:
+
m , F−

m and F 0
m, where

0
m

{
dV
dt

= −m sinh(2V ) (46)

We denote by ϕ0 the flow associated to F 0
m. For n ≥ 0, we

let V̂n = V (nT ). As in the previous section, we can precise the
asymptotic behavior of V̂n.

Lemma 2.14. The followings hold true:
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Fig. 6. System (45). On the left one realization with duration between switches = 0.2; on the right duration = 5. More comments in the text.
R
χ

1. The sequence (V̂n)n≥0 is a Markov chain;
2. V̂n converges in distribution to a random variable V̂∞ which

lies almost surely in [V−
m , V+

m ];

3. For k ≥ 0, let hk =
zk1−zk2

2 and let h a random variable
independent from V̂∞, with the law of h1. Then, with prob-
ability 1, for all bounded measurable function f : [V−

m , V+
m ] ×

{−1, 0, 1} → R,

lim
n→∞

1
n

n−1∑
k=0

f (V̂k, hk) = E(f (V̂∞, h)).

Now, similarly to the proof of Proposition 2.12, we can use the
revious lemma to show that there exists an asymptotic growth
ate for U .

roposition 2.15. Let h be a random variable, independent from
ˆ
∞, with the law of z11−z12

2 . Set

(p1, p2,m, T ) =

E(
∫ T
0 m

(
cosh(2ϕh

r (V̂∞)) − 1
)
dr)

T
+p1 +p2 −1

Then,

lim
t→∞

U(t)
t

= ∆(p1, p2,m, T , ε) = ∆(p1, p2,m, T ) − ε.

The proof of Proposition 2.15 is very similar to the proof of
Proposition 2.12 and left to the reader. We illustrate this proposi-
tion by the simulations of Fig. 6 which is are counterpart of those
of Fig. 3 in the deterministic periodic case. We have considered
the system (45) with p1 = p2 =

1
2 and m = 0.1 and ε = 0.1. On

the right one sees a realization of the process with T = 5; one
sees:

◦ From 0 to a: z1 = z2 = +1. The abundance of population is
increasing on both patches; trajectory in blue.

◦ From a to b: z1 = 1, z2 = −1. Site 1 is favorable, site 2
unfavorable.

◦ From b to c: z1 = z2 = +1. The abundance of population is
increasing on both patches.

◦ From c to d: z1 = z2 = −1. The abundance of population is
decreasing on both patches; trajectory in green.

◦ From d to e: z1 = 1, z2 = −1. Site 1 is favorable, site 2
unfavorable.
11
◦ From e to f : z1 = −1, z2 = +1. Site 1 is unfavorable, site 2
favorable.

◦ From f to g: z1 = −1, z2 = +1. Site 1 is favorable, site 2
unfavorable.

◦ . . .

We see that, with respect to U , green and blue trajectories almost
compensate while, since T is large enough, the red trajectories
spent enough time in the strips R×[A+

m,ε, V
+
m ] and R×[V−

m , A−
m,ε, ]

where U is increasing. on the left simulation we chose T = 0.2
which gives little chance to the trajectory to reach the strips
where U is increasing.

In the situation of random switching time studied previously,
we have shown that, provided m is small enough and the mean
switching time is large enough, there is inflation. The present
case of random choice of (±1) is a bit different. Depending on
the parameters p1, p2 and ε, it might happen that inflation never
occurs, whatever the values of m and T are. We use the notations
of Katriel to state this result.

Proposition 2.16. Let

χ = χ (p1, p2, ε) = p1(1 − p2) + p2(1 − p1) + p1 + p2 − 1 − ε

Then

• If χ < 0, then for all (m, T ), ∆(p1, p2,m, T , ε) < 0, and there
is no inflation

• If χ > 0, there exists m∗(ε) such that, for all m ∈ (0,m∗(ε)),
there exists T ∗(m) such that, for all T ≥ T ∗(m), ∆(p1, p2,
m, T , ε) > 0 and there is inflation.

The second assertion is a consequence of the fact that, for all m > 0,

lim
T→∞

∆(p1, p2,m, T , ε) = [p1(1 − p2) + p2(1 − p1)]

× (
√
1 + m2 − m) + p1 + p2 − 1 − ε

= χ − [p1(1 − p2) + p2(1 − p1)]m
+ o(m).

emark 10. Note that
= [p1(1 − p2) + p2(1 − p1) + p1p2] (1 − ε) − [(1 − p1)(1 − p2)]
× (1 + ε).
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he term p1(1− p2)+ p2(1− p1)+ p1p2 is the proportion of time
here a least one patch is favorable, while the term (1−p1)(1−p2)

is the proportion of time where the two patches are unfavorable.
In particular, χ > 0 if and only if
p1(1 − p2) + p2(1 − p1) + p1p2

(1 − p1)(1 − p2)
>

1 + ε

1 − ε
,

that is, the ratio of the time in favorable states and the time in
unfavorable state is higher than the ratio of the rates of decrease
and of increase.

The proof of the first item of Proposition 2.16 is similar to the
proof of the result of Katriel, with the use of the law of large
numbers. It is remarkably simple, as we detail now

Proof. For all t ∈ [nT , n(T + 1)), we have
d(x1 + x2)

dt
= (zn1 − ε)x1 + (zn2 − ε)x2

≤
(
max(zn1 , z

n
2 ) − ε

)
(x1 + x2).

his implies that

n((x1 + x2)((n + 1)T )) ≤
(
max(zn1 , z

n
2 ) − ε

)
T + ln((x1 + x2)(nT )),

nd thus for all n ≥ 1,

ln((x1 + x2)(nT ))
nT

≤ −ε +
1
n

n−1∑
k=0

max(zk1, z
k
2).

Since the sequence (max(zk1, z
k
2))k≥0 is i.i.d., the strong law of large

numbers implies that with probability 1,

lim
n→∞

1
n

n−1∑
k=0

max(zk1, z
k
2) = E(max(zk1, z

k
2))

= p1(1 − p2) + p2(1 − p1) + p1p2
− (1 − p1)(1 − p2)

ence,

lim
→∞

ln((x1 + x2)(nT ))
nT

≤ χ,

nd this entails the first point of the proposition.
The proof of the second point is very similar to the proof of

roposition 2.13, where we also use that, as t goes to infinity,
0(v) → 0, uniformly in v ∈ [V−

m , V+
m ]. Thus, the proof is

mitted. □

emark 11. We could also have considered the case where zn1
s not necessarily independent from zn2 . In that case, we give the
aw p = (p1,1, p1,−1, p−1,1, p−1,−1) of the couple Zn

= (zn1 , z
n
2 ): for

h, h′
∈ {−1, +1},

P
(
Zn

= (h, h′)
)

= ph,h′ ,

for some p1,1, p1,−1, p−1,1, p−1,−1 that sum to 1. The formula
become

lim
T→∞

∆(p,m, T , ε) =
[
p+,− + p−,+

]
(
√
1 + m2−m)+p++−p−−−ε

χ (p, ε) = [p+,− + p−,+ + p+,+](1 − ε) − p−,−(1 + ε)

and χ > 0 if and only if, either p−,− = 0 or
p+,− + p−,+ + p+,+

p−,−

>
1 + ε

1 − ε
. (47)

e notice that when both p1,1 and p−1,−1 are null, i.e. the case
here the patches are always in opposite growth,

lim
→∞

∆(p,m, T , ε) = (
√
1 + m2 − m) − ε,

hich is the same limit as in the periodic case with alternating
+ and +−.
 o

12
2.4.5. Link with the top Lyapunov exponent
Let Xt = (x1(t), x2(t)) the solution to Σ (m, ε, µ). With the

otation of Section 2.3.4, one can rewrite Σ (m, ε, T ) as
dXt

dt
= Mu(t)

ε,mXt . (48)

Since u(t) is constant on interval [Tn, Tn+1[ of length Sn+1, one has

X(Tn+1) = eSn+1M
u(Tn)
ε,m X(Tn)

ence, setting X̂n = X(Tn) and ûn = u(Tn), one can write X̂n as
the product

X̂n =

(
n−1∏
i=0

Bi

)
X̂0,

where Bi is the random matrix eSi+1M
ûi
ε,m . Since the sequence

(ûn)n≥0 forms a Markov chain and since the (Sn)n≥1 are i.i.d.,
one can prove (see Colonius and Mazanti, 2019, Proposition 3.8)
that the classical Oseledet’s Multiplicative ergodic theorem can
be applied. According to this theorem, the limit5

lim
n→∞

1
n
ln ∥X̂n∥

exists, and can take at most two different values λ1 ≥ λ2,
alled Lyapunov exponent (see e.g Chapter 1.4 in Strickler, 2019).
ince the matrices Mh

ε,m are irreducible and Metzler, ie have non-
negative off-diagonal coefficients, a random version of Perron–
Frobenius Theorem (see Arnold et al., 1994), and Proposition 2.13
in Benaïm and Strickler, 2019 implies that the top Lyapunov
exponent λ1, is such that, for all X0 ∈ R2

+
\ {0}, almost surely,

lim
n→∞

1
n
ln ∥X̂n∥ = λ1.

Moreover, by Proposition 3.4 in Colonius and Mazanti (2019),
we can define the growth rate Λ(ε,m, µ) of the continuous-
time model and related it to the Lyapunov exponent of the
discrete-time model:

Λ(ε,m, µ) := lim
t→∞

1
t
ln ∥Xt∥ =

1
E(S1)

lim
n→∞

1
n
ln ∥X̂n∥ =

λ1

E(S1)
.

Obviously, Λ(ε,m, µ) and ∆(ε,m, T ) are linked. Indeed, note
hat the compact set [V−

m , V+
m ] is positively invariant for V =

1
2 (ln(x1)− ln(x2)) and attracts all trajectories. Hence, for all initial
ondition (x1(0), x2(0)), there exists a time t0 such that, for all
≥ t0, V (t) ∈ [V−

m , V+
m ]. In particular, for t ≥ t0;

2V−
m ≤

x1(t)
x2(t)

≤ e2V
+
m

This yields(
e2V

−
m + e−2V+

m
)
x1(t)x2(t) ≤ x1(t)2 + x2(t)2

≤

(
e−2V−

m + e2V
+
m
)
x1(t)x2(t)

Taking the logarithm and sending t to infinity proves the follow-
ing:

Proposition 2.17. One has

∆(ε,m, µ) = Λ(ε,m, µ).

emark 12. For the system Σ (ε, p1, p2,m, T ) considered in
Section 2.4.4, one can prove similarly that X̂n = X(nT ) is described
by a random product of matrices, and that there exists a top
Lyapunov exponent λ1 such that ∆(p1, p2,m, T , ε) =

λ1
T .

5 Here ∥ ·∥ stands for the euclidian norm on R2 , but the limit is independent
f the choice of the norm.
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. Some extensions to more complex situations

.1. The case of partial phase shift

In the preceding section we considered the case where the two
atches where always in opposite conditions during the whole
eriod 2T . A more realistic situation is when the two patches are
uled by the same periodic environment r(t) shifted of ϕT with
∈ (0, 1).
Hence, we consider the system Σ(r1, r2,m, T ), given by (8),

here r1(t) and r2(t) are the 2T -periodic functions defined by

1(t) =

{
r if t ∈ [0, T )

−d if t ∈ [T , 2T ) r2(t) = r1(t − ϕT ).

s in (15), we assume that d > r > 0 which means that the mean
f the growth rate on each patch is negative (each patch is a sink).
e have:

=
1
2T

∫ 2T

0
max(r1(s), r2(s))ds = r

1 + ϕ

2
− d

1 − ϕ

2

here 1+ϕ

2 is the proportion of time where at least one of the
atches is increasing, while 1−ϕ

2 is the proportion of time where
oth patches are decreasing. Hence, χ > 0 if and only if

1 + ϕ

1 − ϕ
>

d
r
,

s in the stochastic (±1) model, see (47).
Let us consider now the special case where r = 1 − ε and

= 1 + ε corresponding to (±1) model. We have χ = ϕ − ε.
herefore χ > 0 if and only if ϕ > ε. For illustration let us plot
he function (m, T ) ↦→ ∆(m, T ). As previously we have the two
ystems:

+−(ε,m, T , ϕ)

⎧⎪⎨⎪⎩
dx1
dt

= (+1 − ε)x1 + m(x2 − x1)

dx2
dt

= (−1 − ε)x2 + m(x1 − x2)
(49)

and:

Σ−+(ε,m, T , ϕ)

⎧⎪⎨⎪⎩
dx1
dt

= (−1 − ε)x1 + m(x2 − x1)

dx2
dt

= (+1 − ε)x2 + m(x1 − x2)
(50)

to which we add:

Σ++(ε,m, T , ϕ)

⎧⎪⎨⎪⎩
dx1
dt

= (+1 − ε)x1 + m(x2 − x1)

dx2
dt

= (+1 − ε)x2 + m(x1 − x2)
(51)

and:

Σ−−(ε,m, T , ϕ)

⎧⎪⎨⎪⎩
dx1
dt

= (−1 − ε)x1 + m(x2 − x1)

dx2
dt

= (−1 − ε)x2 + m(x1 − x2)
(52)
13
We switch from one system to the other according to the follow-
ing scheme:

t ∈ [0, ϕT [ [ϕT , T [ [T , T (1 + ϕ), [ [T (1 + ϕ), 2T [

Σ +− ++ −+ −−

(53)

Using notations similar to those we used in Section 2.3.4, let
s define:

+−

ε,m =

[
1 − m − ε +m

+m −1 − m − ε

]
M−+

ε,m =

[
−1 − m − ε +m

+m 1 − m − ε

]
++

ε,m =

[
1 − m − ε +m

+m +1 − m − ε

]
−−

ε,m =

[
−1 − m − ε +m

+m −1 − m − ε

]
he spectral radius of the matrix:

(ε,m, T , ϕ) = eT (1−ϕ)M−−
ε,m eϕTM−+

ε,m eT (1−ϕ)M++
ε,m eϕTM+−

ε,m

ecides of the stability of the switched system associated to
hese four systems, T and ϕ. Once again, we ask to Maple to
ompute the eigenvalues of M(ε,m, T , ϕ), we select the largest
ne λ1(ε,m, T , ϕ) and look for le mapping (m, T ) ↦→ 1/T ln(λ1
ε,m, T , ϕ)) for ε = 0.1 and various values. When the shift ϕT
s not equal to T our intuition is that the inflation effect will be
roportional to the shift and will be maximum when ϕ = 1. This
s confirmed by Fig. 7.

.2. Migration between different patches

As discussed at the end of Section 2.3.1, the (±1)-model given
y (12) encompasses the more general case of two identical
atches that are in phase opposition. Let us show now that the
atches do not need to be identical and that our approach applies
n the more general case of model (8), where the functions r1(t)
nd r2(t) are given by

1(t) =

{
r1 if t ∈ [0, T ]

−d1 if t ∈ [T , 2T ]
r2(t) =

{
−d2 if t ∈ [0, T ]

r2 if t ∈ [T , 2T ]

(54)

here r1, r2, d1 and d2 are real parameters. The system Σ(ε,m, T ),
efined by (12) corresponds to the case where r1 = r2 = 1−ε and
1 = d2 = 1+ ε. On the other hand, the system (15) corresponds

to the case where r1 = r2 = r and d1 = d2 = d.
Using notations similar to those we used in Section 2.3.4, let

us define:

M1
r1,d2,m =

[
r1 − m +m
+m −d2 − m

]
,

M2
r2,d1,m =

[
−d1 − m +m

+m r2 − m

]
The spectral radius of the matrix:

M(r1, d1, r2, d2,m, T ) = eTM
2
r2,d1,meTM

1
r1,d2,m

decides of the stability of the switched system. Once again, we
ask Maple to compute the eigenvalues of M(r1, d1, r2, d2,m, T ),
we select the largest, denoted λ1(r1, d1, r2, d2,m, T ) and draw the
graph of the function (m, T ) ↦→

1
2T ln(λ1(r1, d1, r2, d2,m, T )) for

various values of the parameters, see Fig. 8.
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T ln(λ1(0.1,m, T , ϕ)) for three values of ϕ.
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Comments on Fig. 8. We look to 1
2T ln(λ1(r1, d1, r2, d2,m, T )) in

wo different cases. On the left we consider the case:
r1 = 0.9 d1 = 1.1
r2 = 0.9 d2 = 1.1 (55)

hich is the case of the (±1)model for ε = 0.1 which we already
onsidered. We compare this case to the case:

r1 = 0.9 d1 = 1.1
r2 = −0.1 d2 = 0.1 (56)

n this case the patch 1 is unchanged and the patch 2 represent
ome place without seasonality. In this case inflation is smaller
ut still observable.

.3. The case of non symmetric dispersal

The symmetric rate of dispersal between the two patches is a
ery special (and unlikely) situation. A non symmetric dispersal
ike in the model:⎧⎪⎨⎪⎩
dx1
dt

= r1(t)x1 + m(γ x2 − x1)

dx2
dt

= r2(t)x2 + m(x1 − γ x2)
(57)

ith γ > 0, is certainly more realistic. Using the change of
ariables

= ln
(
xγ

1 x2
) 1

γ+1 =
γ ln x1+ln x2

γ+1 , V = ln
√

x1
x2

=
ln x1−ln x2

2 ,

ne obtains:⎧⎨⎩
dU
dt =

γ r1(t)+r2(t)
γ+1 +

2γm
γ+1 (cosh (2V − ln γ ) − 1)

dV
dt =

r1(t)−r2(t)
2 − m

(
√

γ sinh
(
2V −

ln γ

2

)
+

γ−1
2

) . (58)

This system reduces to (10) in the symmetric case γ = 1, and
its study will follow the same lines than the study of (10). In
particular, since cosh(α) ≥ 1, we have

U(t) ≥ U(0) +

∫ t γ r1(s) + r2(s)ds

0 γ + 1 o

14
Therefore, we have

lim inf
U(t)
t

≥
γ r̄1 + r̄2
γ + 1

Note that, as in Appendix B, we can use singular perturbation
theory (Tykhonov, 1952; Lobry et al., 1998) to show that

lim
m→∞

∆(r1(·), r2(·),m, T ) =
γ r̄1 + r̄2
γ + 1

Therefore, we have

inf∆(r1(·), r2(·),m, T ) =
γ r̄1 + r̄2
γ + 1

.

On the other hand, for the (±1) model associated to the
asymmetric dispersal (57), we simply consider the matrices:

M+−

ε,m,γ =

[
1 − ε − m γm

m −1 − ε − γm

]
,

M−+

ε,m,γ =

[
−1 − ε − m γm

m 1 − ε − γm

]
The spectral radius of the matrix:

M(ε,m, T , γ ) = eTM
−+
ε,m,γ eTM

+−
ε,m,γ

decides of the stability of the switched system. Once again, we
ask Maple to compute the eigenvalues of M(ε,m, T , γ ), we select
the largest, denoted λ1(M(ε,m, T , γ )). To have a better under-
tanding of the role of γ , we depict in Fig. 9 the zero level-set

(m, T ) : ∆(ε,m, T , γ ) = 0}

f the function ∆(ε,m, T , γ ) =
1
2T ln(λ1(M(ε,m, T , γ ))), for vari-

us values of γ .
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Fig. 9. The set {(m, T ) : ∆(0.5,m, T , γ ) = 0} for the values of γ : γ = 2 (Black),
= 1 (Red), γ = 0.5 (Yellow), γ = 0.2 (Green), γ = 0.1 (Blue).

.4. A density dependent deterministic model

In Arditi et al. (2015, 2018) a complete description of the
symptotic behavior of the model:

dx1
dt

= r1x1

(
1 −

x1
K1

)
+ β

(
x2
γ2

−
x1
γ1

)
dx2
dt

= r2x1

(
1 −

x2
K2

)
+ β

(
x1
γ1

−
x2
γ2

) (59)

s given in the space of the six independent parameters {ri, Ki, (i =

, 2), β/γ2, γ1/γ2}, the focus being on the comparison between
he total equilibrium population with the sum K1 +K2 of the two
carrying capacities. Here we complement this study by consider-
ing the question of persistence when r1 and r2 vary in time for
specific values of the parameters. Namely, we consider the system

D(ε, α,m, T )

⎧⎪⎨⎪⎩
dx1
dt

= (+u(t) − ε)x1 − αx21 + m(x2 − x1)

dx2
dt

= (−u(t) − ε)x2 − αx22 + m(x1 − x2)

(60)

here 0 ≤ ε ≤ 1, α ≥ 0, m ≥ 0, T ≥ 0 and the function t ↦→ u(t)
s periodic of period 2T , with

∈ [0, T [⇒ u(t) = 1 t ∈ [T , 2T [⇒ u(t) = −1

We are interested in the persistence of (60). Recall that the sys-
em D(ε, α,m, T ) is uniformly persistent (see for instance Butler
t al., 1986) if there exist strictly positive constants a < b such
hat every solutions (x1(t), x2(t)) of D(ε, α,m, T ) is asymptotically
ounded from below by a and from above by b (i.e. a ≤ xi(t) ≤ b
or t sufficiently large).

When α = 0 the system D(ε, 0,m, T ) is just the (±1)model
(ε,m, T ). When α is not 0, but m = 0, on each patch the
ynamic is:
dxi

= (u(t) − ε)xi − αx2 i = 1, 2 (61)

dt i
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with u(t) = ±1. In both cases one has a logistic equation with
a globally stable equilibrium equal to 1−ε

α
or 0. One sees easily

that in the space (R+)2 the square S = [0, 1−ε
α

] × [0, 1−ε
α

] is an
invariant global attractor ; this implies that every trajectories of
(60) are bounded from above.

Regarding boundedness from below we can say intuitively
that the system D(ε, α,m, T ) behaves around the origin like its
linear approximation, namely the system Σ(ε,m, T ) and thus
is persistent if and only if Σ(ε,m, T ) is unstable. Actually the
following proposition can be proved (see Appendix J)

Proposition 3.1. If the parameters (ε,m, T ) are such that the
system D(ε, 0,m, T ) = Σ(ε,m, T ) is:

• stable, then the solutions of D(ε, α,m, T ) tend to 0 (extinction),
• unstable, then D(ε, α,m, T ) is persistent.

Thus we have, for T large enough, the sequence: small m:
extinction — intermediate m: persistence — large m: extinction/
This is illustrated by the simulations of Fig. 10.

3.5. A density dependent stochastic model

In this short section, we show that Proposition 3.1 is still true
under a random signal u. More precisely, we consider the system

D(ε, α,m, T )

⎧⎪⎨⎪⎩
dx1
dt

= (+u(t) − ε)x1 − αx21 + m(x2 − x1)

dx2
dt

= (−u(t) − ε)x2 − αx22 + m(x1 − x2)

(62)

here u switches from 1 to −1 and conversely at random expo-
ential time, as described in Section 2.4.2. Like in the periodic
ase described above, when α = 0, D(ε, α,m, T ) is just the
tochastic (±1)model Σ (ε,m, T ). Using a terminology borrowed
o Schreiber and Chesson, we say that the system D(ε, α,m, T ) is
tochastically persistent if for all η > 0, there exists a compact set
η ⊂ R2

++
such that, almost surely,

im inf
t→∞

1
t

∫ t

0
1(x1(s),x2(s))∈Kη ds ≥ 1 − η.

We now give the stochastic counterpart of Proposition 3.1:

Proposition 3.2. We have the following dichotomy:

• If ∆(ε,m, T ) ≤ 0, then system D(ε, α,m, T ) goes to extinc-
tion;

• If ∆(ε,m, T ) > 0, then system D(ε, α,m, T ) is stochasti-
cally persistent, and the process (x1, x2, u) admits a unique
stationary distribution ν such that ν(R2

++
× {±1}) = 1.

.6. An S.I.R. type epidemic model

In Kortessisa et al. (2020b) Nicholas Kortessisa, Margaret W. Si-
on, Michael Barfield, Gregory Glass, Burton H. Singer and Robert D.
olt consider the classical S.I.R. model for a population living in
wo patches connected by migration. The model is the following
ystem:
dS1
dt

= −β(t)S1I1 + m(S2 − S1)

dI1
dt

= +β(t)S1I1 − (γ (t) + µ)I1 + m(I2 − II )

dS2
dt

= −β(t − ϕ)S2I2 + m(S1 − S2)

dI2
= +β(t − ϕ)S2I2 − (γ (t − ϕ) + µ)I2 + m(I1 − I2)

(63)
dt
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here Si(t) represents the number of ‘‘susceptible to be infected’’
t time t on each patch, Ii(t) represents the number of ‘‘infected’’
n each patch. The parameters β(.) and γ (.) are piecewise con-
tant functions of period 2T varying according to the presence
r absence of social distancing measures ; we examine the mes-
ages of this paper in light of our previous study of inflation
henomenon.6

The first remark of the authors of Kortessisa et al. (2020b) is to
onsider that we are essentially interested by the beginning of the
ontamination when, as a first approximation, we can consider
hat S(t) is almost equal to the initial total population N . Then
he approximate model is:

dI1
dt

=
(
β(t)N − (γ (t) + µ)

)
I1 + m(I2 − II )

dI2
dt

=
(
β(t − ϕ)N − (γ (t − ϕ) + µ)

)
I2 + m(I1 − I2)

(64)

hey denote respectively by the subscripts n and s the values
f parameters in ‘‘normal’’ periods and periods when the ‘‘social
istancing’’ is in effect. They adopt, according to the current
iterature, the following realistic values.

βnN = 0.1988 γn = 0.098 µn = 0.002
βsN = 0.0288 γs = 0.128 µs = 0.002

βnN − (γn + µn) = 0.0988
βsN − (γs + µs) = −0.1012

and they discuss the case T = 30. We have done a simulation
ith these parameters and m = 0.005 as they did. We obtained
he same picture than (Kortessisa et al., 2020b) (see Fig. 11) which
onfirms that we are actually running the same model but our
bjective is not to reproduce (Kortessisa et al., 2020b) results
ut to complete them. For this purpose we consider the effect
f migration, in the case of a small phase shift in the application
f social distancing. We assume that ϕ = 4 days.
In the absence of migration the linear model is:

dIi
dt

= 0.0988 Ii (normal)
dIi
dt

= −0.1012 Ii
(social distancing)

(65)

6 The authors of Kortessisa et al. (2020b) publish the same message in
.N.A.S. Kortessisa et al. (2020a) but using, in our opinion, a less realistic β(.)

and γ (.) like continuous sinusoidal functions. We prefer to refer to the initial
paper but our discussion would be the same with the P.N.A.S. paper.
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If we multiply the dynamic of Ii by the factor 10 (which means a
change unit for the time) we have:

dIi
dt

= 0.988 Ii (normal)
dIi
dt

= −1.012 Ii (social distancing)

(66)

hich we read as the ‘‘(±1)model’’:
dxi
dt

= (1 − ε)xi (normal)
dxi
dt

= −(1 + ε)xi
(social distancing)

(67)

with ε = 0.012. To T = 30 and a phase shift of 4 days in the
model (63) correspond T = 3 a shift of 0.133 in (67). For these
values one sees on the graphs of λ1 (see Fig. 12) that there is
no longer instability for m > 2 which means m > 0.2 in the
original system (63). This must be reflected on the epidemic. If
one looks to the cumulative number of cases for a duration of
1500 days the simulation of the model gives Fig. 13. We can
see that no migration at all is the best, when migration grows
from 0 to approximately 0.1 the number of cases is multiplied
by 4 but and after that decreases. Very low migration can increase
dramatically the number of cases, while, if migration is unavoidable,
comparatively large one has better effect.

In their paper published in the P.N.A.S. the authors (Kortessisa
et al., 2020a) say: ‘‘These findings highlight a need for inte-
grated, holistic policy: Intensify mitigation locally, coordinate
tactics among locations, and reduce movement’’.

In the light of our work, we see that the latter recommen-
dation, is not necessarily correct, depending on where you are
located with respect to the maximum of Λ(ε,m, T ). This does not
invalidate but reinforces the conclusion of their paper with which
we fully agree. ‘‘It is increasingly recognized that monitoring
and controlling movement is essential for effective pandemic
control. The impact of such actions is, however, contextual, be-
cause their dynamical effects are intertwined with the magnitude
of asynchrony in local transmission across space. More-realistic,
spatially structured epidemiological models including movement
and asynchronous transmission - at scales from local to interna-
tional - are essential to control this and future pandemics in the
coupled metapopulations of humans and their pathogens’’.

4. Discussion

We first studied the simplest model likely to present the infla-
tion phenomenon for continuous time models. For that purpose
we considered only two patches, a symmetric migration of rate m
between the two patches and piecewise constant environments.
On the patch 1, for a duration T the environment is favorable,
the growth rate is 1 − ε and it is followed by a period also of
uration T where the environment is unfavorable and the rate of
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Fig. 11. Simulation from Kortessisa et al. (2020b) (left); our simulation (right).
Fig. 12. Graphs of (m, T ), ↦→ λ1(0.012,m, T ) (left) and m ↦→ λ1(0.012,m, 3, 0.133).
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Fig. 13. Cumulative number of cases up to 1500 days as a function of migration.

decay is −1−ε; since ε is strictly positive, over the period 2T the
environment is globally unfavorable, so patch 1 considered alone,
 t

17
is a sink. On patch 2 we consider an identical environment, so this
site is also a sink, but we suppose that it is out of phase of half
a period with patch 1; thus when the environment is favorable
on site 1 it is unfavorable on patch 2 and conversely. On this
minimal model that we noted Σ(ε,m, T ) we showed that the
Liapunov exponent ∆(ε,m, T ) which characterizes the growth of
(ε,m, T ) has the following properties:

1. For all T , for m small (m → 0) and m large (m → +∞) we
have ∆(ε,m, T ) < 0 (no inflation).(see Proposition 2.6)

2. For any m < (1 − ε2)/2ε there is a threshold T ∗(ε,m)
for the half period T below which there is no inflation
(∆(ε,m, T ) < 0) and above which there is inflation
(∆(ε,m, T ) > 0).

3. We have given an explicit formula (see Proposition 2.7) for
∆(ε,m, T ) from which we deduce (see Proposition 2.9) that
the threshold value at which m ↦→ ∆(ε,m, T ) becomes
positive is an exponentially small value ∼ e−(1−ε)T for large
values of T .

he graph of (m, T ) ↦→ ∆(ε,m, T ) (see Fig. 4) summarizes the
ituation.
Note that the two first points follow from the general result of

atriel (2022) but the latter is only proved for growth rates that
epend continuously on time and thus cannot (formally) apply

o our situation we do not know if the methods of Katriel (2022)
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pply to switched systems. By the way our results complement
atriel’s results.
Our results can be obtained (thanks to formal software like

aple) directly from the explicit (but rather obscure) formula for
he dominant eigenvalue of the matrix which defines the Poincaré
pplication of the periodic system. But we have preferred to
stablish them from the examination of the phase portrait of the
ransformed system in the variables (U, V ), U being the geometric
ean of the abundances (x1, x2) and |V | their geometric standard
eviation.
These variables allows to easily extend our understanding of

he inflation phenomenon on the (±1)-model to more general
ituations. In this spirit we have also shown that the properties
f the (±1) model are still valid for some kinds of continuous
ime stochastic models which is important if we want to be more
ealistic. First we have reconsidered the (±1)-model assuming
hat the successive sequences of constant environment are not
ixed an equal to T like in the 2T periodic environment but
re succession of independent random duration Sn following the
ame law µ. When the law is an exponential law of parameter λ
his defines a so called Piecewise Deterministic Markov Process
see Davis, 1984), which is interesting since we are able to make
xplicit calculations in that case. We have shown that the same
nflation phenomenon occurs with the expectation of Sn playing
he role of the period in the deterministic periodic case. More
recisely, we have shown that there exists a unique (determinis-
ic) Lyapunov exponent ∆(ε,m, µ) whose sign characterize the
ehavior of the system. In addition, we prove that for all m,
rovided the expectation of Sn is large enough, ∆(ε,m, µ) is
ositive and there is inflation. We have also considered a different
ase of stochasticity. Now the duration of the constant growth
ate (±1) is of a fixed duration T but the choice of +1 or −1
s random, these choices being correlated or not. For this model
e also characterize the presence of inflation, by the sign of
deterministic Lyapunov exponent ∆(p1, p2,m, T , ε). Moreover,
e prove that there exists a threshold χ (p1, p2, ε) such that

1. If χ (p1, p2, ε) < 0, then for all (m, T ), ∆(p1, p2,m, T , ε) < 0
and there is no inflation,

2. if χ (p1, p2, ε) > 0, then for all m < (1 − ε2)/2ε there
is a threshold T ∗(ε,m), there is inflation whenever T ≥

T ∗(ε,m).

All the above results apply to the (±1) model which, of course,
s totally unrealistic. This is why we have shown how our results
xtend to, or illuminate, the more general situations listed in
he index of Section 3, which ends with the application to the
pidemiological model of Kortessisa et al. (2020a) that motivated
his study.

This mathematical success of the (U, V ) variables also suggests
hat the geometric mean and deviation of abundances at each site
re a better indicator of the metapopulation status than are the
rithmetic mean and standard deviation.
We have shown that the growth rate of the two patches is

lways higher than the mean of the growth rates within each
atch, see Remark 2. Therefore, in the (±) model, where the
rowth rates within each patch are equal (i.e. r̄1 = r̄2), the growth
ate ∆(ε,m, T ) is always higher than its limit ∆(ε, 0, T ), for m =

, see Fig. 4 and Proposition 2.8. This property is also satisfied
n the examples depicted in Figs. 7 and 8. We can therefore
educe that migration always favors growth. This positive effect
ay be sufficient to change a negative growth rate when no
igration to a positive growth rate (i.e., inflation), but may also
ot (i.e., not inflation). But in either case, the growth rate is
nflated. However, the property ∆(ε,m, T ) > ∆(ε, 0, T ), if m > 0,
s specific to the case where r̄1 = r̄2. If these growth rates are
ifferent then the limit of ∆(ε,m, T ) when T tends to 0 is a
18
trictly decreasing function with respect to m, from max(r̄1, r̄2) to
r̄1 + r̄2)/2, see Katriel (2022, Lemma 9). Consequently, when m
nd T are sufficiently small, ∆(ε,m, T ) < ∆(ε, 0, T ) will result,
nd the migration will not favor growth. For a more in-depth
nalysis of this behavior, the reader is referred to Benaim et al.
2023).

If we try to understand intuitively the mechanisms that cause
nflation in the case of continuous time models we see the fol-
owing. Let us say that the environment is positive (respectively
egative) at time t on some patch if the abundance of the popula-
ion is increasing (respectively decreasing). The fluctuations of the
nvironment on the two patches can be thought as a succession
f regimes (++), (+−), (−+), (−−) and the key ingredients for
nflation are:

– A sufficient (in mean) duration between two changes of
regime (i.e. a period large enough in the deterministic pe-
riodic case),

– a proportion of time spent in opposite regimes (+−) or
(−+) as large as possible,

– a migration neither too weak nor too strong.

hich we understand as follows. In the absence of migration, a
+−) or (−+) regime, will create rapidly a dissymmetry between
he two sites, since the abundance on the source is increasing
nd the abundance on the sink is decreasing as long as one
emains in this; if this duration is long enough the ratio of the two
bundances, tends to ∞ or 0; if we now introduce a migration it
nduces a transfer from the positive environment to the negative
ne; if it is too weak it does not allow the patch with negative
nvironment to benefit from the growth on the other one and,
onversely, a migration that is too strong slows down the growth
he patch with positive environment.

This description of the mechanisms at the origin of inflation
ontrasts with those put forward in the case of discrete-time
andom models where the emphasis is generally placed on the
eed for a temporal correlation of the fitnesses at the two patches
Holt, 1997; Roy et al., 2005; Schreiber, 2010), and, in some cases
nly, (Schreiber, 2010 for instance) the need for a migration that
s neither too large nor too small. We believe that the origin of
his difference lies in the following remark.

What makes the intuition of the inflation phenomenon intri-
ate, in both discrete and continuous time models, is to consider
imultaneously growth and/or decay on each of the patches and
migration in both directions, but basically things are rather

imple if we suppose that patch 2 is a patch where there is neither
rowth nor decay, that there is only migration from 1 to 2 and
hat we reverse the roles of patches 1 and 2 after a time T . It
s not exactly the case we considered since now the migration
epends on time, but it helps to understand. We thus consider
he following situation:

1. On patch 1 the population grows in an exponential way
dx
dt = αx during a duration T .

2. A part of the population of patch 1 is transferred on patch
2 according to two different modalities:

(a) Discrete mode: At the end of the growth period T a
part d (0 ≤ d ≤ 1) is transferred from patch 1 on the
patch 2.

(b) Continuous mode: Continuously ( dxdt = −mx) a part
of the population of the patch 1 is transferred on the
patch 2.

3. The patch 2 is a ‘‘neutral’’ patch where the population
remains constant.
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et us suppose that one seeks to maximize the size of the pop-
lation on patch 2 at the end of T time units because we know
hat in the following period this patch will be the source.

In the discrete mode, it is obvious that the most efficient thing
o do is to transfer with d = 1 the totality of the population
of patch 1, i.e. eαT x(0) to the patch 2. On the other hand, in
the continuous mode, if it allows to (almost) empty completely
the patch 1 (by taking m infinitely large), does not allow in
his case to obtain a good result on the patch 2 because all the
opulation subtracted at the beginning of the period will not
ndergo any more growth on patch 2; conversely, if m is very
mall, there is a strong growth of the biomass on patch 1 of
hich only a very small part is transferred to patch 2; thus for

the continuous mode, small and large values of m are inefficient to
obtain a large population on patch 2 and intermediate values are
to be considered.

Let us complicate matters a little by imagining now, in the
discrete case, two successive periods T1 and T2 where, to mimic
a positive correlation in time, the population of patch n◦ 1 grows
exponentially at the rates α1 and then α2, but where the same
proportion d of the population is transferred at times T1 and T1+T2
from patch 1 to patch 2. In total, the quantity transferred from 1
to 2 is

deα1T1x(0) + deα2T2 (1 − d)eα1T1x(0)

and this time, it will be a value of d strictly between 0 and 1 that
maximizes it since the formula is quadratic in d.

It is this fundamental difference between continuous migra-
tion (for instance, planktonic microorganisms drifting between
two reefs) and (near) instantaneous dispersal over two distinct
sites (such as seed dispersal at flowering) that makes comparison
of the inflation phenomenon in the discrete and continuous cases
intricate. We believe that a complete understanding of similar-
ities and differences of the continuous and the discrete time
models is beyond the scope of this discussion and requires further
investigation.

5. Conclusion

The major limitation of our approach is obviously that it is
quite specific to the two-patch situation. The general mathemat-
ical results of Katriel (continuous time) and Schreiber (discrete
time) ensure that from a qualitative point of view the phe-
nomenon of inflation (or DIG) (according to Katriel’s terminology)
is present on any system of N patches. In the case of two patches
we have shown how the phenomenon can be accurately quanti-
fied. For more than two patches we do not know, for the moment,
how to proceed but it seems likely that different assumptions
about the topology of the sites (island-continent, stepping-stones,
homogeneous dispersal etc...) will be necessary. In addition, as
noted above, a better understanding of the differences and sim-
ilarities of discrete and continuous time models needs to be
worked on, both for reasons of mathematical aesthetics but more
importantly for their biological insignificance.

In classical mechanics, the harmonic oscillator, i.e. the linear
differential equation of the second order with a constant coeffi-
cient, plays a major organizing role. It is a simple mathematical
object that can be taught and understood very early (at the end
of high school) and that opens the door to various fields: the
theory of nonlinear oscillators and endogenous oscillations, the
theory of forced oscillations and the phenomenon of resonance
(that we could call inflation) etc. In a stimulating essay, Ecological
orbits, how planets move and populations grow, lev and Colyvan
(2004) defend the idea that exponential growth is, for population
dynamics, the equivalent of the principle of inertia in classical

mechanics: a population whose growth rate is not limited grows

19
exponentially, just as a material body subjected to no force keeps
the same speed.

If their vision is correct the (±1) model, in spite of its total
unrealism but thanks to its mathematical simplicity, is a basic
brick in the understanding of the mechanisms that govern the
growth of a meta-population on various connected patches, with
temporally varying growth rates.
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Appendix A. From (x1, x2) to (U,V )

Consider:
dx1
dt

= r1(t)x1 + m(x2 − x1)

dx2
dt

= r2(t)x2 + m(x1 − x2)
(68)

hich is the same a:
dx1
dt

= (r1(t) + m(x2/x1 − 1)) x1

dx2
dt

= (r2(t) + m(x1/x2 − 1)) x2
(69)

et:

1 = ln(x1) ⇔ x1 = eξ1 ξ2 = ln(x2) ⇔ x2 = eξ2

Then one has:
dξ1
dt

=
1
x1

dx1
dt

= r1(t) + m(eξ2−ξ1 − 1)

dξ2
dt

=
1
x2

dx2
dt

= r2(t) + m(eξ1−ξ2 − 1)
(70)

Let:

U =
ξ1 + ξ2

2
V =

ξ1 − ξ2

2
Then, adding and subtracting the above equations one gets:

dU
dt

=
r1(t) + r2(t)

2
+ m (cosh(2V ) − 1)

dV
dt

=
r1(t) − r2(t)

2
− m sinh(2V )

(71)

Appendix B. The system Σ(ε,m, T ) for large m

Consider the system:

dx1
dt

= (+u(t) − ε)x1 + m(x2 − x1)

dx2
dt

= (−u(t) − ε)x2 + m(x1 − x2)

nd put:

= x + x D = x − x
1 2 1 2
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ne has:
dS
dt

= (+u(t) − ε)x1 + m(x2 − x1) + (−u(t) − ε)x2
+m(x1 − x2) = u(t)D − εS

dD
dt

= u(t) − 2(m + ε)D = −2(m + ε)
(
D −

u(t)
2(m + ε)

)
rom Tychonov theorem (Tykhonov, 1952; Lobry et al., 1998),
hen 2(m + ε) → ∞ the solution to this system (called a

slow–fast system), after a short transient, tends to:

S(t) = S(0)e−εt D(t) = 0

Thus, in the variables (x1, x2) one has:

x1(t) ≈ x2(t) ≈
x1(0) + x2(0)

2
e−εt

This is also called by physicists, the method of the quasi stationary
state.

Appendix C. The switched system F (m, T ) has a single globally
stable periodic orbit

We consider the one dimensional switched system:

F (m, T )
dV
dt

=
1 + u(t)

2
F+

m (V ) +
1 − u(t)

2
F−

m (V ) (72)

ith:

+

m (V ) = +1 − m sinh(2V ) F−

m (V ) = −1 − m sinh(2V )

nd:

+

m =
1
2
sinh−1(+1/m) V−

m =
1
2
sinh−1(−1/m)

Since F+
m (V ) is continuous, differentiable and such that (V −

+
m )F+

m (V ) < 0 except for V = V+
m , from the elementary theory

f differential equations we know that, if we denote by ϕ+

t (v) the
nique solution of:

dV
dt

= F+

m (V ) V (0) = v

hen ϕ+

t (v) is defined for every positive t and the mapping v ↦→
+

t (v) is continuous and differentiable.

emma C.1. Let T > 0. The mapping V ↦→ ϕ+

T (v) is a contin-
ous mapping, strictly increasing, from [V−

m , V+
m ] into [V−

m , V+
m ];

oreover its derivative is strictly smaller than 1.

roof. Assume that v ↦→ ϕ+

T (v) is not strictly increasing. Then
t exists v1 < v2 such that ϕ+

t (v2) ≤ ϕ+

t (v1); and, by the way,
ome t ≤ T for which ϕ+

t (v1) = ϕ+

t (v2) and, thus, two solutions
tarting from different initial conditions meet at some point. This
ontradicts the uniqueness of solutions. The derivative of V ↦→
+

T (v) at the point vo is obtained by integrating the linearized
quation along the trajectory t ↦→ ϕ+

t (vo) up to time T , that is
o say:

dδϕ+

t

dt
= DF+

m (ϕ+

t (v0))δϕ+

t δϕ+

0 = 1

here DF+
m (V ) is the derivative of F+

m (V ) at point V .

δϕ+

T = exp
(∫ T

DF+

m ( ϕ+

t (vo))dt
)
dt
0

20
One has:∫ T

0
DF+

m (ϕ+

t (v0))dt =

∫ ϕ+
t (v0)

vo

DF+
m (V )

F+
m (V )

dV

= ln(F+

m (ϕ+

t (v0))) − ln(F+

m (v0))

Since the function F+
m (V ) is decreasing and Vϕ+

t (v0) > vo the
integral is negative and thus δϕ+

T < 1. □

For the same reasons we have the following Lemma C.2: recall
that We denote by ϕ−

t (v) the unique solution of:

dV
dt

= F−

m (V ) V (0) = v

then Vϕ−

t (v) is defined for every positive t and the mapping
v ↦→ ϕ−

t (v) is continuous and differentiable.

emma C.2. Let T > 0. The mapping V ↦→ ϕ−

T (v) is a contin-
uous mapping, strictly increasing, from [V−

m , V+
m ] into [V−

m , V+
m ];

moreover its derivative is strictly smaller than 1.

Now consider ‘‘period-map’’, that is the composite mapping
v ↦→ Φ(V ) = ϕ−

T ◦ ϕ+

T (v) from [V−
m , V+

m ] into [V−
m , V+

m ] (see
Fig. 14, left); from the preceding lemmas it turns out that it is
strictly increasing, with Φ ′(V ) < 1 such that V−

m < Φ(V−
m ) and

Φ(V+
m ) < V+

m . From elementary calculus the discrete dynamical
system defined by:

V (n + 1, Vo) = Φ(V (n, Vo)), V (0, Vo) = Vo

has a unique equilibrium Ve, i.e. the unique solution of Φ(V ) =

V , this equilibrium is globally asymptotically stable (see Fig. 14,
right). Since Φ(V (n, Vo)) = V (n2T , Vo), where V (n2T , Vo) is the
solution of the switched system (72) we have proved:

Proposition C.3. The switched system F (m, T ) has a unique
periodic solution, denoted Pm,T (t), globally asymptotically stable
which oscillates between two values P−

m,T , and P+

m,T contained in the
interval [V−

m , V+
m ]; P−

m,T = −P+

m,T and the function T ↦→ P+

m,T is an
increasing function of T which tends to V+

m when T tends to infinity
(see Fig. 15).

This Propisition is illustrated in Fig. 15. The solutions of (72)
are explicitly computable as we show now.

On [0, T ] one has:
dV
dt

= 1 − m sinh(2V ) V (0) = V0 (73)

thus dt =
dV

1−m sinh(2V ) and by the way:

t =

∫ V (t)

Vo

dV
1 − m sinh(2V )

(74)

ince the function that we have to integrate is a rational fraction
ith respect to eV we can integrate it explicitly (by hand or with
he help of some formal software) and the result is:

dV
1 − m sinh(2V )

=
1
A
tanh−1

(
tanh(V ) + m

A

)
where

A =

√
1 + m2

from which we have V as a function of t .
The periodic solution oscillate between −P+

m,T and +P+

m,T so-
lutions of the equation:

T =

∫ P+

m,T

+

dV
1 − m sinh(2V )

(75)

−Pm,T
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Fig. 14. The switched system F (m, T ): m = 0.01 ; T = 3. The segment [A−, A+
] is the image of [V−

m , V+
m ] by the mapping V ↦→ V+(T , V ), and [B−, B+

] is the image
f [A−

m, A+
m] by the mapping V ↦→ V−(T , V ).
Fig. 15. The switched system F (m, T ): m = 0.01 ; T = 3. Solutions converge to a unique periodic orbit.
T
W

A

∆

ϕ

nd thus P+

m,T is a solution of the equation:

anh−1

(
tanh(P+

m,T ) + m
A

)
− tanh−1

(
tanh(−P+

m,T ) + m
A

)
= TA

Thus, if we put x = tanh(P+

m,T ), we are searching for the solutions
of the equation

tanh−1
(
x + m

A

)
+ tanh−1

(
x − m

A

)
= TA

From the formula tanh−1(a) + tanh−1(b) = tanh−1 ( a+b
1+ab

)
, one

btains the equation

A = tanh−1
( x+m

A +
x−m
A

1 +
x+m
A

x−m
A

)
TA = tanh−1

(
2Ax

A2 − m2 + x2

)
and:

x2 tanh(TA) − 2Ax + tanh(TA)(A2
− m2) = 0

ut since A =
√
1 + m2 one has

2 tanh(TA) − 2Ax + tanh(TA) = 0

ut:

= tanh(TA)
 W

21
This equation admits two solutions:

x =
A −

√
A2 − B2

B
, x =

A +
√
A2 − B2

B
,

he second solution is not acceptable since it is greater than 1.
e have:

tanh(P+

m,T ) =
A −

√
A2 − B2

B
, with B = tanh(TA) (76)

Thus we have proved the:

Proposition C.4. The maximum P+

m,T (respectively the minimum
P−

m,T = −P+

m,T ) of the periodic solution of (72) is given by:

P+

m,T = tanh−1

(
A −

√
A2 − B2

B

)
with A =

√
1 + m2 and B = tanh(TA)

(77)

ppendix D. Qualitative properties of ∆(ε,m, T )

Recall that:

(ε,m, T ) =
1
2T

∫ 2T

0
ϕ(Pm,T (s))ds with

(V ) = mcosh(2V ) − m − ε

e prove:
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roposition D.1 (Qualitative Properties of ∆(ε,m, T )).

1. For small m, ∆(ε,m, T ) < 0
2. For large m, ∆(ε,m, T ) > 0
3. For fixed ε > 0 and m < 1−ε2

2ε there exists a threshold
T ∗(ε,m) such that for T < T ∗(ε,m), ∆(ε,m, T ) < 0 and
∆(ε,m, T ) > 0 for T > T ∗(ε,m)

4. For every ε > 0, the minimum of T ∗(ε,m) over m is strictly
positive. In other words there exists a threshold T ∗∗ > 0 such
that for T < T ∗∗, for all values of m, ∆(ε,m, T ) < 0: there is
no inflation.

Proof of (1). Since in the interval [V−
m , V+

m ], where the periodic
olution lives, one has |

dV
dt | < 1 we know that P+

m,T < T . Since
imm→0 A+

ε,m = limm→0 cosh−1 (1 +
ε
m

)
= +∞, for small enough

, the periodic solution Pm,T (t) lives in the interval ]A−
ε,m, A+

ε,m[

where the function ϕ is strictly negative an hence so is ∆(m, T ).

Proof of (2). Given ε > 0 the relative positions of V+
m =

inh−1( 1
m ) and A+

ε,m = cosh−1 (1 +
ε
m

)
depends on m. One easily

ompute that

+

ε,m < V+

m ⇐⇒ m <
1 − ε2

2ε
(78)

ence, if m > 1−ε2

2ε one has [V−
m , V+

m ] ⊂ [A−
ε,m, A+

ε,m] and ϕ(Pm(t))
s always negative.

roof of (3). One has:

2T

0
ϕ(Pm,T (s))ds = 2

∫ P+

m,T

−P+

m,T

m cosh(2V ) − m − 1
1 − m sinh(2V )

dV

he conclusion follows from the fact that T ↦→ P+

m,T is an
increasing function of T such that:

lim
T→0

P+

m,T = 0 and lim
T→∞

P+

m,T = V+

m =
1
2
sinh−1

(
1
m

)
nd:

lim
→V+

m

∫
+V

V

m cosh(2V ) − m − 1
1 − m sinh(2V )

dV = +∞

roof of (4). Let ε > 0 given, consider mo =
1−ε2

2ε and set
o = A+

ε,mo
= V+

mo
. Let T < To. For m > mo we already know

hat ∆(ε,m, T ) < 0. If m < mo one has A+
ε,m > To > T

nd, by the way, ϕ(Pm,T (t)) is always negative. Thus for T <

inh−1
(

2ε
1−ε2

)
, whatever the value of m, one has ∆(ε,m, T ) < 0

hich proves (4).

ppendix E. Explicit formula for ∆(ε,m, T )

We consider the periodic solution Pm,T (t) to F (m, T ). We are
nterested by the sign of:

(ε,m, T ) =
1
T

∫ P+

m,T

P−

m,T

mcosh(2V ) − m − ε

1 − msinh(2V )
dV (79)

From the formula (79) and Proposition C.4 we can deduce an
explicit formula for ∆(ϵ,m, T ). First, if we use formula (75) in the
efinition of ∆(ε,m, T ) we get:

∆(ε,m, T ) =
1
T

∫ P+

m,T

+

m cosh(2V )dV
1 − m sinh(2V )

− (m + ε) (80)

−Pm,T

w

22
Since d
dV sinh(V ) = cosh(V ), one can explicitly compute the

integral to get:∫
m cosh(2V )dV
1 − m sinh(2V )

= −
ln(1 − m sinh(2V ))

2
(81)

nd, by the way:

(ε,m, T ) =
1
2T

ln
1 + m sinh(2P+

m,T )

1 − m sinh(2P+

m,T )
− (m + ε) (82)

Using the formula sinh(a) =
2 tanh(a/2)

1−tanh2(a/2)
, from (76) one gets:

sinh(2P+

m,T ) =
2 tanh(P+

m,T )

1 − tanh2(P+

m,T )

Now, replacing P+

m,T by its value given by Proposition C.4:

tanh(P+

m,T ) =

(
A −

√
A2 − B2

B

)

sinh(2P+

m,T ) =
B(A −

√
A2 − B2)

B2 − A2 + A
√
A2 − B2

f we replace in (82) we have:

(ε,m, T ) =
1
2T

ln
B2

− A2
+ A

√
A2 − B2 + mB(A −

√
A2 − B2)

B2 − A2 + A
√
A2 − B2 − mB(A −

√
A2 − B2)

− (m + ε)

nd, after a multiplication by the conjugate quantity of the de-
ominator one have the more simple expression:

(ε,m, T ) =
1
2T

ln
A2

− B2
+ m2B2

+ 2mB
√
A2 − B2

A2 − B2 − m2B2 − (m + ε)

sing A2
= 1 + m2 and B = tanh(TA) =

e2TA−1
e2TA+1

, one gets:

∆(ε,m, T ) =
1
2T

ln
m2b4 + 2b2 + m2

+ m(b2 − 1)
√
C

2(1 + m2)b2
− (m + ε)

(83)

with b = eT
√

1+m2 and C = m2b4 + 2m2b2 + 4b2 + m2.

ppendix F. Asymptotics of ∆(ε,m, T ) for large T

We are looking for solutions of m ↦→ ∆(ε,m, T ) = 0 which are
exponentially small with respect to T , that is to say for x solutions
of:

∆(ε, exT , T ) = 0 x < 0 (84)

We use Landau notation o for any quantity that tends to o when
t tends to ∞. From (83),

∆(ε,m, T ) = 0 is equivalent to:

m2b4 + 2b2 + m2
+ m(b2 − 1)

√
C

2(1 + m2)b2
= e2(m+ε)T (85)

ith

= eT
√

1+m2
, C = m2b4 + 2m2b2 + 4b2 + m2, m = exT (86)

rom (86) one have:

b = eTxeT
√

1+e2Tx
= eT (1+x+ 1

2 e
2Tx(1+o)) (87)

since for x < 0 we have Te2Tx = o we deduce mb = eT (1+x+o)

hich tends to ∞ as long as x > −1. from which we deduce that
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s long as x > −1 :

2b4 +2b2 +m2
= m2b4(1+o(1)) m(b2 −1)

√
C = m2b4(1+o(1))

(88)

hich introduced in (85) gives:
2b2(1 + o(1)) = e2T (1+x)(1+o(1))

= e2T (ε+o(1)) (89)

rom which we deduce:

T (1+ x)(1+ o(1)) = 2T (ε + o(1)) H⇒ x = −(1− ε)+ o(1) (90)

hich is the evaluation of Proposition 2.9.

ppendix G. Connection between ∆(ε,m, T ) and σ(ε,m, T )

Let (x1(t), x2(t)) be any solution of Σ(ε,m, T ); let U(t) =

n(
√
x1(t)x2(t)) and V (t) = ln(

√
x1(t)/x2(t)). Then V (t) is a so-

lution of F (m, T ) and since the periodic solution of F (m, T ) is
globally asymptotically stable V (t) converges to Pm,T (t), thus:

lim
→+∞

U((n + 1)2T ) − U(n2T ) = · · ·

lim
n→+∞

∫ (n+1)2T

n2T
2(mcosh(V (s)) − m − ε)ds = · · ·∫ 2T

0
mcosh(Pm,T (s)) − m − εds = 2T∆(ε,m, T )

(91)

and hence:

(ε,m, T ) =
1
2T

lim
n→+∞

ln

(√
x1((n + 1)2T )x2((n + 1)2T )

x1(n2T )x2(n2T )

)
(92)

ow, choose (x1(0), x2(0)) = Z1 where Z1 is the positive eigen-
vector of M(ε,m, T ) associated with λ1 (note that M(ε,m, T ) has
ositive entries). Then, for all n ≥ 0, x1((n + 1)2T ) ≈ λ1x1(n2T )
nd x2((n + 1)2T ) =≈ λ1x2(n2T ), thus

x1((n + 1)2T )x2((n + 1)2T )
x1(n2T )x2(n2T )

≈ λ2
1

and thus ∆(ε,m, T ) =
1
2T ln(λ1), which we wanted to prove.

We can also prove this equality directly from the explicit
ormulas of ∆ and λ1. The value of λ1 given by Maple is:

1 =
e−2(m+ε)T

2A2b2

(
m2b4 + 2b2 + m2

+

√
C1

)
ith

1 = b8m4
+ 4b6m2

− 2b4m4
− 8b4m2

+ 4b2m2
+ m4

1
2T

ln(λ1) = ln
m2b4 + 2b2 + m2

+
√
C1

2A2b2
− (m + ε)

hich is the value of ∆ given by the Proposition 2.7 since one
as:

1 = m2(b2 − 1)2(m2b4 + 2m2b2 + 4b2 + m2).

ppendix H. Limit in distribution of V̂n in the stochastic (±1)
model

We prove Lemma 2.11. The first point follows from the same
observation as in the deterministic case, that the solution of
F (m, µ) are trapped in the interval [V−

m , V+
m ]. Now, note that, for

ll n ≥ 0;

V̂ = ϕ−
◦ ϕ+ (V̂ )
2n+2 S2n+2 S2n 2n

23
Therefore, since (Sn)n≥0 is a sequence of i.i.d. variables, the se-
uence (V̂2n)n≥0 is a Markov chain. Let us denote V̂ v

2n for the
position of the chain after n steps, whenever V̂0 = v. Since (see C)
δϕ+

t ≤ e−2mt and δϕ−

t ≤ e−2mt , one has, for all v, v′
∈ [V−

m , V+
m ],

|V̂ v
2 − V̂ v′

2 | ≤ e−2m(S2+S1)|v − v′
|.

Thus, using that P(S1 = 0) = 0, and therefore, E(e−2m(S2+S1)) < 1,
the Markov chain V̂2n is contracting for the Wasserstein distance
on the complete space [V−

m , V+
m ]. As such, it admits a unique

stationary distribution ν∞, which is the law of a variable V−
∞
, and

V̂2n converges geometrically fast in distribution to V−
∞
. This proves

the second point of Lemma 2.11. As for the third point, this is a
consequence of Birkhoff’s ergodic theorem.

Appendix I. Existence of the growth rate in the random switch-
ing time case

By (41), the asymptotic behavior of U(t)
t is given by those of

1
t

∫ t

0
m (cosh(2V (s)) − 1) ds − ε := H(t) − ε.

et t ≥ 0, there exists n = Nt ∈ N (random) such that T2n ≤ t <

2n+2. This means that a time t , at least 2n and at most 2n + 1
jumps have occurred. Therefore, we can write

H(t) =
1
t

2Nt−1∑
k=0

∫ Tk+1

Tk

m (cosh(2V (s)) − 1) ds + R(t)

=
1
t

Nt−1∑
k=0

(∫ T2k+1

T2k

m (cosh(2V (s)) − 1) ds

+

∫ T2k+2

T2k+1

m (cosh(2V (s)) − 1) ds

)
+ R(t),

here R(t) is a rest term given by

(t) =
1
t

∫ t

T2Nt

m (cosh(2V (s)) − 1) ds.

ote that R(t) ≤ C S2n+1
t , for some constant C , and thus R(t) → 0

s t → ∞. We now use Lemma 2.11 to give the asymptotic
ehavior of the term in the sum. First, note that on a interval
T2k, T2k+1), in (40), we are integrating system Σ+(ε,m), with
nitial condition VT2k and thus, for s ∈ [T2k, T2k+1), one has
(s) = ϕ+

s−T2k
(V̂2k). Similarly, if s ∈ [T2k+1, T2k+2), one has V (s) =

ϕ−

s−T2k+1
(V̂2k+1), so that the first term in H(t) can be rewritten as

1
t

Nt−1∑
k=0

(∫ S2k+1

0
m
(
cosh(2ϕ+

s (V̂2k+1)) − 1
)
ds

+

∫ S2k+2

0
m
(
cosh(2ϕ−

s (V̂2k+1)) − 1
)
ds
)

(93)

Next, for (v, s) ∈ R × R+, set

f +(v, s) =

∫ s

0
m
(
cosh(2ϕ+

r (v)) − 1
)
dr

and

f −(v, s) =

∫ s

0
m
(
cosh(2ϕ−

r (v)) − 1
)
dr

Thus,

H(t) =
1
t

Nt−1∑
f +(V̂2k, S2k+1) +

1
t

Nt−1∑
f −(V̂2k+1, S2k+2) + R(t)
k=0 k=0
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ow, we have

1
t

Nt−1∑
k=0

f +(V̂2k, S2k+1) =
Nt − 1

t
1

Nt − 1

Nt−1∑
k=0

f +(V̂2k, S2k+1)

ow, classical renewal theorem7 implies that, with probability
ne,

lim
→∞

Nt − 1
t

=
1

2E(S)
,

nd in particular, Nt → ∞ as t → ∞. Hence, the third assertion
f Lemma 2.11 implies that

lim
→∞

1
Nt − 1

Nt−1∑
k=0

f +(V̂2k, S2k+1) = E[f +(V−

∞
, S)],

nd as a consequence,

lim
→∞

1
t

Nt−1∑
k=0

f +(V̂2k, S2k+1) = E[f +(V−

∞
, S)].

he same reasoning can be done for the term with f − and yields
he expected result.

ppendix J. Density dependent model

he deterministic case

roposition J.1. If the parameters (ε,m, T ) are such that the
ystem D(ε, 0,m, T ) = Σ(ε,m, T ) is stable, then the solutions of
(ε, α,m, T ) tend to 0.

roof. We denote by (x1(t, x10 , x20 ), x2(t, x10 , x20 )) the solutions
of D(ε, α,m, T ) and by (ξ1(t, ξ10 , ξ20 ), ξ2(t, ξ10 , ξ20 )) the solutions
of Σ(ε,m, T ). Let (x10 , x20 ) be any initial condition for D and
hoose (ξ10 , ξ20 ) such that:

i0 < ξi0 i = 1, 2

hen, for every t one has:

i(t, x10 , x20 ) < ξi(t, ξ10 , ξ20 ) i = 1, 2

ssume this is not the case; let t∗ be the first time for which one
as x∗

i = xi(t, x10 , x20 ) = ξi(t, ξ10 , ξ20 ) for at least one of the two
ndices; assume for the shake of definitiveness that this index is
; one has:

dx1(t∗)
dt

= (±1 − ε − m)x∗

1 − αx∗
2

1 + mx2(t∗)

< (±1 − ε − m)x∗

1 + mξ2(t∗) =
dξ1(t∗)

dt

he inequality dx1(t∗)
dt <

dξ1(t∗)
dt contradicts the fact that t∗ is

the first time for which x1(t, x10 , x20 ) = ξ1(t, ξ10 , ξ20 ). Since
Σ(ε,m, T ) is stable ξi(t, ξ10 , ξ20 ) (i = 1, 2) tends to 0 and also
xi(t, x10 , x20 ) (i = 1, 2). □

Proposition J.2. If the parameters (ε,m, T ) are such that the
system D(ε, 0,m, T ) = Σ(ε,m, T ) is unstable, then the system
D(ε, α,m, T ) is uniformly persistent.

In order to prove Proposition J.2 we need two lemmas. Let:

U =
1
2
ln(x1x2) V =

1
2
ln(x1/x2)

7 See e.g. https://en.wikipedia.org/wiki/Renewal_theory.
24
In the (U, V ) variables the system D is:

D(ε, α,m, T )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dU
dt

= cosh(V ) − m − ε

−αeUcosh(2V )
dV
dt

= u(t) − m sinh(V )

−αeUsinh(2V )

(94)

hich is the system S(ε,m, T ) perturbed by the term:

αeU
(
cosh(2V )
sinh(2V )

)
(95)

t is easily seen that the solutions of the system D enters in finite
time the strip R×[V−

m , V+
m ] and thus persistence of D is equivalent

to the fact that for any solution lim inft→+∞ U(t) > −∞.
Denote by:

(U(t,U0, V0, t0, S), F (t,U0, V0, t0), S)
(resp.(U(t,U0, V0, t0,D), F (t,U0, V0, t0),D))

the solution of S (resp. D) with initial condition (U0, V0) at time
t0 and simply by (U(t,D), V (t,D)) (resp. (U(t, S), V (t, S))) the
solution of D (resp. S) when the reference to the initial condition
is not needed.

Lemma J.3. Assume that S(ε,m, T ) is unstable. Let a > 0. Then
there is θ > 0 such that:

∀ V0 ∈ [V−

m , V+

m ], ∀U0, ∀ t0 : U(t0 + θ,U0, V0, t0, S) ≥ U0 + a

Proof. Fix some a > 0. Since S is unstable, for each U0, V0, t0
such a θ exists ; it follows from the compactness of [V−

m , V+
m ],

the periodicity of S and the property U(t,U0, V0, t0) = U0 +

U(t, 0, V0, t0) that a universal θ does exist. □

Lemma J.4. For any δ > 0 there exists U such that:{
maxt≤t∗ U(t + t0,U0, V0, t0,D) ≤ U

}
H⇒ · · ·

· · · |U(t∗ + t0,U0, V0, t0,D) − U(t∗ + t0,U0, V0, t0, S)| ≤ t∗δ
(96)

roof. Since the perturbation (95) tends to 0 when U tends
to −∞ uniformly with respect to V ∈ [V−

m , V+
m ] this is easily

deduced from Gronwall inequality.

Proof of Proposition J.2. Fix some a > 0 and let θ be given by
Lemma J.3 and U given by Lemma J.4 such that δ =

a
2θ . The proof

goes by contradiction. Assume that:

lim inf
t→+∞

U(t,D) = −∞

then there exist (see Fig. 16) t1 and t2 such that:

U > U(t1,D) + a > U(t1,D) > U(t1,D) −
θ

π
= U(t2,D) (97)

where

−π = min
U≤U,V∈[V−

m ,V+
m ]

m cosh(2V ) − m − ε − αeUcosh(V ) < −ε

Since U(t,D) is continuous, from the intermediate value theorem
there is some τ > t1 such that:

t ∈ [τ , t2] ⇒ U(t,D) ≤ U(t1) (98)

nd since π is the minimum of the velocity of U(t,D) it takes a
uration t2 − τ greater than θ = π θ

π
to cover the distance from

U(τ ,D) to U(t2).

• From Lemma J.3:

U(τ + θ,U(t ,D), V (τ ,D), τ , S) > U(t ,D) + a
1 1

https://en.wikipedia.org/wiki/Renewal_theory
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Fig. 16. Illustration of the proof of Proposition J.2.
(red curve of Fig. 16).
• From Lemma J.4:

|U(τ + θ,U(t1,D), V (τ ,D), τ , S)

− U(τ + θ,U(t1,D), V (τ ,D), τ ,D)| <
a
2

hese points imply U(τ + θ,U(t1,D), V (τ ,D), τ ,D) ≥ U(t1) +
a
2

hich is a contradiction with (98). □

he stochastic case

We now prove Proposition 3.2 thanks to results in Benaïm
nd Strickler (2019). Note that the vector fields in the right hand
ide of D(ε, α,m, σ−, σ+) satisfy conditions E1, E2, E3, E4 and E5
n Benaïm and Strickler (2019, Section 4) and admit a positively
nvariant compact set K containing 0. Thus, Proposition 2.17, Be-
aïm and Strickler (2019, Theorem 4.3) (for the case Λ(ε,m, T ) <

) and Benaïm and Strickler (2019, Theorem 4.12) (for the case
(ε,m, T ) > 0) and (?, Theorem 3.8) (for the case Λ(ε,m, T ) =

) conclude the proof of Proposition 3.2.

ppendix K. Notations and glossary

We give in this appendix the list of notations used in the paper

xi (i = 1, 2) Abundance of population in patch i
(i = 1, 2)

U , V U = ln
√
x1, x2, V = ln

√
x1/x2, see (9)

ri(t) (i = 1, 2) Local growth of population in patch i
(i = 1, 2)

r̄i (i = 1, 2) Local average growth of population in
patch i (i = 1, 2)

χ χ =
1
2T

∫ 2T
0 max(r1(t), r2(t))dt

Σ(r1, r2,m, T ) Model of growth in two patches, see (8)
S(r1, r2,m, T ) System Σ(r1, r2,m, T ) in variables (U, V ),

see (10)
Σ(ε,m, T ) Deterministic (±1)-model, see (12)
Σ+(m, T ) (+1) system , see (13)
Σ−(m, T ) (−1) system, see (14)
S(ε,m, T ) System Σ(ε,m, T ) in variables (U, V ), see

(16)
25
F (m, T ) Equation of V in S(ε,m, T ), see (17)
F+
m and F−

m Equation F (ε,m, T ) in environment (+1)
and (−1), see (18) and (19)

V+
m and V−

m Equilibria of F+
m and F−

m , respectively, see
(20)

Pm,T Periodic solution of F (ε,m, T ), see
Proposition 2.3

∆(ε,m, T ) Asymptotic growth of U , see (21) and
Proposition 2.4

Mu
ε,m, u = ±1 Matrices of the linear systems Σ+(m, T )

and Σ−(m, T ), see (33)
M(ε,m, T ) Period mapping of Σ(ε,m, T ), see (34)
σ (ε,m, T ) Spectral radius of M(ε,m, T ), see (35)
Σ(ε,m, µ) Stochastic (±1)-model (random switching

times), see (38)
S(ε,m, µ) System Σ(ε,m, µ) in variables (U, V ), see

(39)
F (m, µ) Equation of V in S(ε,m, µ), see (40)
∆(ε,m, µ) Asymptotic growth rate of U , see (42) and

Proposition 2.12
PDMP Piecewise Deterministic Markov

Processes, see Section 2.4.2
Σ(ε, p1, p2,m, T ) Stochastic (±1)-model (random choices of

±1), see (44)
∆(p1, p2,m, T ) Asymptotic growth rate of U , see

Proposition 2.15
λ1 Top Lyapunov exponent, see Section 2.4.5
Σ±±(ε,m, T , ϕ) Periodic (±1) model with phase shift, see

(49), (50), (51) and (52)
D(ε, α,m, T ) Density dependent deterministic

(±1)-model, see (60).
D(ε, α,m, T ) Density dependent stochastic (±1)-model,

see (62).
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