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Preface

This book is based on a series of lectures given over the recent years in Mas-
ter’s courses in probability. It provides a short, self-contained introduction
to the ergodic theory of Markov chains in metric spaces.

Although primarily intended for graduate and postgraduate students, cer-
tain chapters (e.g. one and two) can be taught at the undergraduate level.
Others (e.g. four and five) can be used as complements to courses in measure
or ergodic theory. Basic knowledge in probability, measure theory, and calcu-
lus is recommended. A certain familiarity with discrete-time martingales is
also useful, but the few results from martingale theory used in this book are
all recalled in the appendix. Each chapter contains several exercises ranging
from simple applications of the theory to more advanced developments and
examples.

Whether in physics, engineering, biology, ecology, economics or elsewhere,
Markov chains are frequently used to describe the random evolution of com-
plex systems. The understanding and analysis of these systems requires, first
of all, a good command of the mathematical techniques that allow to explain
the long-term behavior of a general Markov chain living on a (reasonable)
metric space. Presenting these techniques is, briefly put, our main objective.
Questions that are central to this book and that will be recurrently visited
are: under which conditions does such a chain have an invariant probability
measure? If such a measure exists, is it unique? Does the empirical occupa-
tion measure of the chain converge? Does the law of the chain converge, and
if so, in which sense and at which rate?

There are a variety of tools to address these questions. Some rely on
purely measure-theoretic concepts that are natural generalizations of the ones
developed for countable chains (i.e. chains living on countable state spaces).
This includes notions of irreducibility, recurrence (in the sense of Harris),
petite and small sets, etc. Other tools assume topological properties of the
chain such as the strong Feller or asymptotically strong Feller property (in
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the sense of Hairer and Mattingly). However, when dealing with a specific
model, measure-theoretic conditions - such as irreducibility - might be dif-
ficult to verify, and strong topological properties - such as the strong Feller
condition - are seldom satisfied. A powerful approach is then to combine
much weaker topological conditions - such as the (weak) Feller condition -
with controllability properties of the system to prove that certain measure-
theoretic conditions (e.g. irreducibility, existence of petite or small sets) are
satisfied. This approach is largely developed here and is a key feature of this
book.

The book is organized in eight chapters and a short appendix. Chapter 1
briefly defines Markov chains and kernels and gives their very first properties,
the Markov and strong Markov properties. The end of the chapter gives a
concise introduction to Markov chains in continuous time, also called Markov
processes, as they appear in many examples throughout the book.

Chapter 2 is a self-contained mini course on countable Markov chains.
Classical notions of recurrence (positive and null) and transience are intro-
duced. These are powerful notions, but when students meet them for the
first time and have to verify that a specific chain is either recurrent or tran-
sient, they are often disoriented. Thus, we have chosen to spend some time
here to show how theses properties can be verified "in practice" with the help
of suitable Lyapunov functions. We also explain how Lyapunov functions can
be used to provide estimates on the moments (polynomial and exponential)
of hitting times for a point or a finite set.

Certainly one of the most important results in the theory of countable
chains is the ergodic theorem, which asserts that - for positive recurrent ape-
riodic chains - the law of the chain converges to a unique distribution. The
final three sections of Chapter 2 are organized around this result. We first
prove it quickly - by standard coupling - without any estimate on the rate
of convergence. Then, the Lyapunov method is applied to investigate the
behavior of renewal processes and provide short proofs of coupling theorems
for these processes. Finally, relying on these coupling results, we revisit the
ergodic theorem, this time with some convergence rates.

On uncountable state spaces, the simplest (and also the most natural) ex-
amples of Markov chains are given by random dynamical systems (also called
random iterative systems). These are systems such that the state variable at
time n+1 is a deterministic function of the state variable at time n and a "ran-
dom" input sampled from a sequence of i.i.d. random variables. Chapter 3 is
devoted to this type of chains and explains how any given "abstract" Markov



CONTENTS 9

chain can be represented by a random dynamical system. Some interesting
examples (Bernoulli convolutions, Propp-Wilson algorithm) are presented in
exercises.

Chapter 4 starts with a detailed section on weak convergence, tightness
and Prohorov’s theorem. Then, invariant probability measures are defined and
it is shown that, for a Feller chain, weak limit points for the family of empiri-
cal occupation measures are almost surely invariant probability measures. We
discuss some practical tightness criteria (for the empirical occupation mea-
sures) based on Lyapunov functions. At this stage of the book, the reader
understands that, under a reasonable control of the chain at infinity (obtained
for instance by a Lyapunov function), uniqueness of the invariant probability
measure equates stability: the empirical occupation measures converge almost
surely to some (unique) distribution, regardless of the initial distribution. So
we found it was a good place to discuss simple examples of uniquely ergodic
chains (i.e. chains having a unique invariant probability measure). This is
done in the third section of Chapter 4, where we analyze random dynamical
systems obtained by random composition of contractions (or mappings that
contract on average). The penultimate section of the chapter is devoted to er-
godic theorems. We first prove several classical results (Poincaré recurrence
theorem, Birkhoff ergodic theorem, and the ergodic decomposition theorem)
and then show how they can be applied to Markov chains. Finally, we discuss
invariant measures of continuous-time processes and explain how their prop-
erties (existence, ergodicity, uniqueness, ergodic decomposition, etc.) can be
studied using discrete-time theory.

Chapter 5 is devoted to various notions of irreducibility which ensure
unique ergodicity. We start with the measure-theoretic notion of irreducibility
(also called 1 irreducibility) and then move on to more topological conditions.
The accessible set of a Feller chain is introduced and its relations with the
support of invariant probability measures are investigated. We then consider
strong Feller chains and prove that for such chains ergodic probability mea-
sures have disjoint support. We also prove the Hairer-Mattingly theorem,
which says that the same property holds under the weaker assumption that
the chain is asymptotically strong Feller. These results have the useful conse-
quence that, on a connected set, if there is an invariant probability measure
having full support, the chain is uniquely ergodic.

We then discuss in Chapter 6 the notions of petite sets, small sets and
(weak) Doeblin points and show that the existence of an accessible weak Doe-
blin point implies irreducibility for (weak) Feller chains. This latter result is
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then applied to a variety of examples both in discrete time (random dynamical
systems, random dynamical systems obtained by random switching between
deterministic flows) and in continuous time (piecewise deterministic Markov
processes, stochastic differential equations). This gives us the opportunity
to show how the accessibility condition is naturally expressed as a control
problem and how the Doeblin properties are naturally related to Horman-
der type conditions (for random switching models, piecewise deterministic
Markov processes and SDEs).

Chapter 7 introduces Harris recurrence. For uniquely ergodic chains, Har-
ris recurrence equates to positive recurrence, meaning that for every bounded
Borel (and not merely for every continuous) function, the Birkhoff averages
of the function converge almost surely. We prove the important result that
Harris recurrence (respectively positive recurrence) is implied by the existence
of a recurrent petite set (respectively a petite set whose first return time is
bounded in L'). We also discuss simple useful criteria (relying on Lyapunov
functions) ensuring that a set is recurrent and provide moment estimates on
the return times.

Chapter 8 revolves around the celebrated Harris ergodic theorem. After
revisiting the notions of total variation distance and coupling for two prob-
ability measures, we state a simple version of the Harris ergodic theorem
where the entire state space is a petite set. Under this strong hypothesis, one
has exponential convergence in total variation distance to the unique invari-
ant probability measure. The same conclusion holds under the existence of
a Lyapunov function that forces the Markov chain to enter a certain small
set - a condition that is better adapted to noncompact state spaces, which
are usually not petite. We give two different proofs for this latter version
of Harris’s ergodic theorem: first the recent proof by Hairer and Mattingly
based on the ingenious construction of a semi-norm for which the Markov
operator is a contraction. And second, a more classical proof using coupling
arguments and ideas from renewal theory. More precisely, under uniform esti-
mates on polynomial (respectively exponential) moments for the return times
to an aperiodic and recurrent small set, we obtain polynomial (respectively
exponential) convergence in total variation distance to the unique invariant
probability measure. Finally, we present a condition, also due to Hairer and
Mattingly, that yields exponential convergence to the unique invariant prob-
ability measure in a certain Wasserstein distance.

The appendix recalls the monotone class theorem and the few results from
discrete time martingales that are used in the book.
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Preliminaries

The general setting is the following. Throughout all this book, we let
M denote a separable (there exists a countable dense subset) metric space
with metric d (e.g., R, R") equipped with its Borel o-field B(M). We let
B(M) (respectively Cy(M)) denote the set of real-valued bounded measurable
(respectively bounded continuous) functions on M equipped with the norm

[/ lloo := j;lﬂl;lf(x)l- (1)

If p is a (non-negative) measure on M and f € L*(u) (or f > 0 measurable),
we let

uf = /M f(z) plde)

denote the integral of f with respect to p. The rest of the notation is intro-
duced in the main body of the text. Please also refer to the list of symbols
at the end of the book.



Chapter 1

Markov Chains

This chapter introduces the basic objects of the book: Markov kernels and
Markov chains. The Chapman Kolmogorov equation which characterizes the
evolution of the law of a Markov chain, as well as the Markov and strong
Markov properties are established. The last section briefly defines continuous
time Markov processes.

1.1 Markov kernels
A Markov kernel on M is a family of measures
P = {Pz, ) haen
such that
(i) For all z € M, P(z,-): B(M) — [0,1] is a probability measure;
(ii) For all G € B(M), the mapping x € M — P(z,G) € R is measurable.

The Markov kernel P acts on functions g € B(M) and measures (respectively
probability measures) according to the formulae:

Pg(z) := /]WP(x,dy)g(y), (L.1)

uP(G) ::/M,u(dx)P(x,G). (1.2)

13



14 CHAPTER 1. MARKOV CHAINS

Remark 1.1 For all ¢ € B(M), we have Pg € B(M) and ||Pg|lcc < ||9]]o-
Boundedness is immediate and measurability easily follows from the condition
(ii) defining a Markov kernel (use for example the monotone class theorem

from the appendix).

Remark 1.2 The term Pg(x) can also be defined by (1.1) for measurable
functions g : M — R that are nonnegative, but not necessarily bounded. For
such g, Pg(x) is an element of [0,00]. This will play a role in the study of
Lyapunov functions starting in Section 2.3.

We let P" denote the operator recursively defined by P’ := ¢ and
Ptlg .= P(P"g) for n € N. Or, equivalently,

P%(z,-) :=d, and P"*!(z,Q) ::/ P"(z,dy)P(y, Q)
M
for all n € N and for all G € B(M). Here and throughout these notes, N
is the set of nonnegative integers (including 0). The set of positive integers
(excluding 0) will be denoted by N*.

Example 1.3 (countable space) Suppose M is countable. We can turn M
into a separable (and complete) metric space by endowing it with the discrete
metric d(z,y) = 1,4,. The corresponding Borel o-field is the collection of all
subsets of M. A Markov transition matrizon M is amap P : M x M — [0, 1]

such that
> Pla,y) =1

yeM
for all x € M. This gives rise to a Markov kernel @) defined by

Qx.G) ==Y Pl,y)

yeG

for all G C M. Since there is a one-to-one correspondence between transition
matrices and kernels on M, we shall identify P with ) and refer to it at times
as a transition matrix and at times as a kernel.

1.2 Markov chains

In order to define Markov chains, we first need to introduce the (classical)
notions of filtration and adapted processes. Let (2, F,P) be a proba-
bility space. A filtration F = (F,)n>0 is an increasing sequence of o-fields:
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Fn C Fpy1 C F for all n € N. The data (Q, F,F, P) is called a filtered prob-
ability space. An M-valued adapted stochastic process on (Q, F,F,P) is a
family (X,,)n>0 of random variables defined on (2, F, P), taking values in M
and such that X, is F,,—measurable for all n € N. If X = (X,,),>¢ is a family
of random variables on (Q, F,P), the canonical filtration of X is the filtra-
tion FX = {FX},50 where FX = o(Xy,...,X,,) is the o-field generated by
Xo, ..., X,. With such a definition X is always an adapted stochastic process
on (Q, F,FX,P).

We can now define what a Markov chain is. Given a filtered probability
space (€2, F,F,P) and a Markov kernel P on M, a Markov chain with ker-
nel P with respect to F is an M-valued adapted stochastic process (X,,) on
(Q, F,TF,P) such that

P(X,11 € G|F,) = P(X,,,G)
for all n € N and for all G € B(M). Equivalently,

E(9(Xnt1)[Fn) = Pg(Xn)

for all n € N and for all ¢ € B(M) (or all functions g : M — R that are
measurable and nonnegative). Here, E(-|F,,) denotes conditional expectation
with respect to F,,, and P(X,,41 € G|F,,) == E(1x,,,ec|F»). In the appendix,
we recall the definition of conditional expectation and list some of its basic
properties, which will be used without further comment throughout the text.

Proposition 1.4 Let (X,) be a Markov chain with kernel P with respect to
F. Then (X,) is always a Markov chain with kernel P with respect to FX.
This latter property is equivalent to

E(9(Xnt1)ho(Xo)..in(Xn)) = E(Pg(Xn)ho(Xo)..-hn(X5))
for alln € N, hy,... h, € B(M), and g € B(M).

Proof Suppose that (X,,) is a Markov chain with kernel P with respect to
F. Since F.X C Fp,

E(9(Xns1) ) = E(E(9(Xns)|Fa) ) = Py(Xa).

This proves the first statement. Multiplying the left hand side and right hand
side of this equality by ho(Xp)...h,(X,) QED
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Remark 1.5 In view of Proposition 1.4, when we say that (X,,) is a Markov

chain with kernel P, we implicitly mean that it is a Markov chain with respect
to FX.

Given a Markov kernel P and a probability measure v on M, there always
exists a Markov chain (X,,) with kernel P and such that X, has law v. As
outlined in Remark ?7?, this follows from the Ionescu-Tulcea theorem.

Proposition 1.6 (Chapman-Kolmogorov Equation) Let (X,,) be a Markov
chain with kernel P. Let u,, denote the law of X,,. Then, for everyn € N,

Pyl = pn P = ,UOPnJrl-
Proof For every g € B(M),

fin19 = E(9(Xn11)) = E(E(9(Xns1)|Fn)) = E(Pg(Xn)) = pn Pyg.
QED

Example 1.7 (countable space) Let (X,) be a Markov chain on a count-
able state space M, with transition matrix P and initial distribution po. The
law 1, of the random variable X, then satisfies

ma({ed) =Y oy} Py @), Vre M,

yeM

where P" is the nth power of the matrix P. In matrix-vector notation, this
identity can be written as

pin = po P,
where pu,, and g are row vectors. In particular, if y is the Dirac measure at
a point y € M, then the law of X,, assigns mass P"(y,z) to every singleton

{z}, ie.,
P(X, = | Xo = y) = P"(y, ).

Feller and strong Feller chains

The Markov kernel P (or the associated Markov chain (X)) is said to be
Fellerif it takes bounded continuous functions into bounded continuous func-
tions. It is said to be strong Feller if it takes bounded Borel functions into
bounded continuous functions. If M is countable and equipped with the dis-
crete metric, then every function on M is continuous. In particular, every
Markov kernel on a countable set is strong Feller.
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1.3 The canonical chain

Let X = (X,,)n>0 be a Markov chain with kernel P. Then X can be seen as
a random variable on (2, F, P) taking values in the space of trajectories

MN = {X: (xi>i€N 1T € M}

equipped with the product o-field B(M)®N (see Exercise 1.9).
If Xy has law v, we let P, denote the law of X. That is the image measure
of P by X. In particular, for all Borel sets Aq,..., Ay C M,

P(Xo € Ag, ..., Xp € Ay) =P, {x € MY : (xg,...,74) € Agx...x A} (1.3)

We let E, denote the corresponding expectation. If v is the Dirac measure
at x, we use the standard notation P, :=Ps, and E, := E;,_.

Proposition 1.8 (i) Let X = (X,,)n>0 be a Markov chain with kernel P and
initial distribution v. Then for all Borel sets Ay, ..., A, C M,

P {x e MY : (2q,...,21) € Ag X ... x Ay} =
/ v(dao) / P(ao, day) ... / Pl s, duy). (1.4)
AO A Ak.

(ii) Let Q = MY, and let F = B(M)®N. Given a probability measure v and a
Markov kernel P on M, there exists a unique probability measure P, on
(Q, F) characterized by (1.4). On (Q,F), the process (X,)n>o defined
by X, (x) = x,, is a Markov chain with kernel P and initial law v,
called the canonical chain.

Proof Given k € N and hy, ..., hy € B(M), we let hg ® ... ® hy denote the
map on MY defined as

For further reference such a map will be called a product map of length k + 1.
Then

E(ho(Xo) ... he(Xy) = Eu(ho®...® hy)
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The first equality is by definition of E,. The second equality follows from
Proposition 1.4 and the last one follows from the second one by induction on
k. This proves the first statement.

The existence of a unique probability measure P, on (2, F) characterized
by (1.4) is the celebrated Ionescu-Tulcea theorem (see, e.g., Theorem 2 in
Chapter I1.9 of [63]). Using the result from Exercise 1.9, it is not hard to
check that the canonical process (X,,) is a Markov chain on the filtered prob-
ability space (2, F,FX P,), with initial distribution v and kernel P. QED

Exercise 1.9 Let B(M™") (respectively B(M"Y)) denote the Borel o-field over
M™ (respectively MY, endowed with the product topology). Let B(M)®"
(respectively B(M)®N) denote the product o-field over M™ (respectively MY).
Show that B(M)®" = B(M™) and B(M)®N = B(M™N).

Hint: For the inclusion C one can use the fact that the projection 7; :
MY — M, x + z; is continuous, hence measurable. Observe that this doesn’t
require the separability of M. For the converse implication, one can first
show, using separability, that every open subset of M™ is a countable union
of product sets O x ... x O, with O; open.

1.4 Markov and strong Markov properties

For n € N, we let ©" : MY — MY denote the shift operator defined by
O"(x) 1= (Tn+k)r>0-

The following proposition known as the Markov property easily follows
from the definitions.

Proposition 1.10 (Markov Property) Let H : MY — R be a nonnegative
or bounded measurable function and X a Markov chain with kernel P. Then

E(HO" o X)|F,) =Ex, (H).

Proof Assume without loss of generality that H is bounded. Indeed, if H
is non-negative and unbounded, there is an increasing sequence of bounded
non-negative functions that converges pointwise to H, and one can apply the
monotone convergence theorem. The set of bounded H satisfying the required
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property is a vector space, containing the constant functions and closed under
bounded monotone convergence. Therefore, by the monotone class theorem
(given in the appendix) and by Exercise 1.9, it suffices to check the property
when H = hg ® ... ® hy is a product map. We proceed by induction on k. If
k = 0, this is immediate. If the property holds for all product maps of length
k + 1, then
E(hO(Xn> s hk(Xn+k)hk+1(Xn+k+1)|~’rn)
= E(hO(Xn) S hk(Xn+k)E<hk+1 (Xn+k+1)|fn+k)|fn)
E(ho(Xy) .. he(Xogk) Phir1 (Xosr) | Fn) = Ex, (ho ® ... @ hi Phyyq).

(
By (1.5), this last term equals Ex, (ho ® ... ® hit1). QED

A stopping time on a filtered probability space (€2, F,F,P) is a random
variable T : © — N U {oo} such that for all n € N, the event {T" = n} =
T=1({n}) lies in F,. The o-field generated by T, denoted Fr, is the o-field
consisting of all events A € F such that

An{T =n} e F,, VneN
Exercise 1.11 (i) Show that Fr is indeed a o-field.

(ii) Let (T,)nen be a sequence of stopping times on a filtered probability
space (0, F,F,P) such that 7,, < T, for every n € N. Show that
A, :=Fr,, n €N, defines a filtration on (2, F, P).

The following proposition generalizes Proposition 1.10.

Proposition 1.12 (Strong Markov Property) Let H : MY — R be a
nonnegative or bounded measurable function, X a Markov chain, and T a
stopping time living on the same filtered probability space as X. Then

E(H(©" o X)|Fr)1rcoo = Exy(H)1rcoo
Proof It suffices to show that for all n € N,
E(H(©" o X)1r—p|Fr) = Ex, (H)17r=.
The right-hand side is Fr-measurable, and for all A € Fr,
E(H(O©" o X)17-,14) = E(Ex, (H)17r-,14)

by the Markov property (because 17—,14 is F,,-measurable). This proves the
result. QED
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1.5 Continuous time: Markov Processes

Although this book is about Markov chains in discrete time, it is useful to
say a few words about Markov chains in continuous time, also called Markov
processes, because they appear in many examples throughout the book. The
definitions are modeled on discrete time.

A Markov semigroup on M is a family {P;};>0 of Markov kernels on M
such that

(1) Po(x,-) = os;
(ii) For all G € B(M), the mapping (¢,x) — P;(z,G) is measurable;
(iii) For allt,s >0, Py s = P, o P;.

Let (2, F, P) be a probability space and let F = (F;):>o be a continuous-time
filtration, i.e., a family of o-fields such that F; C F; C F forall 0 < s < ¢.
An M-valued adapted stochastic process on (£, F,F,P) is a family (X;);>0 of
random variables defined on (2, F,P), taking values in M and such that X,
is Fy-measurable for all ¢ > 0.

A Markov process with semigroup { P, };>o with respect to F is an adapted
stochastic process X = (X;);>0 on (2, F,F,P) such that for all g € B(M)
and t,s > 0,

E(g(Xt-‘rs)L’T_;f) = (Psg)(Xt)

Exercise 1.13 Suppose M is countable. Let (Y;) be a Markov chain on
M with kernel P. Let U, U,,... be a sequence of independent identically
distributed random variables on (0, co) having an exponential distribution of
parameter \, i.e., P(U; > t) = e . Set Ty =0 and T, = U, + ...+ U, for
n > 1. Let (X;);>0 be the continuous-time process defined by X; =Y, for
T, <t <T,1. Show that (X;) is a Markov process with semigroup

(At)k P*
k!

P, = ¢ MNP = ef)\tz
k>0
Feller processes

We use the following terminology. We say that the Markov semigroup { P, }+>o
is weak Feller provided that

(i) P(Cy(M)) C Cp(M) for all t > 0;
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(ii) For all f € Cy(M) and xz € M, limyjo P.f(z) = f(x).

This definition implies that P, is Feller for all ¢ > 0. Observe however that it
is weaker than the usual definition of a Feller semigroup (see, e.g., [26], [59]
or [45]), which assumes that

(i) M is a locally compact metric space;

(ii) {P:}s>0 is a strongly continuous semigroup on Cy(M) (the set of contin-
uous functions vanishing at infinity), meaning that

(a) Ri(Co(M)) C Co(M);
(b) For all f e Co(M), limyg [|Pof — flleo = 0.

Remark 1.14 It is proved in [59, Proposition 2.4] that [(a), (b)] above is
equivalent to [(a), (b)'] where (b)’ is given by the (seemingly) weaker condition
that

lim P f(z) = f(x)

£10

for all f € Co(M) and x € M. As shown by the following exercise, this
equivalence does not hold if Cy(M) is replaced by Cy(M).

Exercise 1.15 Let M = (0,00), and let P, be defined on B(M) as

i i)

14 z(et — 1)

Show that {P;}1>0 is a weak Feller Markov semigroup which is not Feller.
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Chapter 2

Countable Markov Chains

This chapter presents the basic theory of countable Markov chains. The as-
sumption that M is countable makes the proofs easier and permits to intro-
duce, in a simple setting, some of the key notions (such as invariant probability
measures, irreducibility, positive recurrence, etc.) that will be revisited in the
subsequent chapters. Furthermore, some of the results given here, in partic-
ular in Section 2.6, will be used later to prove the main results in Chapter
7. We assume here that M is a countable set equipped with the o-field S of
all subsets of M, and (X,,) is a Markov chain on M with Markov kernel (or
matrix) P = P(z,y).yem- In most of this chapter, we assume without loss
of generality that Q = MY, F = S*N X, (w) = w,, and F,, = o(Xy, ..., X,),
i.e., (X,) is the canonical chain introduced in Section 1.3.

2.1 Recurrence and transience

For x € M, we let
T =inf{k >1: X} ==z}

denote the first time > 1 at which the chain hits x,
7™ = inf{k > 7"V X, =2},

T

the n' time of hitting 2 (with 7" := 0), and

N, = Z 1¢x,—2y € NU {o0}

k>1

23
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the number of visits of x at or after time 1. We adopt the convention that
inf () = +00. A point z is said to be recurrent if

P.(mn <o0)=1

and transient otherwise.

Given z,y € M and k € N*, we say that x leads to y in k steps, written
x ~F gy if PF(x,y) > 0. We say that z leads to y, written x ~ y, if x ~F y
for some k& € N*. The chain is called irreducible if x ~» y for all z,y € M. To
any Markov chain on a countable set M with transition matrix P, one can
associate a weighted directed graph as follows: Let M be the set of vertices.
For any x,y € M, not necessarily distinct, there is a directed edge of weight
P(z,y) going from z to y if and only if P(x,y) > 0. The chain is then
irreducible if and only if the associated directed graph is connected, i.e., for
any z,y € M there is a path from vertex = to vertex y that moves along
directed edges. Note that a general notion of irreducibility will be defined
in Chapter 5 and that every countable irreducible chain (as defined here)
satisfies this general definition.

Proposition 2.1 (i) If x is transient, then N, < oo a.s. and for all k > 0,
P,(N, = k) = a"(1 — a),

where a = P, (7, < 00). In particular,

E,(N,) =Y P'a,z)=

k>1

< 0.
1—a

(ii) If x is recurrent, then P,(N, = c0) =1,

E.(N,) = ZPk(x,x) = 00,

k>1

and

1 n
lim — > 1ix,—ay =
nl—glo n 1 { K=z} E$(T$)
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(iii) If the chain is irreducible, then either all points are recurrent or all
points are transient. In the recurrent case, for all x,y € M,

P, (1, < 00) =1 and E,(N,) = .
In the transient case, for all x,y € M,
E,(N,) < oo.
Proof (i). Using the strong Markov property,

P,(N, = k) = Po(7{F < 00y 7Y = 00) = (1 — a)P,(r") < o0)

xT

and

Px(ngk) < 00) = aPm(ngk_l) <o0)=...= a”.

(73). If x is recurrent, then, using again the strong Markov property,
Px(Tagn) < 00) = Px(ng"*l) <o0)=...=1

Hence P, (N, = oc0) = 1 and thus E,(N,) = cc.

For all n > 1, there exists k(n) > 0 such that k() <n< kL)
Furthermore, the random variables (T;l(cn+1) — T;l(cn))nzo are, under P, i.i.d.
Thus, by the strong law of large numbers for nonnegative i.i.d. random

variables,

m — Y 1ix,—p) = li - '
L 2 o) = [ B

(3i). If the chain is irreducible, for all z,y € M there exist ¢,j > 1 and
e > 0 such that Pi(z,y) > ¢, P/(y,x) > e. Thus P*"" i (z, 2) > e2P*(y,vy)
for all £ > 1. Therefore, we have the implication

S P = 3 Plaa) -,

k>1 k>1

proving that x is recurrent whenever y is recurrent and y is transient whenever
x is transient.

Suppose the chain is recurrent. Fix x,y € M such that z # y (for z =y
the statement holds trivially true). By irreducibility, recurrence, and the
strong Markov property,

e =P,k <7 : Xp=y9)>0.
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Thus, again using the strong Markov property,

P, (1, > 7"V =K, (P, (7, > Tr(”+1)|}_T(n)))
:Ex«l - Pﬂﬁ(ak < Ty Xk = y))lTy>ngn))
=(1—e)Pu(r, >7") = ... = (1 —e)"™.

Thus P, (1, > ngn—H)) — 0 as n — oo, showing that P, (7, < co) = 1. The two

statements about E,(NN,) follow from the identity
B (Ny) = Po(ry < 00)(1 4 Ey(Ny)),

which itself follows from the strong Markov property, and is valid for both
recurrent and transient chains. QED

Remark 2.2 Transience does not imply that P,(7, < oco) < 1 for all z,y.
Consider the chain on N whose transition matrix is given by

P(z,x+1)=pe (5,1),P(x+1,2) =1—p for all z € N and P(0,0) = 1—p.

By the strong law of large numbers, P,(7, < co) = 1 for all z < y and the
chain is transient.

Example 2.3 (Pélya walks) The Polya walk on Z? is the Markov chain
with transition matrix

1
P(SL’,y) = Zil{xwy}y

where z ~ y & Z?:l |z; — ;| = 1. In 1921, Polya proved that the associated
chain is recurrent for d < 2 and transient for d > 3.
The proof for d = 1 goes as follows. Clearly

1 2k
P?%1(0,0) = 0 and P?*(0,0) = 7F ( L ) .
Stirling’s formula ( In(n!) = n(In(n) — 1) + 3(In(n) + In(27)) + O(%) ) then

yields
1

Vork

This proves that Y, P¥(0,0) = oo, hence the recurrence.

P?(0,0) ~
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For d = 2, recurrence can be deduced from Exercise 2.4 below. The proof
of transience for d > 3 is slightly more involved and can be found in classical
textbooks (see, e.g., [7] or Woess’s book [70] for a more advanced textbook
on Markov chains on graphs and groups).

Exercise 2.4 [Polya walks| Let X, = (X},...,X%), where the (X!),i =
1,...,d are independent Polya walks on Z. Show that (X,,) is recurrent if

and only if d < 2. Deduce from this result the recurrence of the Polya walk
on Z2.

Exercise 2.5 |Generating functions| Let 0 < p < 1 and ¢ = 1 — p. Consider
the biased walk on Z whose transition matrix is given by P(z,z + 1) =
p, P(x,z — 1) = qgand P(z,y) =0 for |z — y| # 1.

Forall 0 <t <1andye€Z, set

Uy (t) = ]Eo (tTy ]‘{Ty<00})

and

G, (t) = Eqg (Z 1Xk_yt’“> = ; PE 0, y)t".

k>0
(i) Prove the following identities:
Uo(t) = t(pU1(8)+qUr (1)), Ur(t) = t(p+qU-2(t)), U-1(t) = t(g+pU-2(?)),
Ua(t) = UL (1), U-a(t) = U2,(1),

and Go(t) = 17U10(t)'

(ii) Compute Uy(t), Go(t) and show that

1 1 -1
) ECETCETCE<OO:(1_—) .
11— 2p| (7] ) 2max(p, q)

Comment on these results.

2.1.1 Positive recurrence

A recurrent point z is called positive recurrent if E,(7,) < oo and null recur-
rent otherwise.
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A measure (respectively a probability measure) m on M is called invariant
for a transition matrix P if 7P = P, or equivalently,

n(z) =) 7(y)Plyz)

yeM

for all x € M. Here, we write 7(z) instead of m({z}) to highlight the link with
matrix-vector notation. Precisely, if M = {1,...,N} or M = N* and if = €
M, then 7(x) is the zth entry of the row vector (7({1}),7({2}),...,71({N}))
or (m({1}),m({2}),...). If 7 is an invariant probability measure for P and if
X is distributed according to 7, then X, is distributed according to 7 for all
n > 1 by Proposition 1.6.

The next result shows that for an irreducible recurrent kernel, either all
points are positive recurrent or all points are null recurrent. Moreover, posi-
tive recurrence is equivalent to the existence of an invariant probability mea-
sure.

Theorem 2.6 Suppose P 1is irreducible. Then the following assertions are
equivalent:

(a) There exists an invariant probability measure m for P
(b) There exists a positive recurrent point.

Under these equivalent conditions:

(1) All the points are positive recurrent;

(ii) For every initial probability distribution v on M, and x € M,

RS
nh_{lolo E Z 1{Xk:$} = 7'('(:13') = E:p(Tx)
k=1
P,-a.s. (in particular, m is unique);
(iii) For allxz € M and f: M — R bounded or f : M — [0, o0,

_ E. (31 [(Xk) |
E,(7:) ’

mf

(iv) Forallz,y e M, E,(7,) < o0.
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Proof Forallw € M, > 77 1ix,—} = L{r,<o00} 2_p—r, L{x,=c}- Then, using
irreducibility and Proposition 2.1 (i7), one has for every probability measure
von M s 1

1 k=1 H{X=x} _ {1z <00} 21

P,-a.s., with the convention that the right-hand term is zero if z is transient.
Suppose now that 7 is an invariant probability measure. By irreducibility and
the relation 7(z) = >, 7(y)P(y,z), one sees that m(z) > 0 for all z € M.
Taking E -expectation on both sides of (2.1) and using dominated conver-
gence gives

P, (7, < 00)
0<7(zr)=—+—>
() E.(m)
This implies E,(7,) < oo so that z is positive recurrent. By Proposition 2.1
(1ii), recurrence implies P, (7, < oo) = 1. Thus 7(z) = m. Suppose now

that there exists a positive recurrent point x. Let 7w be the probability measure
defined as in assertion (7ii) of Theorem 2.6. We claim that 7 is an invariant
probability measure (compare with Exercise 4.24). For all f € B(M),

E.(7.) 7f = E, (Z 1{k<rz}f(Xk)) =E, (Z ]—{k<'rz}f(X1€+1))

k>0 k>0

because f(X,,) = f(x). Thus, using the Markov property and Fubini’s theo-
rem,

Eo(7e) 7f =) Ba(E(f(Xit1) Lipery | Fi)

k>0

. (3 1 PICK) ) = Exlrdn ()

k>0

This shows that 7Pf = nf, hence 7P = .
It remains to prove assertion (iv). Let  # y € M. By irreducibility one

can choose k > 1 such that P*(z,y) > 0. Let 7, := inf{n > k : X,, = z}.
(&

Then 7, , < 7 ) and, consequently,

ke

m(z)

Here the last equality follows from assertion (ii) and the strong Markov prop-
erty. By the Markov property,

Ex(TkJ) =k+ Ex(EXk (Txl{Xwém})) >k + Pk(fa y)Ey(Tx)-

k4 B (Bx, (7o) 1ix,20)) = Eo(h0) < Eu(rF)) =
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This shows that k(1 ()
—7(x
E,(r) < ——+—72% )
W) < PR y) <
QED

An irreducible kernel (or chain) satisfying one of the equivalent conditions
(a) or (b) of Theorem 2.6 is called a positive recurrent kernel (chain).

Corollary 2.7 If M is finite and P is irreducible, then P is positive recur-
rent.

Proof The set P(M) of probability measures on M is nothing but the unit
simplex in R? with d the cardinality of M. By Brouwer’s fixed point theo-
rem (see, e.g., Corollary XVI1.2.2 in [23]), the map P(M) > 7w — 7P € P(M)
has a fixed point, which is then an invariant probability measure for P. QED

Remark 2.8 The proof of Corollary 2.7 shows that every Markov chain on
a finite set, possibly non-irreducible, always admits (at least) one invariant
probability measure.

Exercise 2.9 Give a direct proof of this latter fact. Hint: Consider the
sequence (1) defined by g, = £ 377 | uP*, where p is some probability
measure.

An interesting consequence of Theorem 2.6 (iii) is the next proposition,
which relates moments of the first return time to x to m-mean moments of
the hitting time of .

Proposition 2.10 Suppose P is positive recurrent with invariant probability
measure . Then for every nonnegative function b : N — R, and every
re M,

E.(4(r)) = 7(x)E, (Z o).

In particular, for every A > 0,

6)‘

er —1

E(e'™) = m(x) [Ea(eX™) —1];

And for every p > 0,
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Proof Fix ¢ : N - R, and z € M. By Theorem 2.6 (iii) applied to
f(y) == Ey(4(7)), one has

E.(4(r,) = n( (lekﬁxk ) 1) B (Lo kB, ((72))).

k>0 k>0

But, by the Markov property,

E.(1r5kEx, (¥(72))) = Eo(Ee (V(7 — k) 1| Fr)) = Eu(¥(72 — k)17 50
This proves the result. QED

Exercise 2.11 [Polya walks, continued| Show that the Polya walks on Z
and Z? are null recurrent. Hint: Show that they do not have any invariant
probability measure.

Exercise 2.12 |Reflected walks|] Let 0 < p <1, =1—pand 0 <r < 1.
Consider the chain on N whose transition matrix is given by P(x,z + 1) =
p,Plx,x — 1) = ¢q if x > 1,P(0,0) = r and P(0,1) = 1 — r. With the
notation of Exercise 2.5 compute Uy(t) and show that the chain is transient
for p > 1/2, null recurrent for p = 1/2 and positive recurrent for p < 1/2.
Compute Eq(7o|19 < 00).

Exercise 2.13 [Harmonic functions| A function h : M — R is called har-
monic for the Markov kernel P if Ph = h. Suppose P is irreducible and
recurrent. Show that every nonnegative or bounded harmonic function is
constant. (Hint: Show that h(X,) is a nonnegative (or bounded) martin-
gale, hence convergent by Theorem A.6.) Give an example of a nonconstant
unbounded harmonic function for the Pélya walk on Z.

Exercise 2.14 [Reversibility| Let 7 be a probability measure on M. A Markov
kernel P is said to be reversible with respect to 7 if w(x) P(z,y) = 7(y) P(y, )
for all =,y € M.

(i) Show that if P is reversible with respect to 7, then 7 is invariant for P.

(ii) Show that if P is reversible with respect to 7 and if w(z) > 0 for all
x € M, then Pf(z) :=>_ . P(z,y) f(y) defines a self-adjoint operator
on the Hilbert space i*(w) == {f : M = R: Y, 7(2)]f(2)|* < oo}
with inner product (f, g) := > .\, 7(z) f(z)g(x), i.e., (Pf,g) = (f, Pg)
for all f,g € I*(m).
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(iii) Give an example of a Markov kernel P and a probability measure 7 such
that 7 is invariant for P, but P is not reversible with respect to 7.

2.1.2 Null recurrence

Although an irreducible null recurrent chain has no invariant probability mea-
sure (for otherwise it would be positive recurrent) it always has an unbounded
invariant measure.

Theorem 2.15 Suppose P is irreducible and null recurrent. Given x € M,
let m be the measure on M defined by

rf =E, (,; f(Xk)>

for f: M — R nonnegative. Then 7 is o-finite (w(y) < oo for ally € M),
positive (m(y) > 0 for all y € M), unbounded (m(M) = o0), and invariant
under P (m = wP). Every other o-finite invariant measure is proportional to
Tr.

Proof Fory # x, set Ny, = Z?:_ol 1;x,—,. By the strong Markov prop-
erty, for all £ > 0,

Pr(Ny<o 2 k+1) = ]P)x(T(kJrl) < 7)) = Po(r® < 7y 7D < 1)

=P, ( ) < 1)Py(1, < 7)) = a"t,
where a = P, (7, < 7,,) < 1 (by irreducibility). This proves that
a

0<n(y) = < 00.

—a
Invariance of 7 is proved exactly as in Theorem 2.6 (#ii). Clearly 7(M) = oo
for otherwise —2— would be an invariant probability measure, in contradiction
with the assumption that the chain is null recurrent.

It remains to show that every other o-finite invariant measure is pro-

portional to u. Let Q(x y) = W Then @ is a Markov kernel and

n(z,y) = LW T4 follows that Q is also irreducible and null recurrent
by application of) Prop051t10n 2.1. Let now v be another o-finite invariant

measure. Then h(zx) = % is harmonic for ), hence constant (see Exercice

2.13). This concludes the proof. QED
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2.2 Subsets of recurrent sets

Given C' C M, we let
o = Tél) =inf{n >1 : X, € C},

and
(k+1) | (k)

o =1inf{n>715" : X, € C}
for all £ > 1. We also set Téo) := 0. The next proposition shows that, whenever
P is irreducible, recurrence (respectively positive recurrence) of the chain is
equivalent to recurrence (positive recurrence) of any finite subset.

Proposition 2.16 Suppose P is irreducible and let C' C M be a nonempty
finite set such that for all x € C, P,(1c < 00) = 1 (respectively E,(1¢) < 00).
Then P is recurrent (respectively positive recurrent).

Proof Let x € C. Then, since P, (¢ < o0) = 1 for all y € C, the
strong Markov property implies that (X,,) visits C' infinitely often P,-almost
surely. Since C is finite, it follows that P -almost surely, there is y € C such
that N, = oo. If P was transient, we would have by Proposition 2.1 that
P.(U,ectNy = o0}) = 0, a contradiction. Hence P is recurrent.

Suppose now that K := max,cc E,(7¢) < 00. Let @ be the Markov kernel
on C defined by Q(z,y) := P (X,, = y) for z,y € C. Since C is finite, Q
admits an invariant probability measure 7 (see Remark 2.8). Thus, if X has
law 7, then X, has also law 7. It follows (by a proof similar to the proof of
Theorem 2.6 (iii) or by Exercise 4.24) that the measure p defined by

R0 F(X)
pf = E.(7c)

is invariant for P. Note here that E.(7¢) < K < oo. This proves positive
recurrence. QED

Exercise 2.17 Suppose P is irreducible, C' C M is finite and for all = €
M\ C, P,(1¢ < o0) = 1. Show that P is recurrent. Hint: If M\ C # (), prove
that for all v € C', P,(Tan¢ < 00) = 1 and then use Proposition 2.16.

The next result extends and generalizes Proposition 2.16. The second part
contains a classical result originally due to Chung [16]. The proof given here
is different.
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Proposition 2.18 Suppose P is irreducible and let C C M be a finite set.

(i) Assume that for some Ao > 0 and all x € C, E, (™) < oo. Then, for
all z,y € M, there exists A € (0, \o| such that

E,(e*™) < 0.

(ii) Let p > 1 and suppose that for all x € C, E,(75) < oco. Then for all
r,y €M,
E, (7)) < o0.
Proof (i). First assume that M = C. In this case there exists, by ir-
reducibility, some ¢ > 0 such that for all z,y € M and k := card(M),
P,(r, > k) < 1 — e. Therefore, by the Markov property and induction on
n>1,

Po(ry > k) = Eo(Ly, 1) Py 1 (7 > K)) < (1 — )™

“1)k
Thus, for all n > 0,
n

P,(ry >n) < P,(1, > k‘[k

]) < (1 - 5)%_17
where [7] is the largest integer less than or equal to 7. Hence, for a > 0 so
small that e**(1 —¢) < 1,

E.(e*™) < Ze”"]P)m(Ty >n) < 0.
n=1

We now turn to the proof of the first statement in full generality. Let
Y, =X .
Tc

Such a definition makes sense because, by recurrence, Tén) < oo almost surely.

For all y € C, set 0, :==inf{n > 1: Y, = y}. For x € C,(Y,) is a C-valued

Markov chain on the probability space (MY, B(MY),P,), with respect to the

filtration {F ) }n, and with Markov kernel Q(a, b) := P, (X, = b) introduced
C

TC

in the proof of Proposition 2.16. Thus, by what precedes,

E,(e*") < 2.2
max (%) < oo (2.2)
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for some o > 0.

By assumption, max,ec E,(e*7¢) < e for some oy > 0. By Jensen’s
inequality, for all ¢ € [0,1],E,(e"07¢) < E,(e*@)! < ef*. Choose A € (0, 2]
so small that 2 Aoy < Agar. Then

max [E, (e*7) < e®.

zeC
Set M, = (XY —na)  The previous inequality combined with the strong
Markov property shows that (M,) is a supermartingale under P, with respect
to the filtration {F ) },. Therefore, using Theorem A.4 on optional stopping,

Tc
(M0, ) is again a supermartingale, and in particular Eq(Mpynq,) < E,(My) =
1. Together with Holder’s inequality, this yields for all z,y € C
Ex(e)\TénAdy)) S ]EI(Mn/\o-y)1/2Ex(€a(n/\ay))l/2 S Ex(eagy)l/2 < 0.
Thus,
(oy)
E,(e’) = Ey(e)e ") < o0

for all z,y € C.

In order to conclude the proof, it suffices to show that for any finite set C”
containing O, max,ccr E.(e*7¢) < oo. Then, by what precedes (with C’ in
place of C'), this will imply that max, yecr E,(eX™) < oo for some X € (0, Ag].

We reason like in the proof of Theorem 2.6 (iv). Let C" O C,y € C"\C. Fix
x € C. Then, for some k > 1, P¥(z,y) > 0. Let 7,c = min{n > k: X,, € C}.
One has 7, ¢ < Ték). Thus,

4 P (3, ), (270) < By Ex, (€7 L, g0)) = Bal€*™ Ly, gc)
< Ex(e)‘oT(Ck)) < [mag(Efz(e’\OTC)]k < 00.
zE

This concludes the proof of (7).
(7). Slightly adapting the previous argument, one easily shows that

E.(18) < — E.(78) <

max E, () < oo max E, (7¢) < oo

for any finite set C” containing C'. It then suffices to show that, for all x,y € C,
E.(77) < oc.

By the assumption and the strong Markov property, there exists K > 0
such that for every n > 0,

E. (78" = 78I 0) = By, (78) < K7
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Therefore, with || - ||, = E,(| - |P)'/?,

Il = 171l = D8 =t ico, | < DNEE = 7)o, I
>0 i>0

Now

B (|r& ™ = 18P lics,) = Eo(Ba(lr&™ = 18PIF,0)Lics,) < KPPo(o, > i).

Thus

I7yllp < KZPx(Gy > i)l/p < 00,
i>0
because, as seen in the beginning of the proof, the law of o, has a geometric
tail. QED

2.3 Recurrence and Lyapunov functions

By Proposition 2.1, the divergence (respectively convergence) of the series
> is; PH(x,x) is a criterion for the recurrence (transience) of the point z,
but such a criterion may be difficult to verify in practice. We discuss here
other criteria based on Lyapounov functions, a tool that will play a key role
in the next chapters. In brief, a Lyapunov function is a map V : M — [1, 00)
such that PV — V < 0 outside a certain subset C' C M. Lyapunov functions
are practical tools to ensure that the assumptions of Propositions 2.16 and
2.18 are satisfied.

A map V : M — R, is called proper if for every R > 0, the set {z € M :
V(z) < R} is finite. If M is finite, every map V : M — R, is proper. If M
is countably infinite and (x,),>1 is any enumeration of the elements of M,
V : M — R, is proper if and only if lim,,_,,, V(x,) = oo.

Apart from the first assertion, the following result is a consequence of a
more general result (Proposition 7.12) that will be proved later.

Theorem 2.19 Let P be a Markov kernel, let V : M — [1,00) be a map,
and let C' C M be nonempty. Consider the following conditions:

(a) P is irreducible, PV —V <0 on M\ C and V is proper;
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(b) PV-V <—-10on M\C and PV < oo on C,
(b’) Condition (b) and in addition

sup E,(|]V(X;y) = V(2)]P) < o0

zeM
for some p > 1;
(c) PV -V < =XV on M\ C for some A € (0,1) and PV < oo on C.
Then, for all x € M,

(i) Under condition (a),
]P)x(TC < OO) = 1;

(ii) Under condition (b),
E.(tc) < PV(z) + 1;

(iii) Under condition (V'),
Eo(78) < c(1+V(x)")
for some constant ¢ > 0 that depends on p but does not depend on x;

(iv) Under condition (c),

1
E, () < B, (e 18- V7e) < ﬁPV(:E).

In particular, if P is irreducible and if C' 1is finite, conditions (a), (b), (0), (¢)
respectively ensure recurrence of P, positive recurrence of P, p-th moments
for the hitting times 1, under P,, and exponential moments for 7, under P,
for every x,y € M.

Proof We only prove the first assertion. The other three follow from Propo-
sition 7.12 to be proved later. When P is irreducible and when C' is finite,
recurrence, positive recurrence, p-th moments, and exponential moments of
hitting times are direct consequences of Propositions 2.16 and 2.18.

By irreducibility, the chain is either recurrent or transient. If it is recur-
rent, P, (7¢ < o0) = 1 for every x € M by Proposition 2.1. Suppose the chain
is transient. For x € M \ C, the sequence V,, := V(X,ar.) is under P, a
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supermartingale because E,(V,,11 — V,,|F,) = (PV(X,) — V(X)) 1, 5n < 0.
Thus, being nonnegative, (V,,) converges P,-almost surely to some random
variable V,, taking values in [0, 00) (apply Theorem A.6 to the submartingale
(—=V4)). This shows that V' (X,,) converges P,-almost surely on {7¢ = 0o}. On
the other hand, by transience (Proposition 2.1 (i77)) and by the assumption
that V' is proper, limsup,_,. V(X,) = oo P,-almost surely, and therefore
P.(1c < o0) = 1. And for z € C, we have by the Markov property

P.(1c < 00) = Po(X; € C) + E.(1x,eamn\cPx, (¢ < 00)) = 1.

QED

Exercise 2.20 Suppose V : M — [1,00) is a proper map. Show that con-
dition (¢) in Theorem 2.19 for a nonempty finite set C' is equivalent to the
existence of constants 0 < p < 1 and x > 0 such that

PV < pV + k.

Show that under such a condition, every invariant probability measure 7
satisfies .
TV < —— < .
L—=p

See Corollary 4.23 for a proof of the second assertion.

2.4 Aperiodic chains

We start with a general definition of aperiodicity. Let R C N* be a (nonempty)
set closed under addition. That is
,jE R=147€R.

The period of R is defined as its greatest common divisor. If this period is 1,
R is said to be aperiodic. Aperiodic sets enjoy the following useful property,
that will be used repeatedly throughout the book.

Proposition 2.21 Let R be aperiodic. Then there exists ng € N such that
no+N={neN: n>ne} CR.
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Proof There exist, by aperiodicity, ay,...,a; € R whose greatest common
divisor is 1. (To see this, take any element of R and call it ay; then a; has a
finite number of divisors strictly greater than 1, which we denote by ds, . .., d;;
for 2 < i < [, pick a; from R such that d; does not divide a;; such a; exists
because the greatest common divisor of R is 1). By Bézout’s identity, there
exist ¢i,...q € Z such that ) . qa; = —1. Set a = Zi:qi>0 g;a;. The set
R being closed under addition, both a and a + 1 = ZMKO —q;a; lie in R.
Every n > a* can be written as n = ka+r = (k — r)a + r(a + 1) for some
r€{0,...,a—1} and k > a. Thus, every n > a? is an element of R. QED

We now turn to the definition of aperiodicity for a countable Markov chain.
Given a kernel P on M and z € M, let R(z) := {k > 1: x ~" x} be the set
of possible return times to x. The period of z, per(z), is defined as the period
of R(x) and x is called aperiodic whenever R(x) is. The kernel (or the chain)
is said to be aperiodic if all points x € M are aperiodic.

Proposition 2.22 Suppose P s irreducible. Then
(1) All points x € M have the same period;

(ii) P is aperiodic if and only if for all z,y € M there exists n(x,y) € N
such that x ~" 1y for all n > n(x,y).

Proof (i). Let z,y € M. By irreducibility, there exist i, j € N* such that
z~"yand y~7’ x. Thus i+ j € R(z) and for all k € R(y),i+j + k € R(z).
Therefore, per(z) divides i + j and i + j + k, hence k, for all k£ € R(y). Thus
per(xz) < per(y) and by symmetry per(z) = per(y).

(7). The “if” part is obvious. We prove the “only if” part. Given y € M,
there exists, by Proposition 2.21, ng € N such that n € R(y) for all n > n,.
If now z is another point in M, x ~* y for some ¢ by irreducibility, hence
x~>"y foralln >ng+i1. QED

An immediate useful consequence of Proposition 2.22 is the next result. Given
two Markov kernels P and P respectively defined on the countable state space
M and M, we let P ® P denote the Markov kernel on M x M corresponding
to two independent chains with kernels P, P. That is

(P @ P)((x,4): (y,y)) := Plx,y) P(z,y/).

Corollary 2.23 If P and P are both irreducible and aperiodic, so is P ® P.
If in addition P and P are positive recurrent, so is P @ P.
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Proof Note that (P® P)" = P"® P" for every n € N*. Thus, irreducibility
(and aperiodicity) of P ® P follows from Proposition 2.22 (ii), applied to P
and P. Also, if 7 and 7 are invariant probability measures for P and P, so is
7@ 7 (defined as (7 ® 7)(z,2') := n(z)7(a’)) for P ® P. By Theorem 2.6,
this proves positive recurrence. QED

Exercise 2.24 Give an example of an irreducible and positive recurrent ker-
nel P such that P ® P is not irreducible, and an example of an irreducible
recurrent kernel P such that P ® P is irreducible and transient.

Exercise 2.25 Show that if P ® é is irreducible, then both P and P are
irreducible. Also show that if P ® P is irreducible and recurrent, then both
P and P are recurrent.

Exercise 2.26 Let (X,,),>0 be a Markov chain on Z \ {0} whose transition
matrix P is given by

P(ii+1)=P(i,—i) =1/2, i > 1

P(-1,1)=P(i,i+1) =1, i < —2.

(i) Draw the weighted directed graph associated with (X,) and determine
whether the chain is irreducible.

(ii) Find the period of the chain.

(iii) Find a Lyapunov function V and a finite set C' C Z \ {0} such that P,
V and C satisfy condition (b) of Theorem 2.19.

(ii) Show that (X,,),>0 is positive recurrent and find its unique invariant
probability measure.

2.5 The convergence theorem

The main result of this section is the convergence theorem for irreducible ape-
riodic Markov chains. This theorem is sometimes called the ergodic theorem
in the literature, but we prefer to reserve this terminology for Birkhoff ergodic
theorem.
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Theorem 2.27 Suppose P is irreducible and aperiodic. Let 11 be a probability
measure on M.

(i) If P is positive recurrent with invariant probability measure 7, then

lim sup |uP"(2) — w(z)| = 0.

n—oo zeM

(ii) If P is not positive recurrent, then for all z € M,

lim pP"(z) = 0.

n—oo

Proof Let (X,,,Y,)nen be the canonical chain on (M x M)N (i.e.,
(X, Yo)(w, @) := (wn,@n)), and let

Ta :=1inf{n >1 : (X,,Y,) € A},

where A := {(z,z) : © € M} is the diagonal of M. Throughout the proof,
we write P, (respectively P, ,) for the Markov measure on (M x M)N with
kernel P ® P and initial distribution « (respectively 0, ,). By Corollary 2.23,
P ® P is irreducible, hence either recurrent or transient.

Case 1: P ® P is recurrent. For all z,y,z € M,

Px,y(Xn:z> = Pi,y(Xn:Z;TA >n)+]Px,y(Xn:Z;TA Sn)
= P, ,(Xn=27a>n)+ P, (Y, =274 <n)
< P,y (ta >n)+P,, (Y, =2),

where the second equality follows from the strong Markov property and the
fact that X, = Y,.. Interchanging the roles of X,, and Y,,, one also has

P, (Y, =2) <P, (ta >n) +P, (X, = 2).
Hence
[P, 2) = P*(y, 2)| = [Pay(Xn = 2) = Pry (Yo = 2)[ < Poy(7a > n),
and by integration

[uP"(2) = vP"(2)] < Pugy(Ta > n) (2.3)
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for every probability measure v on M and every z € M. By recurrence of
P ® P (and Proposition 2.1 (ii7)), one has for every x,y € M that P, ,(7a >
n) — 0 as n — oco. Thus

lim sup |uP"(z) —vP"(2)| =0 (2.4)

n—=o0 zeM
by dominated convergence. In light of Exercise 2.25, there are two subcases:
P is either positive recurrent or null recurrent. If P is positive recurrent,
(2.4) applied to v = m, the invariant probability measure of P, proves part
() of the theorem. If P is null recurrent, let 7 be an unbounded invariant
measure of P (see Theorem 2.15). For any nonempty finite set A C M, set
ma(z) = %. Then, mq < 75, whence

o wPh(s) (e)
mal"=) < Sy T Ay

Therefore, by (2.4) applied to v = 74,

. . . . 0 m(z) _ w(2)
lim sup n"(2) < lim |uP"(2) — maP"(2)] + TA) " wA)

Letting A 1 M proves (i7) in this case because w(M) = oo.
Case 2: P ® P is transient. By Proposition 2.1 (i),

[P"(z,2)]" = (P ® P)"((2,2); (2,2)) = 0

asn — oo, for all z € M. By irreducibility of P, this implies that P"(x, z) — 0

for all x,z € M. Thus uP"(z) — 0 by dominated convergence. This proves
(77) in case 2. QED

As shown below, the convergence in Theorem 2.27 is geometric if there exists
a proper map that satisfies condition (¢) of Theorem 2.19 for a nonempty
finite set C' (see also Exercise 2.20).

Theorem 2.28 Suppose P is irreducible and aperiodic, and that there exists
a proper map V : M — [1,00) and constant 0 < p < 1,k > 0 such that

PV < pV + k.

Then P is positive recurrent and, denoting by m its invariant probability mea-
sure:
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(i) One has TV < 1% < oo;

(ii) There exist constants 0 < v < 1 and ¢ > 0 such that for every probability
measure [ on M,

sup |uP"(z) = 7(2)| < A" (uV + 1), VneN.
zeM

Corollary 2.29 Suppose M is finite and P irreducible and aperiodic, with
wmwvariant probability measure w. Then there exist constants 0 < v < 1 and
¢ > 0 such that for every probability measure p on M,

sup |[uP"(z) — m(2)] < ey", YneN.
zeM

Proof Take V =1 in Theorem 2.28. QED

Proof |[of Theorem 2.28|. We use the same notation, P ® P, (X,,Y,), A,
etc., as in the proof of Theorem 2.27.

Positive recurrence follows from Exercise 2.20 and Theorem 2.19. Asser-
tion (i) follows from Exercise 2.20. By inequality (2.3) from the proof of The-
orem 2.27, it suffices to derive an exponential upper bound on P,z (7a > n)
in order to prove assertion (i¢). Pick * € M and choose € > 0 small enough
so that V(z*) < £ and p+¢e < 1. Set W(x,y) := V(z) +V(y), 2,y € M.
Then

(P ® P)YW(z,y) = PV(x) + PV(y) < pW(z,y) + 25,

so that (P ® P)W < (p+ €)W on the complement of the set
2K

By Theorem 2.19 (iv) and assertion (i), we then obtain, for some positive
constant ¢ depending on &, p and ¢,

pm)(P®P)W < p(uV +7V) + 2k
p+e N pt+e

B o (e075re) < | < o1+ 4V)
Since V' is proper, the set C' is finite, and Proposition 2.18 (i) together with

(x*,2*) € C yield the existence of A > 0 such that

)\ x* . ¢*
nax Egy)(e777) < oo,
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Thus

]P)#®7F(TA > n) SPH®W(T($*7$*) > n)
<Puor(tc > n/2) + Euor(Pix,, vop) (T ) > 1/2))
<ce 2(1 4 pV)

for some other constant c. Inequality (2.3) concludes the proof. QED

2.6 Application to renewal theory

Let (A;)i>1 be a sequence of i.i.d. random variables living on some probability
space (§2, F,P) and taking values in N. Let Ay be another N-valued random
variable on (€2, F,P), independent of (A;);>1 but having a possibly different
distribution. Set

T, =0Ag+ A1+ ...+ A,

The sequence T := (T},)nen is called a renewal process; Ty = Ag is the delay
of the process, and {7}, : n > 0} is the set of renewal times. Observe that T
is a Markov chain with respect to the filtration F,, := (Ao, ..., A,), whose
transition matrix has entries A(7, j) := P(A; = j — 7).
Let
pr = P(A; = k)
for k € N. We say that T' is aperiodic if pg # 1 and {k > 1: p, > 0} is an
aperiodic set as defined in Section 2.4. We say that T is L? if Ay isin L7, i.e.

> ken KPR < 00.
To fix ideas, one can imagine that a certain device breaks down and is

replaced by a generic device at times Tj,T7,.... The lifespan of the initial
device is distributed as Ay and the lifespan of the replacement devices are
distributed as A;.

From now on we shall assume that 7" is aperiodic. For all n € N, let

G :=min{k >0 : T}, > n}.
Then ¢, < oo P-almost surely so that
X, =T, —n

is well-defined. A key observation is the following:
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The set of renewal times for T equals the zero set of (X,),

ie.,

{T, :neN}={neN:X,=0}
It is easily checked that with respect to the filtration {F,, }, (X,,) is a Markov
chain on N whose transition matrix is given by

P(k,k—1)=1for k> 1,

P(0, k) = 1]0’“—“ for k € N,
— Do

and

P(k,l)=0for k>1,l#k— 1.

Let K :=sup{k >1: p, >0} € N*U{oo} and M :={0,..., K — 1} (with
the convention that M = N if K = oc0). Then X,, € M for n large enough
(precisely n > (Xo— K +1)"). On M, the chain (X,,) is irreducible, recurrent,
and aperiodic (by aperiodicity of T').

Exercise 2.30 Verify the claims made about (X,,). In particular, show that
(X,) is a Markov chain with the transition matrix given above, and that (X,)
restricted to M is irreducible, recurrent, and aperiodic.

Let 79 = inf{n > 1: X,, = 0}. Then,
E(A
o) = S (1+HPO.K) = o0

k>0

= E<A1|A1 > 0) S (0, OO],

where the expectation of a random variable X conditional on an event A of
positive probability is defined as E(X|A) := E(X14)/P(A). The equation
Eo(10) = E(A1)/(1 — po) implies that (X,,) is positive recurrent if and only if
T is L.

Exercise 2.31 Assume that (X,,), restricted to M, is positive recurrent. Ex-
press the unique invariant probability measure for the transition matrix P in
terms of the pg’s.

As a consequence of Theorem 2.27, we obtain the following classical re-
newal theorem.
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Theorem 2.32 Assume that T is aperiodic. Then

o

1
li P(T, =k) =
dm 2 P =k = gay

n=0

with the convention that the right-hand side is zero if E(A;) = 0.
Proof Let N, := ano 1¢7,—%}- Then

Ny = 1x=0y(1+ Y Lz=op),

i>1
where
jjl-/ = A§k+1 —|— e + A<k+i.

Thus E(Ny) = E(E(Ng|F,)) = P(Xy = O)ﬁ, and by Theorems 2.27 and
2.6,

Iim P(X. =0) = .
Jin P(X} = 0) Eo(o)

This proves the result. QED

2.6.1 Coupling of renewal processes

Suppose that T is L', and let T be another aperiodic L'-renewal process
independent of 1" with

T,=0No+ A1 +...+ A,

The distribution of (A;);>o may be different from the one of (A;);>o. We are
interested in the first time 7 > 0 that is a renewal time for both 7" and T'.
Equivalently, with X, defined in analogy to X,,

ri=inf{n >1: X, = X,, = 0}.

We know that (X,,) is absorbed by M in finite time and that it is aperiodic
and positive recurrent on M. Hence, (X, Xn) is absorbed by M x M in finite
time (M defined in analogy to M) and, by Corollary 2.23, it is positive
recurrent on M x M. In particular,

P(1 < 00) = Pagal(m0,0 < 00) =1, (2.5)
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where o (respectively &) denotes the law of Ag (respectively Ag). It turns out
that whenever Ag, Ag and Ay, A; are in LP for some p > 1, the same is true
for 7. A proof of this fact can be found for instance in Lindvall’s book [47]
and goes back to Pitman’s seminal paper [55]. We provide here a short proof
(different from Lindvall’s) based on Proposition 2.18 and Theorem 2.19.

Theorem 2.33 Suppose T and T are aperiodic and in LP for some p > 1.
Then there exists a constant ¢ > 0, independent of the distributions of Ay and
Ao, such that E(17) < ¢(1 4+ E(A}) + E(A])).

Proof Let Q := P® P denote the kernel of (X,, X,,). Let V be the function
defined on N x N by V (i, j) = max(i, j) + 1. One has
QV(i,j) = V(i,j) = —1fori#0,j #0,
and (by integrability of A; and dominated convergence)
jli_)rgo QV(0,7) —V(0,5) = jli_)rgo E(max(A; —j—1,-1)|A; > 0) = —1.

Similarly, lim; o @V (i,0) — V(,0) = —2. Condition (b) of Theorem 2.19 is
then satisfied for the Markov process (X, X;,) on N x N, with C' = {(7,j) €
N x N: V < R} and R large enough. Condition (V') is easily seen to be

satisfied as well because A; and A, are in LP. Therefore, there is ¢ > 0 such
that for all (7,7) € N x N,

Eij(1ho) < 2771 (Ei;(78) + [nax, E; ;(750)) < (1 + max(i, j)). (2.6)
Here, the first inequality follows from the strong Markov property and in-
equality 700 < 7¢ + 700 © ©,. The second inequality follows from Theorem
2.19 (#ii) and Proposition 2.18. Note that while (X, X) is not necessarily
irreducible on N x N and thus a key assumption of Proposition 2.18 is not
satisfied, the proof still goes through because any point (7,j) € N x N leads

to (0,0). Integrating the inequality in (2.6) with respect to @ ® @&, the law of
(Ao, Ag) = (Xo, Xo), gives the result. QED

Theorem 2.34 Suppose T and T are aperiodic and
E(e*1) + E(e™) < o0
for some A\g > 0. Then there exist 0 < A < A\g and ¢ > 0 such that

E(eM) < (1 + E(e%0) + E(e2™)).
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Proof The proof is similar to the proof of Theorem 2.33. Set V (i, j) :=
et 4 2 Then QV (i,7) < eV (i,5) + k with

k= E(eMPA] > 0) + E(6A°A1|Al > 0).

Condition (c) of Theorem 2.19 is then satisfied for any 0 < A < 1 — e~ and
C ={(i,j) e NxN: V(i,j) < R} with R sufficiently large given the choice
of A (see also Exercise 2.20). Then, relying on 79 < 7¢+70,000,,., the strong
Markov property, Theorem 2.19 (iv), and Proposition 2.18, we obtain

E;j(e¥) < (14 V(i,5)), V(i,j) € NxN

for some ¢ > 0 and some A € (0,1 — e~20). Integrating this inequality with
respect to the law of (Ag, Ap) gives the desired result. QED

2.7 Convergence rates for positive recurrent
chains

We revisit here the ergodic theorems from Section 2.5, Theorems 2.27 and
2.28, with the help of Theorems 2.33 and 2.34.

Let M be countable and let (X, Y, ),>0 be the canonical chain on (M x
M)Y. Let P be an irreducible, aperiodic, and positive recurrent kernel on
M. If w denotes the invariant probability measure of P, we have seen in the
proofs of Theorems 2.27 and 2.28 that for every probability measure p on M
and every z* € M,

sup [uP"(z) — m(x)| < Pu®7r(7_(x*,x*) >n),

zeM
where P,,¢, is the Markov measure with kernel P ® P and initial distribution
p @ 7, and where 7y« ooy = inf{n > 1: X, =Y, = 2*}.

Let (Téf)) (respectively (%m(f))) denote the successive hitting times of x*
by (X,) (respectively (Y,,)). Then, for any probability measures «, 8 on M,
the processes T = (7.2"™),50 and T := (77,50 living on the probability
space (M x M)N, B((M x M)N),Pasp) are two independent renewal processes
and 7z« z+) is nothing but the first common renewal time for 7" and T.

The Markov inequality, Theorems 2.33, 2.34, and Proposition 2.10 lead to

the following result.
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Theorem 2.35 Let P be irreducible, aperiodic, and positive recurrent, with
wnwvaritant probability measure w. Let x* € M.

(1) If E,(7h.) < oo for some p > 2, then there exists ¢ > 0 such that for

every probability measure p on M and for every n € N*,

1
sup |[puP"(x) — w(z)| < —c(1+ EH(TQZC’ZI)).
zeM np

(ii) If Ep(e™*) < oo for some Ng > 0, then there exist 0 < A\ < X\ and
¢ > 0 such that for every probability measure p on M and for every
n €N,
sup |uP"(x) — 7(2)] < e Ve(1+ B, ().
xeM
Combined with Theorem 2.19, Proposition 2.18, and the strong Markov prop-
erty, we recover and extend Theorem 2.28.

Corollary 2.36 Let P be irreducible, aperiodic, and positive recurrent, with
invariant probability measure w. Let V : M — [1,00) and let C' C M be as in
Theorem 2.19 ((V') or (c)) with C finite. Then

(1) Under condition (b') of Theorem 2.19 for p > 2, there is ¢ > 0 such that
for every probability measure p on M and for every n € N*,

jggwufm(x)—7dx)|§ o

c(1 4 pV?r);

(ii) Under condition (c) of Theorem 2.19, there are ¢, A > 0 such that for
every probability measure y on M and for every n € N,

sup |uP" (@) — 7(2)| < e Ve(1+ V).
zeM

Notes

The book by Aldous and Fill [1] contains numerous interesting identities for
the mean hitting times (E,(7,)), the occupation times (E,(1V,)) and their re-
lation to the rate of convergence. Convergence rates for finite Markov chains,
in terms of the geometry of the chain, are thoroughly investigated in the
monograph by Saloff-Coste [62] and the book by Levin, Peres, and Wilmer
[46]. A nice extension of Chung’s theorem can be found in the recent paper
[3]. The coupling method leading to the convergence rate Theorem 2.35 goes
back to Pitman [55] (see also Lindvall’s book [47]).
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Chapter 3

Random Dynamical Systems

Wether it is on countable or non-countable state spaces, numerous exam-
ples of Markov chains are given by random dynamical systems (also called
random iterative systems). These are systems defined by a recursion of the
form X, 1 = Fy,,,(X,) where (6,,) is a sequence of independent identically
distributed random variables. This short chapter discusses their basic prop-
erties and the question of the representation of a general (respectively Feller)
Markov chain by a random dynamical system.

3.1 General definitions
Let (©,.A,m) be a probability space,
F:-0xM—M

(0,2) — Fy(x),

a measurable map, and (6,),>1 a sequence of independent identically dis-
tributed (i.i.d.) ©-valued random variables having law m. Consider an M-
valued process recursively defined by

Xosr = Fy (X) (3.1)

n+1
for some given random variable X,.

Proposition 3.1 Assume that X, is a random variable independent of (6,,).
Then (X,,) is a Markov chain on M whose Markov kernel is given by

P(z,G) =m(0 € © : Fy(z) € G). (3.2)

51
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If furthermore Fy is continuous for m-almost every 6, then P s Feller.

Proof The proof follows (almost) directly from the definitions. Measura-
bility of x — P(z,G) is a by-product of Fubini’s theorem since P(x,G) =
Jo 1 o Fy(x) m(df). The Feller property follows from continuity under the
integral sign. QED

The kernel P defined by (3.2) is called the Markov kernel induced by
(F,m). The sequence of random maps (F") defined by

" Z:anoan_lo...OFgl

is called the random dynamical system (RDS) induced by (F,m).

Note that, by Chapman-Kolmogorov, the law of F™(z) is determined by
P (F"(x) has law P™(z,-)) but, as shown by the next example, P is not
sufficient to characterize the law of F™.

Example 3.2 This example is due to Kifer [43]. Let M = S' = {z € C :
|z| = 1} be the unit circle, © = [0, 1], and m(df) = df the uniform Lebesgue
measure. Let f : ST — ST be any, say continuous, map and Fy(z) = %™ f(z).
Then P(z,-) is the uniform measure on S* for every z € S', but the random
dynamical system induced by (F,m) clearly depends on the choice of f. For
instance, if f(z) = z, F™ preserves the distance between points, while for
f(z) = 2%, F™ locally increases the distance exponentially.

Example 3.3 This example is due to Diaconis and Freedman [19]. Let M =
[0, 1] be the closed unit interval, and

1
P(x,dy) = gl[o,x](y)dy + 1,41(y)dy.

1
2(1 —x)

Here we adopt the convenient convention that 1[°+’](y)dy = do(dy) for x =0

lé%]g)dy = 01(dy) for x = 1. In words, if the chain is at x it moves to a

point y randomly chosen in the right interval [z, 1] (respectively left interval
[0, z]) with probability 1/2.
Let F': (0,1) x [0,1] — [0,1] be defined by

and

Fg(l‘) = 29%19<1/2 + [l’ -+ (29 — 1)(1 — ZE)]ngl/Q.
Then P is induced by (F,dz).
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Exercise 3.4 |additive noise] Suppose M = R" (or an abelian locally com-
pact group), © = M, F: M — M,

Fy(z) = F(x)+ 6

and m(df) = h(0)dd with h € L'(dP). Here df stands for the Lebesgue
measure (or the Haar measure) on M. Let P denote the corresponding Markov
kernel given by (3.2).

Given x € M, let U, : L'(dx) — L'(dz) be the translation operator
defined as U,(g)(y) := g(y — ). Show that for all f € B(M),

[Pf(x) = Py < [[fllsollUr@)(h) = Urg)(h)]l1-

Deduce that P is strong Feller whenever F is continuous. One can use (or
better, prove) that for all g € L'(dx),z € M + U,(g) € L*(dz) is continuous.

3.2 Representation of Markov chains by RDS

Proposition 3.1 shows that every RDS defines a Markov chain. Here we
briefly discuss the converse problem and consider the question of representing
a Markov chain by a suitable RDS.

A transformation space is a set of maps f : M — M closed under compo-
sition. Let T be a transformation space and P a Markov kernel on M.

We say that P can be represented by T if there exists a probability space
(0, A,m) and a measurable map F': © x M — M such that

(i) Fp €T for all f € B
(ii) P is induced by (F,m).

Recall that a separable metric space M is called Polish if it is complete.
The following result is folklore.

Theorem 3.5 If M is a Borel subset of a Polish space, then any Markov ker-
nel on M can be represented by a space T of measurable maps with (0, A, m) =
((0,1),B((0,1)),A) and X the Lebesgue measure on (0, 1).

Proof When M is a Borel subset of R, the proof is constructive and
makes [’ explicit. Indeed, let GG, be the cumulative distribution function of
P(z,.), ie.,

Gx(t) = P([E, (—OO,t]).
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For all 6 € (0,1) and = € M, set
Fy(z) =G, (0),

T

where G;! : (0,1) — R, the generalized inverse of G,, is defined as
G Mu) :=1inf{t € R: G,(t) > u}.
Then
MO € (0,1): Fyp(z) <t)=A0€(0,1): 0 <G,(t) = Gu(t).

The proof in the general case follows from the following abstract result of
measure theory: Every Borel subset M of a Polish space is isomorphic to a
Borel subset of [0,1]. That is, there exists a Borel set M C [0,1] and a bi-
measurable bijection U : M — M (meaning that both ¥ and its inverse are
Borel measurable). Chapter 13 of Dudley’s book [21] contains a detailed proof
of this result. Exercise 4.11 treats the particular case where M is compact or
locally compact.

Given such a ¥ and a Markov kernel P on M, let P be the Markov kernel
on M defined as P(x, A) := P(U~Y(z), U~(A)). Then P is induced by (F,\)
for some measurable F:(0,1) x M — M so that P is induced by (F, \) with
Fyp(z) = U 1(Fy(¥(2))). QED

Blumenthal and Corson [12] prove the following result (see also Kifer [43],
Theorem 1.2).

Theorem 3.6 (Blumenthal and Corson, 1972). Let M be a connected and
locally connected compact metric space. Let P be a Feller Markov kernel such
that P(z,-) has full support for all x € M, i.e., for all x € M and for every
closed set I strictly contained in M, we have P(x,F) < 1. Then P may be
represented by T = CO(M, M) (the space of continuous maps f : M — M ).

The question of representation by smooth maps has been considered by
Quas [58|. Before stating Quas’s theorem, we state a result due to Jiirgen
Moser from which it will be deduced.

Let M be a smooth (C*°) compact orientable Riemannian manifold with-
out boundary, with normalized Riemannian probability measure A. If p :
M — R, is a C'-density on M and ® : M — M a C'-diffeomorphism, we let
®*p denote the image of p by @, i.e.,

(@ p)(@(a)) = L)
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where J®(z) is the Jacobian of @, i.e., the determinant of the derivative
D®(x) : T,M — Ty M. In other words, if X is a random variable with
density p, then ®(X) is a random variable with density ®*p.

In 1965, Moser [50], using the “homotopy trick” argument, proved part
() of the following result in the C*° case. For every positive integer k& and
0 <a <1, welet C*¥(M) denote the space of C** (C* with a-Hélder kth
derivatives if a > 0) functions h : M — R endowed with the C**°-topology,

EFfe .= {hc C*(M): /Mh(x)/\(dx) = t},

and DF .= {p € E¥*™ . p(xr) > 0 Vo € M} the space of positive CF+o-
densities. Plainly, £ is a closed subset, of C*** (M), which can be identified
with the Banach space E§+a, and D*+® is an open subset of B,

Theorem 3.7 (Moser, 1965). Let py be a positive C*-density for some k >
1. Then

(i) For any positive C*-density p, there exists a C*-diffeomorphism ®, on M
with the property that

% po = p;
(ii) The C*-diffeomorphism ®, from part (i) can be chosen in such a way

that the mapping
D*¥ x M — M,

(p,x) = ®,(x)
is C*.

Proof Let p, = po+t(p — po) for 0 < ¢ < 1. We look for a family of
diffeomorphisms (®;);cp,1) such that ®;py = p; for all ¢ € [0,1]. That is,

J(t, ) pi(Pe(x)) = po(), (3.3)

where j(t,z) is the Jacobian of ®;, evaluated at z. More precisely, we look
for a family of vector fields {X;};cjo,1) on M such that ®,(z) is the solution
to the non-autonomous Cauchy problem

dy

i = Xi(y)
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with initial condition y(0) = x. Using Jacobi’s formula for the derivative of
the determinant of a matrix-valued function, one obtains that j(t, z) solves

dj . .

= = div(X,)[@i(x)]j (1)

with initial condition j(0,-) = 1. Thus, taking the time derivative of (3.3)
and setting y := ®,(z), n := po — p gives

div(Xe)(Y)pe(y) — n(y) + (Vpe(y), Xe(y))y = 0.
Hence
div(p:Xe)(y) = n(y).

If one sets X; = VU/p;, the problem reduces to finding a function U : M — R
such that
AU = div(VU) =, (3.4)

where one should recall that n = pg — p.
Since

/M n(w) Ada) =0,

(3.4) admits a solution, and we may define A~15 as the particular solution

T 2/000 Qm(x)dt,

where Qun(z) = E(n(W,)|Wy, = z) and W, is a Brownian motion on M.
Furthermore, by Schauder estimates (see, e.g., Chapter 6 in [30]) A~ maps
EF17(M) continuously into C*+'*(M) for every positive integer k and
0 < a < 1. This makes the vector field

Xf = VU/pt
a C*-vector field. It also implies that the continuous mapping
[0,1] x D" x M — T M,

(t, p, ) = X{()

is CF.

Let t — ®4(p, x) denote the solution to the Cauchy problem % = X/ (y)

with initial condition ®¢(p,x) = z. It then follows from standard results
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on differential equations that z +— ®;(p,z) is a C*-diffeormorphism for all
(t,p) € [0,1] x D* and that (z,p) — ®4(p,z) is C* for all t € [0,1]. To
conclude the proof, set ®,(z) :== ®1(p,z). QED

From Moser