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Preface

This book is based on a series of lectures given over the recent years in Mas-
ter's courses in probability. It provides a short, self-contained introduction
to the ergodic theory of Markov chains in metric spaces.

Although primarily intended for graduate and postgraduate students, cer-
tain chapters (e.g. one and two) can be taught at the undergraduate level.
Others (e.g. four and �ve) can be used as complements to courses in measure
or ergodic theory. Basic knowledge in probability, measure theory, and calcu-
lus is recommended. A certain familiarity with discrete-time martingales is
also useful, but the few results from martingale theory used in this book are
all recalled in the appendix. Each chapter contains several exercises ranging
from simple applications of the theory to more advanced developments and
examples.

Whether in physics, engineering, biology, ecology, economics or elsewhere,
Markov chains are frequently used to describe the random evolution of com-
plex systems. The understanding and analysis of these systems requires, �rst
of all, a good command of the mathematical techniques that allow to explain
the long-term behavior of a general Markov chain living on a (reasonable)
metric space. Presenting these techniques is, brie�y put, our main objective.
Questions that are central to this book and that will be recurrently visited
are: under which conditions does such a chain have an invariant probability
measure? If such a measure exists, is it unique? Does the empirical occupa-
tion measure of the chain converge? Does the law of the chain converge, and
if so, in which sense and at which rate?

There are a variety of tools to address these questions. Some rely on
purely measure-theoretic concepts that are natural generalizations of the ones
developed for countable chains (i.e. chains living on countable state spaces).
This includes notions of irreducibility, recurrence (in the sense of Harris),
petite and small sets, etc. Other tools assume topological properties of the
chain such as the strong Feller or asymptotically strong Feller property (in
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the sense of Hairer and Mattingly). However, when dealing with a speci�c
model, measure-theoretic conditions - such as irreducibility - might be dif-
�cult to verify, and strong topological properties - such as the strong Feller
condition - are seldom satis�ed. A powerful approach is then to combine
much weaker topological conditions - such as the (weak) Feller condition -
with controllability properties of the system to prove that certain measure-
theoretic conditions (e.g. irreducibility, existence of petite or small sets) are
satis�ed. This approach is largely developed here and is a key feature of this
book.

The book is organized in eight chapters and a short appendix. Chapter 1
brie�y de�nes Markov chains and kernels and gives their very �rst properties,
the Markov and strong Markov properties. The end of the chapter gives a
concise introduction to Markov chains in continuous time, also called Markov
processes, as they appear in many examples throughout the book.

Chapter 2 is a self-contained mini course on countable Markov chains.
Classical notions of recurrence (positive and null) and transience are intro-
duced. These are powerful notions, but when students meet them for the
�rst time and have to verify that a speci�c chain is either recurrent or tran-
sient, they are often disoriented. Thus, we have chosen to spend some time
here to show how theses properties can be veri�ed "in practice" with the help
of suitable Lyapunov functions. We also explain how Lyapunov functions can
be used to provide estimates on the moments (polynomial and exponential)
of hitting times for a point or a �nite set.

Certainly one of the most important results in the theory of countable
chains is the ergodic theorem, which asserts that - for positive recurrent ape-
riodic chains - the law of the chain converges to a unique distribution. The
�nal three sections of Chapter 2 are organized around this result. We �rst
prove it quickly - by standard coupling - without any estimate on the rate
of convergence. Then, the Lyapunov method is applied to investigate the
behavior of renewal processes and provide short proofs of coupling theorems
for these processes. Finally, relying on these coupling results, we revisit the
ergodic theorem, this time with some convergence rates.

On uncountable state spaces, the simplest (and also the most natural) ex-
amples of Markov chains are given by random dynamical systems (also called
random iterative systems). These are systems such that the state variable at
time n+1 is a deterministic function of the state variable at time n and a "ran-
dom" input sampled from a sequence of i.i.d. random variables. Chapter 3 is
devoted to this type of chains and explains how any given "abstract" Markov
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chain can be represented by a random dynamical system. Some interesting
examples (Bernoulli convolutions, Propp-Wilson algorithm) are presented in
exercises.

Chapter 4 starts with a detailed section on weak convergence, tightness
and Prohorov's theorem. Then, invariant probability measures are de�ned and
it is shown that, for a Feller chain, weak limit points for the family of empiri-
cal occupation measures are almost surely invariant probability measures. We
discuss some practical tightness criteria (for the empirical occupation mea-
sures) based on Lyapunov functions. At this stage of the book, the reader
understands that, under a reasonable control of the chain at in�nity (obtained
for instance by a Lyapunov function), uniqueness of the invariant probability
measure equates stability: the empirical occupation measures converge almost
surely to some (unique) distribution, regardless of the initial distribution. So
we found it was a good place to discuss simple examples of uniquely ergodic
chains (i.e. chains having a unique invariant probability measure). This is
done in the third section of Chapter 4, where we analyze random dynamical
systems obtained by random composition of contractions (or mappings that
contract on average). The penultimate section of the chapter is devoted to er-
godic theorems. We �rst prove several classical results (Poincaré recurrence
theorem, Birkho� ergodic theorem, and the ergodic decomposition theorem)
and then show how they can be applied to Markov chains. Finally, we discuss
invariant measures of continuous-time processes and explain how their prop-
erties (existence, ergodicity, uniqueness, ergodic decomposition, etc.) can be
studied using discrete-time theory.

Chapter 5 is devoted to various notions of irreducibility which ensure
unique ergodicity. We start with the measure-theoretic notion of irreducibility
(also called ψ irreducibility) and then move on to more topological conditions.
The accessible set of a Feller chain is introduced and its relations with the
support of invariant probability measures are investigated. We then consider
strong Feller chains and prove that for such chains ergodic probability mea-
sures have disjoint support. We also prove the Hairer-Mattingly theorem,
which says that the same property holds under the weaker assumption that
the chain is asymptotically strong Feller. These results have the useful conse-
quence that, on a connected set, if there is an invariant probability measure
having full support, the chain is uniquely ergodic.

We then discuss in Chapter 6 the notions of petite sets, small sets and
(weak) Doeblin points and show that the existence of an accessible weak Doe-
blin point implies irreducibility for (weak) Feller chains. This latter result is
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then applied to a variety of examples both in discrete time (random dynamical
systems, random dynamical systems obtained by random switching between
deterministic �ows) and in continuous time (piecewise deterministic Markov
processes, stochastic di�erential equations). This gives us the opportunity
to show how the accessibility condition is naturally expressed as a control
problem and how the Doeblin properties are naturally related to Hörman-
der type conditions (for random switching models, piecewise deterministic
Markov processes and SDEs).

Chapter 7 introduces Harris recurrence. For uniquely ergodic chains, Har-
ris recurrence equates to positive recurrence, meaning that for every bounded
Borel (and not merely for every continuous) function, the Birkho� averages
of the function converge almost surely. We prove the important result that
Harris recurrence (respectively positive recurrence) is implied by the existence
of a recurrent petite set (respectively a petite set whose �rst return time is
bounded in L1). We also discuss simple useful criteria (relying on Lyapunov
functions) ensuring that a set is recurrent and provide moment estimates on
the return times.

Chapter 8 revolves around the celebrated Harris ergodic theorem. After
revisiting the notions of total variation distance and coupling for two prob-
ability measures, we state a simple version of the Harris ergodic theorem
where the entire state space is a petite set. Under this strong hypothesis, one
has exponential convergence in total variation distance to the unique invari-
ant probability measure. The same conclusion holds under the existence of
a Lyapunov function that forces the Markov chain to enter a certain small
set - a condition that is better adapted to noncompact state spaces, which
are usually not petite. We give two di�erent proofs for this latter version
of Harris's ergodic theorem: �rst the recent proof by Hairer and Mattingly
based on the ingenious construction of a semi-norm for which the Markov
operator is a contraction. And second, a more classical proof using coupling
arguments and ideas from renewal theory. More precisely, under uniform esti-
mates on polynomial (respectively exponential) moments for the return times
to an aperiodic and recurrent small set, we obtain polynomial (respectively
exponential) convergence in total variation distance to the unique invariant
probability measure. Finally, we present a condition, also due to Hairer and
Mattingly, that yields exponential convergence to the unique invariant prob-
ability measure in a certain Wasserstein distance.

The appendix recalls the monotone class theorem and the few results from
discrete time martingales that are used in the book.
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Chapter 1

Markov Chains

The general setting is the following. Throughout all this book, we let M
denote a separable (there exists a countable dense subset) metric space with
metric d (e.g., R, Rn) equipped with its Borel σ-�eld B(M). We let B(M)
(respectively Cb(M)) denote the set of real-valued bounded measurable (re-
spectively bounded continuous) functions on M equipped with the norm

‖f‖∞ := sup
x∈M

|f(x)|. (1.1)

If µ is a (non-negative) measure on M and f ∈ L1(µ) (or f ≥ 0 measurable),
we let

µf :=

∫
M

f(x)µ(dx)

denote the integral of f with respect to µ.

1.1 Markov kernels and chains

1.1.1 Markov kernel

A Markov kernel on M is a family of measures

P = {P (x, ·)}x∈M

such that

(i) For all x ∈M, P (x, ·) : B(M) → [0, 1] is a probability measure;

(ii) For all G ∈ B(M), the mapping x ∈M 7→ P (x,G) ∈ R is measurable.

13
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The Markov kernel P acts on functions g ∈ B(M) and measures (respectively
probability measures) according to the formulae:

Pg(x) :=

∫
M

P (x, dy)g(y), (1.2)

µP (G) :=

∫
M

µ(dx)P (x,G). (1.3)

Remark 1.1 For all g ∈ B(M), we have Pg ∈ B(M) and ‖Pg‖∞ ≤ ‖g‖∞.
Boundedness is immediate and measurability easily follows from the condition
(ii) de�ning a Markov kernel (use for example the monotone class theorem
from the appendix).

Remark 1.2 The term Pg(x) can also be de�ned by (1.2) for measurable
functions g :M → R that are nonnegative, but not necessarily bounded. For
such g, Pg(x) is an element of [0,∞]. This will play a role in the study of
Lyapunov functions starting in Section 2.1.3.

We let P n denote the operator recursively de�ned by P 0g := g and
P n+1g := P (P ng) for n ∈ N. Or, equivalently,

P 0(x, ·) := δx and P n+1(x,G) :=

∫
M

P n(x, dy)P (y,G)

for all n ∈ N and for all G ∈ B(M). Here and throughout these notes, N
is the set of nonnegative integers (including 0). The set of positive integers
(excluding 0) will be denoted by N∗.

Example 1.3 (countable space) SupposeM is countable. We can turnM
into a separable (and complete) metric space by endowing it with the discrete
metric d(x, y) = 1x ̸=y. The corresponding Borel σ-�eld is the collection of all
subsets ofM . A Markov transition matrix onM is a map P :M×M → [0, 1]
such that ∑

y∈M

P (x, y) = 1

for all x ∈M. This gives rise to a Markov kernel Q de�ned by

Q(x,G) :=
∑
y∈G

P (x, y)

for all G ⊂M. Since there is a one-to-one correspondence between transition
matrices and kernels onM , we shall identify P with Q and refer to it at times
as a transition matrix and at times as a kernel.
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1.1.2 Markov chain

Let (Ω,F ,P) be a probability space. A �ltration F = (Fn)n≥0 is an increasing
sequence of σ-�elds: Fn ⊂ Fn+1 ⊂ F for all n ∈ N. The data (Ω,F ,F,P) is
called a �ltered probability space. An M−valued adapted stochastic process
on (Ω,F ,F,P) is a family (Xn)n≥0 of random variables de�ned on (Ω,F ,P),
taking values in M and such that Xn is Fn−measurable for all n ∈ N.

Given a �ltered probability space (Ω,F ,F,P) and a Markov kernel P on
M, a Markov chain with kernel P with respect to F is an M−valued adapted
stochastic process (Xn) on (Ω,F ,F,P) such that

P(Xn+1 ∈ G|Fn) = P (Xn, G)

for all n ∈ N and for all G ∈ B(M). Equivalently,

E(g(Xn+1)|Fn) = Pg(Xn)

for all n ∈ N and for all g ∈ B(M) (or all functions g : M → R that are
measurable and nonnegative). Here, E(·|Fn) denotes conditional expectation
with respect to Fn, and P(Xn+1 ∈ G|Fn) := E(1Xn+1∈G|Fn). In the appendix,
we recall the de�nition of conditional expectation and list some of its basic
properties, which will be used without further comment throughout the text.

Remark 1.4 Let (Xn) be a Markov chain with kernel P with respect to
F. Then (Xn) is always a Markov chain with kernel P with respect to FX ,
where FX = {FX

n }n≥0 and FX
n = σ(X0, . . . , Xn) is the σ-�eld generated by

X0, . . . , Xn. The latter property is equivalent to

E(g(Xn+1)h0(X0)...hn(Xn)) = E(Pg(Xn)h0(X0)...hn(Xn))

for all n ∈ N, h0, . . . , hn ∈ B(M), and g ∈ B(M).

In view of this remark, when we say that (Xn) is a Markov chain with kernel
P , we implicitly mean that it is a Markov chain with respect to FX .

Given a Markov kernel P and a probability measure ν onM , there always
exists a Markov chain (Xn) with kernel P and such that X0 has law ν. As
outlined in Remark 1.7, this follows from the Ionescu-Tulcea theorem.

Proposition 1.5 (Chapman-Kolmogorov Equation) Let (Xn) be a Markov
chain with kernel P. Let µn denote the law of Xn. Then, for every n ∈ N,

µn+1 = µnP = µ0P
n+1.
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Proof For every g ∈ B(M),

µn+1g = E(g(Xn+1)) = E(E(g(Xn+1)|Fn)) = E(Pg(Xn)) = µnPg.

QED

Example 1.6 (countable space) Let (Xn) be a Markov chain on a count-
able state space M , with transition matrix P and initial distribution µ0. The
law µn of the random variable Xn then satis�es

µn({x}) =
∑
y∈M

µ0({y})P n(y, x), ∀x ∈M,

where P n is the nth power of the matrix P . In matrix-vector notation, this
identity can be written as

µn = µ0P
n,

where µn and µ0 are row vectors. In particular, if µ0 is the Dirac measure at
a point y ∈ M , then the law of Xn assigns mass P n(y, x) to every singleton
{x}. That is

P(Xn = x|X0 = y) = P n(y, x).

1.1.3 Feller and strong Feller chains

The Markov kernel P (or the associated Markov chain (Xn)) is said to be
Feller if it takes bounded continuous functions into bounded continuous func-
tions. It is said to be strong Feller if it takes bounded Borel functions into
bounded continuous functions. If M is countable and equipped with the dis-
crete metric, then every function on M is continuous. In particular, every
Markov kernel on a countable set is strong Feller.

1.2 Markov and strong Markov properties

1.2.1 The law of a Markov chain

Let X = (Xn)n≥0 be a Markov chain with kernel P. Then X can be seen as
a random variable on (Ω,F ,P) taking values in the space of trajectories

MN := {x = (xi)i∈N : xi ∈M}
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equipped with the product σ-�eld B(M)⊗N (see Exercise 1.8).
If X0 has law ν, we let Pν denote the law of X (i.e., the image measure

of P by X) and Eν the corresponding expectation. If ν is the Dirac measure
at x, we use the standard notation Px := Pδx and Ex := Eδx . In subsequent
chapters, in a slight abuse of notation, we will usually write Eν(f(X)) instead
of Eν(f) if f is a measurable map from MN to R.

Given k ∈ N and h0, . . . , hk ∈ B(M), we let h0 ⊗ . . .⊗ hk denote the map
on MN de�ned as

h0 ⊗ . . .⊗ hk(x) := h0(x0) . . . hk(xk).

For further reference such a map will be called a product map of length k+1.
Then

E(h0(X0) . . . hk(Xk)) = Eν(h0 ⊗ . . .⊗ hk)

= Eν(h0 ⊗ . . .⊗ hk−1Phk) = ν[h0P [h1P [. . . hk−1Phk] . . .]]. (1.4)

The �rst equality is by de�nition of Eν . The last one follows from the second
one by induction on k. For the second equality, write

E(h0(X0) . . . hk(Xk)) = E(E(h0(X0) . . . hk(Xk)|Fk−1))

= E(h0(X0) . . . hk−1(Xk−1)Phk(Xk−1)).

In particular, for all Borel sets A0, . . . , Ak ⊂M ,

P(X0 ∈ A0, . . . , Xk ∈ Ak) = Pν{x ∈MN : (x0, . . . , xk) ∈ A0 × . . .× Ak}

=

∫
A0

ν(dx0)

∫
A1

P (x0, dx1) . . .

∫
Ak

P (xk−1, dxk).

Remark 1.7 (The canonical chain) The formula above can be used to
show that for every Markov kernel P and for every probability measure ν
on M , there exists a Markov chain (Xn) with kernel P and X0 distributed
according to ν.

Indeed, let Ω = MN, and let F = B(M)⊗N. For n ∈ N, set Xn(ω) := ωn

and, as in Remark 1.4, let FX
n = σ(X0, . . . , Xn). The pair (Ω,F) is called the

canonical space, (Xn) the canonical process and FX = (FX
n )n≥0 the natural

�ltration with respect to (Xn).
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Now, ν is a probability measure on (M,B(M)), and for every n ∈ N and
(ω0, . . . , ωn) ∈Mn+1,

P(ω0, . . . , ωn; ·) := P (ωn, ·)

de�nes a probability measure on (M,B(M)). Moreover,

(ω0, . . . , ωn) 7→ P(ω0, . . . , ωn;A)

is B(Mn+1)-measurable for every A ∈ B(M). By the Ionescu-Tulcea theorem
(see, e.g., Theorem 2 in Chapter II.9 of [63]), there exists a unique probability
measure Pν on (Ω,F) such that for every n ∈ N and A0, . . . , An ∈ B(M),

Pν(ω0 ∈ A0, . . . , ωn ∈ An)

=

∫
A0

ν(dω0)

∫
A1

P(ω0; dω1) . . .

∫
An

P(ω0, . . . , ωn−1; dωn)

=

∫
A0

ν(dω0)

∫
A1

P (ω0, dω1) . . .

∫
An

P (ωn−1, dωn). (1.5)

Using the result from Exercise 1.8, it is not hard to check that the canonical
process (Xn) is a Markov chain on the �ltered probability space (Ω,F ,FX ,Pν),
with initial distribution ν and kernel P . The chain (Xn) is called the canonical
chain with initial distribution ν and kernel P. A probability measure of the
form in (1.5) is called a Markov measure.

Exercise 1.8 Let B(Mn) (respectively B(MN)) denote the Borel σ-�eld over
Mn (respectively MN, endowed with the product topology). Let B(M)⊗n

(respectively B(M)⊗N) denote the product σ-�eld overMn (respectivelyMN).
Show that B(M)⊗n = B(Mn) and B(M)⊗N = B(MN).

Hint: For the inclusion ⊂ one can use the fact that the projection πi :
MN →M,x 7→ xi is continuous, hence measurable. Observe that this doesn't
require the separability of M. For the converse implication, one can �rst
show, using separability, that every open subset of Mn is a countable union
of product sets O1 × . . .×On with Oi open.

1.2.2 The Markov properties

For n ∈ N, we let Θn :MN →MN denote the shift operator de�ned by

Θn(x) := (xn+k)k≥0.

The following proposition known as the Markov property easily follows
from the de�nitions.
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Proposition 1.9 (Markov Property) Let H : MN → R be a nonnegative
or bounded measurable function and X a Markov chain with kernel P. Then

E(H(Θn ◦X)|Fn) = EXn(H).

Proof Assume without loss of generality that H is bounded. Indeed, if H
is non-negative and unbounded, there is an increasing sequence of bounded
non-negative functions that converges pointwise to H, and one can apply the
monotone convergence theorem. The set of boundedH satisfying the required
property is a vector space, containing the constant functions and closed under
bounded monotone convergence. Therefore, by the monotone class theorem
(given in the appendix) and by Exercise 1.8, it su�ces to check the property
when H = h0 ⊗ . . .⊗ hk is a product map. We proceed by induction on k. If
k = 0, this is immediate. If the property holds for all product maps of length
k + 1, then

E(h0(Xn) . . . hk(Xn+k)hk+1(Xn+k+1)|Fn)

= E(h0(Xn) . . . hk(Xn+k)E(hk+1(Xn+k+1)|Fn+k)|Fn)

= E(h0(Xn) . . . hk(Xn+k)Phk+1(Xn+k)|Fn) = EXn(h0 ⊗ . . .⊗ hkPhk+1).

By (1.4), this last term equals EXn(h0 ⊗ . . .⊗ hk+1). QED

A stopping time on a �ltered probability space (Ω,F ,F,P) is a random
variable T : Ω → N ∪ {∞} such that for all n ∈ N, the event {T = n} =
T−1({n}) lies in Fn. The σ-�eld generated by T , denoted FT , is the σ-�eld
consisting of all events A ∈ F such that

A ∩ {T = n} ∈ Fn, ∀n ∈ N.

Exercise 1.10 (i) Show that FT is indeed a σ-�eld.

(ii) Let (Tn)n∈N be a sequence of stopping times on a �ltered probability
space (Ω,F ,F,P) such that Tn ≤ Tn+1 for every n ∈ N. Show that
An := FTn , n ∈ N, de�nes a �ltration on (Ω,F ,P).

The following proposition generalizes Proposition 1.9.

Proposition 1.11 (Strong Markov Property) Let H : MN → R be a
nonnegative or bounded measurable function, X a Markov chain, and T a
stopping time living on the same �ltered probability space as X. Then

E(H(ΘT ◦X)|FT )1T<∞ = EXT
(H)1T<∞.
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Proof It su�ces to show that for all n ∈ N,

E(H(Θn ◦X)1T=n|FT ) = EXn(H)1T=n.

The right-hand side is FT -measurable, and for all A ∈ FT ,

E(H(Θn ◦X)1T=n1A) = E(EXn(H)1T=n1A)

by the Markov property (because 1T=n1A is Fn-measurable). This proves the
result. QED

1.3 Continuous time: Markov Processes

Although this book is about Markov chains in discrete time, it is useful to
say a few words about Markov chains in continuous time, also called Markov
processes, because they appear in many examples throughout the book. The
de�nitions are modeled on discrete time.

A Markov semigroup on M is a family {Pt}t≥0 of Markov kernels on M
such that

(i) P0(x, ·) = δx;

(ii) For all G ∈ B(M), the mapping (t, x) → Pt(x,G) is measurable;

(iii) For all t, s ≥ 0, Pt+s = Pt ◦ Ps.

Let (Ω,F ,P) be a probability space and let F = (Ft)t≥0 be a continuous-time
�ltration, i.e., a family of σ-�elds such that Fs ⊂ Ft ⊂ F for all 0 ≤ s ≤ t.
An M -valued adapted stochastic process on (Ω,F ,F,P) is a family (Xt)t≥0 of
random variables de�ned on (Ω,F ,P), taking values in M and such that Xt

is Ft-measurable for all t ≥ 0.
A Markov process with semigroup {Pt}t≥0 with respect to F is an adapted

stochastic process on (Ω,F ,F,P) such that for all g ∈ B(M) and t, s ≥ 0,

E(g(Xt+s)|Ft) = (Psg)(Xt).

Exercise 1.12 Suppose M is countable. Let (Yn) be a Markov chain on
M with kernel P. Let U1, U2, . . . be a sequence of independent identically
distributed random variables on (0,∞) having an exponential distribution of
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parameter λ, i.e., P(Ui > t) = e−λt. Set T0 = 0 and Tn = U1 + . . . + Un for
n ≥ 1. Let (Xt)t≥0 be the continuous-time process de�ned by Xt = Yn for
Tn ≤ t < Tn+1. Show that (Xt) is a Markov process with semigroup

Pt = e−λteλtP := e−λt
∑
k≥0

(λt)kP k

k!
.

1.3.1 Feller Processes

We use the following terminology. We say that the Markov semigroup {Pt}t≥0

is weak Feller provided that

(i) Pt(Cb(M)) ⊂ Cb(M) for all t ≥ 0;

(ii) For all f ∈ Cb(M) and x ∈M , limt↓0 Ptf(x) = f(x).

This de�nition implies that Pt is Feller for all t ≥ 0. Observe however that it
is weaker than the usual de�nition of a Feller semigroup (see, e.g., [26], [59]
or [45]), which assumes that

(i) M is a locally compact metric space;

(ii) {Pt}t≥0 is a strongly continuous semigroup on C0(M) (the set of contin-
uous functions vanishing at in�nity), meaning that

(a) Pt(C0(M)) ⊂ C0(M);

(b) For all f ∈ C0(M), limt↓0 ‖Ptf − f‖∞ = 0.

Remark 1.13 It is proved in [59, Proposition 2.4] that [(a), (b)] above is
equivalent to [(a), (b)′] where (b)′ is given by the (seemingly) weaker condition
that

lim
t↓0

Ptf(x) = f(x)

for all f ∈ C0(M) and x ∈ M. As shown by the following exercise, this
equivalence does not hold if C0(M) is replaced by Cb(M).

Exercise 1.14 Let M = (0,∞), and let Pt be de�ned on B(M) as

Ptf(x) = f

(
xet

1 + x(et − 1)

)
.

Show that {Pt}t≥0 is a weak Feller Markov semigroup which is not Feller.
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Chapter 2

Countable Markov Chains

This chapter presents the basic theory of countable Markov chains. The as-
sumption that M is countable makes the proofs easier and permits to intro-
duce, in a simple setting, some of the key notions (such as invariant probability
measures, irreducibility, positive recurrence, etc.) that will be revisited in the
subsequent chapters. Furthermore, some of the results given here, in partic-
ular in Section 2.3, will be used later to prove the main results in Chapter
7. We assume here that M is a countable set equipped with the σ-�eld S of
all subsets of M , and (Xn) is a Markov chain on M with Markov kernel (or
matrix) P = P (x, y)x,y∈M . In most of this chapter, we assume without loss
of generality that Ω = MN,F = S⊗N, Xn(ω) = ωn, and Fn = σ(X0, . . . , Xn),
i.e. (Xn) is the canonical chain introduced in Remark 1.7.

2.1 Recurrence and transience

For x ∈M, we let

τx := inf{k ≥ 1 : Xk = x}

denote the �rst time ≥ 1 at which the chain hits x,

τ (n)x := inf{k > τ (n−1)
x : Xk = x},

the nth time of hitting x (with τ
(0)
x := 0), and

Nx :=
∑
k≥1

1{Xk=x} ∈ N ∪ {∞}

23
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the number of visits of x at or after time 1. We adopt the convention that
inf ∅ = +∞. A point x is said to be recurrent if

Px(τx <∞) = 1

and transient otherwise.
Given x, y ∈ M and k ∈ N∗, we say that x leads to y in k steps, written

x ;k y, if P k(x, y) > 0. We say that x leads to y, written x ; y, if x ;k y
for some k ∈ N∗. The chain is called irreducible if x; y for all x, y ∈M. To
any Markov chain on a countable set M with transition matrix P , one can
associate a weighted directed graph as follows: Let M be the set of vertices.
For any x, y ∈ M , not necessarily distinct, there is a directed edge of weight
P (x, y) going from x to y if and only if P (x, y) > 0. The chain is then
irreducible if and only if the associated directed graph is connected, i.e. for
any x, y ∈ M there is a path from vertex x to vertex y that moves along
directed edges. Note that a general notion of irreducibility will be de�ned
in Chapter 5 and that every countable irreducible chain (as de�ned here)
satis�es this general de�nition.

Exercise 2.1 Let (Xn)n≥0 be a Markov chain on Z \ {0} whose transition
matrix P is given by

P (i, i+ 1) = P (i,−i) = 1/2, i > 1

P (−1, 1) = P (i, i+ 1) = 1, i 6 −2.

Draw the weighted directed graph associated with (Xn) and determine whether
the chain is irreducible.

Proposition 2.2 (i) If x is transient, then Nx <∞ a.s. and for all k ≥ 0,

Px(Nx = k) = ak(1− a),

where a = Px(τx <∞). In particular,

Ex(Nx) =
∑
k≥1

P k(x, x) =
a

1− a
<∞.

(ii) If x is recurrent, then Px(Nx = ∞) = 1,

Ex(Nx) =
∑
k≥1

P k(x, x) = ∞,
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and

lim
n→∞

1

n

n∑
k=1

1{Xk=x} =
1

Ex(τx)

Px−a.s.

(iii) If the chain is irreducible, then either all points are recurrent or all
points are transient. In the recurrent case, for all x, y ∈M,

Px(τy <∞) = 1 and Ex(Ny) = ∞.

In the transient case, for all x, y ∈M,

Ex(Ny) <∞.

Proof (i). Using the strong Markov property,

Px(Nx = k) = Px(τ
(k)
x <∞; τ (k+1)

x = ∞) = (1− a)Px(τ
(k)
x <∞)

and
Px(τ

(k)
x <∞) = aPx(τ

(k−1)
x <∞) = . . . = ak.

(ii). If x is recurrent, then, using again the strong Markov property,

Px(τ
(n)
x <∞) = Px(τ

(n−1)
x <∞) = . . . = 1.

Hence Px(Nx = ∞) = 1 and thus Ex(Nx) = ∞.

For all n ≥ 1, there exists k(n) ≥ 0 such that τ
(k(n))
x ≤ n < τ

(k(n)+1)
x .

Furthermore, the random variables (τ
(n+1)
x − τ

(n)
x )n≥0 are, under Px, i.i.d.

Thus, by the strong law of large numbers for nonnegative i.i.d. random
variables,

lim
n→∞

1

n

n∑
k=1

1{Xk=x} = lim
n→∞

k(n)

τ
(k(n))
x

=
1

Ex(τx)
.

(iii). If the chain is irreducible, for all x, y ∈ M there exist i, j ≥ 1 and
ε > 0 such that P i(x, y) ≥ ε, P j(y, x) ≥ ε. Thus P k+i+j(x, x) ≥ ε2P k(y, y)
for all k ≥ 1. Therefore, we have the implication∑

k≥1

P k(y, y) = ∞ ⇒
∑
k≥1

P k(x, x) = ∞,

proving that x is recurrent whenever y is recurrent and y is transient whenever
x is transient.
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Suppose the chain is recurrent. Fix x, y ∈ M such that x 6= y (for x = y
the statement holds trivially true). By irreducibility, recurrence, and the
strong Markov property,

ε := Px(∃k < τx : Xk = y) > 0.

Thus, again using the strong Markov property,

Px(τy > τ (n+1)
x ) =Ex(Px(τy > τ (n+1)

x |F
τ
(n)
x

))

=Ex((1− Px(∃k < τx : Xk = y))1
τy>τ

(n)
x

)

=(1− ε)Px(τy > τ (n)x ) = . . . = (1− ε)n+1.

Thus Px(τy > τ
(n+1)
x ) → 0 as n→ ∞, showing that Px(τy <∞) = 1. The two

statements about Ex(Ny) follow from the identity

Ex(Ny) = Px(τy <∞)(1 + Ey(Ny)),

which itself follows from the strong Markov property, and is valid for both
recurrent and transient chains. QED

Remark 2.3 Transience does not imply that Px(τy < ∞) < 1 for all x, y.
Consider the chain on N whose transition matrix is given by

P (x, x+1) = p ∈ (1
2
, 1), P (x+1, x) = 1−p for all x ∈ N and P (0, 0) = 1−p.

By the strong law of large numbers, Px(τy < ∞) = 1 for all x < y and the
chain is transient.

Example 2.4 (Pólya walks) The Pólya walk on Zd is the Markov chain
with transition matrix

P (x, y) =
1

2d
1{x∼y},

where x ∼ y ⇔
∑d

i=1 |xi − yi| = 1. In 1921, Pólya proved that the associated
chain is recurrent for d ≤ 2 and transient for d ≥ 3.

The proof for d = 1 goes as follows. Clearly

P 2k+1(0, 0) = 0 and P 2k(0, 0) =
1

22k

(
2k
k

)
.
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Stirling's formula ( ln(n!) = n(ln(n) − 1) + 1
2
(ln(n) + ln(2π)) + O( 1

n
) ) then

yields

P 2k(0, 0) ∼ 1√
2πk

.

This proves that
∑

k P
k(0, 0) = ∞, hence the recurrence.

For d = 2, recurrence can be deduced from Exercise 2.5 below. The proof
of transience for d ≥ 3 is slightly more involved and can be found in classical
textbooks (see, e.g., [7] or Woess's book [70] for a more advanced textbook
on Markov chains on graphs and groups).

Exercise 2.5 [Pólya walks] Let Xn = (X1
n, . . . , X

d
n), where the (X i

n), i =
1, . . . , d are independent Pólya walks on Z. Show that (Xn) is recurrent if
and only if d ≤ 2. Deduce from this result the recurrence of the Pólya walk
on Z2.

Exercise 2.6 [Generating functions] Let 0 < p < 1 and q = 1− p. Consider
the biased walk on Z whose transition matrix is given by P (x, x + 1) =
p, P (x, x− 1) = q and P (x, y) = 0 for |x− y| 6= 1.

For all 0 ≤ t ≤ 1 and y ∈ Z, set

Uy(t) = E0(t
τy1{τy<∞})

and

Gy(t) = E0

(∑
k≥0

1Xk=yt
k

)
=

∑
k

P k(0, y)tk.

(i) Prove the following identities:

U0(t) = t(pU−1(t)+qU1(t)), U1(t) = t(p+qU−2(t)), U−1(t) = t(q+pU−2(t)),

U2(t) = U2
1 (t), U−2(t) = U2

−1(t),

and G0(t) =
1

1−U0(t)
.

(ii) Compute U0(t), G0(t) and show that

Ex(Nx) =
1

|1− 2p|
, Ex(τx|τx <∞) =

(
1− 1

2max(p, q)

)−1

.

Comment on these results.
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2.1.1 Positive recurrence

A recurrent point x is called positive recurrent if Ex(τx) <∞ and null recur-
rent otherwise.

A probability measure π on M is called invariant for a transition matrix
P if πP = P, or equivalently,

π(x) =
∑
y∈M

π(y)P (y, x)

for all x ∈M. Here, we write π(x) instead of π({x}) to highlight the link with
matrix-vector notation. Precisely, if M = {1, . . . , N} or M = N∗, and if x ∈
M , then π(x) is the xth entry of the row vector π = (π({1}), π({2}), . . . , π({N}))
or π = (π({1}), π({2}), . . .). If π is invariant for P and ifX0 ∼ π, thenXn ∼ π
for all n ≥ 1 by Proposition 1.5.

The next result shows that for an irreducible recurrent kernel, either all
points are positive recurrent or all points are null recurrent. Moreover, posi-
tive recurrence is equivalent to the existence of an invariant probability mea-
sure.

Theorem 2.7 Suppose P is irreducible. Then the following assertions are
equivalent:

(a) There exists an invariant probability measure π for P ;

(b) There exists a positive recurrent point.

Under these equivalent conditions:

(i) All the points are positive recurrent;

(ii) For every initial probability distribution ν on M, and x ∈M,

lim
n→∞

1

n

n∑
k=1

1{Xk=x} = π(x) =
1

Ex(τx)

Pν−a.s. (in particular π is unique);

(iii) For all x ∈M and f :M → R bounded or f :M → [0,∞],

πf =
Ex(

∑τx−1
k=0 f(Xk))

Ex(τx)
;
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(iv) For all x, y ∈M , Ey(τx) <∞.

Proof For all x ∈ M,
∑n

k=1 1{Xk=x} = 1{τx<∞}
∑n

k=τx
1{Xk=x}. Then, using

irreducibility and Proposition 2.2 (ii), one has for every probability measure
ν on M

lim
n→∞

∑n
k=1 1{Xk=x}

n
=

1{τx<∞}

Ex(τx)
(2.1)

Pν−a.s., with the convention that the right-hand term is zero if x is transient.
Suppose now that π is an invariant probability measure. By irreducibility and
the relation π(x) =

∑
y π(y)P (y, x), one sees that π(x) > 0 for all x ∈ M.

Taking Eπ-expectation on both sides of (2.1) and using dominated conver-
gence gives

0 < π(x) =
Pπ(τx <∞)

Ex(τx)
.

This implies Ex(τx) < ∞ so that x is positive recurrent. By Proposition 2.2
(iii), recurrence implies Pπ(τx < ∞) = 1. Thus π(x) = 1

Ex(τx)
. Suppose now

that there exists a positive recurrent point x. Let π be the probability measure
de�ned as in assertion (iii) of Theorem 2.7. We claim that π is an invariant
probability measure (compare with Exercise 4.24). For all f ∈ B(M),

Ex(τx) πf = Ex

(∑
k≥0

1{k<τx}f(Xk)

)
= Ex

(∑
k≥0

1{k<τx}f(Xk+1)

)

because f(Xτx) = f(x). Thus, using the Markov property and Fubini's theo-
rem,

Ex(τx) πf =
∑
k≥0

Ex(E(f(Xk+1)1{k<τx}|Fk))

=Ex

(∑
k≥0

1{k<τx}Pf(Xk)

)
= Ex(τx)π(Pf).

This shows that πPf = πf, hence πP = π.
It remains to prove assertion (iv). Let x 6= y ∈ M. By irreducibility one

can choose k ≥ 1 such that P k(x, y) > 0. Let τk,x := inf{n ≥ k : Xn = x}.
Then τk,x ≤ τ

(k)
x and, consequently,

k + Ex(EXk
(τx)1{Xk ̸=x}) = Ex(τk,x) ≤ Ex(τ

(k)
x ) =

k

π(x)
.
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Here the last equality follows from assertion (ii) and the strong Markov prop-
erty. By the Markov property,

Ex(τk,x) = k + Ex(EXk
(τx1{Xk ̸=x})) ≥ k + P k(x, y)Ey(τx).

This shows that

Ey(τx) ≤
k(1− π(x))

π(x)P k(x, y)
<∞.

QED

An irreducible kernel (or chain) satisfying one of the equivalent conditions
(a) or (b) of Theorem 2.7 is called a positive recurrent kernel (chain).

Corollary 2.8 If M is �nite and P is irreducible, then P is positive recur-
rent.

Proof The set P(M) of probability measures on M is nothing but the unit
simplex in Rd with d the cardinality of M. By Brouwer's �xed point theo-
rem (see, e.g., Corollary XVI.2.2 in [23]), the map P(M) 3 π 7→ πP ∈ P(M)
has a �xed point, which is then an invariant probability measure for P. QED

Remark 2.9 The proof of Corollary 2.8 shows that every Markov chain on
a �nite set, possibly non-irreducible, always admits (at least) one invariant
probability measure.

Exercise 2.10 Give a direct proof of this latter fact. Hint: Consider the
sequence (µn) de�ned by µn = 1

n

∑n
k=1 µP

k, where µ is some probability.

Exercise 2.11 [Pólya walks, continued] Show that the Pólya walks on Z
and Z2 are null recurrent. Hint: Show that they do not have any invariant
probability measure.

Exercise 2.12 [Re�ected walks] Let 0 < p < 1, q = 1 − p and 0 ≤ r < 1.
Consider the chain on N whose transition matrix is given by P (x, x + 1) =
p, P (x, x − 1) = q if x ≥ 1, P (0, 0) = r and P (0, 1) = 1 − r. With the
notation of Exercise 2.6 compute U0(t) and show that the chain is transient
for p > 1/2, null recurrent for p = 1/2 and positive recurrent for p < 1/2.
Compute E0(τ0|τ0 <∞).
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Exercise 2.13 [Harmonic functions] A function h : M → R is called har-
monic for the Markov kernel P if Ph = h. Suppose P is irreducible and
recurrent. Show that every nonnegative or bounded harmonic function is
constant. (Hint: Show that h(Xn) is a nonnegative (or bounded) martin-
gale, hence convergent by Theorem A.6.) Give an example of a nonconstant
unbounded harmonic function for the Pólya walk on Z.

Exercise 2.14 [Reversibility] Let π be a probability measure onM.AMarkov
kernel P is said to be reversible with respect to π if π(x)P (x, y) = π(y)P (y, x)
for all x, y ∈M.

(i) Show that if P is reversible with respect to π, then π is invariant for P .

(ii) Show that if P is reversible with respect to π and if π(x) > 0 for all
x ∈M , then Pf(x) :=

∑
y∈M P (x, y)f(y) de�nes a self-adjoint operator

on the Hilbert space l2(π) := {f : M → R :
∑

x∈M π(x)|f(x)|2 < ∞}
with inner product 〈f, g〉 :=

∑
x∈M π(x)f(x)g(x), i.e., 〈Pf, g〉 = 〈f, Pg〉

for all f, g ∈ l2(π).

(iii) Give an example of a Markov kernel P and a probability measure π such
that π is invariant for P , but P is not reversible with respect to π.

An interesting consequence of Theorem 2.7 (iii) is the next proposition,
which relates moments of the �rst return time to x to π-mean moments of
the hitting time of x.

Proposition 2.15 Suppose P is positive recurrent with invariant probability
measure π. Then for every nonnegative function ψ : N → R+ and every
x ∈M,

Eπ(ψ(τx)) = π(x)Ex

( τx∑
k=1

ψ(k)

)
.

In particular, for every λ > 0,

Eπ(e
λτx) = π(x)

eλ

eλ − 1
[Ex(e

λτx)− 1];

And for every p ≥ 0,

Eπ(τ
p
x) ≤ π(x)

Ex[(τx + 1)p+1]− 1

p+ 1
.
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Proof Fix ψ : N → R+ and x ∈ M . By Theorem 2.7 (iii) applied to
f(y) := Ey(ψ(τx)), one has

Eπ(ψ(τx)) = π(x)Ex

(∑
k≥0

1τx>kEXk
(ψ(τx))

)
= π(x)

∑
k≥0

Ex(1τx>kEXk
(ψ(τx))).

But, by the Markov property,

Ex(1τx>kEXk
(ψ(τx))) = Ex(Ex(ψ(τx − k)1τx>k|Fk)) = Ex(ψ(τx − k)1τx>k).

This proves the result. QED

2.1.2 Null recurrence

Although an irreducible null recurrent chain has no invariant probability mea-
sure (for otherwise it would be positive recurrent) it always has an unbounded
invariant measure.

Theorem 2.16 Suppose P is irreducible and null recurrent. Given x ∈ M,
let π be the measure on M de�ned by

πf = Ex

(τx−1∑
k=0

f(Xk)

)
for f : M → R nonnegative. Then π is σ-�nite (π(y) < ∞ for all y ∈ M),
positive (π(y) > 0 for all y ∈ M), unbounded (π(M) = ∞), and invariant
under P (π = πP ). Every other σ-�nite invariant measure is proportional to
π.

Proof For y 6= x, set Ny<x =
∑τx−1

k=0 1{Xk=y}. By the strong Markov prop-
erty, for all k ≥ 0,

Px(Ny<x ≥ k + 1) = Px(τ
(k+1)
y < τx) = Px(τ

(k)
y < τx; τ

(k+1)
y < τx)

= Px(τ
(k)
y < τx)Py(τy < τx)) = ak+1

where a = Py(τy < τx) < 1 (by irreducibility). This proves that

0 < π(y) =
a

1− a
<∞.
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Invariance of π is proved exactly as in Theorem 2.7 (iii). Clearly π(M) = ∞
for otherwise π

π(M)
would be an invariant probability, in contradiction with

the assumption that the chain is null recurrent.
It remains to show that every other σ-�nite invariant measure is pro-

portional to µ. Let Q(x, y) = µ(y)P (y,x)
µ(x)

. Then Q is a Markov kernel and

Qn(x, y) = µ(y)Pn(y,x)
µ(x)

. It follows that Q is also irreducible and null recurrent
by application of Proposition 2.2. Let now ν be another σ-�nite invariant
measure. Then h(x) = ν(x)

µ(x)
is harmonic for Q, hence constant (see Exercice

2.13). This concludes the proof. QED

2.1.3 Recurrence and Lyapunov functions

By Proposition 2.2, the divergence (respectively convergence) of the series∑
k≥1 P

k(x, x) is a criterion for the recurrence (transience) of the point x,
but such a criterion may be di�cult to verify in practice. We discuss here
other criteria based on Lyapounov functions, a tool that will play a key role
in the next chapters.

Given C ⊂M , we let

τC = τ
(1)
C := inf{n ≥ 1 : Xn ∈ C},

and

τ
(k+1)
C := inf{n > τ

(k)
C : Xn ∈ C}

for all k ≥ 1.We also set τ
(0)
C := 0. The next proposition shows that, whenever

P is irreducible, recurrence (respectively positive recurrence) of the chain is
equivalent to recurrence (positive recurrence) of any �nite subset.

Proposition 2.17 Suppose P is irreducible and let C ⊂ M be a nonempty
�nite set such that for all x ∈ C, Px(τC <∞) = 1 (respectively Ex(τC) <∞).
Then P is recurrent (respectively positive recurrent).

Proof Let x ∈ C. Then, since Py(τC < ∞) = 1 for all y ∈ C, the
strong Markov property implies that (Xn) visits C in�nitely often Px-almost
surely. Since C is �nite, it follows that Px-almost surely, there is y ∈ C such
that Ny = ∞. If P was transient, we would have by Proposition 2.2 that
Px(

⋃
y∈C{Ny = ∞}) = 0, a contradiction. Hence P is recurrent.
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Suppose now that K := maxx∈C Ex(τC) <∞. Let Q be the Markov kernel
on C de�ned by Q(x, y) := Px(XτC = y) for x, y ∈ C. Since C is �nite, Q
admits an invariant probability measure π (see Remark 2.9). Thus, if X0 has
law π, then XτC has also law π. It follows (by a proof similar to the proof of
Theorem 2.7 (iii) or by Exercise 4.24) that the measure µ de�ned by

µf =
Eπ(

∑τC−1
k=0 f(Xk))

Eπ(τC)

is invariant for P. Note here that Eπ(τC) ≤ K < ∞. This proves positive
recurrence. QED

Exercise 2.18 Suppose P is irreducible, C ⊂ M is �nite and for all x ∈
M \C, Px(τC <∞) = 1. Show that P is recurrent. Hint: IfM \C 6= ∅, prove
that for all x ∈ C, Px(τM\C <∞) = 1 and then use Proposition 2.17.

The next result extends and generalizes Proposition 2.17. The second part
contains a classical result originally due to Chung [16]. The proof given here
is di�erent.

Proposition 2.19 Suppose P is irreducible and let C ⊂M be a �nite set.

(i) Assume that for some λ0 > 0 and all x ∈ C, Ex(e
λ0τC ) < ∞. Then, for

all x, y ∈M, there exists λ ∈ (0, λ0] such that

Ex(e
λτy) <∞.

(ii) Let p ≥ 1 and suppose that for all x ∈ C, Ex(τ
p
C) < ∞. Then for all

x, y ∈M ,
Ex(τ

p
y ) <∞.

Proof (i). First assume that M = C. In this case there exists, by ir-
reducibility, some ε > 0 such that for all x, y ∈ M and k := card(M),
Px(τy > k) ≤ 1 − ε. Therefore, by the Markov property and induction on
n ≥ 1,

Px(τy > nk) = Ex(1τy>(n−1)k)PX(n−1)k
(τy > k)) ≤ (1− ε)n.

Thus, for all n ≥ 0,

Px(τy > n) ≤ Px(τy > k[
n

k
]) ≤ (1− ε)

n
k
−1,
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where [n
k
] is the largest integer less than or equal to n

k
. Hence, for α > 0 so

small that ekα(1− ε) < 1,

Ex(e
ατy) ≤

∞∑
n=1

eαnPx(τy ≥ n) <∞.

We now turn to the proof of the �rst statement in full generality. Let

Yn = X
τ
(n)
C
.

Such a de�nition makes sense because, by recurrence, τ
(n)
C <∞ almost surely.

For all y ∈ C, set σy := inf{n ≥ 1 : Yn = y}. For x ∈ C, (Yn) is a C-valued
Markov chain on the probability space (MN,B(MN),Px), with respect to the
�ltration {F

τ
(n)
C

}n, and with Markov kernelQ(a, b) := Pa(XτC = b) introduced

in the proof of Proposition 2.17. Thus, by what precedes,

max
x,y∈C

Ex(e
ασy) <∞ (2.2)

for some α > 0.
By assumption, maxx∈C Ex(e

λ0τC ) ≤ eα0 for some α0 ≥ 0. By Jensen's
inequality, for all t ∈ [0, 1],Ex(e

tλ0τC ) ≤ Ex(e
λ0τC )t ≤ etα0 . Choose λ ∈ (0, λ0

2
]

so small that 2λα0 ≤ λ0α. Then

max
x∈C

Ex(e
2λτC ) ≤ eα.

Set Mn := e(2λτ
(n)
C −nα). The previous inequality combined with the strong

Markov property shows that (Mn) is a supermartingale under Px with respect
to the �ltration {F

τ
(n)
C

}n. Therefore, using Theorem A.4 on optional stopping,

(Mn∧σy) is again a supermartingale, and in particular Ex(Mn∧σy) ≤ Ex(M0) =
1. Together with Hölder's inequality, this yields for all x, y ∈ C

Ex(e
λτ

(n∧σy)

C ) ≤ Ex(Mn∧σy)
1/2Ex(e

α(n∧σy))1/2 ≤ Ex(e
ασy)1/2 <∞.

Thus,

Ex(e
λτy) = Ex(e

λτ
(σy)

C ) <∞
for all x, y ∈ C.

In order to conclude the proof, it su�ces to show that for any �nite set C ′

containing C, maxx∈C′ Ex(e
λ0τC ) < ∞. Then, by what precedes (with C ′ in

place of C), this will imply that maxx,y∈C′ Ex(e
λ′τy) <∞ for some λ′ ∈ (0, λ0].
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We reason like in the proof of Theorem 2.7 (iv). Let C ′ ⊇ C, y ∈ C ′\C. Fix
x ∈ C. Then, for some k ≥ 1, P k(x, y) > 0. Let τk,C = min{n ≥ k : Xn ∈ C}.
One has τk,C ≤ τ

(k)
C . Thus,

eλ0kP k(x, y)Ey(e
λ0τC ) ≤ Ex(e

λ0kEXk
(eλ0(τC)1Xk ̸∈C)) = Ex(e

λ0τk,C1Xk ̸∈C)

≤ Ex(e
λ0τ

(k)
C ) ≤ [max

z∈C
Ez(e

λ0τC )]k <∞.

This concludes the proof of (i).

(ii). Slightly adapting the previous argument, one easily shows that

max
x∈C

Ex(τ
p
C) <∞ =⇒ max

x∈C′
Ex(τ

p
C) <∞

for any �nite set C ′ containing C. It then su�ces to show that, for all x, y ∈ C,
Ex(τ

p
y ) <∞.

By the assumption and the strong Markov property, there exists K ≥ 0
such that for every n ≥ 0,

Ex(|τ (n+1)
C − τ

(n)
C |p|F

τ
(n)
C

) = EYn(τ
p
C) ≤ Kp.

Therefore, with ‖ · ‖p = Ex(| · |p)1/p,

‖τy‖p = ‖τ (σy)
C ‖p =

∥∥∥∥∑
i≥0

(τ
(i+1)
C − τ

(i)
C )1i<σy

∥∥∥∥
p

≤
∑
i≥0

‖(τ (i+1)
C − τ

(i)
C )1i<σy‖p.

Now

Ex(|τ (i+1)
C − τ

(i)
C |p1i<σy) = Ex(Ex(|τ (i+1)

C − τ
(i)
C |p|F

τ
(i)
C
)1i<σy) ≤ KpPx(σy > i).

Thus

‖τy‖p ≤ K
∑
i≥0

Px(σy > i)1/p <∞,

because, as seen in the beginning of the proof, the law of σy has a geometric
tail. QED
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Lyapunov functions

In brief, a Lyapunov function is a map V :M → [1,∞) such that PV −V ≤ 0
outside a certain subset C ⊂ M. Lyapunov functions are practical tools to
ensure that the assumptions of Propositions 2.17 and 2.19 are satis�ed.

A map V : M → R+ is called proper if for every R > 0, the set {x ∈ M :
V (x) ≤ R} is �nite. If M is �nite, every map V : M → R+ is proper. If M
is countably in�nite and (xn)n≥1 is any enumeration of the elements of M ,
V :M → R+ is proper if and only if limn→∞ V (xn) = ∞.

Apart from the �rst assertion, the following result is a consequence of a
more general result (Proposition 7.12) that will be proved later.

Theorem 2.20 Let P be a Markov kernel, let V : M → [1,∞) be a map,
and let C ⊂M be nonempty. Consider the following conditions:

(a) P is irreducible, PV − V ≤ 0 on M \ C and V is proper;

(b) PV − V ≤ −1 on M \ C and PV <∞ on C;

(b') Condition (b) and in addition

sup
x∈M

Ex(|V (X1)− V (x)|p) <∞

for some p ≥ 1;

(c) PV − V ≤ −λV on M \ C for some λ ∈ (0, 1) and PV <∞ on C.

Then, for all x ∈M,

(i) Under condition (a),
Px(τC <∞) = 1;

(ii) Under condition (b),
Ex(τC) ≤ PV (x) + 1;

(iii) Under condition (b′),

Ex(τ
p
C) ≤ c(1 + V (x)p)

for some constant c > 0 that depends on p but does not depend on x;
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(iv) Under condition (c),

Ex(e
λτC ) ≤ Ex(e

− log(1−λ)τC ) ≤ 1

1− λ
PV (x).

In particular, if P is irreducible and if C is �nite, conditions (a), (b), (b′), (c)
respectively ensure recurrence of P , positive recurrence of P , p-th moments
for the hitting times τy under Px, and exponential moments for τy under Px

for every x, y ∈M .

Proof We only prove the �rst assertion. The other three follow from Propo-
sition 7.12 to be proved later. When P is irreducible and when C is �nite,
recurrence, positive recurrence, p-th moments, and exponential moments of
hitting times are direct consequences of Propositions 2.17 and 2.19.

By irreducibility, the chain is either recurrent or transient. If it is recur-
rent, Px(τC <∞) = 1 for every x ∈M by Proposition 2.2. Suppose the chain
is transient. For x ∈ M \ C, the sequence Vn := V (Xn∧τC ) is under Px a
supermartingale because Ex(Vn+1 − Vn|Fn) = (PV (Xn) − V (Xn))1τc>n ≤ 0.
Thus, being nonnegative, (Vn) converges Px-almost surely to some random
variable V∞ taking values in [0,∞) (apply Theorem A.6 to the submartingale
(−Vn)). This shows that V (Xn) converges Px-almost surely on {τC = ∞}. On
the other hand, by transience (Proposition 2.2 (iii)) and by the assumption
that V is proper, lim supn→∞ V (Xn) = ∞ Px-almost surely, and therefore
Px(τC <∞) = 1. And for x ∈ C, we have by the Markov property

Px(τC <∞) = Px(X1 ∈ C) + Ex(1X1∈M\CPX1(τC <∞)) = 1.

QED

Exercise 2.21 Suppose V : M → [1,∞) is a proper map. Show that con-
dition (c) in Theorem 2.20 for a nonempty �nite set C is equivalent to the
existence of constants 0 ≤ ρ < 1 and κ ≥ 0 such that

PV ≤ ρV + κ.

Show that under such a condition, every invariant probability measure π
satis�es

πV ≤ κ

1− ρ
<∞.

See Corollary 4.23 for a proof of the second assertion.
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2.2 Convergence in distribution

2.2.1 Aperiodicity

We start with a general de�nition of aperiodicity. LetR ⊂ N∗ be a (nonempty)
set closed under addition. That is

i, j ∈ R ⇒ i+ j ∈ R.

The period of R is de�ned as its greatest common divisor. If this period is 1,
R is said to be aperiodic. Aperiodic sets enjoy the following useful property,
that will be used repeatedly throughout the book.

Proposition 2.22 Let R be aperiodic. Then there exists n0 ∈ N such that
n0 + N = {n ∈ N : n ≥ n0} ⊂ R.

Proof There exist, by aperiodicity, a1, . . . , al ∈ R whose greatest common
divisor is 1. (To see this, take any element of R and call it a1; then a1 has a
�nite number of divisors strictly greater than 1, which we denote by d2, . . . , dl;
for 2 ≤ i ≤ l, pick ai from R(y) such that di does not divide ai; such ai exists
because the greatest common divisor of R is 1). By Bézout's identity, there
exist q1, . . . ql ∈ Z such that

∑
i qiai = −1. Set a :=

∑
i:qi>0 qiai. The set R(y)

being closed under addition, both a and a + 1 =
∑

i:qi<0 −qiai lie in R(y).

Every n ≥ a2 can be written as n = ka + r = (k − r)a + r(a + 1) for some
r ∈ {0, . . . , a− 1} and k ≥ a. Thus, every n ≥ a2 is an element of R. QED

We now turn to the de�nition of aperiodicity for a countable Markov chain.
Given a kernel P on M and x ∈M, let R(x) := {k ≥ 1 : x;k x} be the set
of possible return times to x. The period of x, per(x), is de�ned as the period
of R(x) and x is called aperiodic whenever R(x) is. The kernel (or the chain)
is said to be aperiodic if all points x ∈M are aperiodic.

Proposition 2.23 Suppose P is irreducible. Then

(i) All points x ∈M have the same period;

(ii) P is aperiodic if and only if for all x, y ∈ M there exists n(x, y) ∈ N
such that x;n y for all n ≥ n(x, y).

Proof (i). Let x, y ∈ M. By irreducibility, there exist i, j ∈ N∗ such that
x;i y and y ;j x. Thus i+ j ∈ R(x) and for all k ∈ R(y), i+ j + k ∈ R(x).
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Therefore, per(x) divides i+ j and i+ j + k, hence k, for all k ∈ R(y). Thus
per(x) ≤ per(y) and by symmetry per(x) = per(y).

(ii). The �if� part is obvious. We prove the �only if� part. Given y ∈ M,
there exists, by Proposition 2.22, n0 ∈ N such that n ∈ R(y) for all n ≥ n0.
If now x is another point in M, x ;i y for some i by irreducibility, hence
x;n y for all n ≥ n0 + i. QED

An immediate useful consequence of Proposition 2.23 is the next result. Given
two Markov kernels P and P̃ respectively de�ned on the countable state space
M and M̃, we let P ⊗ P̃ denote the Markov kernel on M × M̃ corresponding
to two independent chains with kernels P, P̃ . That is

(P ⊗ P̃ )((x, x′); (y, y′)) := P (x, y)P̃ (x′, y′).

Corollary 2.24 If P and P̃ are both irreducible and aperiodic, so is P ⊗ P̃ .
If in addition P and P̃ are positive recurrent, so is P ⊗ P̃ .

Proof Note that (P ⊗ P̃ )n = P n⊗ P̃ n for every n ∈ N∗. Thus, irreducibility
(and aperiodicity) of P ⊗ P̃ follows from Proposition 2.23 (ii), applied to P
and P̃ . Also, if π and π̃ are invariant probability measures for P and P̃ , so is
π ⊗ π̃ (de�ned as ((π ⊗ π̃)(x, x′) := π(x)π̃(x′)) for P ⊗ P̃ . By Theorem 2.7,
this proves positive recurrence. QED

Exercise 2.25 Give an example of an irreducible and positive recurrent ker-
nel P such that P ⊗ P is not irreducible, and an example of an irreducible
recurrent kernel P such that P ⊗ P is irreducible and transient.

Exercise 2.26 Show that if P ⊗ P̃ is irreducible, then both P and P̃ are
irreducible. Also show that if P ⊗ P̃ is irreducible and recurrent, then both
P and P̃ are recurrent.

Exercise 2.27 Consider the Markov chain (Xn)n≥0 from Exercise 2.1.

(i) Find the period of the chain.

(ii) Find a Lyapunov function V and a �nite set C ⊂ Z \ {0} such that P ,
V and C satisfy condition (b) of Theorem 2.20.

(ii) Show that (Xn)n≥0 is positive recurrent and �nd its unique invariant
probability measure.
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2.2.2 The convergence theorem

We now state and prove the main result of this section, the convergence
theorem for irreducible aperiodic Markov chains.

Theorem 2.28 Suppose P is irreducible and aperiodic. Let µ be a probability
measure on M.

(i) If P is positive recurrent with invariant probability measure π, then

lim
n→∞

sup
z∈M

|µP n(z)− π(z)| = 0.

(ii) If P is not positive recurrent, then for all z ∈M ,

lim
n→∞

µP n(z) = 0.

Proof Let (Xn, Yn)n∈N be the canonical chain on (M ×M)N (i.e.,
(Xn, Yn)(ω, ω̃) := (ωn, ω̃n)), and let

τ∆ := inf{n ≥ 1 : (Xn, Yn) ∈ ∆},

where ∆ := {(x, x) : x ∈ M} is the diagonal of M. Throughout the proof,
we write Pα (respectively Px,y) for the Markov measure on (M ×M)N with
kernel P ⊗P and initial distribution α (respectively δx,y). By Corollary 2.24,
P ⊗ P is irreducible, hence either recurrent or transient.

Case 1: P ⊗ P is recurrent. For all x, y, z ∈M,

Px,y(Xn = z) = Px,y(Xn = z; τ∆ > n) + Px,y(Xn = z; τ∆ ≤ n)

= Px,y(Xn = z; τ∆ > n) + Px,y(Yn = z; τ∆ ≤ n)

≤ Px,y(τ∆ > n) + Px,y(Yn = z),

where the second equality follows from the strong Markov property and the
fact that Xτ∆ = Yτ∆ . Interchanging the roles of Xn and Yn, one also has

Px,y(Yn = z) ≤ Px,y(τ∆ > n) + Px,y(Xn = z).

Hence

|P n(x, z)− P n(y, z)| = |Px,y(Xn = z)− Px,y(Yn = z)| ≤ Px,y(τ∆ > n),
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and by integration

|µP n(z)− νP n(z)| ≤ Pµ⊗ν(τ∆ > n) (2.3)

for every probability measure ν on M and every z ∈ M . By recurrence of
P ⊗ P (and Proposition 2.2 (iii)), one has for every x, y ∈M that Px,y(τ∆ >
n) → 0 as n→ ∞. Thus

lim
n→∞

sup
z∈M

|µP n(z)− νP n(z)| = 0 (2.4)

by dominated convergence. In light of Exercise 2.26, there are two subcases:
P is either positive recurrent or null recurrent. If P is positive recurrent,
(2.4) applied to ν = π, the invariant probability measure of P, proves part
(i) of the theorem. If P is null recurrent, let π be an unbounded invariant
measure of P (see Theorem 2.16). For any nonempty �nite set A ⊂ M, set

πA(x) :=
π(x)1A(x)

π(A)
. Then, πA ≤ π

π(A)
, whence

πAP
n(z) ≤ πP n(z)

π(A)
=
π(z)

π(A)
.

Therefore, by (2.4) applied to ν = πA,

lim sup
n→∞

µP n(z) ≤ lim
n→∞

|µP n(z)− πAP
n(z)|+ π(z)

π(A)
=
π(z)

π(A)
.

Letting A ↑M proves (ii) in this case because π(M) = ∞.
Case 2: P ⊗ P is transient. By Proposition 2.2 (i),

[P n(z, z)]2 = (P ⊗ P )n((z, z); (z, z)) → 0

as n→ ∞, for all z ∈M. By irreducibility of P , this implies that P n(x, z) → 0
for all x, z ∈ M. Thus µP n(z) → 0 by dominated convergence. This proves
(ii) in case 2. QED

As shown below, the convergence in Theorem 2.28 is exponential if there exists
a proper map that satis�es condition (c) of Theorem 2.20 for a nonempty �nite
set C (see also Exercise 2.21).

Theorem 2.29 Suppose P is irreducible and aperiodic, and that there exists
a proper map V :M → [1,∞) and constant 0 ≤ ρ < 1, κ ≥ 0 such that

PV ≤ ρV + κ.

Then P is positive recurrent and, denoting by π its invariant probability mea-
sure:
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(i) One has πV ≤ κ
1−ρ

<∞;

(ii) There exist constants 0 ≤ γ < 1 and c ≥ 0 such that for every probability
measure µ on M,

sup
z∈M

|µP n(z)− π(z)| ≤ cγn(µV + 1), ∀n ∈ N.

Corollary 2.30 Suppose M is �nite and P irreducible and aperiodic, with
invariant probability measure π. Then there exist constants 0 ≤ γ < 1 and
c ≥ 0 such that for every probability measure µ on M,

sup
z∈M

|µP n(z)− π(z)| ≤ cγn, ∀n ∈ N.

Proof Take V ≡ 1 in Theorem 2.29. QED

Proof [of Theorem 2.29]. We use the same notation, P ⊗ P, (Xn, Yn),∆,
etc., as in the proof of Theorem 2.28.

Positive recurrence follows from Exercise 2.21 and Theorem 2.20. Asser-
tion (i) follows from Exercise 2.21. By inequality (2.3) from the proof of The-
orem 2.28, it su�ces to derive an exponential upper bound on Pµ⊗π(τ∆ > n)
in order to prove assertion (ii). Pick x∗ ∈M and choose ε > 0 small enough
so that V (x∗) ≤ κ

ε
and ρ + ε < 1. Set W (x, y) := V (x) + V (y), x, y ∈ M .

Then
(P ⊗ P )W (x, y) = PV (x) + PV (y) ≤ ρW (x, y) + 2κ,

so that (P ⊗ P )W ≤ (ρ+ ε)W on the complement of the set

C := {(x, y) : W (x, y) ≤ 2κ

ε
}.

By Theorem 2.20 (iv) and assertion (i), we then obtain, for some positive
constant c depending on κ, ρ and ε,

Eµ⊗π(e
(1−ρ−ε)τC ) ≤ (µ⊗ π)(P ⊗ P )W

ρ+ ε
≤ ρ(µV + πV ) + 2κ

ρ+ ε
≤ c(1 + µV ).

Since V is proper, the set C is �nite, and Proposition 2.19 (i) together with
(x∗, x∗) ∈ C yield the existence of λ > 0 such that

max
(x,y)∈C

E(x,y)(e
λτ(x∗,x∗)) <∞.
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Thus

Pµ⊗π(τ∆ > n) ≤Pµ⊗π(τ(x∗,x∗) > n)

≤Pµ⊗π(τC > n/2) + Eµ⊗π(P(XτC
,YτC

)(τ(x∗,x∗) > n/2))

≤ce−λn/2(1 + µV )

for some other constant c. Inequality (2.3) concludes the proof. QED

2.3 Application to renewal theory

Let (∆i)i≥1 be a sequence of i.i.d. random variables living on some probability
space (Ω,F ,P) and taking values in N. Let ∆0 be another N-valued random
variable on (Ω,F ,P), independent of (∆i)i≥1 but having a possibly di�erent
distribution. Set

Tn := ∆0 +∆1 + . . .+∆n.

The sequence T := (Tn)n∈N is called a renewal process; T0 = ∆0 is the delay
of the process, and {Tn : n ≥ 0} is the set of renewal times. Observe that T
is a Markov chain with respect to the �ltration Fn := σ(∆0, . . . ,∆n), whose
transition matrix has entries A(i, j) := P(∆1 = j − i).

Let
pk := P(∆1 = k)

for k ∈ N. We say that T is aperiodic if p0 6= 1 and {k ≥ 1 : pk > 0} is an
aperiodic set as de�ned in Section 2.2.1. We say that T is Lp if ∆1 is in L

p,
i.e.

∑
k∈N k

ppk <∞.
To �x ideas, one can imagine that a certain device breaks down and is

replaced by a generic device at times T0, T1, . . . . The lifespan of the initial
device is distributed as ∆0 and the lifespan of the replacement devices are
distributed as ∆1.

From now on we shall assume that T is aperiodic. For all n ∈ N, let

ςn := min{k ≥ 0 : Tk ≥ n}.

Then ςn <∞ P-almost surely so that

Xn := Tςn − n

is well-de�ned. A key observation is the following:
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The set of renewal times for T equals the zero set of (Xn).

That is,
{Tn : n ∈ N} = {n ∈ N : Xn = 0}.

It is easily checked that with respect to the �ltration {Fςn}, (Xn) is a Markov
chain on N whose transition matrix is given by

P (k, k − 1) = 1 for k ≥ 1,

P (0, k) =
pk+1

1− p0
for k ∈ N,

and
P (k, l) = 0 for k ≥ 1, l 6= k − 1.

Let K := sup{k ≥ 1 : pk > 0} ∈ N∗ ∪ {∞} and M := {0, . . . , K − 1} (with
the convention that M = N if K = ∞). Then Xn ∈ M for n large enough
(precisely n ≥ (X0−K+1)+). OnM, the chain (Xn) is irreducible, recurrent,
and aperiodic (by aperiodicity of T ).

Exercise 2.31 Verify the claims made about (Xn). In particular, show that
(Xn) is a Markov chain with the transition matrix given above, and that (Xn)
restricted to M is irreducible, recurrent, and aperiodic.

Let τ0 = inf{n ≥ 1 : Xn = 0}. Then,

E0(τ0) =
∑
k≥0

(1 + k)P (0, k) =
E(∆1)

1− p0
= E(∆1|∆1 > 0) ∈ (0,∞],

where the expectation of a random variable X conditional on an event A of
positive probability is de�ned as E(X|A) := E(X1A)/P(A). The equation
E0(τ0) = E(∆1)/(1− p0) implies that (Xn) is positive recurrent if and only if
T is L1.

Exercise 2.32 Assume that (Xn), restricted toM , is positive recurrent. Ex-
press the unique invariant probability measure for the transition matrix P in
terms of the pk's.

As a consequence of Theorem 2.28, we obtain the following classical re-
newal theorem.
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Theorem 2.33 Assume that T is aperiodic. Then

lim
k→∞

∞∑
n=0

P(Tn = k) =
1

E(∆1)
,

with the convention that the right-hand side is zero if E(∆1) = ∞.

Proof Let Nk :=
∑

n≥0 1{Tn=k}. Then

Nk = 1{Xk=0}(1 +
∑
i≥1

1{T ′
i=0}),

where
T ′
i := ∆ςk+1 + . . .+∆ςk+i.

Thus E(Nk) = E(E(Nk|Fςk)) = P(Xk = 0) 1
1−p0

, and by Theorems 2.28 and
2.7,

lim
k→∞

P(Xk = 0) =
1

E0(τ0)
.

This proves the result. QED

2.3.1 Coupling of renewal processes

Suppose that T is L1, and let T̃ be another aperiodic L1-renewal process
independent of T with

T̃n = ∆̃0 + ∆̃1 + . . .+ ∆̃n.

The distribution of (∆̃i)i≥0 may be di�erent from the one of (∆i)i≥0. We are
interested in the �rst time τ > 0 that is a renewal time for both T and T̃ .
Equivalently, with X̃n de�ned in analogy to Xn,

τ := inf{n ≥ 1 : Xn = X̃n = 0}.

We know that (Xn) is absorbed byM in �nite time and that it is aperiodic
and positive recurrent onM. Hence, (Xn, X̃n) is absorbed byM×M̃ in �nite
time (M̃ de�ned in analogy to M) and, by Corollary 2.24, it is positive
recurrent on M × M̃. In particular,

P(τ <∞) = Pα⊗α̃(τ0,0 <∞) = 1, (2.5)
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where α (respectively α̃) denotes the law of ∆0 (respectively ∆̃0). It turns out
that whenever ∆0, ∆̃0 and ∆1, ∆̃1 are in L

p for some p ≥ 1, the same is true
for τ. A proof of this fact can be found for instance in Lindvall's book [47]
and goes back to Pitman's seminal paper [55]. We provide here a short proof
(di�erent from Lindvall's) based on Proposition 2.19 and Theorem 2.20.

Theorem 2.34 Suppose T and T̃ are aperiodic and in Lp for some p ≥ 1.
Then there exists a constant c > 0, independent of the distributions of ∆0 and
∆̃0, such that E(τ p) ≤ c(1 + E(∆p

0) + E(∆̃p
0)).

Proof Let Q := P ⊗ P̃ denote the kernel of (Xn, X̃n). Let V be the function
de�ned on N× N by V (i, j) = max(i, j) + 1. One has

QV (i, j)− V (i, j) = −1 for i 6= 0, j 6= 0,

and (by integrability of ∆1 and dominated convergence)

lim
j→∞

QV (0, j)− V (0, j) = lim
j→∞

E(max(∆1 − j − 1,−1)|∆1 > 0) = −1.

Similarly, limi→∞QV (i, 0) − V (i, 0) = −2. Condition (b) of Theorem 2.20 is
then satis�ed for the Markov process (Xn, X̃n) on N× N, with C = {(i, j) ∈
N × N : V ≤ R} and R large enough. Condition (b′) is easily seen to be
satis�ed as well because ∆1 and ∆̃1 are in L

p. Therefore, there is c > 0 such
that for all (i, j) ∈ N× N,

Ei,j(τ
p
0,0) ≤ 2p−1(Ei,j(τ

p
C) + max

(i,j)∈C
Ei,j(τ

p
0,0)) ≤ c(1 + max(i, j)p). (2.6)

Here, the �rst inequality follows from the strong Markov property and in-
equality τ0,0 ≤ τC + τ0,0 ◦ ΘτC . The second inequality follows from Theorem
2.20 (iii) and Proposition 2.19. Note that while (X, X̃) is not necessarily
irreducible on N × N and thus a key assumption of Proposition 2.19 is not
satis�ed, the proof still goes through because any point (i, j) ∈ N × N leads
to (0, 0). Integrating the inequality in (2.6) with respect to α⊗ α̃, the law of
(∆0, ∆̃0) = (X0, X̃0), gives the result. QED

Theorem 2.35 Suppose T and T̃ are aperiodic and

E(eλ0∆1) + E(eλ0∆̃1) <∞

for some λ0 > 0. Then there exist 0 < λ ≤ λ0 and c > 0 such that

E(eλτ ) ≤ c(1 + E(eλ0∆0) + E(eλ0∆̃0)).
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Proof The proof is similar to the proof of Theorem 2.34. Set V (i, j) :=
eλ0i + eλ0j. Then QV (i, j) ≤ e−λ0V (i, j) + κ with

κ := E(eλ0∆1 |∆1 > 0) + E(eλ0∆̃1 |∆̃1 > 0).

Condition (c) of Theorem 2.20 is then satis�ed for any 0 < λ < 1− e−λ0 and
C = {(i, j) ∈ N× N : V (i, j) ≤ R} with R su�ciently large given the choice
of λ (see also Exercise 2.21). Then, relying on τ0,0 ≤ τC+τ0,0◦ΘτC , the strong
Markov property, Theorem 2.20 (iv), and Proposition 2.19, we obtain

Ei,j(e
λτ0,0) ≤ c(1 + V (i, j)), ∀(i, j) ∈ N× N

for some c > 0 and some λ ∈ (0, 1 − e−λ0). Integrating this inequality with
respect to the law of (∆0, ∆̃0) gives the desired result. QED

2.4 Convergence rates for positive recurrent

chains

We revisit here the ergodic theorems from Section 2.2, Theorems 2.28 and
2.29, with the help of Theorems 2.34 and 2.35.

Let M be countable and let (Xn, Yn)n≥0 be the canonical chain on (M ×
M)N. Let P be an irreducible, aperiodic, and positive recurrent kernel on
M . If π denotes the invariant probability measure of P , we have seen in the
proofs of Theorems 2.28 and 2.29 that for every probability measure µ on M
and every x∗ ∈M ,

sup
x∈M

|µP n(x)− π(x)| ≤ Pµ⊗π(τ(x∗,x∗) > n),

where Pµ⊗π is the Markov measure with kernel P ⊗P and initial distribution
µ⊗ π, and where τ(x∗,x∗) = inf{n ≥ 1 : Xn = Yn = x∗}.

Let (τ
(n)
x∗ ) (respectively (τ̃

(n)
x∗ )) denote the successive hitting times of x∗

by (Xn) (respectively (Yn)). Then, for any probability measures α, β on M ,

the processes T := (τ
(n+1)
x∗ )n≥0 and T̃ := (τ̃

(n+1)
x∗ )n≥0 living on the probability

space ((M×M)N,B((M×M)N),Pα⊗β) are two independent renewal processes
and τ(x∗,x∗) is nothing but the �rst common renewal time for T and T̃ .

The Markov inequality, Theorems 2.34, 2.35, and Proposition 2.15 lead to
the following result.
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Theorem 2.36 Let P be irreducible, aperiodic, and positive recurrent, with
invariant probability measure π. Let x∗ ∈M.

(i) If Ex∗(τ px∗) < ∞ for some p ≥ 2, then there exists c ≥ 0 such that for
every probability measure µ on M and for every n ∈ N∗,

sup
x∈M

|µP n(x)− π(x)| ≤ 1

np−1
c(1 + Eµ(τ

p−1
x∗ )).

(ii) If Ex∗(eλ0τx∗ ) < ∞ for some λ0 > 0, then there exist 0 < λ < λ0 and
c ≥ 0 such that for every probability measure µ on M and for every
n ∈ N,

sup
x∈M

|µP n(x)− π(x)| ≤ e−λnc(1 + Eµ(e
λ0τx∗ )).

Combined with Theorem 2.20, Proposition 2.19, and the strong Markov prop-
erty, we recover and extend Theorem 2.29.

Corollary 2.37 Let P be irreducible, aperiodic, and positive recurrent, with
invariant probability measure π. Let V :M → [1,∞) and let C ⊂M be as in
Theorem 2.20 ((b′) or (c)) with C �nite. Then

(i) Under condition (b′) of Theorem 2.20 for p ≥ 2, there is c ≥ 0 such that
for every probability measure µ on M and for every n ∈ N∗,

sup
x∈M

|µP n(x)− π(x)| ≤ 1

np−1
c(1 + µV p);

(ii) Under condition (c) of Theorem 2.20, there are c, λ > 0 such that for
every probability measure µ on M and for every n ∈ N,

sup
x∈M

|µP n(x)− π(x)| ≤ e−λnc(1 + µV ).

Notes

The book by Aldous and Fill [1] contains numerous interesting identities for
the mean hitting times (Ex(τy)), the occupation times (Ex(Ny)) and their re-
lation to the rate of convergence. Convergence rates for �nite Markov chains,
in terms of the geometry of the chain, are thoroughly investigated in the
monograph by Salo�-Coste [62] and the book by Levin, Peres, and Wilmer
[46]. A nice extension of Chung's theorem can be found in the recent paper
[3]. The coupling method leading to the convergence rate Theorem 2.36 goes
back to Pitman [55] (see also Lindvall's book [47]).
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Chapter 3

Random Dynamical Systems

Numerous examples of Markov chains in the applied literature are given by
random dynamical systems (also called random iterative systems). These are
de�ned as follows.

Let (Θ,A,m) be a probability space,

F : Θ×M →M

(θ, x) 7→ Fθ(x),

a measurable map, and (θn)n≥1 a sequence of independent identically dis-
tributed (i.i.d.) Θ-valued random variables having law m. Consider an M -
valued process recursively de�ned by

Xn+1 := Fθn+1(Xn) (3.1)

for some given random variable X0.

Proposition 3.1 Assume that X0 is a random variable independent of (θn).
Then (Xn) is a Markov chain on M whose Markov kernel is given by

P (x,G) = m(θ ∈ Θ : Fθ(x) ∈ G). (3.2)

If furthermore Fθ is continuous for m-almost every θ, then P is Feller.

Proof The proof follows (almost) directly from the de�nitions. Measura-
bility of x 7→ P (x,G) is a by-product of Fubini's theorem since P (x,G) =∫
Θ
1G ◦ Fθ(x) m(dθ). The Feller property follows from continuity under the

integral sign. QED

51
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Exercise 3.2 [additive noise] Suppose M = Rn (or an abelian locally com-
pact group), Θ =M , F :M →M,

Fθ(x) = F (x) + θ

and m(dθ) = h(θ)dθ with h ∈ L1(dθ). Here dθ stands for the Lebesgue
measure (or the Haar measure) onM. Let P denote the corresponding Markov
kernel given by (3.2).

Given x ∈ M , let Ux : L1(dx) → L1(dx) be the translation operator
de�ned as Ux(g)(y) := g(y − x). Show that for all f ∈ B(M),

|Pf(x)− Pf(y)| ≤ ‖f‖∞‖UF (x)(h)− UF (y)(h)‖1.

Deduce that P is strong Feller whenever F is continuous. One can use (or
better, prove) that for all g ∈ L1(dx), x ∈M 7→ Ux(g) ∈ L1(dx) is continuous.

The kernel P de�ned by (3.2) is called the Markov kernel induced by (F,m).
The sequence of random maps (F n) de�ned by

F n := Fθn ◦ Fθn−1 ◦ . . . ◦ Fθ1

is called the random dynamical system (RDS) induced by (F,m).
Note that, by Chapman-Kolmogorov, the law of F n(x) is determined by

P (F n(x) has law P n(x, ·)) but, as shown by the next example, P is not
su�cient to characterize the law of F n.

Example 3.3 This example is due to Kifer [43]. Let M = S1 = {z ∈ C :
|z| = 1} be the unit circle, Θ = [0, 1], and m(dθ) = dθ the uniform Lebesgue
measure. Let f : S1 → S1 be any, say continuous, map and Fθ(z) = e2iπθf(z).
Then P (z, ·) is the uniform measure on S1 for every z ∈ S1, but the random
dynamical system induced by (F,m) clearly depends on the choice of f . For
instance, if f(z) = z, F n preserves the distance between points, while for
f(z) = z2, F n locally increases the distance exponentially.

Example 3.4 This example is due to Diaconis and Freedman [19]. LetM =
[0, 1] be the closed unit interval, and

P (x, dy) =
1

2x
1[0,x](y)dy +

1

2(1− x)
1[x,1](y)dy.

Here we adopt the convenient convention that
1[0,x](y)

x
dy = δ0(dy) for x = 0

and
1[x,1](y)

(1−x)
dy = δ1(dy) for x = 1. In words, if the chain is at x it moves to a
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point y randomly chosen in the right interval [x, 1] (respectively left interval
[0, x]) with probability 1/2.

Let F : (0, 1)× [0, 1] → [0, 1] be de�ned by

Fθ(x) := 2θx1θ<1/2 + [x+ (2θ − 1)(1− x)]1θ≥1/2.

Then P is induced by (F, dx).

3.1 Representation of Markov chains by RDS

Proposition 3.1 shows that every RDS de�nes a Markov chain. Here we
brie�y discuss the converse problem and consider the question of representing
a Markov chain by a suitable RDS.

A transformation space is a set of maps f :M →M closed under compo-
sition. Let T be a transformation space and P a Markov kernel on M.

We say that P can be represented by T if there exists a probability space
(Θ,A,m) and a measurable map F : Θ×M →M such that

(i) Fθ ∈ T for all θ ∈ Θ;

(ii) P is induced by (F,m).

Recall that a separable metric space M is called Polish if it is complete.
The following result is folklore.

Theorem 3.5 IfM is a Borel subset of a Polish space, then any Markov ker-
nel onM can be represented by a space T of measurable maps with (Θ,A,m) =
((0, 1),B((0, 1)), λ) and λ the Lebesgue measure on (0, 1).

Proof When M is a Borel subset of R, the proof is constructive and
makes F explicit. Indeed, let Gx be the cumulative distribution function of
P (x, .), i.e.,

Gx(t) = P (x, (−∞, t]).

For all θ ∈ (0, 1) and x ∈M, set

Fθ(x) := G−1
x (θ),

where G−1
x : (0, 1) → R, the generalized inverse of Gx, is de�ned as

G−1
x (u) := inf{t ∈ R : Gx(t) ≥ u}.
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Then

λ(θ ∈ (0, 1) : Fθ(x) ≤ t) = λ(θ ∈ (0, 1) : θ ≤ Gx(t)) = Gx(t).

The proof in the general case follows from the following abstract result of
measure theory: Every Borel subset M of a Polish space is isomorphic to a
Borel subset of [0, 1]. That is, there exists a Borel set M̃ ⊂ [0, 1] and a bi-
measurable bijection Ψ : M → M̃ (meaning that both Ψ and its inverse are
Borel measurable). Chapter 13 of Dudley's book [21] contains a detailed proof
of this result. Exercise 4.9 treats the particular case where M is compact or
locally compact.

Given such a Ψ and a Markov kernel P on M , let P̃ be the Markov kernel
on M̃ de�ned as P̃ (x,A) := P (Ψ−1(x),Ψ−1(A)). Then P̃ is induced by (F̃ , λ)
for some measurable F̃ : (0, 1)× M̃ → M̃ so that P is induced by (F, λ) with
Fθ(x) = Ψ−1(F̃θ(Ψ(x))). QED

Blumenthal and Corson [12] prove the following result (see also Kifer [43],
Theorem 1.2).

Theorem 3.6 (Blumenthal and Corson, 1972). Let M be a connected and
locally connected compact metric space. Let P be a Feller Markov kernel such
that P (x, ·) has full support for all x ∈ M, i.e., for all x ∈ M and for every
closed set F strictly contained in M , we have P (x, F ) < 1. Then P may be
represented by T = C0(M,M) (the space of continuous maps f :M →M).

The question of representation by smooth maps has been considered by
Quas [58]. Before stating Quas's theorem, we state a result due to Jürgen
Moser from which it will be deduced.

Let M be a smooth (C∞) compact orientable Riemannian manifold with-
out boundary, with normalized Riemannian probability measure λ. If ρ :
M → R+ is a C1-density on M and Φ :M →M a C1-di�eomorphism, we let
Φ∗ρ denote the image of ρ by Φ. That is,

(Φ∗ρ)(Φ(x)) =
ρ(x)

|JΦ(x)|
,

where JΦ(x) is the Jacobian of Φ, i.e., the determinant of the derivative
DΦ(x) : TxM → TΦ(x)M. In other words, if X is a random variable with
density ρ, then Φ(X) is a random variable with density Φ∗ρ.

In 1965, Moser [50], using the �homotopy trick� argument, proved part
(i) of the following result in the C∞ case. For every positive integer k and
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0 ≤ α < 1, we let Ck+α(M) denote the space of Ck+α (Ck with α-Hölder kth
derivatives if α > 0) functions h :M → R endowed with the Ck+α-topology,

Ek+α
t := {h ∈ Ck+α(M) :

∫
M

h(x)λ(dx) = t},

and Dk+α := {ρ ∈ Ek+α
1 : ρ(x) > 0 ∀x ∈ M} the space of positive Ck+α-

densities. Plainly, Ek+α
1 is a closed subset of Ck+α(M), which can be identi�ed

with the Banach space Ek+α
0 , and Dk+α is an open subset of Ek+α

1 .

Theorem 3.7 (Moser, 1965). Let ρ0 be a positive Ck-density for some k ≥
1. Then

(i) For any positive Ck-density ρ, there exists a Ck-di�eomorphism Φρ on M
with the property that

Φ∗
ρρ0 = ρ;

(ii) The Ck-di�eomorphism Φρ from part (i) can be chosen in such a way
that the mapping

Dk ×M →M,

(ρ, x) 7→ Φρ(x)

is Ck.

Proof Let ρt = ρ0 + t(ρ − ρ0) for 0 ≤ t ≤ 1. We look for a family of
di�eomorphisms (Φt)t∈[0,1] such that Φ∗

tρ0 = ρt for all t ∈ [0, 1]. That is,

j(t, x)ρt(Φt(x)) = ρ0(x), (3.3)

where j(t, x) is the Jacobian of Φt, evaluated at x. More precisely, we look
for a family of vector �elds {Xt}t∈[0,1] on M such that Φt(x) is the solution
to the non-autonomous Cauchy problem

dy

dt
= Xt(y)

with initial condition y(0) = x. Using Jacobi's formula for the derivative of
the determinant of a matrix-valued function, one obtains that j(t, x) solves

dj

dt
= div(Xt)[Φt(x)]j(t)
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with initial condition j(0, ·) ≡ 1. Thus, taking the time derivative of (3.3)
and setting y := Φt(x), η := ρ0 − ρ gives

div(Xt)(y)ρt(y)− η(y)+ < ∇ρt(y), Xt(y) >y= 0.

Hence
div(ρtXt)(y) = η(y).

If one sets Xt = ∇U/ρt, the problem reduces to �nding a function U :M → R
such that

∆U = div(∇U) = η, (3.4)

where one should recall that η = ρ0 − ρ.
Since ∫

M

η(x)λ(dx) = 0,

(3.4) admits a solution, and we may de�ne ∆−1η as the particular solution

x 7→ 2

∫ ∞

0

Qtη(x)dt,

where Qtη(x) := E(η(Wt)|W0 = x) and Wt a Brownian motion on M. Fur-
thermore, by Schauder estimates (see, e.g., Chapter 6 in [30]) ∆−1 maps
Ek−1+α

0 (M) continuously into Ck+1+α(M) for every positive integer k and
0 < α < 1. This makes the vector �eld

Xρ
t := ∇U/ρt

a Ck-vector �eld. It also implies that the continuous mapping

[0, 1]×Dk ×M → TM,

(t, ρ, x) 7→ Xρ
t (x)

is Ck.
Let t 7→ Φt(ρ, x) denote the solution to the Cauchy problem dy

dt
= Xρ

t (y)
with initial condition Φ0(ρ, x) = x. It then follows from standard results
on di�erential equations that x 7→ Φt(ρ, x) is a Ck-di�eormorphism for all
(t, ρ) ∈ [0, 1] × Dk, and that (x, ρ) 7→ Φt(ρ, x) is Ck for all t ∈ [0, 1]. To
conclude the proof, set Φρ(x) := Φ1(ρ, x). QED

From Moser's theorem we deduce the following result proved by Quas [58]
in the C∞ case.
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Corollary 3.8 (Quas, 1991). Let P be a Markov kernel on M , a smooth
compact orientable connected Riemannian manifold without boundary. As-
sume that for each x ∈ M , Px has a Ck, k ≥ 1, positive density ρx with
respect to the Riemannian measure, and that x ∈M 7→ ρx ∈ Dk is Cr, r ≥ 0.
Then P may be represented by T = Cr(M,M).

Proof Let ρ0 = ρx0 for some x0 ∈ M and let Ψx = Φρx denote the Ck-
di�eormorphism produced by Moser's Theorem (Theorem 3.7). Then

P (x,G) = P (x0,Ψ
−1
x (G)).

Let T = Cr(M,M) and let fy ∈ T be de�ned by fy(x) := Ψx(y). Then

P (x,G) = m(f ∈ T : f(x) ∈ G),

where m is the image of Px0 by the mapping y ∈M 7→ fy ∈ T. QED

Exercise 3.9 [Bernoulli convolutions] Bernoulli convolutions are very sim-
ple, still fascinating, examples of random dynamical systems.

Let 0 < a < 1 and let (Xn) be the sequence of real-valued random variables
recursively de�ned by

Xn+1 = aXn + θn+1,

where (θn) is a sequence of i.i.d. random variables taking values in {−1, 1},
independent of X0, and having uniform distribution m = δ−1+δ1

2
.

Set Yn =
∑n−1

i=0 a
iθi+1 and let

Y = lim
n→∞

Yn =
∑
i≥0

aiθi+1.

Throughout, we let µa denote the law of Y and Fa its cumulative distribution
function (cdf) de�ned as Fa(t) = µa(]−∞, t]).

(i) Show that Xn − anX0 and Yn have the same law and deduce that (Xn)
converges in law to µa, i.e.,

lim
n→∞

E(f(Xn)) = µaf

for all f ∈ Cb(R). Convergence in law will be further discussed in Section
4.1 of Chapter 4.
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(ii) Show that Fa is the unique cdf solution to the functional equation

F (t) =
1

2

[
F

(
t− 1

a

)
+ F

(
t+ 1

a

)]
.

(iii) Show that Fa is continuous.

(iv) (Law of pure types) Recall that µa is called absolutely continuous (with
respect to Lebesgue measure) if every Borel set having zero Lebesgue
measure has zero µa-measure. By the Radon�Nikodym Theorem, this
amounts to

Fa(t) =

∫ t

−∞
fa(u) du

for some nonnegative function fa ∈ L1(R). The measure µa is called
singular if µa(N) = 1 for some Borel set N having zero Lebesgue mea-
sure. Show that µa is either absolutely continuous or singular (compare
with Lemma 4.26 in Chapter 4).

(v) (Devil's staircase) The topological support of µa is the set of t ∈ R such
that µa(I) > 0 for every open interval I containing t. Equivalently, this
is the set of t ∈ R at which Fa strictly increases.

Suppose a < 1
2
. Show that the support of µa is a Cantor set having zero

Lebesgue measure. In this case Fa is a Devil's staircase: a continuous
function increasing from 0 to 1 but almost everywhere nonincreasing.

(vi) Show that µ1/2 is the uniform distribution over [−2, 2].

(vii) Show that for a > 1
2
, the support of µa is the interval [− 1

1−a
, 1
1−a

].

Remark 3.10 The study of Bernoulli convolutions has a long history. It
started around 1930 with the work of Wintner and his collaborators Jessen
and Kershner (see, e.g., [53] for a comprehensive bibliography). As seen in
the previous exercise, when a > 1

2
, Fa is continuous and strictly increasing

on [− 1
1−a

, 1
1−a

]. Wintner proved that it is Ck−1 for a = 2−1/k and k ≥ 2,

but Erdös [25] in 1939 proved that whenever 1
a
is a Pisot number, then µa

is singular! A Pisot number is a real algebraic integer (i.e., the root of a
unitary polynomial having integer coe�cients) whose conjugates (i.e., the
other roots of the polynomial) have modulus < 1. For instance, the golden

number g = 1+
√
5

2
is a Pisot number as the root of the polynomial X2−X−1.
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After Erdös, the question of describing the set of a > 1
2
for which µa is

absolutely continuous has challenged the community. In 1995 Solomyak [64]
(see also the beautiful short proof by Solomyak and Peres [54]) proved the
remarkable result that for almost all a > 1

2
, µa is absolutely continuous.

Exercise 3.11 [The Propp and Wilson algorithm] The representation of a
Markov chain by a RDS can obviously be used to simulate trajectories of
a given �nite Markov chain. More surprisingly it can also serve to sample
exactly and in �nite time the invariant probability measure of a positive re-
current �nite chain. This is the Propp and Wilson algorithm introduced by
J. Propp and D. Wilson [57] in 1996.

LetM be a �nite set and let (F n) be a RDS onM. Recall that this means
that

F n = Fθn ◦ . . . ◦ Fθ1 ,

where (θi) is a sequence of i.i.d. random variables on some probability space
(Θ,A,m) and Θ×M 3 (θ, x) 7→ Fθ(x) is a measurable map.

Associated to F n is the right product

Rn = Fθ1 ◦ . . . ◦ Fθn .

A map f : M → M is called constant if f(x) = f(y) for all x, y ∈ M. We let
Cst denote the set of such maps, and

Tc = min{n ≥ 0 : Rn ∈ Cst}.

(i) Show that Rn and F n have the same distribution.

(ii) Suppose that Tc is almost surely �nite. Let Z = RTc(x) (which is in-
dependent of x). Show that for all n ≥ Tc and y ∈ M, Rn(y) = Z.
Deduce that the law of Z is the unique invariant probability measure
of the chain induced by (F n).

(iii) Suppose that for some α > 0, m({θ ∈ Θ : Fθ ∈ Cst}) ≥ α. Show that
Tc has a geometric tail, and is therefore almost surely �nite.

(iv) Suppose, more generally, that for some α > 0 and every subset A ⊂ M
having cardinality |A| ≥ 2,

m({θ ∈ Θ : |Fθ(A)| < |A|}) ≥ α.

Show that Tc has a geometric tail and is therefore almost surely �nite.
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(v) Suppose now that P is a Markov transition matrix onM having positive
entries. Show that it is always possible to represent it by a RDS such
that the condition assumed in question (iii) is satis�ed. Explain how
this can be used to produce an algorithm which samples the invariant
probability measure of P in �nite time.

(vi) Let M = {0, 1} and let P be the Markov transition matrix de�ned by
P (x, y) = 1

2
. Let Θ = {0, 1},m = 1

2
(δ0 + δ1), and Fθ(x) = θx + (1 −

θ)(1− x). Show that the Markov kernel P is represented by (F,m) but
that Tc = ∞ almost surely.

Notes

The proof of Erdös's theorem on Bernoulli convolutions (see Remark 3.10)
as well as numerous illustrating simulations can be found in the �rst chapter
of [7]. For (much) more on Bernoulli convolutions we recommend the survey
papers [53] and [67]. The book [46] contains a full chapter on the Propp and
Wilson algorithm including many examples of applications.



Chapter 4

Invariant and Ergodic Probability

Measures

4.1 Weak convergence of probability measures

Let P(M) denote the set of probability measures on (M,B(M)). A sequence
{µn} ⊂ P(M) is said to converge weakly to µ ∈ P(M), written

µn ⇒ µ,

provided
lim
n→∞

µnf = µf

for all f ∈ Cb(M). The following theorem, known as Portmanteau Theorem,
gives equivalent conditions for weak convergence. Note that this theorem is
true in any metric space (without assumption of separability or completeness).

Let Ub(M) ⊂ Cb(M) (resp. Lb(M) ⊂ Ub(M)) denote the set of bounded
and uniformly continuous (resp. bounded and Lipschitz) mappings f :M →
R.

Theorem 4.1 (Portmanteau theorem) Let {µn} ⊂ P(M) and µ ∈ P(M).
The following conditions are equivalent:

(a) µn ⇒ µ;

(b) µnf → µf for all f ∈ Ub(M);

(c) µnf → µf for all f ∈ Lb(M);

61
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(d) lim supn→∞ µn(F ) ≤ µ(F ) for all closed sets F ⊂M ;

(e) lim infn→∞ µn(O) ≥ µ(O) for all open sets O ⊂M ;

(f) limn→∞ µn(A) = µ(A) for all A ∈ B(M) such that µ(∂A) = 0, where
∂A := A \ int(A) denotes the boundary of A.

Proof (a) ⇒ (b) ⇒ (c) is clear and (d) ⇔ (e) holds by set complementation.

Assume (c). Let F be a closed set, ε > 0, and fε(x) := (1 − d(x,F )
ε

)+,
where d(x, F ) := infy∈F d(x, y). Then 1 ≥ fε ≥ 1F and fε ∈ Lb(M). Thus,
lim supµn(F ) ≤ lim supµnfε = µfε and, by dominated convergence, µfε →
µ(F ) as ε→ 0. This proves that (c) ⇒ (d).

Assume (d) (and thus also(e)). Let A ∈ B(M) be such that µ(∂A) = 0.
Let F be the closure of A and O its interior. Then µ(F ) = µ(O) and,
by (d) and (e), lim inf µn(A) ≥ lim inf µn(O) ≥ µ(O) and lim supµn(A) ≤
lim supµn(F ) ≤ µ(F ). This proves that (d), (e) ⇒ (f).

It remains to show that (f) ⇒ (a). Assume (f) and let f ∈ Cb(M).
Replacing f by f + c for some c > 0 if necessary, we can assume that f ≥ 0.
For all a ≥ 0, the set {f > a} is open and its boundary is contained in
{f = a}. Furthermore, the set of a ≥ 0 such that µ({f = a}) > 0 is at most
countable (as the set of discontinuity points of the cumulative distribution
function a 7→ µ({f ≤ a})). Thus, by Fubini's theorem, (f), and dominated

convergence, µnf =
∫ ∥f∥∞
0

µn(f > a)da→
∫ ∥f∥∞
0

µ(f > a)da = µf.

QED

The following corollary is often useful.

Corollary 4.2 Let f ∈ B(M) and let Df denote the set of discontinuities of
f. If µn ⇒ µ and µ(Df ) = 0, then µnf → µf.

Proof Let µf
n := µn(f

−1(·)) be the image measure of µn by f. It suf-
�ces to show that µf

n ⇒ µf . Indeed, let g(t) := t for |t| ≤ ‖f‖∞, and
g(t) := sign(t)‖f‖∞ for |t| > ‖f‖∞. Then µf

ng = µnf and µfg = µf. To
prove that µf

n ⇒ µf , we rely on assertion (d) of the Portmanteau Theorem.
Let F be a closed subset of R. Then lim supµf

n(F ) ≤ lim supµn(f−1(F )) ≤
µ(f−1(F )) because µn ⇒ µ. Now, f−1(F ) ⊂ Df∪f−1(F ) so that µ(f−1(F )) =
µ(f−1(F )) = µf (F ). QED
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Exercise 4.3 For ε, δ > 0 let Aε,δ be the set of x ∈ M such that |f(y) −
f(z)| ≥ ε for some y, z ∈ B(x, δ). Show that Df = ∪n∈N∗ ∩m∈N∗ A1/n,1/m and
that Df is measurable (even if f is not).

Exercise 4.4 Let P be a Markov kernel on a metric space M . Show that P
is Feller if and only if the map φ : M → P(M), x 7→ P (x, ·) is continuous
(where P(M) is equipped with the topology of weak convergence).

The space P(M) equipped with the topology of weak convergence is ac-
tually a metric space, as shown by the next proposition.

Proposition 4.5 There exists a countable family {fn}n≥0 ⊂ Cb(M) such that

D(µ, ν) :=
∑
n≥0

1

2n
min(|µfn − νfn|, 1)

is a distance on P(M) whose induced topology is the topology of weak conver-
gence. That is, µn ⇒ µ if and only if D(µn, µ) → 0.

Remark 4.6 Unless when M is compact, the family {fn}n≥0 is not dense in
Cb(M) (see Exercise 4.8).

Proof IfM is compact, Cb(M) is separable (see Exercise 4.7) and it su�ces
to choose a dense sequence {fn} ⊂ Cb(M). If M is not compact, Cb(M) is
no longer separable (see Exercise 4.8), but we shall prove that there exists a
metric d̃ on M , topologically equivalent to d, making M homeomorphic to a
subset of a compact metric space. It will then follow that Ub(M, d̃), the space
of bounded uniformly continuous functions on (M, d̃), is separable. (Here one
should recall that two topologically equivalent metrics may yield distinct sets
of uniformly continuous functions.)

Replacing d by d
1+d

(which remains a distance on M inducing the same
topology as d), we can assume that d ≤ 1. Let {an}n≥0 ⊂ M be countable
and dense, and let H :M → [0, 1]N be the map de�ned by

H(x) := (d(x, an))n≥0.

By Tychono�'s Theorem (see, e.g., Theorem 2.2.8 in [21]), [0, 1]N is a compact
metric space. A metric for [0, 1]N is given by

e(x,y) =
∑
k≥0

|xk − yk|
2k

,
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where x = (xk)k≥0,y = (yk)k≥0. Set

d̃(x, y) := e(H(x), H(y)).

It is not hard to check that d̃ is a metric on M inducing the same topology
as d. The spaces (M, d̃) and (H(M), e) are thus isometric. Let K := H(M).
Then K is compact (as a closed subset of a compact space) and thus, there
exists a countable and dense family {gn} ⊂ Cb(K). Let f ∈ Ub(M, d̃). Since
H is an isometry, the map f ◦H−1 : H(M) → R is uniformly continuous. It
then extends to a continuous map f̂ : H(M) → R. By density of {gn}, there
exists, for all ε > 0, some n such that

‖f − gn ◦H‖∞ = sup
x∈H(M)

|f ◦H−1(x)− gn(x)| ≤ sup
x∈K

|f̂(x)− gn(x)| ≤ ε.

This proves that the sequence {fn}, with fn := gn ◦H, is dense in Ub(M, d̃).
Now, by Theorem 4.1 (b) and density of {fk}, µn ⇒ µ if and only if µnfk →
µfk for all k ∈ N. This is equivalent to D(µn, µ) → 0. QED

Exercise 4.7 Let K be a compact metric space (and thus also a Polish
space). Using the proof of Proposition 4.5, show that K is homeomorphic
to a compact subset of [0, 1]N, equipped with the metric e. We now identify
K with a subset of [0, 1]N. Let P be the set of real-valued functions on [0, 1]N

of the form p(x) = q(x0, . . . , xn), where q : [0, 1]n+1 → R is a polynomial in
(n+1) variables with rational coe�cients. Use the Stone�Weierstrass theorem
to show that P |K = {p|K : p ∈ P} is dense in C(K). This shows that C(K)
is separable. Since Cb(K) is a subset of the separable metric space C(K), it
is itself separable.

Exercise 4.8 Let X be a topological space. Suppose that there exists an
uncountable family {Oα} of open sets such that Oα∩Oβ = ∅ for α 6= β. Show
that X is not separable. Show that Cb(R), the set of continuous bounded
functions on R, is not separable. Hint: Let f ∈ Cb(R) be such that f(n) = 0
and f = 1 on [n+1/(n+1), n+1−1/(n+1)] for all n ∈ N∗. Set fx(t) := f(x+t)
and consider the family {Ox}x∈(0,1), where Ox := {g ∈ Cb(R) : ‖fx − g‖∞ <
1/2}.

Exercise 4.9 [Borel Isomorphism] We say that two measurable spaces X
and Y are isomorphic if there exists a bi-measurable bijection Ψ : X → Y,
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meaning that both Ψ and Ψ−1 are measurable. It turns out that every Borel
subsetM of a Polish space is isomorphic to a Borel subset of [0, 1] (see Remark
4.10). The purpose of this exercise is to prove this result when M is compact
or locally compact and separable.

(i) Let {0, 1}N∗
be equipped with the product topology and Borel σ-�eld.

Show that {0, 1}N∗
is a metric space with the metric d de�ned as

d(ω, α) :=
∑
i≥1

|ωi − αi|
2i

.

(ii) Show that the map

Ψ : {0, 1}N∗ → [0, 1],

ω 7→
∑
i≥1

ωi

2i

is 1-Lipschitz continuous.

(iii) Let Ĩ ⊂ {0, 1}N∗
be the set of ω such that ωi = 0 for in�nitely many i and

ωj = 1 for in�nitely many j. Show that Ĩ is a Borel subset of {0, 1}N∗

and that Ψ|Ĩ (Ψ restricted to Ĩ) is a homeomorphism onto Ψ(Ĩ), i.e., a
continuous bijection with continuous inverse.

(iv) Show that [0, 1] and {0, 1}N∗
are isomorphic. Hint: Use (iii) and the

fact that the complement of Ĩ in {0, 1}N∗
is countably in�nite.

(v) Show that there is a homeomorphism between {0, 1}N∗
and {0, 1}N∗×N∗

,
equipped with the metric

e(A,B) :=
∑
j≥1

d((Ai,j)i≥1, (Bi,j)i≥1)

2j
.

Then show that [0, 1] and [0, 1]N
∗
are isomorphic. Relying on the proof

of Proposition 4.5, deduce that every compact (or locally compact sep-
arable) metric space is isomorphic to a Borel subset of [0, 1]. Hint: Any
locally compact separable metric space can be written as a countable
union of compact sets, see, e.g., Theorem XI.6.3 in [23].
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Remark 4.10 Theorem 13.1.1 in [21] implies the following: If M is a Borel
subset of a Polish space, and if B is a Borel subset of [0, 1] whose cardinality
equals the cardinality of M , then M and B are isomorphic. Since the cardi-
nality of a Borel subset of a Polish space is either �nite, countably in�nite,
or the cardinality of the continuum, every such set is in fact isomorphic to a
large class of Borel subsets of [0, 1].

One of the main advantages of the distance de�ned in Proposition 4.5 is that
it allows to verify weak convergence by testing the condition µnf → µf over
a countable set of functions.

Two other classical distances over P(M) are the following:

Prohorov metric For any A ⊂M and ε > 0, let

Aε := {y ∈M : d(y, A) < ε}.

For all µ, ν ∈ P(M) the Prohorov distance (also called the Lévy-Prohorov
distance) between µ and ν is de�ned as

π(µ, ν) := inf {ε > 0 : µ(A) ≤ ν(Aε) + ε for all A ∈ B(M)} . (4.1)

Fortet-Mourier metric Let Lb(M) ⊂ Cb(M) be the space of bounded
Lipschitz maps equipped with the norm

‖f‖bl = ‖f‖∞ + Lip(f),

where

Lip(f) := sup

{
|f(x)− f(y)|

d(x, y)
: (x, y) ∈M2, x 6= y

}
.

For all µ, ν ∈ P(M) the Fortet-Mourier distance between µ and ν is de�ned
as

ρ(µ, ν) := sup{|µf − νf | : f ∈ Lb(M), ‖f‖bl ≤ 1}. (4.2)

Theorem 4.11 The maps π and ρ are distances on P(M). Let {µn} ⊂ P(M)
and µ ∈ P(M). The following conditions are equivalent:

(a) µn ⇒ µ;

(b) ρ(µn, µ) → 0;
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(c) π(µn, µ) → 0.

Proof We only prove that (a) ⇔ (b). For more details and the proof of (b) ⇔
(c), see Dudley [21]. The implication (b) ⇒ (a) follows from assertion (c) of
Theorem 4.1. Conversely assume (a). We �rst assume that M is complete.
Fix ε > 0. By Ulam's Theorem (or Prohorov's Theorem 4.13 below), one can
choose K ⊂M compact such that

µ(K) > 1− ε. (4.3)

Let Kε = {x ∈M : d(x,K) < ε}. By assertion (e) of Theorem 4.1,

µn(Kε) > 1− ε (4.4)

for n su�ciently large. By the Arzelà�Ascoli Theorem, the unit ball Lb,1 :=
{f ∈ Lb : ‖f‖bl ≤ 1} restricted to K is a compact subset of Cb(K). There
exists then a �nite set {f1, . . . , fN} ⊂ Lb,1 such that for all f ∈ Lb,1 there is
some i ∈ {1, . . . , N} such that |f(x) − fi(x)| ≤ ε for all x ∈ K. Since f and
fi have a Lipschitz constant ≤ 1, we also get that

|f(x)− fi(x)| ≤ 3ε (4.5)

for all x ∈ Kε. Now

|µnf−µf | ≤ |(µn−µ)fi|+ |(µn−µ)((f−fi)1Kε)|+ |(µn−µ)((f−fi)1M\Kε)|.

Thus, using inequalities (4.3), (4.4), and (4.5), we obtain

ρ(µn, µ) ≤ max
1≤i≤N

|(µn − µ)fi|+ 8ε.

This proves (b) for M complete. If M is not complete, we can replace it by
its completion M̃ . Any map f ∈ Lb extends to a bounded Lipschitz map on
M̃ and the measures (µn) and µ can be seen as measures on M̃ so that the
proof goes through. QED

Remark 4.12 Theorem 4.1 is true in any (not necessarily separable) met-
ric space. The equivalences in Theorem 4.11 require separability (but not
completeness).
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4.1.1 Tightness and Prohorov's Theorem

A set P ⊂ P(M) is called tight (sometimes uniformly tight) if for every ϵ > 0
there exists a compact set K ⊂M such that

µ(K) ≥ 1− ε

for all µ ∈ P . Observe in particular that if M is compact, every subset of
P(M) is tight. A set P ⊂ P(M) is called relatively compact if it has compact
closure in P(M) (equipped with one of the distances π, ρ or any other distance
characterizing weak convergence). Finally, it is called totally bounded if for
every ε > 0 there is a �nite set A ⊂ P such that the following holds: For every
µ ∈ P there is ν ∈ A with d(µ, ν) < ε. Here, d can be the Prohorov metric,
the Fortet-Mourier metric, or any other metric on P(M) characterizing weak
convergence.

The following theorem usually referred to as Prohorov's Theorem asserts
that tightness and relative compactness are equivalent in a Polish space (com-
plete and separable metric space). Here the assumption that M is a Polish
space is crucial, for otherwise the implication (b) ⇒ (a) may be false. See,
e.g., Billingsley [11] or Dudley [21, Chapter 11.5] for a proof of Prohorov's
Theorem.

Theorem 4.13 (Prohorov's Theorem) Assume M is a Polish space (i.e.,
a complete separable metric space). Then the following assertions are equiv-
alent:

(a) P is tight;

(b) P is relatively compact;

(c) Every sequence {µn} ⊂ P has a convergent subsequence µnk
⇒ µ ∈

P(M);

(d) P is totally bounded for π or ρ.

Remark 4.14 The latter property shows that P(M) is complete for ρ or π
since every Cauchy sequence is totally bounded.
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Tightness Criteria

We conclude this subsection with a simple practical Lyapunov-type condition
ensuring tightness of a sequence of probability measures.

A measurable map V :M → R is called proper if for all R ∈ R the set

{V ≤ R} = {x ∈M : V (x) ≤ R}

has compact closure.

Proposition 4.15 Let V : M → R+ be a proper map and let {µn} be a
sequence in P(M) such that

lim sup
n→∞

µnV ≤ K <∞.

Then {µn} is tight. Assume furthermore that V is continuous. Then

(i) For every limit point µ of {µn}, µV ≤ K;

(ii) Let H :M → R be a continuous function such that G = V
1+|H| is proper.

If µn ⇒ µ, then µnH → µH.

Proof Fix ε > 0 and let R > 0 be so large that lim supn→∞ µnV ≤ εR. By
the Markov Inequality, lim supn→∞ µn{V > R} ≤ lim supn→∞

µnV
R

≤ ε. Let
now µ = limµnk

be a limit point of {µn}. Then for all R > 0, µ(V ∧ R) =
limk→∞ µnk

(V ∧R) ≤ K. Thus µV ≤ K by monotone convergence.
We pass to the proof of (ii). Let G = V

1+|H| . For all R ∈ R \D with D at

most countable, µ{G = R} = 0 and, therefore,

lim
n→∞

µn(H1G≤R) = µ(H1G≤R).

On the other hand µn(|H|1G>R) ≤ µn(
V
G
1G>R) ≤ 1

R
µn(V ). Thus

lim
R→∞

lim sup
n→∞

µn(|H|1G>R) = 0

and, similarly,
lim
R→∞

µ(|H|1G>R) = 0.

This proves the result. QED
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4.2 Invariant probability measures

Given a Markov kernel P, a measure (respectively a probability measure) µ
is called P -invariant or simply invariant if

µPf = µf (4.6)

for all f ∈ B(M), where Pf is de�ned by (1.2). Equivalently,

µP = µ,

where µP is de�ned by (1.3).

Exercise 4.16 Let R/Z denote the set of equivalence classes with respect
to the equivalence relation x ∼ y ⇔ x − y ∈ Z on R. The set R/Z can be
thought of as the unit interval [0, 1], where 0 and 1 are identi�ed with each
other. Let (θn)n≥1 be an i.i.d. sequence of random variables with distribution
m, where m is a Borel probability measure on R/Z. For every θ ∈ R, let

Fθ : R/Z → R/Z, x 7→ x+ θ mod 1.

Show that the Lebesgue measure on R/Z is an invariant probability measure
for the Markov kernel induced by (F,m).

Remark 4.17 Let C denote a set of bounded, measurable mappings f :M →
R, closed under multiplication and such that B(M) = σ(C) (the smallest
σ-�eld making elements of C measurable). By a monotone class argument
(see Theorem A.1), it su�ces to check (4.6) on C to prove P -invariance of
µ ∈ P(M).

For instance, one can choose C = Cb(M), the set of bounded continuous
functions. One can also choose any set C ⊂ Cb(M) closed under multiplication
and such that for all f ∈ Cb(M) there is a sequence {fn} ⊂ C such that
limn→∞ fn(x) = f(x) for all x ∈M.

We let Inv(P ) denote the set of P -invariant probability measures. The set
Inv(P ) might be empty as shown by the following two examples.

Example 4.18 Let M = [0, 1] and f : M → M be the map de�ned by
f(x) = x/2 for x 6= 0 and f(0) = 1. Then, the (deterministic) chain Xn+1 =
f(Xn) has no invariant probability measure. For otherwise the Poincaré Re-
currence Theorem (see Theorem 4.41 below) would imply that such a measure
is δ0, but f(0) = 1.
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Example 4.19 Consider the pair (F,m) introduced in Exercise 4.16. Let us
assume in addition that

∫
R|θ| m(dθ) < ∞ and set α :=

∫
R θ m(dθ). While

the corresponding Markov kernel P has the Lebesgue measure as an invariant
measure, P does not admit any invariant probability measures if α 6= 0.

To see this, let µ be a probability measure on (R,B(R)). Then there is
K > 0 such that µ([−K,K]) > 0. If µ was invariant for P , the Markov chain
(Xn)n∈N induced by (F,m) and with X0 ∼ µ would satisfy

0 < µ([−K,K]) = µP n([−K,K]) = P(|Xn| ≤ K), ∀n ∈ N∗.

But if α > 0 (α < 0), one has limn→∞Xn = ∞ (limn→∞Xn = −∞) P-
almost surely by the law of large numbers. Hence limn→∞ P(|Xn| ≤ K) = 0,
a contradiction.

Given a Markov chain (Xn) on M , the associated family of empirical
occupation measures is de�ned as

νn :=
1

n

n−1∑
i=0

δXi
, n ∈ N∗. (4.7)

Notice that each νn is a random element of P(M).
A su�cient condition ensuring existence of invariant probability measures

is given by the following classical theorem (see, e.g., [22]).

Theorem 4.20 Let (Xn) denote a Markov chain (de�ned on (Ω,A,F,P)) on
M with kernel P that is Feller. Then the following statements hold.

(i) P-almost surely, every limit point of the family of empirical occupation
measures (νn)n≥1 is P -invariant;

(ii) If (νn)n≥1 is tight with positive P-probability, then Inv(P ) is nonempty.

Proof (i). Let f ∈ B(M). Set Un+1 := f(Xn+1) − Pf(Xn),M0 := 0, and
Mn+1 := Mn + Un+1 for n ≥ 0. Then (Mn) is an L

2-martingale, whose pre-
dictable quadratic variation (see the section on martingale theory in the ap-
pendix) veri�es

〈M〉n+1 − 〈M〉n = E(U2
n+1|Fn) = Pf 2(Xn)− (Pf)2(Xn) ≤ 2||f ||2∞.

Hence by the strong law of large numbers for martingales (see Theorem A.8),

0 = lim
n→∞

Mn

n
= lim

n→∞
νnf − νn(Pf) (4.8)
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almost surely. Let {fk} ⊂ Cb(M) be as in Proposition 4.5. Then, by the
Feller property, Pfk is in Cb(M) for all k and, consequently, with probability
one

νfk − ν(Pfk) = 0

for every limit point ν of {νn} and every k ∈ N. Thus, ν = νP.
(ii). Let ω ∈ Ω such that (νn(ω))n≥1 is tight and all of its limit points

are P -invariant. By Prohorov's theorem, (νn(ω))n≥1 admits at least one limit
point, so Inv(P ) is nonempty. QED

Corollary 4.21 If M is compact and P is Feller, Inv(P ) is a nonempty com-
pact convex subset of P(M). Convexity of Inv(P ) holds for arbitrary metric
spaces and Markov kernels.

Tightness Criteria for Empirical Occupation Measures

When M is noncompact, the tightness of the empirical occupation measures
(νn) can be ensured by the existence of a convenient Lyapunov function. This
is a proper map V :M → R+ such that PV − V is "su�ciently" negative.

Corollary 4.22 Let V : M → R+ be a proper map. Assume that PV ≤ V
and that E(V (X0)) < ∞. Then the family of empirical occupation measures
(νn) is almost surely tight.

Proof The sequence {Vn = V (Xn)} being a nonnegative supermartingale
with E(V0) < ∞, it converges almost surely to some �nite random variable
V∞ (see Theorem A.6). This implies that νnV → V∞ almost surely and the
result follows from Proposition 4.15. QED

Another result, in the same spirit, is

Corollary 4.23 Let V :M → R+ be a proper map. Assume that

PV ≤ ρV + κ,

with κ ≥ 0, 0 ≤ ρ < 1, and E(V (X0)) <∞. Then

lim sup
n→∞

νn
√
V ≤

√
κ

1−√
ρ
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almost surely. In particular, (νn) is tight. The set Inv(P ) is a nonempty
compact convex subset of P(M) and for all µ ∈ Inv(P ), µV ≤ κ

1−ρ
.

Proof SetW =
√
V . Then by Jensen's Inequality, PW ≤

√
PV ≤

√
ρV + κ ≤√

ρW +
√
κ. Set LW (x) = PW (x)−W (x),M0 = 0, and

Mn = W (Xn)−W (X0)−
n−1∑
k=0

LW (Xk)

for all n ≥ 1. Then (Mn) is an L2-martingale whose predictable quadratic
variation process is given as 〈M〉0 = 0 and

〈M〉n+1−〈M〉n = E((Mn+1−Mn)
2|Fn)) = PV (Xn)−(PW )2(Xn) ≤ PV (Xn)

for n ≥ 0. Thus E(〈M〉n) ≤
∑n

i=0 E(P
i+1V (X0)) ≤ n κ

1−ρ
+ ρ

1−ρ
E(V (X0)),

where the last inequality easily follows from the assumptions on V. Then,
by the second strong law of large numbers for L2-martingales (Theorem A.8
(iv)), Mn

n
→ 0 almost surely. Now, because −LW ≥ (1−√

ρ)W −
√
κ,

(1−√
ρ)νnW ≤

√
κ+

Mn

n
+
W (X0)

n
.

This, combined with Proposition 4.15, proves the �rst statement.
By Theorem 4.20, Inv(P ) is nonempty. Let µ ∈ Inv(P ). For all n ∈ N∗,

P nV ≤ ρnV + κ
1− ρn

1− ρ
≤ ρnV + κ

1

1− ρ
.

Thus, by invariance and Jensen's Inequality,

µ(V ∧M) = µP n(V ∧M) ≤ µ(P nV ∧M) ≤ µ((ρnV +
κ

1− ρ
) ∧M).

Letting n → ∞ in the right-hand term and using dominated convergence
shows that µ(V ∧ M) ≤ κ

1−ρ
. Then µV ≤ κ

1−ρ
by monotone convergence.

Compactness follows from Proposition 4.15 and Prohorov's Theorem. QED

Exercise 4.24 [Invariant measures and mean-occupation] Let (Xk) be a
Markov chain, T a �nite stopping time (i.e., T < ∞ a.s) and let ν be the
"mean occupation measure up to time T" de�ned for all f ∈ B(M), f ≥ 0,
as

νf := E

(T−1∑
k=0

f(Xk)

)
.
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(i) Show that ν(Pf)− νf = E(f(XT ))− E(f(X0)).

(ii) Show that if X0 and XT have the same distribution and E(T ) <∞, then
ν

ν(1)
is an invariant probability measure for the chain.

4.2.1 Excessive measures

A measure µ is called excessive provided

µP ≤ µ.

Lemma 4.25 Every �nite excessive measure is invariant.

Proof If µ is a �nite excessive measure, then µP (A) ≤ µ(A) and µ(M) −
µP (A) = µP (Ac) ≤ µ(Ac) = µ(M)− µ(A), so that µP (A) = µ(A). QED

Given two Borel measures α and β on M , one calls α absolutely continuous
with respect to β and writes α � β if for every A ∈ B(M), β(A) = 0 implies
that α(A) = 0. One says that α and β are mutually singular and writes α ⊥ β
if there is A ∈ B(M) such that α(A) = β(Ac) = 0. Let µ and ν be Borel
measures on M . By Lebesgue's Decomposition Theorem (see, e.g., Theorem
3.8 in [27]), ν = νac + νs, where νac � µ and νs ⊥ µ. Equivalently,

ν(dx) = h(x)µ(dx) + 1A(x)ν(dx),

where h ∈ L1(µ) and µ(A) = 0.

Lemma 4.26 Let µ, ν ∈ Inv(P ). Then the absolutely continuous and the sin-
gular parts of ν with respect to µ are invariant measures.

Proof Write ν(dx) = h(x)µ(dx)+1A(x)ν(dx) with h ∈ L1(µ) and µ(A) = 0.
By invariance, µ(A) =

∫
P (x,A)µ(dx) = 0, so that P (x,A) = 0 for µ-almost

every x ∈M. Thus, for every Borel set B,∫
P (x,B)h(x) µ(dx) =

∫
P (x,B ∩ Ac)h(x) µ(dx) ≤ ν(B ∩ Ac) = (hµ)(B).

This proves that h(x)µ(dx) is �nite and excessive, hence invariant. Since
1A(x)ν(dx) = ν(dx)−h(x)µ(dx) and since ν ∈ Inv(P ), the measure 1A(x)ν(dx)
is invariant as well. QED
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4.2.2 Ergodic probability measures

Let µ ∈ Inv(P ). A bounded, measurable function g is called (P, µ)-invariant
provided Pg = g, µ-almost surely. A set A ∈ B(M) is called (P, µ)-invariant
if 1A is (P, µ)-invariant.

An invariant probability measure µ is called ergodic (for P ) if every (P, µ)-
invariant function is µ-almost surely constant. (A function f : M → R is
called µ-almost surely constant if there is c ∈ R such that f(x) = c for
µ-almost every x ∈M.)

Lemma 4.27 A probability measure µ ∈ Inv(P ) is ergodic if and only if every
(P, µ)-invariant set has µ-measure 0 or 1.

Proof Suppose �rst that µ ∈ Inv(P ) is not ergodic. Then there exists a
bounded, measurable function h such that Ph = h, µ-almost surely, and for
every c ∈ R

µ({x ∈M : h(x) = c}) < 1.

It follows that for some c ∈ R, A := {x ∈ M : h(x) > c} has µ-measure
di�erent from 0 and 1.

Claim: A is (P, µ)-invariant.
Proof of the claim: By Jensen's Inequality, |Ph| ≤ P |h|. Since µ(P |h| −

|h|) = 0 by P -invariance of µ, and since Ph = h µ-almost surely, this proves
that |h| is (P, µ)-invariant as well. Hence, max(0, h) = 1

2
(h + |h|) is (P, µ)-

invariant. Similarly,

hn := min(nmax(0, h− c), 1)

is (P, µ)-invariant for every n ≥ 1. Since limn→∞ hn = 1A, 1A is (P, µ)-
invariant as the pointwise limit of a uniformly bounded sequence of (P, µ)-
invariant functions. This proves the claim and one direction of the lemma.

For the converse direction, let µ be ergodic and let A be a (P, µ)-invariant
set. Then 1A is a (P, µ)-invariant function, and ergodicity of µ implies that
there is c ∈ R such that 1A is µ-almost surely equal to c. Necessarily, c ∈
{0, 1}, whence it follows that µ(A) ∈ {0, 1}. QED

Remark 4.28 One usually de�nes a harmonic map as a measurable map
(bounded or nonnegative) such that Pf = f. Note that a harmonic map is
(P, µ)-invariant for every µ ∈ Inv(P ).
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A probability measure µ ∈ Inv(P ) is called extremal if it cannot be written as
µ = (1− t)µ0 + tµ1 with µ0, µ1 ∈ Inv(P ), 0 < t < 1, and µ0 6= µ1. Notice that
an extremal invariant probability measure cannot be written as the sum of
two nontrivial invariant measures that are mutually singular. This fact will
be used below in the proof of Proposition 4.29 (ii).

Proposition 4.29 (i) An invariant probability measure µ is ergodic if and
only if it is extremal.

(ii) Two distinct ergodic probability measures are mutually singular.

Proof (i). Suppose that µ is nonergodic. By Lemma 4.27, there exists a
(P, µ)-invariant set A such that 0 < µ(A) < 1. Let µA(·) := µ(A ∩ ·)/µ(A).
We claim that for every g ∈ B(M),

P (g1A) = (Pg)1A

µ-almost surely. Indeed, by the Cauchy�Schwarz Inequality,

|P (g1A)|2 ≤ P (g2)P (1A) = P (g2)1A

µ-almost surely. Thus P (g1A)1Ac = 0, µ-almost surely, and, interchanging
the roles of A and Ac, P (g1Ac)1A = 0, µ-almost surely. On the other hand,

P (g1A)− (Pg)1A = [P (g1A)− Pg]1A + P (g1A)1Ac

= −P (g1Ac)1A + P (g1A)1Ac = 0.

This proves the claim. Therefore,

µA(Pg) =
1

µ(A)
µ((Pg)1A) =

1

µ(A)
µ(P (g1A))

=
1

µ(A)
µ(g1A) = µA(g).

This proves that µA is an invariant probability measure. Similarly, µAc is an
invariant probability measure, and since µ = µ(A)µA + (1 − µ(A))µAc , the
probability measure µ is nonextremal.

Suppose now that µ is ergodic and that µ = (1− t)µ0 + tµ1 with µ0, µ1 ∈
Inv(P ) and t ∈ [0, 1]. If t 6= 0, µ1 � µ. Hence, there exists h ∈ L1(µ) such
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that µ1(dx) = h(x)µ(dx). Furthermore, h ≤ 1/t, µ-almost surely, because for
all c > 0,

tcµ{h ≥ c} ≤ tµ1{h ≥ c} ≤ µ{h ≥ c}.

In particular, h and Ph lie in L2(µ). Then, by Jensen's Inequality,

0 ≤ µ((Ph− h)2) = µ((Ph)2 − 2hPh+ h2) ≤ µ(Ph2 − 2hPh+ h2)

= 2µh2 − 2µ1Ph = 2µh2 − 2µ1h = 0,

from which it follows that Ph = h, µ-almost surely, and, by ergodicity and
the fact that µ and µ1 are probability measures, h = 1. As a result, t = 1 and
µ is extremal.

(ii). Let µ and ν be ergodic. Write ν(dx) = h(x)µ(dx) + µs(dx) with µs

singular with respect to µ and h ∈ L1(µ). By Lemma 4.26, h(x)µ(dx) and µs

are invariant, and by extremality either h = 0 or µs = 0. If h = 0, we are
done. If µs = 0, we claim that Ph = h, µ-almost surely. Thus, by ergodicity,
h = 1, µ-almost surely. This yields µ = ν and we are done. The proof of the
claim is easy if h ∈ L2(µ) because, reasoning exactly as in the end of the proof
of (i), one �nds that µ(Ph−h)2 = 0. If now h ∈ L1(µ)\L2(µ), set hn = h∧n
and µn = hnµ. Then, for all A ∈ B(M), µnP (A) ≤ nµP (A) = nµ(A) and
µn(A) ≤ νP (A) = ν(A). Thus

µnP (A) = µnP (A ∩ {h ≤ n}) + µnP (A ∩ {h > n})

≤ ν(A ∩ {h ≤ n}) + nµ(A ∩ {h > n}) = µn(A).

This shows that µn is excessive, hence invariant, by Lemma 4.2.1. Thus,
Phn = hn, by what precedes, and Ph = h, µ-almost surely, by monotone
convergence. QED

4.3 Unique ergodicity

We say that (Xn) or P is uniquely ergodic if the set of P -invariant probability
measures has cardinality one. An immediate consequence of the preceding
section is

Proposition 4.30 If P is uniquely ergodic, then its invariant probability
measure is ergodic.
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While a deterministic dynamical system is rarely uniquely ergodic (see Section
4.4 for a de�nition of ergodic probability measures for deterministic dynamical
systems), this property is much more often satis�ed by random dynamical
systems and Markov chains. We start with a simple situation, which can be
seen as a random version of the Banach �xed point theorem.

4.3.1 Unique ergodicity of random contractions

Throughout this subsection, let M be a complete, separable metric space.
Recall that a map f :M →M is a contraction if its Lipschitz constant

Lip(f) := sup

{
d(f(x), f(y))

d(x, y)
: x 6= y

}
is < 1. By the Banach �xed point theorem, a contraction f has a unique
�xed point x∗, and for all x ∈ M, fn(x) → x∗ at an exponential rate. Here,
using the notation of Chapter 3, we shall consider a Markov chain recursively
de�ned by

Xn+1 = Fθn+1(Xn)

under the assumption that the maps Fθ are contracting on average.
More precisely, we assume that for each θ ∈ Θ, the map Fθ is Lipschitz

continuous, and we let lθ := Lip(Fθ). Note that, by separability, the supre-
mum in the de�nition of the Lipschitz constant can be chosen over a countable
set, so that lθ is measurable in θ.

We say that the family {Fθ} is contracting on average if
∫
log(lθ)

+ m(dθ) <
∞ and ∫

log(lθ) m(dθ) =: −α < 0.

Here, we allow for α to be+∞. The next result is classical and has been proved
in several places. Here we follow the approach of Diaconis and Freedman [19].

Theorem 4.31 Assume that {Fθ} is contracting on average and that∫
log(d(Fθ(x0), x0))

+ m(dθ) <∞ (4.9)

for some x0 ∈ M. Then the induced Markov chain has a unique invariant
probability measure µ∗, and Xn converges in distribution to µ∗. In other words,
for every probability measure µ on M,

µP n ⇒ µ∗.
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If we furthermore assume that α <∞,

A := sup
θ

| log(lθ) + α |<∞

and

B :=

∫
d(Fθ(x0), x0) m(dθ) <∞,

then for every x ∈M there is C(x) > 0 such that

ρ(δxP
n, µ∗) ≤ C(x)e−nβ, ∀n ∈ N,

where ρ stands for the Fortet-Mourier distance (see (4.2)), and
β := min{α/4, α2/(32A2)}.

Proof For all x ∈M, set Xx
n := Fθn ◦ . . .◦Fθ1(x) and Y

x
n := Fθ1 ◦ . . .◦Fθn(x).

The idea of the proof is to show that (Y x
n ) converges almost surely (and thus

in law) to some random variable Y∞ independent of x. Since Xx
n and Y x

n have
the same law, this implies that (Xx

n) converges in law to Y∞.
To shorten notation, set ln := lθn , Ln :=

∏n
i=1 li, and Yn := Y x0

n for x0 as
in (4.9). By the strong law of large numbers, P-almost surely,

lim
n→∞

log(Ln)

n
= −α ∈ [−∞, 0). (4.10)

Thus, P-almost surely,

lim sup
n→∞

log(d(Y x
n , Yn))

n
≤ −α

because d(Y x
n , Y

y
n ) ≤ Lnd(x, y). We shall now show that (Yn) is almost surely

Cauchy, by completeness of M hence convergent.
For all n, p ∈ N,

d(Yn+p, Yn) ≤
p−1∑
i=0

d(Yn+i+1, Yn+i) ≤
∑
i≥0

Ln+id(Fθn+i+1
(x0), x0). (4.11)

Let 0 < ε < α/2. Then∑
n≥1

P(log d(Fθn(x0), x0) ≥ εn) ≤
∑
n≥1

P(log(d(Fθ1(x0), x0))
+ ≥ εn)
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≤ 1

ε
E(log(d(Fθ1(x0), x0))

+) <∞.

(Here, we used that
∑

n≥1 P(ξ ≥ n) ≤ E(ξ) for every nonnegative random
variable ξ, as well as the integrability condition in (4.9).) Thus, by Borel�
Cantelli,

lim sup
n→∞

log d(Fθn(x0), x0)

n
≤ ε

almost surely. Combined with (4.11) and (4.10), it follows that, almost surely,
for n large enough,

d(Yn+p, Yn) ≤
∑
i≥0

e−(n+i)(α−2ε).

This concludes the proof of the �rst statement, with µ∗ the law of the limiting
random variable Y∞ (see also Exercise 4.32).

We now pass to the second statement. For every bounded Lipschitz func-
tion f with ‖f‖bl ≤ 1 and for every δ > 0,

|δxP nf − µ∗f | = |E(f(Y x
n )− f(Y∞))| ≤ δ + 2P(d(Y x

n , Y∞) ≥ δ). (4.12)

First observe that by (4.11),

d(Y x
n , Y∞) ≤ d(Y x

n , Yn) + d(Yn, Y∞) ≤ Lnd(x, x0) +
∑
i≥0

Ln+id(x0, Fθn+i+1
(x0)).

By Markov's Inequality,

P(d(x0, Fθn(x0)) ≥ eεn) ≤ Be−εn

and by a standard Cherno� inequality (see Exercise 4.33 below),

P(Ln ≥ e(−α+ε)n) ≤ e−n(ε2/2A2).

Thus
P(d(Y x

n , Y∞) ≥ e(−α+ε)nd(x, x0) +
∑
i≥0

e(−α+ε)(n+i)eε(n+i))

≤ e−n(ε2/2A2) +
∑
i≥0

(
e−(n+i)(ε2/2A2) +Be−ε(n+i)

)
.

Choose ε = α/4. Then

P(d(Y x
n , Y∞) ≥ e−nα/2(d(x, x0) +

1

1− e−α/2
))
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≤ e−nα2/(32A2)

(
1 +

1

1− e−α2/(32A2)

)
+Be−nα/4 1

1− e−α/4
,

and we obtain the desired estimate with the help of (4.12). QED

Exercise 4.32 Let P be a Markov kernel on a separable metric space M ,
and let µ∗ be a Borel probability measure on M such that for every x ∈ M ,
δxP

n converges weakly to µ∗ as n → ∞. Show that if P is Feller, then µ∗ is
the unique invariant probability measure for P .

Exercise 4.33 [Cherno� bounds] Let X be an L1-random variable with zero
mean. Assume that E(eλ0X) <∞ for some λ0 > 0. Let g(λ) := ln(E(eλX)).

(i) Show that for all ε > 0 and 0 ≤ λ ≤ λ0,

P(X ≥ ε) ≤ e−λε+g(λ)

and
P(X ≥ ε) ≤ e−g∗(ε),

where
g∗(ε) := sup

0≤λ≤λ0

(λε− g(λ)) .

(ii) Assume |X| ≤ A < ∞. Show that g(λ) ≤ A2λ2

2
and g∗(ε) ≥ ε2

2A2 . Hint:
For the �rst inequality, it may help to use convexity of g.

(iii) Let (Xn) be a sequence of i.i.d. random variables with the same distri-
bution as X. Show that

P(X1 + . . .+Xn ≥ nε) ≤ e−ng∗(ε).

4.4 Ergodic theorems

4.4.1 Classical results from ergodic theory

We �rst recall some basic de�nitions from ergodic theory. There are numerous
textbooks on the subject including Cornfeld, Fomin, Sinaï [17], Mañe [48],
Katok and Haselblatt [42].
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Let (X,F) be a measurable space and T : X → X a measurable mapping.
A probability measure P over X is called T -invariant (or simply invariant) if

P(T−1(A)) = P(A)

for all A ∈ F . Given such a P, a measurable function g : X → R is called
(T,P)-invariant if g ◦ T = g, P-almost surely, and a measurable set A ∈ F is
called (T,P)-invariant if 1A is (T,P)-invariant. One also de�nes a T -invariant
set (or simply invariant set) as a set A ∈ F such that T−1(A) = A. Note that
this de�nition of invariance makes no reference to the measure P and that a
T -invariant set is clearly (T,P)-invariant.

A T -invariant probability measure P is called T -ergodic (or simply ergodic)
provided that every (T,P)-invariant function is P-almost surely constant.

Example 4.34 A periodic point of period d ≥ 1 for T is a point x ∈ X such
that T d(x) = x and T i(x) 6= x for i = 1, . . . , d − 1. Given such a point, the
measure

1

d
(δx + δT (x) + . . .+ δT d−1(x))

is T -ergodic.

Remark 4.35 One sometimes says that T is ergodic with respect to P to
mean that P is T -ergodic.

Proposition 4.36 The following assertions are equivalent:

(a) The probability measure P is T -ergodic;

(b) Every (T,P)-invariant set has P-measure 0 or 1;

(c) Every T -invariant set has P-measure 0 or 1.

Proof The implications (a) ⇒ (b) ⇒ (c) are obvious. To show that (c) ⇒
(b), let A be a (T,P)-invariant set. The set

Ã := {x ∈ X : T k(x) ∈ A for in�nitely many k ∈ N}

is invariant. Hence, by (c), P(Ã) ∈ {0, 1}. If x ∈ A \ Ã, there exists k ≥ 1
such that x ∈ A \ T−k(A), and if x ∈ Ã \ A, there exists k ≥ 1 such that
x ∈ T−k(A) \ A. It then follows that

A∆Ã ⊂
⋃
k≥1

A∆T−k(A).
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Thus
P(A∆Ã) ≤

∑
k≥1

P(A∆T−k(A)).

Now

P(A∆T−k(A)) ≤
k−1∑
i=0

P(T−i(A)∆T−(i+1)(A)) = kP(A∆T−1(A)) = 0.

It remains to prove that (b) ⇒ (a). Let h be (T,P)-invariant. Then, for each
c ∈ R, the set {x ∈ X : h(x) > c} is (T,P)-invariant and the result follows.
QED

Exercise 4.37 [Rotations] Let S1 = R/Z, α ∈ S1, and Tα : S1 → S1 be the
rotation x 7→ x+ α. Describe the invariant and ergodic probability measures
of Tα. Show that when α is irrational (i.e., α = ξ +Z with ξ ∈ (0, 1) \Q), Tα
is uniquely ergodic and, more precisely, the normalized Lebesgue measure λ
on S1 is the unique invariant probability measure for Tα.

Exercise 4.38 Let k ≥ 2 be an integer and Zk : S1 → S1, x 7→ kx. Show
that the normalized Lebesgue measure λ is ergodic for Zk. Show that Zk has
in�nitely many periodic points, hence in�nitely many ergodic measures.

Exercise 4.39 [Shift] Let M = {0, 1}N∗
and let Θ be the shift map on M

de�ned by Θ(ω)i = ωi+1. Show the following statements.

(a) For all n ≥ 1, Θ has 2n periodic orbits of period n, and the set of periodic
points is dense in M ;

(b) There is a point x ∈M whose orbit is dense in M ;

(c) The probability measure (1
2
(δ0 + δ1))

⊗N∗
is ergodic for Θ;

(d) There exists a continuous surjective map Ψ :M → S1 such that

Ψ ◦Θ = Z
2 ◦Ψ,

where Z2 is de�ned as in Exercise 4.38. Hint: One can use Exercise 4.9.

Using (d), prove that Z2 possesses a dense orbit and give an alternative proof
of the results of Exercise 4.38 when k = 2.
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Exercise 4.40 Let T : S1 × S1 → S1 × S1, (x, y) 7→ (x + α, y + x) with α
irrational. Show that λ⊗ λ is ergodic. Hint: One can use the fact that every
f ∈ L2(λ⊗λ) can be written as a Fourier series f(x, y) =

∑
k,l∈Z2 cklek(x)el(y),

where ek(x) = e2iπkx and
∑

k,l |ckl|2 <∞.

The �rst important result from ergodic theory is the Poincaré Recurrence
Theorem. Notice that there is no assumption here that P is ergodic.

Theorem 4.41 (Poincaré Recurrence Theorem) Let P be a T -invariant
probability measure. For every measurable set A ⊂ X,

P(A) = P({x ∈ A : T n(x) ∈ A for in�nitely many n}).

Proof For N ∈ N, let

BN := {x ∈ A : {T n(x) : n ≥ N} ⊂ X \ A}.

Then T−n(B1) ∩ B1 = ∅ for all n ≥ 1. Hence T−n(B1) ∩ T−m(B1) = ∅ for all
m,n ∈ N and n 6= m. Thus

1 ≥
∑
n∈N

P(T−n(B1)) =
∑
n∈N

P(B1)

and P(B1) = 0. Replacing T with TN proves that P(BN) = 0. QED

Let I denote the set of all invariant sets. Then I is a σ-�eld. The next result
is the celebrated pointwise Birkho� Ergodic Theorem. The proof given here
follows [42] and goes back to Neveu.

Theorem 4.42 (Birkho� Ergodic Theorem) Let P be a T -invariant prob-
ability measure and let f ∈ L1(P). Then f̂ := E(f |I) is (T,P)-invariant and

lim
n→∞

1

n

n−1∑
i=0

f ◦ T i = f̂

P-almost surely. In particular, if P is T -ergodic, then

lim
n→∞

1

n

n−1∑
i=0

f ◦ T i = E(f)

P-almost surely.
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Proof For f ∈ L1(P), set Sn(f)(x) :=
∑n−1

i=0 f ◦ T i(x) and f̂ := E(f |I). We
claim that

f̂ < 0, P-almost surely =⇒ lim sup
n→∞

Sn(f)

n
≤ 0, P-almost surely.

Let us �rst derive the theorem from the claim. For ε > 0, set fε := f − f̂ − ε.
Then f̂ε = −ε < 0, and since f̂ is (T,P)-invariant (the proof is easy and left
to the reader),

lim sup
n→∞

Sn(f)

n
− f̂ − ε = lim sup

n→∞

Sn(fε)

n
≤ 0.

Thus, ε being arbitrary, lim supn→∞
Sn(f)

n
≤ f̂ . Similarly, lim infn→∞

Sn(f)
n

≥
f̂ .

We now move on to the proof of the claim. For n ∈ N∗ and x ∈ X, let

Fn(x) := max{Sk(f)(x) : k = 1, . . . , n},

F∞(x) := limn→∞ Fn(x) ∈ R ∪ {∞}, and A := {F∞ = ∞}. Clearly

lim sup
n→∞

Sn(f)

n
≤ 0

on X \ A and it su�ces to prove that P(A) = 0. Now observe that Fn+1 −
Fn ◦ T = f − min(0, Fn ◦ T ). Consequently, A ∈ I and (Fn+1 − Fn ◦ T )
decreases to f − min(0, F∞ ◦ T ). In particular, by monotone convergence,
limn→∞ E((Fn+1 − Fn ◦ T )1A) = E(f1A) = E(f̂1A). By T -invariance of P,
the left-hand side is nonnegative. Hence, if f̂ < 0, P-almost surely, then
necessarily P(A) = 0. QED

The next theorem, known as the Ergodic Decomposition Theorem, shows that
every invariant measure on a Borel subset of a Polish space equipped with
the Borel σ-�eld can be written as a �sum� of ergodic measures.

Theorem 4.43 (Ergodic Decomposition Theorem) Let M be a Borel
subset of a Polish space, with Borel σ-�eld B(M). Let T : M → M be a
measurable transformation. Every T -invariant probability measure P can be
decomposed as

P(·) =
∫
M

P (x, ·) P(dx),

where P is a Markov kernel on (M,B(M)) such that P (x, ·) is ergodic for
P-almost every x.
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Before proving the Ergodic Decomposition Theorem, we state without
proof a lemma that can be deduced from Theorem 10.2.2 in [21] and the
Monotone Class Theorem in the appendix.

Lemma 4.44 Let M be a Borel subset of a Polish space, with Borel σ-�eld
B(M). Let P be a probability measure on (M,B(M)), and let A be a sub-
σ-�eld of B(M). Then there exists a Markov kernel P on (M,B(M)) such
that for every f ∈ B(M), Pf is a representative of E(f |A), i.e., Pf is A-
measurable and E(1APf) = E(1Af) for every A ∈ A.

Proof [Theorem 4.43] Recall that I denotes the σ-�eld of T -invariant
sets in B(M). By Lemma 4.44, there is a Markov kernel P on (M,B(M)) such
that for every f ∈ B(M), Pf is a representative of E(f |I). This yields

P(A) = E(E(1A|I)) =
∫
M

P (x,A) P(dx), ∀A ∈ B(M).

As a subset of a separable metric space, M is separable (see Exercise 4.45 (ii)
below). Proposition 4.5 implies the existence of a countable family {fn}n∈N ⊂
Cb(M) such that for every µ, ν ∈ P(M), µ = ν if and only if µfn = νfn
for all n ∈ N. For every n ∈ N, Pfn is a representative of E(fn|I), and
x 7→ P (x, T−1(·))fn = P (fn ◦T )(x) is a representative of E(fn ◦T |I). Since P
is T -invariant, we have E(fn|I) = E(fn ◦ T |I) for every n ∈ N, hence P (x, ·)
is T -invariant for P-almost every x.

To show that P (x, ·) is ergodic for P-almost every x, we follow the proof of
Theorem 6.2 in [24]. Since M is a separable metric space, the σ-�eld B(M) is
countably generated, i.e., there is a countable family of sets {An}n∈N such that
B(M) = σ(An : n ∈ N) (see Exercise 4.45 (iii)). As a result, L1(M,B(M),P)
is separable (see parts (i) and (ii) of Exercise 4.46 below). Since the set
{1A : A ∈ I} is contained in L1(M,B(M),P), it is also separable in the
L1-topology, so there is a countable family {An}n∈N ⊂ I such that for every
A ∈ I and for every ϵ > 0, there is n ∈ N with P(A4An) < ϵ.

Let I0 := σ(An : n ∈ N). By de�nition, I0 is a countably generated
sub-σ-�eld of I. Moreover, I0 and I are P-equivalent, i.e., for every A ∈ I
there is B ∈ I0 such that P(A4B) = 0 (see Exercise 4.46 (iii)). As I need
not be countably generated (see Exercise 4.48 below), we will work with I0 in
the remainder of the proof. Applying Lemma 4.44 to I0, we obtain a Markov
kernel Q on (M,B(M)) such that for every f ∈ B(M), Qf is a representative
of E(f |I0). Let {fn}n∈N ⊂ Cb(M) be as above. For n ∈ N, consider the
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function hn := Qfn. Since I and I0 are P-equivalent, E(fn|I) = E(fn|I0). As
a result, there is M1 ∈ B(M) such that P(M1) = 1 and for every x ∈ M1,
P (x, ·) is T -invariant and

hn(x) = P (x, ·)fn, ∀n ∈ N.

Hence, Q(x, ·) = P (x, ·) is T -invariant for every x ∈ M1. By Birkho�'s Er-
godic Theorem 4.42, there is M2 ⊂ M1 such that P(M2) = 1 and for every
x ∈M2,

lim
N→∞

1

N

N−1∑
k=0

fn(T
k(x)) = hn(x), ∀n ∈ N.

And as both Q(·, An) and 1An are representatives of E(1An |I0), there isM
3 ⊂

M2 such that P(M3) = 1 and Q(x,An) = 1An(x) for every x ∈M3 and n ∈ N.
Finally, as Q(·,M 3) is a representative of E(1M3 |I0) and as P(M3) = 1, there
is M4 ⊂M3 such that P(M4) = 1 and Q(x,M 3) = 1 for every x ∈M4.

Let us show that Q(x, ·) is ergodic for every x ∈M4, which will complete
the proof of the Ergodic Decomposition Theorem. Fix x ∈ M4 and A ∈ I.
In light of Proposition 4.36, it is enough to show that Q(x,A) ∈ {0, 1}. If
Q(x,A) = 0, we are done. If Q(x,A) > 0, consider the probability measure

ν(B) :=
Q(x,A ∩ B)

Q(x,A)
, B ∈ B(M).

Since ν(A) = 1, it su�ces to show that Q(x, ·) = ν, which will follow from

hn(x) = νfn, ∀n ∈ N. (4.13)

Set
[x] :=

⋂
A∈I0:x∈A

A.

By part Exercise 4.47 (i) below, one has

[x] =
⋂

n:x∈An

An ∩
⋂

n:x/∈An

Ac
n (4.14)

and [x] ∈ I0. Fix n ∈ N. Since hn is I0-measurable, it is constant on the set
[x] by Exercise 4.47 (ii). Therefore, we have for every y ∈ [x] ∩M3

hn(x) = hn(y) = lim
N→∞

N−1∑
k=0

fn(T
k(y)).
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Since x ∈ M3, the representation of [x] in (4.14) implies Q(x, [x]) = 1 and
thus Q(x, [x] ∩M3) = 1. Since Q(x, ·) is T -invariant, another application of
Birkho�'s Ergodic Theorem then yields that the constant hn(x) is a repre-
sentative of EQ(x,·)(fn|I), where EQ(x,·) denotes expectation with respect to
Q(x, ·). Consequently,

hn(x)Q(x,A) = EQ(x,·)(1Ahn(x)) = EQ(x,·)(1Afn) =

∫
M

1A(z)fn(z) Q(x, dz).

Dividing both sides by Q(x,A) gives (4.13). QED

Exercise 4.45 [Properties of separable metric spaces] Let (M,d) be a sep-
arable metric space.

(i) LetD ⊂M be countable and dense. Show that {B(x, r) : x ∈ D, r ∈ Q∗
+}

is a basis for the topology on M, where B(x, r) stands for the open ball
with center x and radius r.

(ii) Let A be any subset of M . Show that A with the metric induced from
M is itself a separable metric space.

(iii) Show that the Borel σ-�eld B(M) is countably generated.

Exercise 4.46 For an arbitrary probability space (Ω,F ,P), prove the fol-
lowing statements:

(i) If F is countably generated, then (Ω,F ,P) is separable, i.e., there is a
countable family D ⊂ F such that for every A ∈ F and ϵ > 0 there is
B ∈ D with P(A4B) < ϵ.

(ii) If (Ω,F ,P) is separable, then L1(Ω,F ,P) is a separable metric space.

(iii) If (Ω,F ,P) is separable, then for every A ∈ F there is B ∈ σ(D) such
that P(A4B) = 0.

Exercise 4.47 Let (Ω,F) be a measurable space, let {An}n∈N ⊂ F be a
countable family of sets, and let A := σ(An : n ∈ N). For x ∈ Ω, set

[x]A :=
⋂

A∈A:x∈A

A.
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(i) Show that for every x ∈ Ω,

[x]A =
⋂

n:x∈An

An ∩
⋂

n:x/∈An

Ac
n,

and deduce that [x]A ∈ A.

(ii) Let f : Ω → R be A-measurable and let x ∈ Ω. Show that f is constant
on [x]A.

The next exercise shows that I, the σ-�eld of T -invariant sets, need not
be countably generated.

Exercise 4.48 Consider the irrational rotation Tα of Exercise 4.37 with α
irrational. Let I be the σ-�eld of Tα-invariant sets. Use the formula from
Exercise 4.47 (i) to show that I is not countably generated, even though
B(S1) is.

4.4.2 Application to Markov chains

Consider now the canonical chain introduced in Remark 1.7 in Section 1.2.1.
Let Θ : MN → MN be the shift operator de�ned by Θ(ω)n := ωn+1 and let
Pν be the law of the canonical chain with initial distribution ν and kernel P.
Recall that Pν is a probability measure over MN characterized by (1.5).

Proposition 4.49 (i) Pν is Θ-invariant if and only if ν ∈ Inv(P ).

(ii) Let ν ∈ Inv(P ) and let h ∈ L1(Pν) be (Θ,Pν)-invariant. For x ∈M such
that h ∈ L1(Px), let

h(x) := Ex(h) =

∫
h dPx.

Then

(a) h(ω) = h(ω0), Pν-almost surely;

(b) h is (P, ν)-invariant.

(iii) Pν is Θ-ergodic if and only if ν is P -ergodic.



90CHAPTER 4. INVARIANT AND ERGODIC PROBABILITYMEASURES

Proof (i). This follows easily from the de�nitions.
(ii). Let h ∈ L1(Pν) be (Θ,Pν)-invariant. For n ∈ N, set hn := Eν(h|Fn).

By Doob's martingale convergence theorem (Theorem A.7), hn converges
Pν-almost surely, hence in probability, to h. In particular, for all ε > 0,
limn→∞ Pν(|hn+1 − hn| > ε) = 0. By (Θ,Pν)-invariance of h and by the
Markov property from Proposition 1.9,

hn = Eν(h ◦Θn|Fn) = Eωn(h) = h(ωn).

Thus,
Pν(|hn+1 − hn| > ε) = Pν(|h(ωn+1)− h(ωn)| > ε). (4.15)

Since ν ∈ Inv(P ), (i) implies that Pν is Θ-invariant. The expression on the
right-hand side of (4.15) thus equals Pν(|h(ω1) − h(ω0)| > ε), which proves
that hn = h0 = h. Also, by the Markov property, Ph(x) = Ex(EX1(h)) =
Ex(Ex(h ◦ Θ|F1)) = Ex(h ◦ Θ). And as h is (Θ,Pν)-invariant, we have for
ν-almost every x ∈M that Ex(h ◦Θ) = h(x).

(iii). Let ν be P -ergodic. We will show that every (Θ,Pν)-invariant func-
tion h ∈ L1(Pν) is Pν-almost surely constant. In particular, every (Θ,Pν)-
invariant set has Pν-measure 0 or 1, so Pν is Θ-ergodic by Proposition 4.36.
If h ∈ L1(Pν) is (Θ,Pν)-invariant, then h is ν-almost surely constant by (ii)
and P -ergodicity of ν. By (ii), this proves that h is Pν-almost surely constant.

Conversely, assume that Pν is Θ-ergodic. Let A be a (P, ν)-invariant set.
Set Ã := {ω ∈ MN : ω0 ∈ A}. Then Pν(Ã ∩ Θ−1(Ã)) =

∫
A
ν(dx)P (x,A) =

ν(A) = Pν(Ã). This shows that Ã is (Θ,Pν)-invariant. Hence ν(A) = Pν(Ã) ∈
{0, 1}. QED

Theorem 4.50 Let P be a Markov kernel, µ ∈ Inv(P ), and h ∈ L1(Pµ). Then
there exist a set N ∈ B(M) and a function h ∈ L1(µ) such that µ(N) = 1
and, for all x ∈ N,

lim
n→∞

1

n

n−1∑
k=0

h ◦Θk(ω) = h(x)

Px-almost surely. If µ is ergodic, then h(x) = Eµ(h).

Proof By Birkho�'s Ergodic Theorem, 1
n

∑n−1
k=0 h ◦ Θk(ω) converges Pµ-

almost surely to a (Θ,Pµ)-invariant function ĥ ∈ L1(Pµ). According to Propo-

sition 4.49 (ii), ĥ(ω) = h(ω0), Pµ-almost surely, where h(ω0) := Eω0(h). To
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conclude the proof, we use the fact that Pµ(·) =
∫
M
Px(·)µ(dx). QED

Exercise 4.51 [Skew product chains] Let M,N be two metric spaces and

T :M ×N → N,

(x, y) 7→ Tx(y)

a measurable map. Let (Xn) be an M -valued Markov chain de�ned on some
�ltered probability space (Ω,F ,F,P) and let Y0 ∈ N be an F0-measurable
random variable. Consider the stochastic process (Yn) de�ned by

Yn+1 = TXn(Yn).

(i) Show that (Xn, Yn) is a Markov chain on (Ω,F ,F,P).

(ii) Suppose µ ∈ P(M) is an invariant probability measure for (Xn) and
ν ∈ P(M) is Tx-invariant for all x ∈ M. Show that µ ⊗ ν is invariant
for (Xn, Yn).

(iii) We suppose here that µ is the unique invariant probability measure of
(Xn).

(a) Give an example where ν is Tx-ergodic, but µ⊗ ν is not.

(b) (inspired by Lemma 2.1 in [29]) Suppose that µ ⊗ ν is ergodic for
(Xn, Yn) and that for all x ∈M , Tx is 1-Lipschitz, i.e.,

d(Tx(y), Tx(z)) ≤ d(y, z)

for all x ∈M, y, z ∈ N. Show that for all f ∈ Lb(M×N), µ-almost
all x ∈M , and all y ∈ supp(ν),

Px,y( lim
n→∞

1

n

n∑
k=1

f(Xk, Yk) = (µ⊗ ν)(f)) = 1.

Deduce that, if supp(ν) = N, then (Xn, Yn) is uniquely ergodic.

(iv) Using (iii) show that the map de�ned in Exercise 4.40 is uniquely er-
godic. Deduce that for all β irrational, the sequence (n2β)n≥1 is equidis-
tributed on S1. Hint: Choose β = 2α. See [28], Corollaries 1.12 and
1.13.
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Exercise 4.52 [Markov rotations] With the notation of the preceding Exer-
cise 4.51, we assume here that M = {1, . . . , n}, N = S1, (Xn) is a Markov
chain on M whose transition probability matrix K is irreducible, and that
for all i ∈M,Ti(y) = y + αi for some αi ∈ S1.

A circuit for K is a sequence (i1, . . . , id) of d ≥ 1 distinct points such that
K(ik, ik+1) > 0 for k = 1, . . . , d and id+1 = i1. The purpose of this exercise is
to show that the chain (Xn, Yn) is uniquely ergodic if and only if there exists
a circuit (i1, . . . , id) such that αi1 + . . .+ αid is irrational.

(i) (preliminary) Let D be a diagonal matrix whose entries θ1, . . . , θn are
complex numbers having modulus 1. Consider the linear equation

Ku = Du (4.16)

with u ∈ Cn. Assume that u ∈ Cn is a nonzero solution to (4.16). Show
that:

(a) |ui| = |u1| for i = 1, . . . , n;

(b) Kij > 0 ⇒ uj = θiui;

(c) For every circuit (i1, . . . , id), θi1 . . . θid = 1.

Prove that there exists a nonzero solution to (4.16) if and only if for
every circuit (i1, . . . , id), θi1 . . . θid = 1.

(ii) Let µ be the unique invariant probability measure of (Xn) and f =
(f1, . . . , fn) ∈ L2(µ⊗λ). Set fj(x) =

∑
k∈Z uj(k)e

2iπkx with
∑

k∈Z |uj(k)|2 <
∞. Show that Pf = f if and only if Ku(k) = Dku(k) for all k ∈ Z,
whereD is the diagonal matrix with entries e2iπα1 , . . . , e2iπαn and u(k) =
(uj(k))j=1,...,n. Here P stands for the kernel of (Xn, Yn).

(iii) Prove the desired result.

The next theorem is the Ergocic Decomposition Theorem for a Markov kernel.

Theorem 4.53 Let M be a Borel subset of a Polish space and let P be a
Markov kernel on (M,B(M)). Every P -invariant probability measure µ can
be decomposed as

µ(·) =
∫
M

Q(x, ·) µ(dx), (4.17)

where Q is a Markov kernel on (M,B(M)) such that Q(x, ·) is P -ergodic for
µ-almost every x.
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Proof Let I(P, µ) be the collection of (P, µ)-invariant sets in B(M). In
Exercise 4.54 below, you are asked to show that I(P, µ) is a σ-�eld. By
Lemma 4.44, there is a Markov kernelQ on (M,B(M)) such that for every f ∈
B(M), Qf is a representative of Eµ(f |I(P, µ)), where Eµ denotes expectation
with respect to µ. In complete analogy to the proof of Theorem 4.43, this
yields the representation in (4.17).

It remains to show that Q(x, ·) is P -ergodic for µ-almost every x ∈ M.
Let (M̃, d) be a Polish space such that M is a Borel subset of M̃ . The space
M̃N equipped with the metric

e(ω, α) :=
∑
i∈N

2−i d(ωi, αi)

1 + d(ωi, αi)

is Polish as well; the corresponding Borel σ-�eld equals the product σ-�eld
B(M̃)⊗N. Thus, MN is a Borel subset of the Polish space M̃N. By Proposition
4.49 (i), the Markov measure Pµ on (MN,B(M)⊗N) is Θ-invariant. Hence,
by the Ergodic Decomposition Theorem 4.43, there is a Markov kernel P on
(MN,B(M)⊗N) such that

Pµ(·) =
∫
MN

P(ω, ·) Pµ(dω),

and P(ω, ·) is Θ-ergodic for Pµ-almost every ω ∈ MN. Moreover, as seen
in the proof of Theorem 4.43, Pf is a representative of Eµ(f |I) for every
f ∈ B(MN), where I is the σ-�eld of Θ-invariant sets in B(M)⊗N. We will
now relate the Markov kernels Q and P by showing that Pµ-almost surely,

P(ω, ·) = PQ(ω0,·)(·).

Let {Fn}n∈N ⊂ Cb(M
N) such that for every P,Q ∈ P(MN), P = Q if and

only if PFn = QFn for all n ∈ N. In Exercise 1.8, we introduced the canonical
projections πn : MN → Mn+1, ω 7→ (ωi)i=0,...,n. We use π0 to de�ne the
σ-�eld

J := {π−1
0 (A) : A ∈ I(P, µ)}.

Claim: The σ-�elds J and I are Pµ-equivalent.

Proof of the claim: Let S ∈ I and de�ne φ(x) := Px(S) and

A := {x ∈M : φ(x) = 1}.
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By Proposition 4.49 (ii)(b), φ is (P, µ)-invariant. Since every x ∈ A such that
φ(x) = Pφ(x) satis�es P (x,A) = 1, it follows with Exercise 4.54 (i) that
A ∈ I(P, µ), and hence π−1

0 (A) ∈ J . By Proposition 4.49 (ii)(a),

1S(ω) = φ(ω0)

for Pµ-almost every ω. In particular, φ(ω0) ∈ {0, 1}, Pµ-almost surely, so

1S = 1π−1
0 (A), Pµ-a.s.

Hence,

Pµ(S4π−1
0 (A)) = 0.

Let us now �x a set S ∈ J . Then there is A ∈ I(P, µ) such that S = π−1
0 (A).

Set S̃ := AN =
⋂

n∈N π
−1
n (An+1). A simple induction argument using A ∈

I(P, µ) implies that Pµ(π
−1
n (An+1)) = µ(A) for all n ∈ N. Continuity of Pµ

from above yields

Pµ(S̃) = µ(A) = Pµ(S).

Since S̃ ⊂ S, it follows that Pµ(S4S̃) = 0. And in the proof of Proposition

4.36, it was shown that for every S̃ ∈ I(P, µ) there is Ŝ ∈ I such that
Pµ(Ŝ4S̃) = 0. This completes the proof of the claim.

We now complete the proof of Theorem 4.53. Since I and J are Pµ-
equivalent, we have for every n ∈ N that the representatives of Eµ(Fn|I) and
the representatives of Eµ(Fn|J ) are representatives of Eµ(Fn|σ(I,J )). The
function PFn is a representative of Eµ(Fn|I) and thus also of Eµ(Fn|σ(I,J )).
Let

F0 := {π−1
0 (A) : A ∈ B(M)}.

For n ∈ N, consider the functions

Fn :M → R, x 7→ Ex(Fn)

and

Gn :MN → R, ω 7→ Fn(ω0).

By the Markov property from Proposition 1.9, Gn is a representative of
Eµ(Fn|F0). As a result,

Eµ(Fn|J ) = Eµ(Eµ(Fn|F0)|J ) = Eµ(Gn|J ).
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Next, observe that ω 7→ QFn(ω0) is a representative of Eµ(Gn|J ), and thus
also of Eµ(Fn|J ) and Eµ(Fn|σ(I,J )). This shows that

1 =Pµ

({
ω ∈MN : PFn(ω) = QFn(ω0)

})
=Pµ

({
ω ∈MN : P(ω, ·)Fn = PQ(ω0,·)Fn

})
,

and hence
Pµ

({
ω ∈MN : P(ω, ·) = PQ(ω0,·)

})
= 1.

Let S ∈ B(M)⊗N such that Pµ(S) = 1 and for every ω ∈ S, P(ω, ·) = PQ(ω0,·)
and P(ω, ·) is Θ-ergodic. By Proposition 4.49 (iii), Q(ω0, ·) is P -ergodic for
every ω ∈ S. Since S ∈ B(M)⊗N and since π0 is continuous, the set π0(S)
is analytic (see Theorem 13.2.1 in [21]). Theorem 13.2.6 in [21] implies that
there are A,N ∈ B(M) and B ⊂ N such that µ(N) = 0 and π0(S) = A ∪ B.
It follows that

1 = Pµ(S) ≤ Pµ(π
−1
0 (A ∪N)) = µ(A ∪N) ≤ µ(A) + µ(N) = µ(A),

which completes the proof. QED

Exercise 4.54 Let

I(P, µ) := {A ∈ B(M) : 1A = P (·, A) µ-a.s.}

be the collection of (P, µ)-invariant sets in B(M).

(i) Show that

I(P, µ) = {A ∈ B(M) : µ({x ∈ A : P (x,Ac) > 0}) = 0}.

(ii) With the help of the representation in part (i), show that I(P, µ) is a
σ-�eld.

4.5 Continuous time: Invariant measures for

Markov processes

Let {Pt}t≥0 be a Markov semigroup on M , as de�ned in Section 1.3. A
probability measure µ ∈ P(M) is called invariant for {Pt}t≥0 if it is invariant
for Pt, for all t ≥ 0, i.e., µPt = µ, ∀t ≥ 0. As shown by the following
simple example, being invariant for some Pt is not su�cient to be invariant
for {Pt}t≥0.
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Example 4.55 Consider the deterministic continuous-time rotation onM =
R/Z, given by Xx

t = (x + t) mod 1. The associated semigroup is given by
Ptf(x) = f(Xx

t ). Its unique invariant probability measure is the uniform
measure onM. However, for all k ∈ N∗ and x ∈M, 1

k

∑k−1
i=0 δx+i/k is invariant

for P1/k.

Nevertheless, existence of an invariant probability measure for some Pt always
implies existence of some invariant probability measure for {Pt}t≥0.

Proposition 4.56 Suppose µ is an invariant probability measure for PT for
some T > 0. Then

µT :=
1

T

∫ T

0

µPs(·) ds

is invariant for {Pt}t≥0.

Proof For all r > 0 and f ∈ B(M),∫ T

0

µPsPrf ds =

∫ T

0

µPs+rf ds =

∫ T+r

r

µPsf ds =

∫ T

0

µPsf ds,

where the last equality follows from the fact that, by PT -invariance, the map
s 7→ µPsf is T -periodic. QED

We now introduce a Markov kernel whose invariant probability measures co-
incide with the invariant probability measures of {Pt}. This kernel is usually
called the 1-resolvent (or simply the resolvent of {Pt}t≥0. It is de�ned, for all
f ∈ B(M), as

Gf =

∫ ∞

0

e−tPtf dt. (4.18)

Proposition 4.57 A probability measure µ is invariant for G if and only if
it is invariant for {Pt}t≥0.

Proof Suppose µG = µ. Then, for all f ∈ B(M) and s ≥ 0,

µPsf = µGPsf = es
∫
M

∫ ∞

0

e−(t+s)Pt+sf(x) dt µ(dx) = es
∫ ∞

s

e−rµPrf dr.

This shows, by a simple bootstrap argument, that s 7→ µPsf is C1 and that
d
ds
µPsf |s=0 = 0. Thus

d

dt
µPtf =

d

ds
µPt+sf |s=0 =

d

ds
µPs(Ptf)|s=0 = 0.
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This proves that µPsf = µf. The converse statement is obvious. QED

One of the main interests of Proposition 4.57 is that it allows to extend
easily certain notions introduced for discrete-time chains to continuous-time
processes. For instance, an invariant probability measure for {Pt}t≥0 is ergodic
for {Pt}t≥0 if it is ergodic for the Markov kernel G, as de�ned in Section 4.2.2.
With such a de�nition, the results of Section 4.2.2 as well as the Ergodic
Decomposition Theorem 4.53 apply. Another consequence is the continuous-
time version of the Ergodic Theorem given below as Proposition 4.58.

We �rst de�ne the notion of a progressive process. A continuous-time
process (Xt)t≥0 de�ned on a �ltered probability space (Ω,F ,F,P) is called
progressively measurable (with respect to F), or simply progressive, if for all
t ≥ 0, the map (s, ω) ∈ [0, t] × Ω 7→ Xs(ω) ∈ M is measurable with respect
to B([0, t]) ⊗ Ft. A progressive process is obviously adapted. Conversely, an
adapted process having right-continuous (or left-continuous) paths is progres-
sive (see, e.g., [45] for a proof).

Proposition 4.58 Suppose (Xt)t≥0 is a progressive Markov process with semi-
group {Pt}t≥0. Let U1, U2, . . . be a sequence of independent identically dis-
tributed random variables having an exponential distribution with parameter
1 and independent of (Xt)t≥0. Set T0 = 0, Tn+1 = Tn + Un+1 for n ≥ 0, and
Yn = XTn for n ≥ 0. Then

(i) The process (Yn) is a Markov chain with kernel G;

(ii) For all f ∈ B(M),

lim
t→∞

1

t

∫ t

0

f(Xs) ds−
1

[t]

[t]−1∑
k=0

Gf(Yk) = 0

almost surely, where [t] := max{z ∈ Z : z ≤ t};

(iii) In particular, if µ is ergodic for {Pt}t≥0 and X0 is distributed according
to µ, then

lim
t→∞

1

t

∫ t

0

f(Xs) ds = µ(f)

almost surely.
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Proof (i). Let g, h0, . . . , hn ∈ B(M). Set Σn = {(t1, . . . , tn) ∈ Rn
+ : t1 ≤

t2 ≤ . . . ≤ tn}. By Fubini's Theorem and the Markov property,

E(g(Yn+1)h0(Y0) . . . hn(Yn))

=

∫
Σn

(∫
R+

E(g(Xtn+u)h0(X0)h1(Xt1) . . . hn(Xtn)) e
−u du

)
e−tn dt1 . . . dtn

=

∫
Σn

(∫
R+

E(Pug(Xtn)h0(X0)h1(Xt1) . . . hn(Xtn)) e
−u du

)
e−tn dt1 . . . dtn

=

∫
Σn

E(Gg(Xtn)h0(X0)h1(Xt1) . . . hn(Xtn))e
−tn dt1 . . . dtn

= E(Gg(Yn)h0(Y0) . . . hn(Yn)).

(ii). Fix f ∈ B(M) and let t = (tk)k≥1 be a deterministic increasing
sequence of positive numbers such that tn ↑ ∞ and lim supn→∞

1
n

∑n
k=1(tk+1−

tk)
2 <∞. Let

M t
n =

∫ tn

0

f(Xs) ds−
n∑

k=1

∫ tk−tk−1

0

Psf(Xtk−1
) ds,

with the convention that t0 = 0. Then the sequence (M t
n)n≥0 is a martingale

with respect to {Ftn}n≥0 such that 〈M〉n+1−〈M〉n ≤ (tn+1−tn)2‖f‖2∞. Thus,
by the strong law of large numbers for martingales (see Theorem A.8),

lim
n→∞

M t
n

n
= 0

almost surely.
Let now Σ∞ = {t ∈ RN∗

+ : 0 ≤ t1 ≤ t2 ...} be equipped with its Borel
σ-�eld and let ν denote the law of (Tn)n≥1. By what precedes, for ν-almost

every t ∈ Σ∞, one has limn→∞
Mt

n(ω)
n

= 0 for P-almost every ω ∈ Ω. Thus, by
Fubini's Theorem, the convergence of M t

n(ω)/n to 0 holds for ν ⊗ P-almost
every (t, ω) ∈ Σ∞ × Ω.

The sequence (M ′
n)n≥0 de�ned as

M ′
n =

n∑
k=1

(∫ Tk−Tk−1

0

Psf(Yk−1) ds−Gf(Yk−1)

)
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is a martingale with respect to the �ltration {Gn}n≥0, where Gn = σ((Yk, Tk) :
0 ≤ k ≤ n). Hence, relying again on the strong law of large numbers for
martingales, limn→∞M ′

n/n = 0 almost surely. Since limn→∞ Tn/n = E(T1) =
1 holds P-almost surely, the desired convergence follows.

(iii). If µ is ergodic for {Pt} and X0 = Y0 has law µ, then

lim
n→∞

1

n

n−1∑
k=0

Gf(Yk) = µGf = µf

almost surely by application of Theorem 4.50. QED

Notes

The proof of the Ergodic Decomposition Theorem 4.53 for a Markov kernel
is taken from unpublished lecture notes by Yuri Bakhtin [4].
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Chapter 5

Irreducibility

5.1 Resolvent and ξ-irreducibility

Given a (nonzero) Borel measure ξ onM , P is called ξ-irreducible if for every
Borel set A ⊂M and every x ∈M

ξ(A) > 0 ⇒ ∃k ≥ 0, P k(x,A) > 0.

Equivalently,
ξ(A) > 0 ⇒ Ra(x,A) > 0

where Ra(., .) is the Resolvent Kernel de�ned as

Ra(x,A) = (1− a)
∑
k≥0

akP k(x,A)

for some 0 < a < 1.

Remarks 5.1

(i) Let (Xn) be a Markov chain with kernel P and (∆n) a sequence of i.i.d.
random variables independent from (Xn) having a geometric distribu-
tion with parameter a, i.e.,

P(∆i = k) = ak(1− a), k ∈ N;

Then Ra is the kernel of the sampled chain Yn = XTn with

Tn =
n∑

i=1

∆i;

101
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(ii) P and Ra have the same invariant probability measures;

(iii) If P is ξ-irreducible, then for all n ∈ N, x ∈ M , and A ∈ B(M) such
that ξ(A) > 0 there exists k ≥ n such that P k(x,A) > 0.

Exercise 5.2 (i) Check the assertions of the preceding remark.

(ii) Using the notation of Remark 5.1, show that for all m ∈ N∗, Tm has a
negative bimomial distribution with parameters (a,m), i.e.,

P(Tm = k) =

(
k +m− 1
m− 1

)
ak(1− a)m

for all k ∈ N. Let Y m
n = XTnm . Show that (Y m

n )n is a Markov chain with
kernel Rm

a .

Example 5.3 (Doeblin condition) Suppose that, for some nonzero mea-
sure ξ, Ra(x,A) ≥ ξ(A) for all x ∈M and A ∈ B(M). Then P is ξ-irreducible.

Example 5.4 (Countable chains) If M is countable and P is irreducible
in the usual sense (see Chapter 2), then it is ξ-irreducible for ξ =

∑
x δx .

Theorem 5.5 Suppose that P is ξ-irreducible. Then P admits at most one
invariant probability measure.

Proof The assumption implies that ξ is absolutely continuous with respect
to every invariant probability measure, but since distinct ergodic measures
are mutually singular (Proposition 4.29), there is at most one such probability
measure. IfM is a Borel subset of a Polish space, the Ergodic Decomposition
Theorem 4.53 implies the result.

For a general M (which does not even have to be a metric space but just
a measurable set), we cannot rely on ergodic decomposition but can proceed
as follows. Let us �rst observe that any two invariant probability measures
µ, ν are equivalent, i.e., their null sets coincide. Indeed, by Lemma 4.26, the
singular part of ν with respect to µ is either 0 or a nonzero invariant mea-
sure. The latter case is impossible, because ξ is absolutely continuous with
respect to any invariant probability measure. Thus, ν = hµ with h ∈ L1(µ).
As shown in the proof of Proposition 4.29 (ii), for all a > 0 the measure
µa = (h ∧ a)µ is also invariant. Thus (a− h ∧ a)µ is either 0 or invariant. In
the �rst case, µ({h ≥ a}) = 1. In the second, case µ({h ≥ a}) = 0 because
(a− h ∧ a)µ and µ, both being invariant, are equivalent. This proves that h
is µ-almost surely constant. Thus µ = ν. QED
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5.2 The accessible set

With the exception of a few particular cases (such as Examples 5.3 and 5.4) it
is in general not an easy task to verify that a Markov chain is ξ-irreducible. A
purely topological notion of irreducibility is de�ned below. Combined with the
existence of certain points satisfying a local Doeblin condition (see Chapter
6), this will ensure ξ-irreducibility.

Recall that the (topological) support of a measure µ is the closed set
supp(µ) de�ned as the intersection of all closed sets F ⊂M such that µ(M \
F ) = 0. It enjoys the following properties:

(a) µ(M \ supp(µ)) = 0;

(b) x ∈ supp(µ) if and only if µ(O) > 0 for every open set O containing x.

Exercise 5.6 Prove that assertions (a), (b) above hold in any separable met-
ric space. Use the fact that such a space has a countable basis of open sets
(see Exercise 4.45 (i)).

We de�ne the set of points that are accessible from x ∈M (for P ) as

Γx = supp(Ra(x, ·)).

Equivalently, y is accessible from x if for every neighborhood U of y there
exists k ≥ 0 such that P k(x, U) > 0.

For C ⊂M, we let ΓC = ∩x∈CΓx denote the set of points that are accessi-
ble from C and Γ := ΓM the set of accessible points. Note that ΓC is a closed
(but possibly empty) set. We say that P is (topologically) indecomposable if
Γ 6= ∅.

Remark 5.7 If P is ξ-irreducible, then it is indecomposable and

supp(ξ) ⊂ Γ.

The converse implication is false in general (see Theorem 5.5 and Remark
5.10) but true for strong Feller chains (see Proposition 5.17).

Proposition 5.8 Assume P is Feller and topologically indecomposable. Then

(i) P (x,Γ) = 1 for all x ∈ Γ;
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(ii) Γ ⊂ supp(µ) for all µ ∈ Inv(P );

(iii) If Γ has nonempty interior, supp(µ) = Γ for all µ ∈ Inv(P );

(iv) If Γ is compact, there exists µ ∈ Inv(P ) such that supp(µ) = Γ;

(v) If Γ is compact and g : Γ → R is a continuous and harmonic function
on Γ (i.e., Pg(x) = g(x) for all x ∈ Γ), then g is constant.

Proof (i). Let x ∈ Γ. It is enough to prove that supp(P (x, .)) ⊂ Γ. Let x∗ ∈
supp(P (x, .)) and O an open set containing x∗. Then δ := P (x,O) > 0. By
Feller continuity and the Portmanteau Theorem 4.1, V := {y ∈M : P (y,O) >
δ/2} is an open set containing x. Let z ∈ M and k ∈ N be such that
P k(z, V ) > 0 (recall that x ∈ Γ). Then

P k+1(z, O) ≥
∫
V

P k(z, dy)P (y,O) ≥ δ

2
P k(z, V ) > 0.

This proves that x∗ ∈ Γ.
(ii). Let x ∈ Γ, U a neighborhood of x, and µ an invariant probability

measure. Then µ(U) =
∫
µ(dy)R(y, U) > 0.

(iii). By invariance, µ(Γ) =
∫
Γ
µ(dx)R(x,Γ)+

∫
Γc µ(dx)R(x,Γ), and since,

by (i), R(x,Γ) = 1 for all x ∈ Γ, it follows that
∫
Γc µ(dx)R(x,Γ) = 0. If

furthermore Γ has nonempty interior, then R(x,Γ) > 0 for all x, so that
µ(Γc) = 0. This proves that supp(µ) ⊂ Γ.

(iv). By (i), Feller continuity, and Theorem 4.20, there exists an invariant
probability measure µ with µ(Γ) = 1; hence the result.

(v). By (i) we can assume without loss of generality that Γ = M. By
compactness, accessibility, and Feller continuity, for every open set O ⊂ M
there exists a �nite cover of M by open sets U1, . . . , Uk, integers n1, . . . , nk,
and δ > 0 such that P ni(x,O) ≥ δ for all x ∈ Ui, 1 ≤ i ≤ k. Thus
Px(τO > n) ≤ (1− δ) for n = max(n1, . . . , nk), hence Px(τO > kn) ≤ (1− δ)k

by the Markov property. Thus Px(τO < ∞) = 1. The assumption that g is
harmonic makes (g(Xn)) a bounded martingale. It then converges Px-almost
surely. If g is nonconstant, there exist a < b such that {g < a} and {g > b}
are nonempty open sets, and, by what precedes, (Xn) visits in�nitely often
these sets Px-almost surely, a contradiction. QED

Remark 5.9 The inclusion Γ ⊂ supp(µ) does not require Feller continuity.
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Remark 5.10 The inclusion Γ ⊂ supp(µ) may be strict when Γ has empty
interior as shown by the following exercise. Other examples where the inclu-
sion Γ ⊂ supp(µ) is strict can be found in [8] and [9].

Exercise 5.11 Let F : {0, 1} × [0, 1] → [0, 1] be the map de�ned by

F (0, x) = ax, F (1, x) = bx(1− x),

where 0 < a < 1 and 1 < b < 4. Let (Xn) be the Markov chain on [0, 1]
de�ned by Xn+1 = F (θn+1, Xn), X0 = x > 0, where (θn) is an i.i.d. Bernoulli
sequence with distribution (1 − p)δ0 + pδ1 for some 0 < p < 1. Show that
Γ = {0} and that when (1 − p) log a + p log b > 0, there exists an invariant
probability measure µ such that µ({0}) = 0, hence supp(µ) 6⊂ Γ.

In case P is uniquely ergodic on a compact set, it is topologically inde-
composable.

Proposition 5.12 Suppose M is compact, P is Feller and uniquely ergodic
with Inv(P ) = {µ}. Then P is indecomposable and Γ = supp(µ).

Proof By Proposition 5.8 it su�ces to prove that Γ is nonempty. By Theo-
rem 4.20, 1

n

∑n
k=1 P

k(x, ·) ⇒ µ for all x ∈M. Hence for any open set O such
that µ(O) > 0, lim infn→∞

1
n

∑n
k=1 P

k(x,O) > 0. Thus R(x,O) > 0. QED

A partial converse to Proposition 5.12 is the following result. Recall that
Lb(M) is the set of real-valued bounded Lipschitz functions on M.

Proposition 5.13 Assume that M is compact, P is Feller, Γ has nonempty
interior, and for all f ∈ Lb(M) the sequence (P nf)n≥1 is equicontinuous.
Then P is uniquely ergodic.

Proof By equicontinuity of (P nf)n≥1, the sequence (fn)n≥1 de�ned by

fn =

∑n
k=1 P

kf

n

is also equicontinuous, hence relatively compact in Cb(M) by the Arzelà-
Ascoli Theorem. Let g be a limit point of (fn)n≥1. Then g is continuous and
Pg = g. By Proposition 5.8 (v), g|Γ is a constant Cf . Let now µ and ν be two
invariant probability measures. Then µPf = µf implies that µ(fn) = µ(f).
Therefore µ(f) = µ(g) = µ(g|Γ) = Cf . Similarly ν(f) = Cf . This proves that
µ = ν. QED
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Exercise 5.14 Deduce from Proposition 5.13 that the irrational rotation Tα
(see Exercise 4.37) is uniquely ergodic.

Exercise 5.15 Let M be a compact space. Using the notation of Chapter 3
and Section 4.3.1, consider the Markov chain on M recursively de�ned by

Xn+1 = Fθn+1(Xn).

Assume that Θ is a metric space, (θ, x) 7→ Fθ(x) is continuous, and for each
θ ∈ Θ, Fθ is Lipschitz with Lipschitz constant lθ. Assume furthermore that

(i)
∫
lθm(dθ) ≤ 1 (compare with the condition of Theorem 4.31);

(ii) For every x ∈ M and every open set O ⊂ M, there exists a sequence
θ1, . . . , θn with θi ∈ supp(m), 1 ≤ i ≤ n, such that fθn ◦ . . . fθ1(x) ∈ O.

Show that (Xn) is uniquely ergodic.

Remark 5.16 It is important to emphasize here that the condition that Γ
has nonempty interior is not su�cient to ensure uniqueness of the invariant
probability measure. For instance, Furstenberg, in a remarkable work [29]
(see also [48]), has shown that for a convenient choice of α ∈ R \ Q and β a
smooth map on S1 := R/Z, the di�eomorphism

T : S1 × S1 → S1 × S1,

(x, y) 7→ (x+ α, y + β(x))

is minimal (i.e., all the orbits are dense) but not uniquely ergodic.
Another example is given by the Ising Model on Z2. This is a Feller Markov

process on the compact set M = {−1, 1}Z2
for which all points are accessi-

ble (i.e., Γ = M) and which admits (at low temperature) several invariant
probability measures. See Example 2.3 in [33] for a discussion and further
references.

Recall that a function f : M → R is lower semicontinuous (respectively,
upper semicontinuous) at a point x0 ∈M if

f(x0) ≤ lim inf
x→x0

f(x), resp. f(x0) ≥ lim sup
x→x0

f(x).

Clearly, f is continuous at a point x0 ∈ X if and only if f is both upper and
lower semicontinuous at x0.
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Proposition 5.17 Suppose that P is topologically indecomposable and that
for some x∗ ∈ Γ and all A ∈ B(M), x 7→ P (x,A) is lower semicontinuous at
x∗. Then P is ξ-irreducible for ξ = P (x∗, .). In particular P admits at most
one invariant probability measure.

Proof Let A be such that P (x∗, A) > 0. Then for all x ∈ M there exist a
neighborhood O of x∗ and n ≥ 0 such that P n(x,O) > 0 and P (y, A) > 0 for
all y ∈ O (by lower semicontinuity of x 7→ P (x,A) at x∗). Thus P n+11A(x) ≥∫
O
P n(x, dy)P (y, A) > 0. QED

Note that the assumption that x 7→ P (x,A) is lower semicontinuous at x∗ is
automatically satis�ed if P is strong Feller. Hence Proposition 5.17 gives a
practical tool to ensure that a strong Feller chain is uniquely ergodic. Another
result about strong Feller chains is the following.

Proposition 5.18 Suppose that P is strong Feller. Then

(i) Two distinct ergodic measures have disjoint support;

(ii) The support of an invariant non-ergodic probability measure is discon-
nected;

(iii) If M is connected and P has an invariant probability measure having
full support, then P is uniquely ergodic.

Proof (i). Let µ, ν be two distinct ergodic measures. By Proposition 4.29
they are mutually singular. Hence there exists a Borel set A ⊂ M such that
µ(A) = 1 and ν(A) = 0. The set {x ∈ M : P (x,A) = 1} is closed (strong
Feller property) and has µ-measure 1 because 1 = µ(A) =

∫
µ(dx)P (x,A).

Thus supp(µ) ⊂ {x ∈ M : P (x,A) = 1}. Similarly supp(ν) ⊂ {x ∈ M :
P (x,M \ A) = 1}.

(ii). Let µ be invariant and let A be such that P1A = 1A, µ-almost surely,
and 0 < µ(A) < 1. Set f = P1A. Then f(x) ∈ {0, 1} for µ-almost every
x and, by the strong Feller property, f is continuous. Thus f restricted to
supp(µ) takes values in {0, 1}. If now supp(µ) is connected, then f restricted
to supp(µ) is constant and µ(A) ∈ {0, 1}. (iii) follows from (ii). QED
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5.2.1 Continuous time: accessibility

For a continuous-time semigroup {Pt}t≥0 one de�nes, by analogy with the
discrete-time setting, the set of points that are accessible from x ∈ M (for
{Pt}t≥0) as

Γx = supp(G(x, ·)),

where G is the 1-resolvent (see equation (4.18)).

Proposition 5.19 Suppose {Pt}t≥0 is weakly Feller and let x, y ∈ M . Then
the following assertions are equivalent:

(i) The point y is accessible from x for {Pt}t≥0;

(ii) The point y is accessible from x for G;

(iii) For every neighborhood U of y there exists t ≥ 0 such that Pt(x, U) > 0.

Proof Clearly (i) ⇒ (ii) and (ii) ⇒ (iii) because

Gk(f) =

∫ ∞

0

γk(t)Ptf dt,

where γk(t) = e−ttk−1/k!. To prove that (iii) ⇒ (i) suppose that Pt(x, U) > 0
for some t ≥ 0. By the weak Feller property, Ps+t(x, ·) ⇒ Pt(x, ·) as s ↓ 0.
Thus, by the Portmanteau Theorem 4.1, lim infs↓0 Pt+s(x, U) > 0. Hence
G(x, U) > 0. QED

5.3 The asymptotic strong Feller property

The asymptotic strong Feller property was introduced in [34] by Hairer and
Mattingly to prove uniqueness for the invariant probability measure of the
Navier�Stokes equation on the two-dimensional torus, subject to degenerate
stochastic forcing. Before we de�ne this property, we introduce some notation.

Let (M,d∗) be a separable metric space, with P(M) the space of probabil-
ity measures on (M,B(M)). One important idea in this section is to consider
a whole family of metrics on M , but throughout, d∗ will be the metric that
gives rise to the topology on M , and in particular induces the σ-�eld B(M).
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For any bounded metric d on M , we let Lip1(d) denote the set of B(M)-
measurable functions ϕ :M → R such that

|ϕ(x)− ϕ(y)| ≤ d(x, y), ∀x, y ∈M.

Notice that Lip1(d) contains all constant functions. If the metric d is contin-
uous with respect to the topology induced by d∗ and if Bd(M) denotes the
Borel σ-�eld with respect to d, then Lip1(d) is equal to the set of Bd(M)-
measurable functions ϕ : M → R such that |ϕ(x) − ϕ(y)| ≤ d(x, y) for all
x, y ∈M . For µ, ν ∈ P(M), we de�ne

‖µ− ν‖d := sup
ϕ∈Lip1(d)

(µϕ− νϕ).

Boundedness of d guarantees that every function in Lip1(d) is bounded and
thus integrable with respect to any Borel probability measure on M .

Exercise 5.20 Let d∗ be bounded. Show that (µ, ν) 7→ ‖µ − ν‖d∗ de�nes a
bounded metric on P(M).

Remark 5.21 If δ(x, y) := 1x ̸=y is the discrete metric, then

‖µ− ν‖δ = 1
2
|µ− ν| := 1

2
sup{|µf − νf | : f ∈ B(M), ‖f‖∞ ≤ 1},

where |µ− ν| is the so-called total variation distance between µ and ν. The
latter will play a key role in Chapter 8.

We call a metric d on M continuous if it is continuous as a function from
M ×M to [0,∞), where M ×M has the topology induced by the product
metric (d∗ ⋆ d∗)((x, y), (x′, y′)) := d∗(x, x′) + d∗(y, y′). Notice in particular
that d∗ itself is continuous. A sequence of metrics (dn)n≥1 on M is called
nondecreasing if for every n ∈ N∗,

dn+1(x, y) ≥ dn(x, y), ∀x, y ∈M.

Recall that δ(x, y) := 1x̸=y and that δx is the Dirac measure that assigns mass
1 to {x}.

De�nition 5.22 (Hairer, Mattingly) We say that a Markov kernel P on
M is asymptotic strong Feller at x ∈ M if there exist a nondecreasing se-
quence (nk)k≥1 of positive integers and a nondecreasing sequence (dk)k≥1 of
continuous metrics on M such that

lim
k→∞

dk(y, z) = δ(y, z), ∀y, z ∈M,
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and

inf

{
lim sup
k→∞

sup
y∈U

‖δxP nk − δyP
nk‖dk : Uopen, x ∈ U

}
= 0.

We call P asymptotic strong Feller if it is asymptotic strong Feller at every
x ∈M .

Since (dk)k≥1 is nondecreasing and converges to a bounded metric, each
metric dk is, of course, bounded.

5.3.1 Strong Feller implies asymptotic strong Feller

In this subsection, we show that every strong Feller Markov kernel also has
the asymptotic strong Feller property. The proof of this statement makes use
of the ultra Feller property, which we now de�ne. A Markov kernel P on
M is called ultra Feller if the mapping x 7→ δxP is continuous with respect
to the total variation distance (see Remark 5.21). In particular, every ultra
Feller Markov kernel is strong Feller. The following statement corresponds to
Theorem 1.6.6 in [32]. It is due to Dellacherie and Meyer, see [18].

Proposition 5.23 Let P and Q be strong Feller Markov kernels onM . Then
the Markov kernel PQ is ultra Feller.

The proof of Proposition 5.23 we present here is taken from [32]. It is an
adaptation of an argument due to Seidler. We begin by stating two lemmas.

Lemma 5.24 Let P be a strong Feller Markov kernel on M . Then there
exists π ∈ P(M) such that P (x, ·) � π for every x ∈M .

Proof SinceM is separable, there is a dense sequence (xn)n≥1 of elements
of M . We de�ne the probability measure

π(A) :=
∞∑
n=1

2−nP (xn, A), A ∈ B(M).

To obtain a contradiction, assume there is x ∈ M such that P (x, ·) is not
absolutely continuous with respect to π. Then there is A ∈ B(M) such that
π(A) = 0 and P (x,A) > 0. Let f := 1A ∈ B(M). Since P is strong Feller,
Pf is continuous. We have Pf(x) = P (x,A) > 0. Since π(A) = 0, we have
0 = P (xn, A) = Pf(xn) for every n ∈ N∗. But then continuity of Pf and the
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fact that (xn) is dense in M imply that Pf ≡ 0, a contradiction. QED

The following real-analysis lemma corresponds to Corollary 1.6.3 in [32].
Recall from the proof of Lemma 4.44 in Section 4.4 that a σ-�eld F is called
countably generated if there exists a countable family of sets {An}n∈N such
that F = σ(An : n ∈ N).

Lemma 5.25 Let (Ω,F , π) be a measure space such that F is countably gen-
erated. Let (ϕn) be a bounded sequence in L∞(Ω,F , π). Then there exist a
subsequence (ϕnk

)k≥1 and ϕ ∈ L∞(Ω,F , π) such that

lim
k→∞

∫
Ω

ϕnk
(x)f(x) π(dx) =

∫
Ω

ϕ(x)f(x) π(dx), ∀f ∈ L1(Ω,F , π).

Proof The space L∞(Ω,F , π) being the dual of L1(Ω,F , π) its unit ball
is compact for the weak* topology by the Banach�Alaoglu Theorem. Fur-
thermore, the assumption that F is countably generated makes L1(Ω,F , π)
separable (see Exercise 4.46). Thus, the unit ball of L1(Ω,F , π) is sequen-
tially compact for the weak* topology. This proves the result. QED

We proceed to the proof of Proposition 5.23.

Proof [of Proposition 5.23] Since Q is strong Feller, Lemma 5.24 yields
existence of a probability measure π on (M,B(M)) such that Q(x, ·) � π
for every x ∈ M . To obtain a contradiction, suppose that the kernel PQ is
not ultra Feller. Then there are x ∈ M and ε > 0 such that for every open
neighborhood U of x,

sup
y∈U

‖δxPQ− δyPQ‖δ > ε.

For r > 0 and y ∈M , let Br(y) := {z ∈M : d∗(y, z) < r} be the open d∗-ball
of radius r centered at y. Then for every n ∈ N∗, there is yn ∈ B1/n(x) such
that

‖δxPQ− δynPQ‖δ > ε.

According to Remark 5.21,

sup
ϕ∈B(M):∥ϕ∥∞≤1

(PQϕ(x)− PQϕ(yn)) > 2ε, ∀n ∈ N∗,
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where the expression on the left-hand side denotes the total variation distance
between δxPQ and δynPQ. As a result, there is a sequence (ϕn)n≥1 in B(M)
such that ‖ϕn‖∞ ≤ 1 and

PQϕn(x)− PQϕn(yn) > 2ε, ∀n ∈ N∗. (5.1)

Since M is a separable metric space, Exercise 4.45 (ii) implies that the σ-
�eld B(M) is countably generated. And since (ϕn) is a bounded sequence in
L∞(M,B(M), π), Lemma 5.25 implies that there exist a subsequence (ϕnk

)k≥1

and a function ϕ ∈ L∞(M,B(M), π) such that

lim
k→∞

∫
M

ϕnk
(x)f(x) π(dx) =

∫
M

ϕ(x)f(x) π(dx), ∀f ∈ L1(M,B(M), π).

Since Q(x, ·) � π for every x ∈ M , we have that for every x ∈ M there is
hx ∈ L1(M,B(M), π) with Q(x, dy) = hx(y) π(dy). Then, for every x ∈M ,

lim
k→∞

Qϕnk
(x) = Qϕ(x).

To keep notation short, set ψk := Qϕnk
for every k ∈ N∗, and set ψ := Qϕ.

We also introduce the functions (ρj)j≥1 de�ned by

ρj(x) := sup
k≥j

|ψk(x)− ψ(x)|, x ∈M,

and note that limj→∞ ρj(x) = 0 for every x ∈M . For every k ≥ 1,

‖ψk‖∞ ≤ ‖ϕnk
‖∞ ≤ 1 and ‖ρk‖∞ ≤ ‖ψ‖∞ + sup

l≥1
‖ψl‖∞ ≤ ‖ϕ‖∞ + 1,

so bounded convergence implies that

lim
k→∞

Pψk(x) = Pψ(x) (5.2)

and

lim
j→∞

Pρj(x) = 0

for every x ∈M . For every m ∈ N∗,

lim sup
j→∞

Pρj(ynj
) ≤ lim sup

j→∞
Pρm(ynj

) = Pρm(x)
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because (ρj) is a nonincreasing sequence of nonnegative functions in B(M),
limj→∞ ynj

= x, and P is strong Feller. Since the estimate above holds for
every m ∈ N∗ and since limm→∞ Pρm(x) = 0, it follows that

lim
j→∞

Pρj(ynj
) = 0. (5.3)

Consequently,

lim sup
k→∞

(PQϕnk
(x)− PQϕnk

(ynk
))

≤ lim sup
k→∞

|Pψk(x)− Pψ(x)|

+ lim sup
k→∞

|Pψ(x)− Pψ(ynk
)|+ lim sup

k→∞
|Pψ(ynk

)− Pψk(ynk
)|

≤ lim sup
k→∞

Pρk(ynk
) = 0,

where we used (5.2), the assumption that P is strong Feller, and (5.3). This
contradicts (5.1). QED

We are now ready to state and prove the main result of this subsection.

Proposition 5.26 Let P be a Markov kernel on a separable metric space
(M,d∗). If P is strong Feller, then it is also asymptotic strong Feller.

Proof Consider the sequence of continuous metrics

dk(x, y) := 1 ∧ (kd∗(x, y)), k ∈ N∗,

where a ∧ b denotes the minimum of a and b. The sequence is clearly nonde-
creasing, and

lim
k→∞

dk(x, y) = δ(x, y), ∀x, y ∈M.

If P is strong Feller, then Proposition 5.23 implies that P 2 is ultra Feller.
Therefore

0 = inf

{
sup
y∈U

‖δxP 2 − δyP
2‖δ : U open, x ∈ U

}
. (5.4)

Since (dk)k≥1 is nondecreasing and converges pointwise to δ, the sequence
of functions fk(y) := ‖δxP 2 − δyP

2‖dk is nondecreasing and dominated by
f(y) := ‖δxP 2 − δyP

2‖δ. Thus, for every open neighborhood U of x,

lim sup
k→∞

sup
y∈U

fk(y) ≤ sup
y∈U

lim
k→∞

fk(y) ≤ sup
y∈U

f(y).
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Together with (5.4) and nk := 2 for all k ≥ 1, this yields

inf

{
lim sup
k→∞

sup
y∈U

‖δxP nk − δyP
nk‖dk : U open, x ∈ U

}
= 0.

QED

Remark 5.27 If P is a Markov kernel on a separable metric space such that
P n is strong Feller for some n ∈ N∗, then P is asymptotic strong Feller. This
follows if one replaces P 2 in the proof of Proposition 5.26 with P 2n.

The following exercise shows that the converse of Proposition 5.26 does
not hold, i.e., there are Markov kernels which are asymptotic strong Feller
but not strong Feller.

Exercise 5.28 Consider the mapping

F : R2 → R2, (x1, x2) 7→ (x2, x1).

For (x, θ) ∈ R2 × R, set Fθ(x) := F (x) + θe1, where e1 := (1, 0)⊤ (cf. Exer-
cise 6.11 (ii) in Section 6.2). Let m be a probability measure on (R,B(R))
that is absolutely continuous with respect to Lebesgue measure.

(i) Show that the Markov kernel P corresponding to the random dynamical
system (F,m) is not strong Feller. Hint: Consider for instance the
function f(x1, x2) := 1x2≥0.

(ii) Use the result from Exercise 6.10 in Subsection 6.2 to show that P 2 is
strong Feller, and conclude that P is asymptotic strong Feller.

5.3.2 A su�cient condition for the asymptotic strong

Feller property

Throughout Subsection 5.3.2, let H be a separable real Hilbert space with
norm ‖ · ‖, and let ‖f‖∞ := supx∈H |f(x)| for f ∈ B(H), the set of real-valued
bounded Borel-measurable functions on H.
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De�nition 5.29 A function f : H → R is called Fréchet di�erentiable at a
point x ∈ H if there exists a bounded linear operator A : H → R such that

lim
∥h∥→0

|f(x+ h)− f(x)− Ah|
‖h‖

= 0.

The operator A is uniquely de�ned by the above condition, and it is called the
Fréchet derivative of f at the point x.

Let F (H) denote the space of bounded functions f : H → R that are
Fréchet di�erentiable and whose Fréchet derivative ∇f satis�es the following
conditions:

(i)
‖∇f‖∞ := sup

x∈H
sup

h∈H:∥h∥≤1

|∇f(x)h| <∞;

(ii) The mapping x 7→ ∇f(x)h is continuous for every h ∈ H.

The following statement is a special case of Proposition 3.12 in [34].

Theorem 5.30 (Hairer, Mattingly) Let P be a Markov kernel on (H,B(H)).
Assume that there exist constants α ∈ (0, 1) and C > 0 such that for every
f ∈ F (H), one has Pf ∈ F (H) and

‖∇Pf‖∞ ≤ C‖f‖∞ + α‖∇f‖∞. (5.5)

Then P is asymptotic strong Feller.

Proof Consider the sequence of continuous metrics

dk(x, y) := 1 ∧ (α−k/2‖x− y‖), k ∈ N∗.

Similarly to the sequence of metrics de�ned in the proof of Proposition 5.26,
(dk)k≥1 is nondecreasing and converges pointwise to the discrete metric δ. Fix
k ∈ N∗ and ϕ ∈ Lip1(dk). As explained in Remark 5.31 below, there exists a
sequence (ϕn)n≥1 in F (H) ∩ Lip1(dk) such that

lim
n→∞

ϕn(x) = ϕ(x), ∀x ∈ H.

For x ∈ H and n ∈ N∗, set

ϕ̃(x) := ϕ(x)− sup
y∈H

ϕ(y) and ϕ̃n(x) := ϕn(x)− sup
y∈H

ϕn(y).
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Notice that ‖ϕ̃‖∞ = supy∈H ϕ(y)− infy∈H ϕ(y) ≤ 1 because ϕ ∈ Lip1(dk) and

dk ≤ 1. Similarly, ‖ϕ̃n‖∞ ≤ 1 for every n ∈ N∗. Since ϕ̃n and ϕn only di�er
by a constant, we also have ϕ̃n ∈ F (H)∩Lip1(dk) for every n ∈ N∗. It is then
not hard to see that

‖∇ϕ̃n‖∞ ≤ α−k/2, ∀n ∈ N∗.

Now, �x x, y ∈ H and de�ne

γ(s) := (1− s)y + sx, s ∈ [0, 1].

By assumption, P kϕ̃n ∈ F (H) for every n ∈ N∗. By the chain rule for the
Fréchet derivative, the function P kϕ̃n ◦ γ is di�erentiable with

(P kϕ̃n ◦ γ)′(s) = ∇P kϕ̃n(γ(s))(x− y), ∀s ∈ (0, 1).

Since the expression on the right-hand side is continuous in s, one obtains
with the fundamental theorem of calculus

P kϕn(x)− P kϕn(y) = P kϕ̃n(γ(1))− P kϕ̃n(γ(0))

=

∫ 1

0

∇P kϕ̃n(γ(s))(x− y) ds ≤ ‖x− y‖‖∇P kϕ̃n‖∞.

Iteratively applying the estimate in (5.5), one has

‖∇P kϕ̃n‖∞ ≤ C
k−1∑
j=0

αj‖ϕ̃n‖∞ + αk‖∇ϕ̃n‖∞.

Since ‖ϕ̃n‖∞ ≤ 1 and ‖∇ϕ̃n‖∞ ≤ α−k/2, this yields

P kϕn(x)− P kϕn(y) ≤ c(C, α)‖x− y‖,

where c(C, α) := α1/2 + C/(1 − α). Letting n → ∞, we have by bounded
convergence

P kϕ(x)− P kϕ(y) ≤ c(C, α)‖x− y‖.

As this estimate holds for all ϕ ∈ Lip1(dk),

‖δxP k − δyP
k‖dk ≤ c(C, α)‖x− y‖.
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Now, for ϵ > 0 �xed, let U be the open ‖ · ‖-ball of radius ϵ centered at x.
For any z ∈ U ,

‖δxP k − δzP
k‖dk ≤ c(C, α)ϵ,

hence

inf

{
lim sup
k→∞

sup
z∈U

‖δxP k − δzP
k‖dk : U open, x ∈ U

}
≤ c(C, α)ϵ.

Since ϵ was arbitrarily chosen, P is asymptotic strong Feller. QED

Remark 5.31 The proof of Theorem 5.30 uses the following approximation
result: For every ϕ ∈ Lip1(dk) there exists a sequence (ϕn)n≥1 in F (H) ∩
Lip1(dk) that converges pointwise to ϕ. To see this, let (ej)j∈J be a complete
orthonormal system in H, where either J = N∗ or J = {1, . . . , N} for some
N ∈ N∗. For t ≥ 0, de�ne the bounded linear operator

A(t) : H → H, x 7→
∑
j∈J

e−j2t〈x, ej〉ej,

where 〈·, ·〉 denotes the inner product on H. The collection of operators
(A(t))t≥0 is a C0-semigroup on H, and ‖A(t)‖op ≤ e−t for all t ≥ 0. For t > 0,
let

Qt : H → H, x 7→
∫ t

0

A(2s)x ds, (5.6)

where the integral is to be interpreted as a Bochner integral. It is not hard
to see that Qt is of trace class, so there is a well-de�ned Gaussian measure µt

on (H,B(H)) with mean 0 and covariance operator Qt. For n ∈ N∗, de�ne

ϕn(x) :=

∫
H

ϕ(A(1/n)x+ y) µt(dy), x ∈ H.

It is not hard to check that A(t)(H) ⊂ Q
1/2
t (H) for every t > 0. Then, by

Theorem 2.1 in [56], ϕn has Fréchet derivatives of any order, and all derivatives
and the function itself are bounded. In particular, ϕn ∈ F (H) for all n ∈ N∗.

For n ∈ N∗ and x, y ∈ H, one has

|ϕn(x)− ϕn(y)| ≤
∫
H

|ϕ(A(1/n)x+ z)− ϕ(A(1/n)y + z)| µt(dz)

≤
∫
H

dk(A(1/n)x+ z, A(1/n)y + z) µt(dz) ≤ dk(x, y).
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Finally, the pointwise convergence of (ϕn)n≥1 to ϕ follows from Proposition
6.2 in [14].

5.3.3 Uniqueness of the invariant probability measure

The following theorem, �rst shown in [34], provides an important justi�cation
for introducing the asymptotic strong Feller property. It can be seen as a
strengthening of Proposition 5.18 (i) for Polish spaces.

Theorem 5.32 (Hairer, Mattingly) Let (M,d∗) be a Polish space, i.e.,
a complete and separable metric space, and let P be a Markov kernel on
(M,B(M)). Let µ, ν be ergodic probability measures with respect to P . If P
is asymptotic strong Feller at a point x ∈ supp(µ) ∩ supp(ν), then µ = ν. In
particular, if P is asymptotic strong Feller, then two distinct ergodic measures
have disjoint support.

The proof of Theorem 5.32 requires several tools we yet need to introduce.
We therefore postpone it to the end of this subsection. Let (X, e) be an
arbitrary metric space and let µ, ν ∈ P(X). A coupling of µ and ν is a
probability measure Γ on (X2,B(X)⊗ B(X)) such that

Γ(A×X) = µ(A), Γ(X × A) = ν(A), ∀A ∈ B(X).

We denote by C(µ, ν) the set of couplings of µ and ν.

Exercise 5.33 Assume in addition that X is separable and let P(X2) be the
set of Borel probability measures on X2, endowed with the topology of weak
convergence. Show that for every µ, ν ∈ P(X), C(µ, ν) is a closed subset of
P(X2).

The following exercise explores the concept of lower semicontinuity. Given
a metric space (X, e), a function f : X → R is called lower semicontinuous if
f(x0) ≤ lim infx→x0 f(x) for every x0 ∈ X.

Exercise 5.34 Let f : X → [0,∞) be a function.

(i) Show that
f̃(x) := inf{f(y) + e(x, y) : y ∈ X}

de�nes a continuous function on X.
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(ii) Show that f is lower semicontinuous if and only if there exists a non-
decreasing sequence (fn)n≥1 of continuous functions from X to [0,∞)
that converges pointwise to f . Hint: Consider the functions fn(x) :=
inf{f(y) + ne(x, y) : y ∈ X}, n ∈ N∗, and use part (i).

The following statement, cited without proof here, can be found in [68]
(see Particular Case 5.16 of Theorem 5.10 for the formula and Theorem 4.1
for existence of a minimizing coupling). It is an instance of the famous
Kantorovich�Rubinstein Duality Theorem. The term duality refers to the
asserted equivalence of a maximization and a minimization problem.

Theorem 5.35 Let (M,d∗) be a Polish space and let d be a bounded metric
on M that is lower semicontinuous as a function from the product metric
space (M ×M,d∗ ⋆ d∗) to [0,∞). Then, for every µ, ν ∈ P(M), we have

‖µ− ν‖d = inf
Γ∈C(µ,ν)

∫
M2

d(x, y) Γ(dx, dy)

and the in�mum on the right-hand side is attained.

Remark 5.36 Let (M,d∗) be a Polish space. The Wasserstein distance of
order 1 between µ, ν ∈ P(M) is de�ned as

W1(µ, ν) := inf
Γ∈C(µ,ν)

∫
M2

d∗(x, y) Γ(dx, dy).

In light of Theorem 5.35, if d∗ is bounded, then

W1(µ, ν) = ‖µ− ν‖d∗ , ∀µ, ν ∈ P(M).

Exercise 5.20 shows that in this case, W1 is a bounded metric on P(M).
One can show that the metric space (P(M),W1) is Polish as well (see, e.g.,
Theorem 6.18 in [68]).

Lemma 5.37 Let (M,d∗) be a Polish space, let (dn)n≥1 be a nondecreasing
sequence of continuous metrics on M , and let d be a bounded metric on M
such that

lim
n→∞

dn(x, y) = d(x, y), ∀x, y ∈M.

Then, for every µ, ν ∈ P(M), we have

lim
n→∞

‖µ− ν‖dn = ‖µ− ν‖d.
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Proof Let µ, ν ∈ P(M). Since (dn)n≥1 is nondecreasing and since d is
bounded, we have

‖µ− ν‖dn ≤ ‖µ− ν‖dn+1 ≤ ‖µ− ν‖d <∞, ∀n ∈ N∗.

Therefore,
l := lim

n→∞
‖µ− ν‖dn

exists and is less than or equal to ‖µ − ν‖d. By Theorem 5.35, there are
couplings (Γn)n≥1 of µ and ν such that

‖µ− ν‖dn =

∫
M2

dn(x, y) Γn(dx, dy), ∀n ∈ N∗.

Since µ and ν are Borel probability measures on a Polish space, they are
tight by Prohorov's Theorem 4.13, i.e., for every ε > 0 there is a compact set
K ⊂ M such that µ(K), ν(K) > 1 − ε. Hence, by Exercise 5.38 below, the
family of couplings (Γn)n≥1 is tight as well. Again by Prohorov's Theorem,
(Γn)n≥1 admits a subsequence that converges weakly to a probability measure
Γ∞ ∈ P(M2). And by Exercise 5.33, Γ∞ ∈ C(µ, ν). For simplicity, we denote
the convergent subsequence again by (Γn)n≥1. For n ≤ m, we have∫

M2

dn(x, y) Γm(dx, dy) ≤
∫
M2

dm(x, y) Γm(dx, dy) = ‖µ− ν‖dm ≤ l.

Since each dn is continuous and bounded, and since Γm converges weakly to
Γ∞, we have

lim
m→∞

∫
M2

dn(x, y) Γm(dx, dy) =

∫
M2

dn(x, y) Γ∞(dx, dy).

Thus, ∫
M2

dn(x, y) Γ∞(dx, dy) ≤ l.

By monotone convergence,

l ≥
∫
M2

d(x, y) Γ∞(dx, dy) ≥ inf
Γ∈C(µ,ν)

∫
M2

d(x, y) Γ(dx, dy). (5.7)

Since d is the pointwise limit of a nondecreasing sequence of continuous func-
tions, Exercise 5.34 implies that d is lower semicontinuous. Hence, by virtue of
Theorem 5.35, the expression on the right-hand side of (5.7) equals ‖µ− ν‖d.
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We have thus shown that l ≥ ‖µ − ν‖d, and together with l ≤ ‖µ − ν‖d one
obtains limn→∞ ‖µ− ν‖dn = ‖µ− ν‖d. QED

Exercise 5.38 Let (X, e) be a metric space and let µ, ν ∈ P(X) be tight.
Show that C(µ, ν) ⊂ P(X2) is a tight family of probability measures.

Lemma 5.39 Let (M,d∗) be a separable metric space, let P be a Markov
kernel on (M,B(M)), and let d be a metric on M that is bounded by 1.
Assume further that there are ϵ > 0 and U ∈ B(M) such that

sup
x,y∈U

‖δxP − δyP‖d ≤ ϵ.

Let µ, ν ∈ P(M) and set α := µ(U) ∧ ν(U). Then

‖µP − νP‖d ≤ 1− α(1− ϵ).

Proof Since d is bounded by 1, we have ‖µP−νP‖d ≤ 1, so the assertion
holds if α = 0. If α > 0, de�ne for A ∈ B(M) the Borel probability measures

µU(A) :=
µ(A ∩ U)
µ(U)

, νU(A) :=
ν(A ∩ U)
ν(U)

,

µ̄(A) :=
µ(A)− αµU(A)

1− α
, ν̄(A) :=

ν(A)− ανU(A)

1− α
,

and observe that

µ =(1− α)µ̄+ αµU ,

ν =(1− α)ν̄ + ανU .

Let ϕ ∈ Lip1(d). Exercise 5.40 below and the fact that µU(U c) = νU(U c) = 0
yield

(µUP )ϕ− (νUP )ϕ =

∫
U2

((δxP )ϕ− (δyP )ϕ) µ
U(dx) νU(dy)

≤
∫
U2

‖δxP − δyP‖d µU(dx) νU(dy) ≤ ϵ.

Taking the supremum over Lip1(d) gives

‖µUP − νUP‖d ≤ ϵ.
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The triangle inequality for ‖ · ‖d then implies

‖µP − νP‖d ≤ (1− α)‖µ̄P − ν̄P‖d + α‖µUP − νUP‖d ≤ 1− α + αϵ.

QED

Exercise 5.40 Let (M,d∗) be a separable metric space, let P be a Markov
kernel on (M,B(M)), and let d be a bounded metric on M . Show that for
every µ, ν ∈ P(M), Γ ∈ C(µ, ν), and ϕ ∈ Lip1(d), one has

(µP )ϕ− (νP )ϕ =

∫
M2

((δxP )ϕ− (δyP )ϕ) Γ(dx, dy).

We are now ready to prove Theorem 5.32.
Proof [of Theorem 5.32] Let x ∈ supp(µ) ∩ supp(ν) such that P is

asymptotic strong Feller at x. Then there exist a nondecreasing sequence
(nk)k≥1 of positive integers as well as a nondecreasing sequence (dk)k≥1 of
continuous metrics on M such that limk→∞ dk(y, z) = δ(y, z), y, z ∈M , and

inf
x∈U⊂M,
Uopen

lim sup
k→∞

sup
y∈U

‖δxP nk − δyP
nk‖dk = 0.

Let U be an open neighborhood of x and let K ∈ N such that

sup
y∈U

‖δxP nk − δyP
nk‖dk <

1

4
, ∀k ≥ K.

Since ‖ · ‖d satis�es the triangle inequality for every metric d on (M,d∗), we
have

sup
y,z∈U

‖δyP nk − δzP
nk‖dk <

1

2
, ∀k ≥ K.

Set α := µ(U) ∧ ν(U). Lemma 5.39 implies

‖µP nk − νP nk‖dk ≤ 1− α

2
, ∀k ≥ K.

Since µ and ν are invariant probability measures,

‖µ− ν‖dk ≤ 1− α

2
, ∀k ≥ K.
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As
lim
k→∞

‖µ− ν‖dk = ‖µ− ν‖δ

by Lemma 5.37, it follows that

‖µ− ν‖δ ≤ 1− α

2
.

Since x ∈ supp(µ) ∩ supp(ν), we have α > 0, so ‖µ − ν‖δ < 1. In particular,
for every A ∈ B(M),

2 > |µ(1A − 1Ac)− ν(1A − 1Ac)| = 2|µ(A)− ν(A)|

in view of Remark 5.21. This implies that µ and ν are not mutually singular.
Since µ and ν are ergodic, it follows from Proposition 4.29 (ii) that µ = ν.
QED

For a Markov kernel P , let Erg(P ) denote the set of P -ergodic measures.
From the proof of Theorem 5.32, one obtains the following corollary.

Corollary 5.41 Let M be a Polish space and let P be asymptotic strong
Feller at a point x ∈ M . Then there exist a neighborhood U of x and an
ergodic measure ν such that π(U) = 0 for every π ∈ Erg(P ) \ {ν}.

Proof Suppose the statement does not hold. Then, for every neigh-
borhood U of x there are at least two distinct ν1, ν2 ∈ Erg(P ) such that
ν1(U), ν2(U) > 0. As in the proof of Theorem 5.32, one then shows existence
of distinct ν1, ν2 ∈ Erg(P ) that are not mutually singular, which contradicts
Proposition 4.29. QED

In the following proposition, we exploit Theorem 5.32 and its corollary to
further elucidate the structure of Erg(P ) under the asymptotic strong Feller
property. In particular, we obtain a counterpart of Proposition 5.18 (iii).

Proposition 5.42 Let M be a Polish space and let P be asymptotic strong
Feller.

(i) The set Erg(P ) is countable, and for every P -invariant probability measure
µ one has

µ(·) =
∑

ν∈Erg(P )

ν(·)µ(X(ν)),
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where X(ν) = {x ∈M : Q(x, supp ν) = 1} and Q is the Markov kernel
from Theorem 4.53;

(ii) If P has an invariant probability measure having full support, then

M =
∗⋃

ν∈Erg(P )

supp ν,

where the asterisk indicates that supp ν1 ∩ supp ν2 = ∅ for distinct
ν1, ν2 ∈ Erg(P );

(iii) If P has an invariant probability measure µ having full support and if M
is connected, then Erg(P ) is either countably in�nite or Erg(P ) = {µ};

(iv) Suppose that P has an invariant probability measure µ having full sup-
port. Assume in addition that for every ε > 0 there exists a connected
compact set K ⊂M such that µ(K) > 1− ε. Then Erg(P ) = {µ}.

Remark 5.43 The condition from part (iv) that for every ε > 0 there is
a connected compact set K ⊂ M with µ(K) > 1 − ε clearly holds if M is
connected and compact. But it also holds, for instance, if M is a separable
Banach space or, more generally, a separable Fréchet space. By Fréchet space
we mean a locally convex topological vector space whose topology is induced
by a complete metric d that satis�es d(x + z, y + z) = d(x, y) for every
x, y, z ∈ M . Indeed, since Borel probability measures on a Polish space are
tight, for every ε > 0 there is a compact set K̃ ⊂M such that µ(K̃) > 1− ε.
Let K be the closure of the convex hull of K̃. Then µ(K) > 1 − ε and K is
convex, hence connected. By Theorem 3.20 (c) in [61], K is also compact as
the closure of the convex hull of a compact set in a Fréchet space.

The following lemma is used in the proof of Proposition 5.42.

Lemma 5.44 Let M be a Polish space and let P be asymptotic strong Feller
at a point x ∈ M . If there is an invariant probability measure µ such that
x ∈ supp µ, then x ∈ supp ν for some ν ∈ Erg(P ).

Proof By Corollary 5.41, there are a neighborhood Ux of x and ν ∈
Erg(P ) such that π(Ux) = 0 for every π ∈ Erg(P ) \ {ν}. To see that x ∈
supp ν, �x a neighborhood U of x. Then U ∩ Ux is also a neighborhood of
x. Since x ∈ supp µ, one has µ(U ∩ Ux) > 0. By the Ergodic Decomposition
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Theorem 4.53, there is a Markov kernel Q such that Q(y, ·) ∈ Erg(P ) for
µ-almost every y ∈M , and

0 < µ(U ∩ Ux) =

∫
M

Q(y, U ∩ Ux) µ(dy).

Hence, there is y ∈ M such that Q(y, ·) ∈ Erg(P ) and Q(y, U ∩ Ux) > 0. It
follows that Q(y, Ux) > 0, so Q(y, ·) = ν. Consequently,

ν(U) = Q(y, U) ≥ Q(y, U ∩ Ux) > 0.

QED

Proof [of Proposition 5.42] (i). Since M is separable, so is its subset
S :=

⋃
ν∈Erg(P ) supp ν (see Exercise 4.45 (i)). Let D be countable and dense

in S. By Theorem 5.32, the supports of distinct P -ergodic measures are
disjoint. To show that Erg(P ) is countable, it is enough to prove that for every
ν ∈ Erg(P ) there is x ∈ D with x /∈

⋃
π∈Erg(P )\{ν} supp π. Let ν ∈ Erg(P )

and let y ∈ supp ν. By Corollary 5.41, there is an open neighborhood U of y
such that π(U) = 0 for every π ∈ Erg(P ) \ {ν}. Since y ∈ S and since D is
dense in S, there is a point x ∈ D ∩U . As U is a neighborhood of x, one has
x /∈ supp π for every π ∈ Erg(P ) \ {ν}.

By Theorem 5.32, X(ν) ∩X(π) = ∅ whenever ν, π ∈ Erg(P ) are distinct.
Let

X = {x ∈M : Q(x, ·) ∈ Erg(P )}.
Theorem 4.53 implies that there is B ∈ B(M) such that B ⊂ X and µ(B) = 1.
Since X ⊂

⋃
ν∈Erg(P )X(ν), one has

B ⊂
⋃

ν∈Erg(P )

X(ν)

and hence

1 = µ(B) = µ

(
B ∩

⋃
ν∈Erg(P )

X(ν)

)
= µ

( ⋃
ν∈Erg(P )

(B ∩X(ν))

)
.

With Theorem 4.53, this yields for every A ∈ B(M)

µ(A) =

∫
M

Q(x,A) µ(dx) =
∑

ν∈Erg(P )

∫
B∩X(ν)

Q(x,A) µ(dx). (5.8)
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For ν ∈ Erg(P ), let x ∈ B ∩ X(ν). Since x ∈ B ⊂ X , we have Q(x, ·) ∈
Erg(P ). And since x ∈ X(ν), we have Q(x, supp ν) = 1. Then, by The-
orem 5.32, Q(x, supp π) = 0 for every π ∈ Erg(P ) \ {ν}. In particular,
Q(x, ·) = ν. Thus, the expression on the right-hand side of (5.8) equals

∑
ν∈Erg(P )

∫
B∩X(ν)

ν(A) µ(dx) =
∑

ν∈Erg(P )

ν(A)µ(B∩X(ν)) =
∑

ν∈Erg(P )

ν(A)µ(X(ν)).

(ii). This follows immediately from Lemma 5.44 and Theorem 5.32.

(iii). In light of part (i) and the Ergodic Decomposition Theorem, all we
need to show is that if Erg(P ) is �nite, then it has cardinality 1. Suppose
that Erg(P ) = {ν1, . . . , νn}, where n is a positive integer and ν1, . . . , νn are
pairwise distinct. By part (ii), M is a �nite and disjoint union of nonempty
closed sets. As M is connected, this is only possible if n = 1.

(iv). The following claim will be proved later on:

Claim 1: If K ⊂ M is connected and compact, then there is ν ∈ Erg(P )
such that π(K) = 0 for every π ∈ Erg(P ) \ {ν}.

We use Claim 1 now to show

Claim 2: There are S ∈ B(M) and ν ∈ Erg(P ) such that µ(S) = 1 and
π(S) = 0 for every π ∈ Erg(P ) \ {ν}.

By assumption, for every integer n ≥ 2 there is a connected compact set
Kn ⊂M such that µ(Kn) > 1− 1

n
. Set

S :=
⋃
n≥2

Kn.

Then, for every m ≥ 2,

µ(S) ≥ µ(Km) > 1− 1
m
,

which implies µ(S) = 1.

Claim 1 implies that for every n ≥ 2 there is νn ∈ Erg(P ) such that
π(Kn) = 0 for every π ∈ Erg(P ) \ {νn}. Set ν := ν2. To show that π(S) = 0
for every π ∈ Erg(P ) \ {ν}, it is then su�cient to prove νn = ν for every
n > 2. Suppose this is not the case. Then there is n > 2 such that νn 6= ν.
Since π(Kn) = 0 for every π ∈ Erg(P ) \ {νn} and π(K2) = 0 for every
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π ∈ Erg(P )\{ν}, we have in particular π(Kn∩K2) = 0 for every π ∈ Erg(P ).
On the other hand,

µ(Kn ∩K2) = µ(Kn) + µ(K2)− µ(Kn ∪K2) > 2− 1

n
− 1

2
− 1 > 0.

Hence, by part (i),

0 < µ(Kn ∩K2) =
∑

π∈Erg(P )

π(Kn ∩K2)µ(X(π)) = 0,

a contradiction. This completes the proof of Claim 2.

Let S and ν be as stipulated in Claim 2. By the formula in part (i),

1 = µ(S) =
∑

π∈Erg(P )

π(S)µ(X(π)) = ν(S)µ(X(ν)).

In particular, µ(X(ν)) = 1. SinceX(π)∩X(ψ) = ∅ for distinct π, ψ ∈ Erg(P ),
this yields µ = ν, so µ ∈ Erg(P ). As supp µ = M and as distinct P -ergodic
measures have disjoint supports, one obtains Erg(P ) = {µ}.

Finally we need to prove Claim 1. By Corollary 5.41, we can associate
every y ∈ K with an open neighborhood Uy of y and νy ∈ Erg(P ) such that
π(Uy) = 0 for every π ∈ Erg(P ) \ {νy}. Since K is compact, there are �nitely
many y1, . . . , yn ∈ K such that

K ⊂
n⋃

k=1

Uyk . (5.9)

To simplify notation, we write νi instead of νyi from now on. Let π ∈ Erg(P )\
{ν1, . . . , νn}. Then

π(K) ≤
n∑

k=1

π(Uyk) = 0.

To prove Claim 1, it remains to show that ν1 = . . . = νn. For 1 ≤ i ≤ n, let
Fi := supp νi∩K. As the intersection of two closed sets, each set Fi is closed.
Besides, Fi is nonempty: Clearly yi ∈ K, and since π(Uyi) = 0 for every
π ∈ Erg(P ) \ {νi}, part (ii) yields yi ∈ supp νi. Together with (5.9), part (ii)
also implies K =

⋃n
i=1 Fi. Moreover, Fi ∩Fj = ∅ if νi 6= νj. Connectedness of

K then yields ν1 = . . . = νn. QED
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Notes

The notion of ξ-irreducibility introduced at the beginning of Section 5.1
is called φ-irreducibility in [49]. For the resolvent kernel Ra, Meyn and
Tweedie [49] use the notation Kaε , where ε ∈ (0, 1) corresponds to our pa-
rameter a. Section 4.5 of [49] contains additional information, some of it
bibliographic, on the use of irreducibility in the study of Markov chains.

The original de�nition of the asymptotic strong Feller property in [34] is
for Markov semigroups (Pt), where t ≥ 0 is a continuous-time parameter.
Translating the de�nition as well as the results of Hairer and Mattingly to
the discrete-time setting is straightforward. Furthermore, the nondecreasing
sequence (dk)k≥1 converging to δ is allowed to consist of pseudometrics in [34],
i.e., the distances between distinct points need not be strictly positive.

Most of the material in Section 5.3 is taken from [34], sometimes with small
adaptations (in particular, Proposition 5.26, Theorem 5.30, and Theorem 5.32
along with their proofs, including Lemmas 5.37 and 5.39). As far as we know,
the statements in Proposition 5.42 have not been published elsewhere.

In the Kantorovich�Rubinstein Duality Theorem 5.35, the boundedness
assumption on the metric d can be relaxed, see [68]. If d∗ is unbounded, the
Wasserstein distance W1 de�ned in Remark 5.36 is still a metric on

P1(M) :=

{
µ ∈ P(M) :

∫
M

d∗(x, y) µ(dy) <∞
}
,

the so-called Wasserstein space of order 1. Notice that the choice of x in the
de�nition of P1(M) is arbitrary.



Chapter 6

Petite sets and Doeblin points

Often, the ξ-irreducibility property, as de�ned in Chapter 5, can be deduced
from the existence of an accessible point satisfying a local Doeblin condition.
These conditions prove to be very useful tools when dealing with speci�c
models such as random dynamical systems, processes obtained by random
switching between deterministic di�erential equations, or stochastic di�eren-
tial equations. This chapter discusses and illustrates these notions.

6.1 Petite sets, small sets, Doeblin points

We call a measurable set C a petite set if there exist a ∈ (0, 1) and some
nonzero Borel measure ξ on M such that

Ra(x,A) ≥ ξ(A)

for all x ∈ C and A ∈ B(M). We call the set C a small set if there is a
nonzero Borel measure ξ on M such that

P (x,A) ≥ ξ(A)

for all x ∈ C and A ∈ B(M). Clearly, every small set is petite.

Remark 6.1 In the terminology of Meyn and Tweedie [49] (Chapter 5), a
να-petite set for a probability measure α on N is a set C ∈ B(M) such that

∞∑
n=0

α(n)P n(x,A) ≥ να(A), ∀x ∈ C, A ∈ B(M),

129
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where να is some nonzero Borel measure on M . A νm-small set for m ∈ N∗

is a set C ∈ B(M) such that

Pm(x,A) ≥ νm(A), ∀x ∈ C, A ∈ B(M),

where νm is a nonzero Borel measure on M . With these de�nitions, the class
of petite sets de�ned above is equal to the class of sets that are ν∆a-petite for
some a ∈ (0, 1), where

∆a(k) := ak(1− a), k ∈ N.

Our notion of a small set corresponds to the notion of a ν1-small set.

We call a point x∗ ∈M a weak Doeblin point (respectively a Doeblin point)
if x∗ has a neighborhood that is a petite set (respectively a small set).

The importance and usefulness of these notions will be highlighted in
Chapters 7 and 8. Here we mainly focus on weak Doeblin points. The follow-
ing proposition extends Example 5.3. It provides a powerful tool to ensure
unique ergodicity.

Theorem 6.2 Assume that there exists an accessible weak Doeblin point for
P. Then P is ξ-irreducible. In particular, by Theorem 5.5, it has at most one
invariant probability measure.

Proof By assumption, there exists an open set C and a nontrivial measure
ξ such that C ∩ Γ 6= ∅ and Ra(x, ·) ≥ ξ(·) for all x ∈ C. Let pk =

∑k
i=0(1 −

a)2aiak−i = (k + 1)(1− a)2ak. Then, for all A measurable and x ∈M ,∑
k≥0

pkP
k(x,A) = R2

a(x,A) =

∫
Ra(x, dy)Ra(y, A) ≥ Ra(x,C)ξ(A).

By accessibility, Ra(x,C) > 0. QED

6.1.1 Continuous time: Doeblin points for Markov pro-

cesses

Let {Pt}t≥0 be a continuous-time Markov semigroup. Recall (see Section
5.2.1) that a point p ∈ M is called accessible for {Pt}t≥0 provided that it is
accessible for the 1-resolvent G, or equivalently, G(x, U) > 0 for every x ∈M
and for every neighborhood U of p. The following proposition is a useful tool
whose proof is based on ideas borrowed from [6] and [10].
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Proposition 6.3 Let {Pt}t≥0 be a continuous-time weak Feller semigroup.
Assume that there exists a point p ∈ M which is accessible for {Pt}t≥0 and
which is a Doeblin point for some PT0 with T0 > 0. Then the following state-
ments hold:

(i) There exist q ∈M (which can be chosen arbitrarily close to p) and T1 ≥ T0
such that for all T ≥ T1, q is an accessible Doeblin point for PT ;

(ii) If for some s > 0 there exists an invariant probability measure µ for Ps,
then µ is the unique invariant probability measure of Pt for all t > 0.

Remark 6.4 Proposition 6.3 is clearly false in discrete time. LetM = {0, 1}

and P =

(
0 1
1 0

)
. The point 0 is an accessible Doeblin point (take ξ = δ1)

but is not accessible for P 2.
The proposition also fails to hold if we replace the condition that p is a

Doeblin point for some PT0 by the weaker condition that it is a Doeblin point
for G. To see this, let {Pt} be the semigroup induced by the rotation x 7→
(x+ t) mod 1 on R/Z (see Example 4.55). Then every point p ∈ M = R/Z
is accessible and a Doeblin point for G, but not accessible for Pα when α is
rational.

Proof of Proposition 6.3. By assumption there exists a neighborhood U
of p and a nontrivial measure ξ such that for all x ∈ U

PT0(x, ·) ≥ ξ(·).

Lemma 6.5 There exist T ′
0 ≥ T0, ε > 0, and a measure ζ such that ζ(U) > 0

and
Pt(x, ·) ≥ ζ(·)

for all x ∈ U and T ′
0 ≤ t ≤ T ′

0 + ε.

Proof By accessibility, ξG(U) =
∫∞
0
e−tξPt(U) dt > 0. Thus, for some

t0 > 0, ξPt0(U) > 0. Set ξ′ = ξPt0 . Then ξ
′(U) > 0 and for all x ∈ U

δxPT0+t0 = δxPT0Pt0 ≥ ξ′.

By Fatou's Lemma, weak Feller continuity and the Portmanteau Theorem 4.1,

lim
s↓0

ξ′Ps(U) ≥
∫

lim inf
s→0

Ps(x, U) ξ(dx) ≥
∫

1U(x) ξ
′(dx) = ξ′(U) > 0.
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Thus, for some δ > 0 and ε > 0,

ξ′Ps(U) ≥ δ

for all 0 ≤ s ≤ ε. Set T ′
0 = 2(T0 + t0). Then, for all x ∈ U and 0 ≤ s ≤ ε,

δxPT ′
0+s = δxPT0+t0PT0+t0+s ≥ ξ′PT0+t0+s ≥

∫
U

ξ′Ps(dy)PT0+t0(y, ·) ≥ δξ′.

This proves the lemma with ζ = δξ′. QED

We now prove the �rst part of Proposition 6.3. Set T1 = T ′2
0 /ε. Let T ≥ T1.

Then T can be written as T = k(T ′
0 + s) with 0 ≤ s ≤ ε and k ∈ N∗. Thus,

for all x ∈ U ,
PT (x, ·) = δxPT = δxP

k
T ′
0+s ≥ ζ(U)k−1ζ.

This proves that every point x ∈ U is a Doeblin point for PT . Choose now
q ∈ U ∩ supp(ζ). Let x ∈ M. By accessibility, there exists tx > 0 such that
Ptx(x, U) > 0. For k,m ∈ N su�ciently large, there exists t ∈ [T ′

0, T
′
0+ε] such

that tx + kt = mT. Then for every neighborhood V of q,

Pm
T (x, V ) = Ptx+kt(x, V ) ≥ Ptx(x, U)ζ(V )k > 0.

This proves that q is accessible for PT .
The second assertion follows from Theorem 6.2. Suppose that µ is invari-

ant for some Ps. Then ν = 1
s

∫ s

0
µPu du is invariant for {Pt} by Proposition

4.56. Thus, ν is the unique invariant probability measure of Pt for t ≥ T1.
The same is true for 0 < t ≤ T1 because, kt ≥ T1 for some k ∈ N. QED

6.2 Random dynamical systems

Let Θ be a nonempty open subset of Rd and m a probability measure on
(Θ,B(Θ)). Let M be a nonempty open subset of Rk and F : Θ×M →M a
C1-mapping. Recall from Chapter 3 that the pair (F,m) induces a random
dynamical system with associated Feller Markov kernel

P (x,G) = m({θ ∈ Θ : Fθ(x) ∈ G}), (x,G) ∈M × B(M).

For n ∈ N∗ and x ∈M , let

φn,x : Θn →M, (θ1, . . . , θn) 7→ (Fθn ◦ . . . ◦ Fθ1)(x).

The following proposition is essentially Lemma 6.3 in [8].
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Proposition 6.6 Let x∗ ∈M , n ∈ N∗, and θ∗ = (θ∗1, . . . , θ
∗
n) ∈ Θn such that

the following conditions hold.

(a) The Jacobian matrix Dφn,x∗(θ)|θ=θ∗ has maximal rank (i.e., rank k);

(b) There is a neighborhood V ⊂ Θn of θ∗ such that mn(· ∩ V ) is absolutely
continuous with respect to λnd(·∩V ), where λnd is the Lebesgue measure
on Rnd. The corresponding probability density function ρ is such that

c := inf
θ∈V

ρ(θ) > 0.

Under these conditions, x∗ is a Doeblin point with respect to the Markov kernel
P n, and in particular a weak Doeblin point with respect to P .

Remark 6.7 Condition (b) above holds true whenever m is absolutely con-
tinuous with respect to λd with a lower semicontinuous and positive density.

Proof Since Dφn,x∗(θ)|θ=θ∗ is a (k × nd)-matrix of rank k, we have either
k = nd or k < nd. To avoid repeating ourselves, we will only prove the slightly
more complicated case k < nd. The case k = nd can be easily derived by
making small modi�cations to the proof for k < nd. Assume without loss of
generality that the �rst k columns of Dφn,x∗(θ)|θ=θ∗ are linearly independent.
We will often write points θ ∈ Θn as θ = (θ(k), θ(nd−k)), where θ(k) ∈ Rk

is the vector consisting of the �rst k components of θ, and where θ(nd−k) is
the vector of the remaining (nd − k) components. For x ∈ M , consider the
C1-mapping

Gx : Θn →M × Rnd−k, θ = (θ(k), θ(nd−k)) 7→ (φn,x(θ), θ
(nd−k)).

We also de�ne the C1-mapping

H : Θn ×M →M × Rnd−k ×M, (θ, x) 7→ (Gx(θ), x).

Since

detDH(θ, x)|θ=θ∗,x=x∗ =detDGx∗(θ)|θ=θ∗

=detDθ(k)φn,x∗(θ(k), (θ∗)(nd−k))|θ(k)=(θ∗)(k) 6= 0,

the Inverse Function Theorem implies that there is an open neighborhood
W of (θ∗, x∗) such that the restriction of H to W , denoted by HW , is a C1-
di�eomorphism. By intersecting W with an open subset of V ×M that con-
tains (θ∗, x∗) and calling the resulting set W again, we may assume without
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loss of generality that θ ∈ V for every (θ, x) ∈ W . The set H(W ) is a neigh-
borhood of H(θ∗, x∗) = (φn,x∗(θ∗), (θ∗)(nd−k), x∗), so there are open neighbor-
hoods Z0 of φn,x∗(θ∗), T0 of (θ

∗)(nd−k), and U0 of x
∗ such that Z0 × T0 ×U0 ⊂

H(W ). Let W0 := H−1
W (Z0 × T0 × U0). For x ∈ U0, set

Vx := {θ ∈ Θn : (θ, x) ∈ W0}.

It is straightforward to check that for every x ∈ U0, the restriction of Gx to
Vx is a C1-di�eomorphism that satis�es Gx(Vx) = Z0 × T0.

Let x ∈ U0 and A ∈ B(M). We have

P n(x,A) ≥ P n(x,A ∩ Z0) =

∫
φ−1
n,x(A∩Z0)

mn(dθ).

Since G−1
x ((A ∩ Z0) × T0) ⊂ φ−1

n,x(A ∩ Z0), the expression on the right-hand
side is bounded from below by∫

G−1
x ((A∩Z0)×T0)

mn(dθ) ≥
∫
Vx∩G−1

x ((A∩Z0)×T0)

mn(dθ).

As Vx ⊂ V , the integral on the right-hand side equals∫
Vx∩G−1

x ((A∩Z0)×T0)

ρ(θ) λnd(dθ) ≥ c

∫
Vx∩G−1

x ((A∩Z0)×T0)

λnd(dθ).

There is no loss of generality in assuming that V and U0 are each contained
in a compact set. Since the mapping (θ, x) 7→ detDGx(θ) is continuous, we
have

ĉ := sup
θ∈V,x∈U0

|detDGx(θ)| <∞.

Hence,

P n(x,A) ≥ c

ĉ

∫
Vx∩G−1

x ((A∩Z0)×T0)

|detDGx(θ)| λnd(dθ).

Since the restriction of Gx to Vx is a di�eomorphism, the Change of Variables
Formula (see for instance Theorem 2.47 in [27]) implies that the expression
on the right-hand side equals

c

ĉ
λnd−k(T0)λ

k(A ∩ Z0).

The measure ξ(A) := c
ĉ
λnd−k(T0)λ

k(A ∩ Z0) on (M,B(M)) is nontrivial and
does not depend on x ∈ U0, so U0 is a small set with respect to the kernel P n.
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As U0 is a neighborhood of x∗, the point x∗ is a Doeblin point with respect
to P n. QED

The next theorem, Theorem 6.9, summarizes the consequences of Proposition
6.6 in case x∗ is accessible. It is �rst useful to rephrase the accessibility
condition for the class of Markov chains considered here (i.e., induced by a
random dynamical system).

Proposition 6.8 A point y ∈ M is accessible from x ∈ M if and only if
for every neighborhood U of y there exists a �nite sequence θ1, . . . , θn with
θi ∈ supp(m) for all i such that Fθn ◦ . . . ◦ Fθ1(x) ∈ U.

Proof This easily follows from the de�nitions and the continuity of θ 7→
Fθ(x). QED

Recall that a point y ∈ M is called accessible provided that it is accessible
from every x ∈ M. As usual, we let Γ denote the accessible set, i.e., the set
of accessible points.

Theorem 6.9 Assume that there exists an accessible point x∗ ∈M for which
the assumptions of Proposition 6.6 hold. Then Γ has nonempty interior, P
has at most one invariant probability measure µ, and supp(µ) = Γ provided
that µ exists.

Assume in addition that for every θ ∈ Θ, Fθ is a di�eomorphism from M
onto Fθ(M). Then Γ = Int(Γ) and µ, when it exists, is absolutely continuous
with respect to the Lebesgue measure on Rk.

Proof By Proposition 6.6 and Theorem 6.2, P is ξ-irreducible. Then
supp(ξ) ⊂ Γ. The proof of Proposition 6.6 shows that ξ is (up to a multi-
plicative factor) the Lebesgue measure on some open subset of Rk. Therefore
its support has nonempty interior. Uniqueness of µ, when it exists, follows
from Theorem 6.2 and the equality supp(µ) = Γ follows from Proposition 5.8
(iii) (bearing in mind that P is Feller and ξ-irreducible, hence indecompos-
able).

If for all θ ∈ Θ, Fθ is a di�eomorphism, the set⋃
n≥1

⋃
(θ1,...,θn)∈supp(m)n

Fθn ◦ . . . ◦ Fθ1(Int(Γ))

is open and dense (by Proposition 6.8) in Γ.
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The proof of absolute continuity goes as follows. Let µ be the invariant
probability measure and write its Lebesgue decomposition µ = µac+µs, where
µac is absolutely continuous with respect to λk (written µac � λk) and µs is
singular. Since ξ � λk and ξ � µ, the absolutely continuous part µac is
nonzero. For all A ∈ B(M),

µacP (A) =

∫
Θ

µac(F
−1
θ (A)) m(dθ).

This shows that µacP � λk, because whenever λk(A) = 0 then λk(F−1
θ (A)) =

0. Thus, by uniqueness of the Lebesgue decomposition, the equality µacP +
µsP = µac + µs implies that µacP (·) ≤ µac(·). Thus µac

µac(M)
is an excessive

probability measure, hence invariant. By uniqueness of the invariant proba-
bility measure, µ = µac

µac(M)
, so µ� λk. QED

Example 6.10 (additive noise) Recall the setting of Exercise 3.2. We
have M = Θ = Rk, F : M → M , Fθ(x) := F (x) + θ for (θ, x) ∈ Θ ×M ,
and m(dθ) = h(θ) dθ, where h ∈ L1(dθ). Assume in addition that F is C1,
which implies that (θ, x) 7→ Fθ(x) is C

1 as well. Finally, suppose that there
is a nonempty open set V ⊂ Θ such that

inf
θ∈V

h(θ) > 0.

For every x∗ ∈M and θ∗ ∈ Θ,

Dφ1,x∗(θ)|θ=θ∗ = 1k×k,

where 1k×k is the identity matrix of dimensions (k× k). Since 1k×k has rank
k, every pair (x∗, θ∗) ∈ M × V satis�es the conditions of Proposition 6.6.
Hence, every point x∗ ∈ M is a Doeblin point with respect to the Markov
kernel P (x,G) = m({θ ∈ Θ : Fθ(x) ∈ G}).

Exercise 6.11 [degenerate additive noise] Let m be a probability measure
on (R,B(R)) that is absolutely continuous with respect to Lebesgue measure
on R, with probability density function h. Assume further that there is a
nonempty open interval I ⊂ R such that

inf
θ∈I

h(θ) > 0.

Show the following statements.
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(i) Let F : R2 → R2, F = (F1, F2)
⊤ be a C1-mapping and let (x∗, θ∗1) ∈ R2×I

such that
∂x1F2(F (x

∗) + θ∗1e1) 6= 0,

where e1 = (1, 0)⊤. Set

Fθ(x) := F (x) + θe1, (x, θ) ∈ R2 × R.

Then x∗ is a weak Doeblin point for the Markov kernel associated with
(F,m).

(ii) Let k ≥ 2 and let F : Rk → Rk be de�ned by

F (x1, . . . , xk) := (xk, x1, x2, . . . , xk−1)
⊤.

Set
Fθ(x) := F (x) + θe1, (x, θ) ∈ Rk × R,

where e1 = (1, 0, . . . , 0)⊤ ∈ Rk. Then any point x∗ ∈ Rk is a weak
Doeblin point for the Markov kernel associated with (F,m).

6.3 Random switching between vector �elds

Let E := {1, . . . , N} be a �nite set called a set of environments, and for each
i ∈ E, let Gi be a C∞-vector �eld de�ned on Rk. The choice of Rk is made
here for simplicity, but we could also assume that the Gi's are de�ned on a
smooth k-dimensional Riemannian manifold.

By the Cauchy�Lipschitz Theorem, for every x ∈ Rk the initial-value
problem

ẋ(t) = Gi(x(t)),

x(0) = x

has a unique (local) solution t 7→ Φi(t, x). We assume here that every Gi

is complete, meaning that t 7→ Φi(t, x) is de�ned for all t ∈ R. A classical
su�cient condition for completeness is that

‖Gi(x)‖ ≤ a‖x‖+ b, ∀x ∈ Rk,

for some a, b ≥ 0. The function Φi : R× Rk → Rk is called a �ow function.
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Let now M ⊂ Rk be a nonempty open set positively invariant under each
Φi, meaning that Φi(t,M) ⊂ M for all t ≥ 0. Consider the non-autonomous
di�erential equation

Ẏt = GIt(Yt), (6.1)

where t 7→ It ∈ E is a right-continuous control, i.e.,

It = ik for τk−1 ≤ t < τk, k ≥ 1,

0 = τ0 < τ1 < . . . < τk < τk+1,

for some sequence (τk)k≥0 with limk→∞ τk = ∞. Throughout this section, we
shall assume that the sequence

θ1 = (τ1, i1), θ2 = (τ2 − τ1, i2), . . . , θk = (τk − τk−1, ik), . . .

forms a sequence of independent identically distributed random variables on
Θ := R+ × E having distribution m, where

m([0, t]× {i}) = pi

∫ t

0

ρi(s)ds, (6.2)

pi > 0 for every i, and the densities ρi are such that

inf
0<s<R

ρi(s) > 0

for some R > 0. We also always assume that the initial value Y0 is a random
variable independent of the sequence (θk)k≥1.

In words, the process Y = (Yt)t≥0, with initial value Y0 and solving the
di�erential equation in (6.1), can be described as follows: Pick an initial pair
(τ1, i1) at random according to m and follow the trajectory starting at Y0 and
induced by Gi1 for the time τ1. Then pick a new pair (∆2, i2) according to m,
independent of (τ1, i1), and follow the trajectory starting at Yτ1 and induced
by Gi2 for the time ∆2 = τ2 − τ1. Repeating this process de�nes (Yt)t≥0.

The key point here is that, letting Xn = Yτn , (Xn) is a Markov chain
induced by the random dynamical system (F,m), where for every θ = (t, i) ∈
Θ,

Fθ :M →M, x 7→ Φi(t, x).

Its kernel P is then given as

Pf(x) =
∑
i∈E

pi

∫ ∞

0

f(Φi(t, x))ρi(t)dt. (6.3)

The following exercises give concrete examples of such a Markov chain.
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Exercise 6.12 Suppose E = {1, 2, 3},M = R, G1(x) = α1, G2(x) = −α2,
G3(x) = −α3x, and ρi(t) = λie

−λit1t>0, i ∈ E, where αi, λi are positive
numbers.

Prove that the Markov kernel P associated with (F,m) admits a unique
invariant probability measure. Hint: Use Theorem 4.31 on random contrac-
tions.

Exercise 6.13 Suppose E = {1, 2},M = R, G1(x) = α1, G2(x) = −α2, and
ρi(t) = λie

−λit1t>0, i ∈ E, where αi, λi are positive numbers. Consider the
function

f(t, i) := (−1)i+1αit, (t, i) ∈ Θ,

and the Borel measure

a(A) := m ({θ ∈ Θ : f(θ) ∈ A}) , A ∈ B(R).

Show that the Markov kernel P associated with (F,m) satis�es

P (x,G) = a({ξ ∈ R : x+ ξ ∈ G}), x ∈ R, G ∈ B(R).

Prove that if p1α1/λ1 6= p2α2/λ2, P does not admit any invariant probability
measures. Hint: See Example 4.19.

6.3.1 The weak bracket condition

The main result in this section (Theorem 6.16) is a su�cient condition for
the existence of a weak Doeblin point with respect to the Markov kernel P
induced by (F,m). This condition will be formulated in terms of the Lie
algebra generated by (Gi)i∈E. The Lie bracket of two C1-vector �elds G and
H on a nonempty open subset M of Rk is itself a vector �eld on M , de�ned
as

[G,H](x) := DH(x)G(x)−DG(x)H(x), x ∈M.

Here, DG(x) and DH(x) denote the Jacobian matrices of G and H, respec-
tively, evaluated at the point x. The products DH(x)G(x) and DG(x)H(x)
are to be understood as matrix-vector products.

If ΦG and ΦH denote the respective �ow functions of G and H, one has
the alternative characterization

[G,H](x) =
d

dt
L(t, x)|t=0, x ∈M, (6.4)
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where
L(t, x) := ΦH

(
−
√
t,ΦG

(
−
√
t,ΦH

(√
t,ΦG

(√
t, x

))))
for t ≥ 0 and x ∈M (see, for example, Proposition 3.b in Chapter 2 of [41]).
Notice that for every �xed x ∈ M , L(·, x) is de�ned in a neighborhood of 0
because G and H are C1.

Exercise 6.14 [Properties of Lie brackets]

(i) Show that the Lie bracket [·, ·] is bilinear and antisymmetric, i.e., for any
C1-vector �elds A,B,C and for any λ ∈ R, one has

[λA,C] = λ[A,C], [A+B,C] = [A,C] + [B,C], [A,B] = −[B,A].

Why is this enough to deduce linearity for the second argument?

(ii) To a vector �eld A on M , one can associate the operator on C∞(M,R)
that maps f ∈ C∞(M,R) to x 7→ 〈A(x),∇f(x)〉. Here, 〈·, ·〉 denotes the
Euclidean inner product on Rk and ∇f denotes the gradient of f . This
operator is usually identi�ed with A, so one writes Af for the image of
f under the operator. Let A and B be C2-vector �elds on M . Show
that

[A,B] = AB − BA,

where AB and BA should be interpreted as compositions of the opera-
tors A and B.

(iii) Use the result from (ii) to prove the Jacobi identity: For C3-vector �elds
A,B,C, one has

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

We inductively de�ne a sequence of families of vector �elds by G0 :=
{Gi}i∈E and Gn+1 := Gn ∪ {[Gi, V ] : i ∈ E, V ∈ Gn} for n ∈ N. Recall that
the linear span of a set S contained in some vector space is the set of all
(�nite) linear combinations of elements in S. We say that the weak bracket
condition holds at a point x ∈M if the linear span of {V (x) : V ∈ ∪n∈N Gn}
is equal to the full space Rk. As alluded to earlier, this condition admits
an alternative formulation in terms of the Lie algebra generated by (Gi)i∈E.
The latter is de�ned as the smallest linear subspace L of the vector space of
C∞-vector �elds on M that is closed under Lie brackets ([G,H] ∈ L for all
G,H ∈ L) and contains (Gi)i∈E.
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Exercise 6.15 Let L denote the Lie algebra generated by (Gi)i∈E.

(i) Show that Gn ⊂ L for all n ∈ N.

(ii) Deduce from (i) that the weak bracket condition at a point x implies
that {V (x) : V ∈ L} = Rk.

(iii) Show that G, the linear span of
⋃

n∈N Gn, is closed under Lie brackets.
Hint: This will follow once it is shown that for every n ∈ N, A ∈ Gn,
and B ∈ G, one has [A,B] ∈ G. The Jacobi identity from Exercise 6.14
may be helpful.

(iv) Conclude that the weak bracket condition holds at a point x ∈M if and
only if {V (x) : V ∈ L} = Rk.

We now state the main result of Subsection 6.3.1.

Theorem 6.16 If the weak bracket condition holds at a point x∗ ∈ M , then
there is n ∈ N such that x∗ is a Doeblin point with respect to P n. In particular,
x∗ is a weak Doeblin point with respect to P.

The proof of Theorem 6.16 relies on a slight generalization of Proposi-
tion 6.6. To state this generalization, let T be a Borel subset of Rd (d ∈ N∗)
with nonempty interior, and let E be a �nite set. Let m be a probability
measure on Θ := T × E, equipped with the product σ-�eld of B(T ) and the
power set of E. As in Section 6.2, the n-fold product measure m ⊗ . . . ⊗m
will be denoted by mn. Let M be a nonempty open subset of Rk, k ∈ N∗,
with Borel σ-�eld B(M). Let F : Θ×M →M be a map such that for every
i ∈ E, (t, x) 7→ F(t,i)(x) is C

1. For n ∈ N∗, i = (i1, . . . , in) ∈ En, and x ∈ M ,
let

φi
n,x : T n →M, (t1, . . . , tn) 7→ (F(tn,in) ◦ . . . ◦ F(t1,i1))(x).

Proposition 6.17 Let x∗ ∈M , n ∈ N∗, and t∗ = (t∗1, . . . , t
∗
n) ∈ Int(T n) such

that the following conditions hold.

(i) There is i ∈ En such that the Jacobian matrix Dφi
n,x∗(t∗) has rank k;

(ii) There is a neighborhood V ⊂ Int(T n) of t∗ such that mn((· ∩ V ) × {i})
is absolutely continuous with respect to λnd(· ∩ V ). The corresponding
probability density function ρ can be chosen such that

c := inf
t∈V

ρ(t) > 0.
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Under these conditions, x∗ is a Doeblin point with respect to P n, and in
particular a weak Doeblin point with respect to P .

Exercise 6.18 Prove Proposition 6.17. Hint: The proof of Proposition 6.6
can almost be repeated verbatim.

The setting of randomly switched vector �elds introduced at the begin-
ning of Section 6.3 is clearly covered by the more general setting of Propo-
sition 6.17, with T = R+ and d = 1. The proof of Theorem 6.16 therefore
reduces to checking conditions 1 and 2 of Proposition 6.17. While condition 2
follows almost immediately from the de�nition of m, establishing condition 1
requires a link between the weak bracket condition and the full-rank condition
on the Jacobian matrix of φi

n,x. This link is provided by the following result
from geometric control theory, which is implied by Theorem 1 of Chapter 3
in [41]. To help the reader understand this result, we give its proof.

Lemma 6.19 Under the assumptions of Theorem 6.16 and for 1 ≤ j ≤ k, the
following statement holds: For every ε > 0 there are i ∈ Ej and t∗ ∈ (0, ε)j

such that Dφi
j,x∗(t∗) has rank j.

Proof We prove Lemma 6.19 by induction. In the base case j = 1, the
weak bracket condition at x∗ implies that there is i ∈ E such that Gi(x

∗) 6= 0.
Then, for every ε > 0, there is t∗ ∈ (0, ε) such that Gi(Φi(t

∗, x∗)) 6= 0. Since

φi
1,x∗(t∗) = F(t∗,i)(x

∗) = Φi(t
∗, x∗),

one has
Dφi

1,x∗(t∗) = Gi(Φi(t
∗, x∗)),

which has rank 1.
In the induction step, assume that the statement holds for some 1 ≤ j < k,

and let ε > 0. Since the weak bracket condition holds at x∗, it also holds in an
open neighborhood M∗ ⊂M of x∗. There is no loss of generality in assuming
that ε is so small that φi

j,x∗(t) ∈ M∗ for every i ∈ Ej and t ∈ (0, ε)j. By
induction hypothesis, there are i ∈ Ej and t∗ ∈ (0, ε)j such that Dφi

j,x∗(t∗)
has rank j. Since a full rank is preserved under small perturbations of the
matrix entries, there is an open neighborhood N of t∗ in (0, ε)j such that
Dφi

j,x∗ has rank j on N . The mapping φi
j,x∗ is then a di�erentiable map

between the manifolds N and M , and Dφi
j,x∗ has constant rank j on N . By

the Constant-Rank Theorem (see, e.g., Theorem 2.b of Chapter 2 in [41]),
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there is an open neighborhood U of t∗ in N such that S := φi
j,x∗(U) is an

embedded submanifold of M of dimension j.
We call a vector �eld V tangent to S if for every y ∈ S, V (y) is a vector

in TyS, the tangent space with respect to S at the point y. We will now show
that there is at least one vector �eld Gi, i ∈ E, that is not tangent to S.

Assume this is not the case, i.e., Gi is tangent to S for every i ∈ E. The
set of vector �elds tangent to S is clearly closed under linear combinations.
It is also closed under the Lie bracket operation because of the �ow-based
characterization of the Lie bracket in (6.4) and the fact that the �ow of a
vector �eld tangent to S stays in S for t in a nonempty open interval around
0 (see Proposition 1 of Chapter 2 in [41]). This shows that every vector �eld
in L, the Lie algebra generated by (Gi)i∈E, is tangent to S. Fix an arbitrary
point y ∈ S. The submanifold S was de�ned in such a way that the weak
bracket condition holds at every point in S and in particular at y. Since
V (y) ∈ TyS for every V ∈ L, the tangent space TyS has dimension k, which
is strictly larger than j. This contradicts the fact that S has dimension j.

Let y ∈ S and ij+1 ∈ E such that Gij+1
(y) /∈ TyS. There is t̂ ∈ U such

that y = φi
j,x∗(t̂). Then

Dφ
i,ij+1

j+1,x∗(t̂, 0) =D(t1,...,tj+1)Φij+1
(tj+1, φ

i
j,x∗(t1, . . . , tj))|(t1,...,tj)=t̂,tj+1=0

=
(
Dφi

j,x∗(t̂), Gij+1
(φi

j,x∗(t̂))
)
=

(
Dφi

j,x∗(t̂), Gij+1
(y)

)
.

Since t̂ ∈ N , the matrix Dφi
j,x∗(t̂) has rank j. As a result, the columns of

Dφi
j,x∗(t̂) are j linearly independent elements of TyS. Since the (j +1)st col-

umn of Dφ
i,ij+1

j+1,x∗(t̂, 0) is not contained in TyS, it follows that Dφ
i,ij+1

j+1,x∗(t̂, 0)
has rank (j+1). Again by virtue of the fact that having full rank is preserved
under small perturbations of the matrix entries, it follows that for t ∈ (0, ε)

su�ciently small, Dφ
i,ij+1

j+1,x∗(t̂, t) has rank (j + 1). QED

We are now ready to prove Theorem 6.16.

Proof [of Theorem 6.16] Let x∗ ∈M be a point where the weak bracket
condition holds. By Lemma 6.19, there are i ∈ Ek and t∗ ∈ V := (0, R)k

such that Dφi
k,x∗(t∗) has rank k.

For Borel sets A1, . . . , Ak ⊂ (0, R) and A := A1 × . . .× Ak, we have

mk

( k∏
l=1

Al × {il}
)

=
k∏

l=1

m(Al × {il}) =
∫
A

ρ(t) dt,
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where

ρ(t) :=
k∏

l=1

pilρil(tl)

and thus inft∈V ρ(t) > 0. The theorem then follows from Proposition 6.17.
QED

The following proposition is implied by Proposition 6.8 and the de�nition
of a right-continuous control at the beginning of Section 6.3.

Proposition 6.20 A point y ∈M is accessible from x ∈M for P (given by
6.3) if and only if for every neighborhood U of y there exists a right-continuous
control j : R+ → E such that the solution t 7→ x(t) to the initial-value problem

ẋ(t) = Gj(t)(x(t))

x(0) = x

meets U. That is, x(t) ∈ U for some t ≥ 0.

In the proof of Theorem 6.16 it was shown that if the weak bracket con-
dition holds at a point x∗ ∈M , then the assumptions of Proposition 6.17 are
satis�ed for n = k, T = R+, and V = (0, R)k. Furthermore, by our assump-
tions on (Gi)i∈E, Fθ is a C

1-di�eomorphism (even a C∞-di�eomorphism) for
every θ ∈ Θ. In analogy to Theorem 6.9, one obtains the following corollary.
As usual, we let Γ denote the set of points that are accessible from every
point in M.

Corollary 6.21 If the weak bracket condition holds at an accessible point
x∗ ∈M , then Γ = Int(Γ) and P has at most one invariant probability measure
µ. When it exists, µ is absolutely continuous with respect to λk and supp(µ) =
Γ.

6.4 Piecewise deterministic Markov processes

In this section, we keep the notation of the preceding section 6.3 but restrict
our attention to the speci�c case where the densities ρi, i ∈ E, appearing in
the de�nition of the measure m (see (6.2)) are exponential, i.e.,

ρi(t) = λie
−λit1t>0
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with λi > 0.
We shall consider certain properties of the joint continuous-time process

Zt = (Yt, It). Such a process is sometimes called in the literature a piecewise
deterministic Markov process, in short a PDMP.

For all f :M × E → R bounded and measurable and for all t ≥ 0, we let

Ptf(x, i) = E(f(Zt)|Z0 = (x, i)). (6.5)

Remark 6.22 Alternatively, one can de�ne Pt as follows. Given (x, i) ∈
M×E, let (Zx,i

t ) = (Y x,i
t , I it) denote the continuous-time process characterized

by
Ẏ x,i
t = GIit

(Y x,i
t ), Y x,i

0 = x,

where (I it) is de�ned like (It) with the exception that θ1 has law ρi(t)dt ⊗ δi
instead of m. Then

Ptf(x, i) = E(f(Zx,i
t )).

Proposition 6.23 The semigroup {Pt}t≥0 is weakly Feller and (Zt)t≥0 is a
Markov process with semigroup {Pt}t≥0.

Exercise 6.24 Prove Proposition 6.23. (Hint: Use the memoryless property
of the exponential distribution: P(τ1 > t + s|τ1 > t) = P(τ1 > s).) Explain
why (ii) fails to hold if the ρi's are not exponential.

Exercise 6.25 Let C1
c (M × E) denote the set of maps f : M × E →

R, (x, i) 7→ f(x, i) that are C1 in x and have compact support. For f ∈
C1

c (M × E), we let ∇f(x, i) denote the gradient of x 7→ f(x, i). Let D,L :
C1

c (M × E) → B(M × E) be the (unbounded) operators de�ned by

Df(x, i) = 〈∇f(x, i), Gi(x)〉,

and
Lf(x, i) = Df(x, i) + λi

∑
j∈E

pj(f(x, j)− f(x, i)).

Prove that for all f ∈ C1
c (M × E),

lim
t→0

Ptf(x, i)− f(x, i)

t
= Lf(x, i)

and that the convergence is uniform in x. In the language of continuous-
time Markov processes, L is called the in�nitesimal generator of the Markov
semigroup {Pt}.
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6.4.1 Invariant measures

The following result relates invariant probability measures of the discrete
kernel P (given by (6.3)) to invariant probability measures of {Pt}.

Theorem 6.26 Let Inv(P ) (respectively Inv({Pt})) be the set of invariant
probability measures for P (respectively {Pt}). Let c = 1∑

j∈E pj/λj
.

(i) If µ ∈ Inv(P ), then µ̂ ∈ Inv({Pt}), where µ̂ is de�ned by

µ̂(A× {i}) = c pi

∫ ∞

0

µ(Φi(−t, A))e−λit dt;

in this formula we think of µ as a measure on Rk that only charges M ;

(ii) If ν ∈ Inv({Pt}), then ν̌ ∈ Inv(P ), where ν̌ is de�ned by

ν̌(A) =
1

c

∑
i∈E

λiν(A× {i});

(iii) The mappings Inv(P ) → Inv({Pt}) : µ 7→ µ̂ and Inv({Pt}) → Inv(P ) :
ν 7→ ν̌, are inverse to each other;

(iv) supp(µ̂) = supp(µ)× E.

Proof (i). Let µ be a Borel probability measure on M. Then, for all f ∈
B(M × E),

µ̂(f) =
Eµ⊗p(

∫ τ1
0
f(Zs) ds)

Eµ⊗p(τ1)
, (6.6)

where µ⊗ p stands for the product measure µ⊗ p =
∑

i piµ(dx)δi. Indeed,

Eµ⊗p

(∫ τ1

0

f(Zs) ds

)
=

∑
i∈E

pi

∫
M

E

(∫ τ1

0

f(Zx,i
s ) ds

)
µ(dx)

=
∑
i∈E

pi

∫
M

∫ ∞

0

∫ t

0

f(Φi(s, x), i) ds λie
−λit dt µ(dx)

=
∑
i∈E

pi

∫
M

∫ ∞

0

f(Φi(t, x), i)e
−λit dt µ(dx) = c−1µ̂(f),
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where we used integration by parts. This equality applied with f ≡ 1 gives
Eµ⊗p(τ1) = c−1, so the formula in (6.6) follows. If now µ ∈ Inv(P ) and Z0

has distribution µ⊗p, then Zτ1 has the same distribution. A continuous-time
version of Exercise 4.24 proves that µ̂ lies in Inv({Pt}). More precisely, for
every t > 0 and f ∈ B(M × E), Proposition 6.23 (ii) yields

Eµ⊗p

(∫ τ1

0

Ptf(Zs) ds

)
=Eµ⊗p

(∫ ∞

0

Eµ⊗p(f(Zs+t)1s<τ1 |Fs) ds

)
=Eµ⊗p

(∫ ∞

0

f(Zs+t)1s<τ1 ds

)
=Eµ⊗p

(∫ t+τ1

t

f(Zs) ds

)
= Eµ⊗p

(∫ τ1

0

f(Zs) ds

)
.

Here the last equality comes from the fact that

Eµ⊗p

(∫ t+τ1

τ1

f(Zs) ds−
∫ t

0

f(Zs) ds

)
= 0

because (Zt)t≥0 and (Zτ1+t)t≥0 have the same distribution. In light of (6.6),
we have thus shown that µ̂(Ptf) = µ̂(f) for every f ∈ B(M × E) and t > 0,
hence µ̂ ∈ Inv({Pt}).

(ii). Let now ν ∈ Inv({Pt}). We shall show that ν̌ ∈ Inv(P ).
Let Kt, K, λ, λ

−1 : B(M ×E) → B(M ×E) and Q : B(M ×E) → B(M)
be the (bounded) operators respectively de�ned by

Ktf(x, i) = f(Φi(t, x), i),

Kf(x, i) =

∫ ∞

0

λie
−λitKtf(x, i) dt,

λf(x, i) = λif(x, i), λ
−1f(x, i) = λ−1

i f(x, i),

and
Qf(x) =

∑
j∈E

pjf(x, j).

Let D and L be the unbounded operators on C1
c (M×E) as de�ned in Exercise

6.25.
Let f ∈ C1

c (M × E). Then

Lf = (D − λ)f + λQf. (6.7)
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One has
dKtf

dt
= DKtf = KtDf, (6.8)

where, for the second inequality, we used

Gi(Φi(t, x)) = DxΦi(t, x)|x=Φi(t,x)Gi(x).

Furthermore, ∫ ∞

0

dKtf(x, i)

dt
e−λit dt = −f(x, i) +Kf(x, i) (6.9)

with integration by parts. The relations in (6.8) and (6.9) together with

∇Kf(x, i) =
∫ ∞

0

λie
−λit∇Ktf(x, i) dt

justi�ed by f ∈ C1
c (M × E) lead to the identity

K(D − λ)f = (D − λ)Kf = −λf.

Thus, with (6.7),

LKf = (D − λ)Kf + λQKf = −λf + λQKf. (6.10)

Let now f ∈ C1
c (M). We can see f as an element of C1

c (M × E) by setting
f(x, i) = f(x). For such f the identity in (6.10) reads

LKf(x, i) = λi(−f(x) + Pf(x)).

Since ν ∈ Inv({Pt}), νPt(Kf) = ν(Kf) for all t, and consequently, by domi-
nated convergence, νLKf = 0 (see Exercise 6.25). Hence ˇ̌νf = ˇ̌νPf with

ˇ̌ν(dx) =
1∑

j λjν(M × {j})
∑
i

λiν(dx× {i}).

This proves that ˇ̌ν ∈ Inv(P ) (use Remark 4.17 with C = C1
c (M)). Finally,

observe that the equation νLf = 0 applied to f(x, i) = f(i) leads to

ν(M × {i}) = pi
λi

∑
k∈E

λkν(M × {k}) = pi
λi
c,
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where we used that
∑

i∈E ν(M × {i}) = 1. Hence

ˇ̌ν(dx) =
1

c

∑
i

λiν(dx× {i}) = ν̌(dx).

(iii). For µ ∈ Inv(P ) and f ∈ B(M × E), µ̂(f) = cµ(Q 1
λ
Kf). For ν ∈

Inv({Pt}) and f ∈ B(M), ν̌(f) = 1
c
ν(λf). Thus, for f ∈ B(M),

ˇ̂µ(f) =
1

c
µ̂(λf) = µ(QKf) = µ(Pf) = µ(f)

by P -invariance. This proves that ˇ̂µ = µ. Conversely, for ν ∈ Inv({Pt}) and
f ∈ C1

c (M × E),

ν(f) = ν(λ1/λf) = ν(λQK(1/λf)) = cν̌(QK1/λf) = cν̌(Q 1
λ
Kf) = ˆ̌ν(f),

where the second equality follows from νLKf = 0 and identity (6.10). Thus
ν = ˆ̌ν.

(iv). This last assertion immediately follows from the other three. QED

Remark 6.27 By Corollary 6.21 and Theorem 6.26, whenever there exists
an accessible point for P (see Proposition 6.20) at which the weak bracket
condition holds, {Pt}t≥0 has at most one invariant probability.

6.4.2 The strong bracket condition

We now de�ne a strengthening of the weak bracket condition. Let G′
0 :=

{Gi − Gj : i, j ∈ E} and G′
n+1 := G′

n ∪ {[Gi, V ] : i ∈ E, V ∈ G′
n} for n ∈ N.

We say that the strong bracket condition holds at a point x ∈M if the linear
span of {V (x) : V ∈ ∪n∈NG

′
n} is equal to the full space Rk. Clearly the strong

bracket condition implies the weak one.

Exercise 6.28 Let G′′
1 := {[Gi, Gj] : i, j ∈ E} and G′′

n+1 := G′′
n ∪ {[Gi, V ] :

i ∈ E, V ∈ G′′
n} for n ∈ N∗.

(i) Show that every vector �eld in (
⋃

n∈N G
′
n) \G′

0 can be written as a linear
combination of vector �elds in

⋃
n∈N∗ G′′

n.
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(ii) Let V be a vector �eld in the linear span of
⋃

n∈N G
′
n. Show that there

exist real numbers (αi)i∈E with
∑

i∈E αi = 0 and a vector �eld W in
the linear span of

⋃
n∈N∗ G′′

n such that

V = W +
∑
i∈E

αiGi.

Exercise 6.29 Given a vector �eld V on M , de�ne the vector �elds 0 ⊕ V
and 1⊕ V on R×M by

(0⊕ V )(r, x) = (0, V (x)) and (1⊕ V )(r, x) = (1, V (x)).

Let U′′
1 = {[1 ⊕ Gi,1 ⊕ Gj] : i, j ∈ E} and U′′

n+1 = U′′
n ∪ {[1 ⊕ Gi, V ] : i ∈

E, V ∈ U′′
n} for n ∈ N∗. Assume that V is contained in the linear span of⋃

n∈N∗ G′′
n, which was introduced in Exercise 6.28. Show that 0 ⊕ V lies in

the linear span of
⋃

n∈N∗ U′′
n.

Theorem 6.30 If the strong bracket condition holds at a point x∗ ∈M , then
for every i ∈ E and t > 0, (x∗, i) is a Doeblin point with respect to Pt.

Proof Let x∗ ∈M be a point where the strong bracket condition holds,
let t > 0, and let i ∈ E. Continuity of the vector �elds (Gj)j∈E and their Lie
brackets implies that x∗ admits an open neighborhood U such that the strong
bracket condition holds at every point in U . Let ε1 ∈ (0, t) be so small that
Φi(t0, x

∗) ∈ U for every t0 ∈ (0, ε1). Fix t
∗
0 ∈ (0, ε1) and set y∗ := Φi(t

∗
0, x

∗),
where now the strong bracket condition holds as well. For d ∈ N∗ and s > 0,
set

∆d,s = {(t1, . . . , td) ∈ (0,∞)d : t1 + . . .+ td < s}.

For i = (i1, . . . , id+1) ∈ Ed+1, de�ne the functions

F d,s
i : ∆d,s ×M →M,

((t1, . . . , td), x) 7→ Φid+1
(s− (t1 + . . .+ td), φ

(i1,...,id)
d,x (t1, . . . , td)),

and
ψd,s
i,x : ∆d,s →M, (t1, . . . , td) 7→ F d,s

i ((t1, . . . , td), x).

The proof of Theorem 6.30 is organized as follows: We �rst show that there
exists a sequence of indices i = (i1, . . . , ik+1) ∈ Ek+1 and s∗ ∈ ∆k,t−t∗0

such that Dψ
k,t−t∗0
i,y∗ (s∗) has rank k. Then we show that x∗ is a Doeblin
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point with respect to Q, the Markov kernel associated with the random
dynamical system (F k+1,t

(i,i) , q), where q is the normalized Lebesgue measure

q(·) = λk+1(·)/λk+1(∆k+1,t). From this we deduce that (x∗, i) is a Doeblin
point with respect to Pt.

Let us begin by showing the existence of i and s∗ such that Dψ
k,t−t∗0
i,y∗ (s∗)

has rank k. On R × M , consider the vector �elds (1 ⊕ Gj)j∈E de�ned as
in Exercise 6.29. We claim that the strong bracket condition at y∗ with
respect to (Gj)j∈E implies the weak bracket condition at (r, y∗) with respect
to (1⊕Gj)j∈E for every r ∈ R.

To see this, let r ∈ R, v = (v1,vk) ∈ R×Rk, and i∗ ∈ E. Since the strong
bracket condition holds at y∗, there exists a vector �eld V in the linear span
of

⋃
n∈N G

′
n such that

vk − v1Gi∗(y
∗) = V (y∗).

By Exercise 6.28 (ii), there exist real numbers (αj)j∈E with
∑

j∈E αj = 0 and
a vector �eld W in the linear span of

⋃
n≥1 G

′′
n (de�ned in Exercise 6.28) such

that
V = W +

∑
j∈E

αjGj.

Then, by Exercise 6.29, 0⊕W lies in the linear span of
⋃

n∈N∗ U′′
n (de�ned in

Exercise 6.29). Let U0 = {1 ⊕ Gj : j ∈ E} and Un+1 = Un ∪ {[1 ⊕ Gj, V ] :
j ∈ E, V ∈ Un} for n ∈ N. It is easy to check that U′′

n ⊂ Un for every n ∈ N∗,
so 0⊕W lies in the linear span of

⋃
n∈N Un. Now we can write

v = (v1,vk) =(0,vk − v1Gi∗(y
∗)) + v1(1⊕Gi∗)(r, y

∗)

=(0⊕W )(r, y∗) +
∑
j∈E

αj(1⊕Gj)(r, y
∗) + v1(1⊕Gi∗)(r, y

∗),

where we used that
∑

j∈E αj = 0. This proves that v lies in the linear span of⋃
n∈N Un. Accordingly, the weak bracket condition with respect to (1⊕Gj)j∈E

holds at (r, y∗).
Let (Φ̃j)j∈E denote the �ow functions associated with the vector �elds

(1⊕Gj)j∈E on M̃ := R×M . De�ne the maps

F̃ : Θ× M̃ → M̃, ((s, j), (r, x)) 7→ F̃(s,j)(r, x) := Φ̃j(s, (r, x))

and

φ̃i
n,(r,x) : Rn

+ → M̃, (t1, . . . , tn) 7→ (F̃(tn,in) ◦ . . . ◦ F̃(t1,i1))(r, x)



152 CHAPTER 6. PETITE SETS AND DOEBLIN POINTS

for n ∈ N∗, i = (i1, . . . , in) ∈ En, and (r, x) ∈ M̃ . Fix ε ∈ (0, ε1 ∧ t−t∗0
k+1

).
Since the weak bracket condition with respect to (1⊕Gj)j∈E holds at (r, y∗),
Theorem 6.19 implies that there are i ∈ Ek+1 and s∗∗ = (t∗1, . . . , t

∗
k+1) ∈

(0, ε)k+1 such that Dφ̃i
k+1,(r,y∗)(s

∗∗) has rank (k + 1).

Set s∗ = (t∗1, . . . , t
∗
k) and τ = t∗0 + t∗1 + . . .+ t∗k+1. Then s∗ ∈ ∆k,t−t∗0

and

Dψ
k,t−t∗0
i,y∗ (s∗) = DΦik+1

(t− τ, φi
k+1,y∗(s

∗∗))Dφi
k+1,y∗(s

∗∗)

(
1k×k

−1 . . . − 1

)
.

Since Φik+1
(t−τ, ·) is a di�eomorphism, the matrix DΦik+1

(t−τ, φi
k+1,y∗(s

∗∗))
is invertible. We now show that

Dφi
k+1,y∗(s

∗∗)

(
1k×k

−1 . . . − 1

)
(6.11)

is invertible as well and thus that Dψ
k,t−t∗0
i,y∗ (s∗) has rank k. To obtain a

contradiction, suppose that the matrix in (6.11) is not invertible. Denoting
the columns of Dφi

k+1,y∗(s
∗∗) by a1, . . . , ak+1, the matrix in (6.11) becomes

(a1 − ak+1, . . . , ak − ak+1), so there exists j ∈ {1, . . . , k} and real numbers
(βl)l∈{1,...,k}\{j} such that

aj − ak+1 =
∑

l∈{1,...,k}\{j}

βl(al − ak+1).

Then (
1
aj

)
=

∑
l∈{1,...,k}\{j}

βl

(
1
al

)
+

(
1−

∑
l∈{1,...,k}\{j}

βl

)(
1

ak+1

)
.

Since

Dφ̃i
k+1,(r,y∗)(s

∗∗) =

(
1 . . . 1

Dφi
k+1,y∗(s

∗∗)

)
=

(
1 . . . 1

a1 . . . ak+1

)
,

this implies that Dφ̃i
k+1,(r,y∗)(s

∗∗) has rank strictly less than (k + 1), a con-
tradiction.

Now we show that x∗ is a Doeblin point with respect to Q, the Markov
kernel associated with (F k+1,t

(i,i) , q). To do so, we will apply Proposition 6.17

with ∆k+1,t, {1}, q, F k+1,t
(i,i) , and ψk+1,t

(i,i),x playing the roles of T , E, m, F , and

φ1
1,x, respectively. Since the �nite set {1} consists of a single element, we may

identify Θ from Proposition 6.17 with T = ∆k+1,t. The measure q is clearly
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absolutely continuous with respect to λk+1 and has a constant probability
density function. To be able to invoke Proposition 6.17, it is then enough to
show that for t∗ := (t∗0, s

∗), Dψk+1,t
(i,i),x∗(t∗) has rank k. But this follows from

D(t1,...,tk)ψ
k+1,t
(i,i),x∗(t

∗) = Dψ
k,t−t∗0
i,y∗ (s∗)

and the fact that the matrix on the right-hand side has rank k, as established
in the second step of the proof.

To complete the proof of Theorem 6.30, we argue as follows. Since x∗ is
a Doeblin point with respect to Q, there exist a neighborhood B ⊂ M of x∗

and a nonzero Borel measure ξ on M such that

Q(x,A) ≥ ξ(A), ∀x ∈ B, A ∈ B(M).

De�ne the event

C = {τk+1 < t < τk+2, I0 = i, Iτl = il for 1 ≤ l ≤ k + 1}.

For every x ∈ B, A ∈ B(M), and j ∈ E,

Pt((x, i), A× {j}) = P(Zx,i
t ∈ A× {j}|C)P(C) = δik+1

(j)P(Y x,i
t ∈ A|C)P(C).

Let (T0, . . . , Tk+1) be independent random variables living on some probability
space with probability measure P such that T0 has probability density function
ρi and Tl has probability density function ρil for 1 ≤ l ≤ k + 1. Set

R = {T0 + . . .+ Tk < t ≤ T0 + . . .+ Tk+1}.

Then

Pt((x, i), A× {j}) = δik+1
(j) P(F k+1,t

(i,i) ((T0, . . . , Tk), x) ∈ A|R) P(C).

One has

P(F k+1,t
(i,i) ((T0, . . . , Tk), x) ∈ A|R)

=
1

P(R)

∫
∆k+1,t

ρi(t0)
k∏

l=1

ρil(tl)1A(F
k+1,t
(i,i) ((t0, . . . , tk), x))∫ ∞

t−(t0+...+tk)

ρik+1
(tk+1) dtk+1 dt0 . . . dtk

≥ c̃

P(R)
λk+1(∆k+1,t)Q(x,A) ≥

c̃

P(R)
λk+1(∆k+1,t)ξ(A),
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where

c̃ := inf
(t0,...,tk)∈∆k+1,t

λi

k∏
l=1

λil exp

(
−λit0 −

k∑
l=1

λiltl − λik+1

(
t−

k∑
l=0

tl

))
> 0.

This proves that (x∗, i) is a Doeblin point for Pt. QED

Corollary 6.31 If the strong bracket condition holds at an accessible point
x∗ ∈M, then for all s > 0

Inv(Ps) = Inv({Pt})

and Inv(Ps) has at most cardinality one.

Proof This follows from Proposition 6.3 and Theorem 6.30. QED

6.5 Stochastic di�erential equations

This section, and the related Section 7.5.2, are not self-contained and require
some extra knowledge, namely a certain familiarity with stochastic di�erential
equations.

Let G0, G1, . . . , GN denote smooth vector �elds on M = Rk (or on a k-
dimensional manifold). For simplicity, we shall assume here that the vector
�elds Gi are bounded with bounded �rst and second derivatives.

We consider the Stratonovich stochastic di�erential equation on M

dXt = G0(Xt) dt+
N∑
i=1

Gi(Xt) ◦ dBi
t, (6.12)

where B = (Bt)t≥0 = (B1
t , . . . , B

N
t )t≥0 is an N -dimensional {Ft}-Brownian

motion, starting from 0, de�ned on a probability space {Ω,F ,P} equipped
with a (complete) �ltration {Ft}t≥0.

Equivalently, using the Itô formalism,

dXt = G̃0(Xt) dt+
N∑
i=1

Gi(Xt) dB
i
t, (6.13)
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where

G̃0(x) = G0(x) +
1

2

N∑
i=1

DGi(x)Gi(x).

By classical results (see, e.g., [45, Chapter 8]), given x ∈ M there exists
a unique solution, Xx = (Xx

t )t≥0, to (6.12) with Xx
0 = x. Furthermore,

Xx ∈ C(R+,M) and the mapping x 7→ Xx is continuous when C(R+,M)
is equipped with the topology of uniform convergence on compact intervals.

Let {Pt}t≥0 be the family of operators on B(M) de�ned by

Ptf(x) = E(f(Xx
t )).

Then it is also classical that (Xt) is a continuous Feller Markov process with
semigroup {Pt}t≥0 (see, e.g., [45] or [59]).

6.5.1 Accessibility

Associated to (6.5) is the deterministic control system

ẏ = G0(y) +
N∑
j=1

uj(t)Gj(y), (6.14)

where u : [0,∞) → RN is a control function which can be chosen piecewise
continuous or piecewise constant.

We let t 7→ y(t, x, u) denote the solution to (6.14) whose initial condition
is x.

Proposition 6.32 Let p, x ∈M. The following statements are equivalent:

(i) For every neighborhood U of p, there exists a control u which can be
chosen piecewise continuous or piecewise constant, and t ≥ 0 such that
y(t, x, u) ∈ U ;

(ii) The point p is accessible from x for {Pt}t≥0.

Proof This follows from the Stroock�Varadhan Support Theorem [65],
which asserts that the support of the law ofXx equals the closure (in C(R+,M))
of the set {y(·, x, u) : u piecewise constant}. It is easy to show that the latter
also equals the closure of {y(·, x, u) : u piecewise continuous}. QED
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6.5.2 Hörmander conditions

The existence of Doeblin points for the 1-resolvent G or for PT can be deduced
from certain Hörmander conditions that are similar to the bracket conditions
introduced in Sections 6.3.1 and 6.4.2 for PDMPs.

Using the terminology introduced in these sections, we let L(G0, . . . , GN)
denote the Lie algebra generated by {G0, . . . , GN}, and for all x ∈ Rk

L(G0, . . . , GN)(x) = {V (x) : V ∈ L(G0, . . . , GN)}.

We de�ne similarly L(G1, . . . , GN) and L(G1, . . . , GN)(x).
Given a point x ∈ Rk we shall say that x satis�es the weak Hörman-

der condition (respectively the Hörmander condition, respectively the strong
Hörmander condition) if:

(a) [Weak Hörmander condition] L(G0, . . . , GN)(x) = Rk;

(b) [Hörmander condition] The family

L(G1, . . . , GN)(x) ∪ {[X,Y ](x) : X,Y ∈ L(G0, . . . , GN)}

spans Rk;

(c) [Strong Hörmander condition] L(G1, . . . , GN)(x) = Rk.

Clearly (c) ⇒ (b) ⇒ (a). Observe that in (a) all the vector �elds, including
the drift G0, play the same role. In (b) the drift can only appear in a bracket
with some "Brownian" vector �eld. In (c) only the Brownian vector �elds
appear.

A classical theorem in geometric control theory, originally due toW. L. Chow
[15], has the following useful consequence:

Proposition 6.33 Let U ⊂ Rk be a connected open set. Suppose that the
strong Hörmander condition holds at every point x ∈ U. Then for all x, y ∈ U
the point y is accessible for {Pt}t≥0 from the point x.

Proof For ε ≥ 0 and u : [0,∞) → RN a piecewise continuous function,
let t → yε(t, x, u) denote the solution to the ordinary di�erential equation
ẏ = εG0(y) +

∑N
j=1 uj(t)Gj(y) with initial condition yε(0, x, u) = x. Chow's

Theorem (see, e.g., [15] or [41, Chapter 2, Theorem 3]) asserts that for all
x, y ∈ U there exist a piecewise constant control u with values in {−1, 0, 1}
and t ≥ 0 such that y0(s, x, u) ∈ U for all 0 ≤ s ≤ t and y0(t, x, u) = y. To
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shorten notation, set yε(s) = yε(s, x, u) and y0(s) = y0(s, x, u). Then, for all
0 ≤ s ≤ t,

‖yε(s)− y0(s)‖ ≤ ε‖G0‖∞ t+K

∫ s

0

‖ yε(r)− y0(r) ‖ dr,

where K =
∑N

i=1 ‖DGi‖∞. Thus, by Gronwall's Lemma,

‖yε(t)− y0(t)‖ ≤ eKtε‖G0‖∞ t,

so that yε(t) → y as ε→ 0. To conclude observe that yε(s, x, u) = y(εs, x, uε)
with uε(s) = u( s

ε
)/ε. The result then follows from Proposition 6.32. QED

The following results, Theorems 6.34 and 6.37, heavily rely on classical papers
on hypoelliptic di�usions by Bony [13] and by Ichihara and Kunita [39].

Theorem 6.34 The following statements hold:

(i) Suppose that the weak Hörmander condition holds at p ∈ Rk. Then p is
a Doeblin point for the 1-resolvent G;

(ii) Suppose in addition that p is accessible. Then {Pt}t≥0 has at most one
invariant probability measure µ. When it exists, µ is absolutely contin-
uous with respect to λk (the Lebesgue measure on Rk) and supp(µ) =
Γ = Int(Γ), where Γ stands for the accessible set of {Pt}.

Proof (i). FixO a neighborhood of p, small enough so that L(G0, . . . , GN)(x)
spans Rk for all x ∈ O.

We say that p is totally degenerate if
∑N

i=1 ‖Gi(p)‖ = 0. We distinguish
between two cases.

Case 1: p is not totally degenerate.
In this case, there exists a connected open set D containing p, relatively

compact, with D̄ ⊂ O such that:

(a) For every x ∈ D̄,
∑N

i=1 ‖Gi(x)‖ 6= 0;

(b) For every x ∈ ∂D = D̄ \ D, there exists a vector u normal to D̄ at x
such that

∑N
i=1〈Gi(x), u〉2 > 0.

Here, by a vector normal to D̄ at x, we mean that there exists r > 0 such
that the open ball with center x+ ru and radius r‖u‖ has empty intersection
with D.
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The reason for which such a D exists is the following. We can assume,
without loss of generality, that G1(p) 6= 0 and G1(p)

∥G1(p)∥ = e1, the �rst vector in

the canonical basis of Rk. For ε > 0 small enough, let

D = {x ∈ Rk : ‖x− p‖1 < ε},

where ‖u‖1 =
∑k

i=1 |ui|. For x ∈ ∂D let ux be the vector de�ned by ux,i =
xi−pi
|xi−pi| if xi 6= pi and ux,i = 1 otherwise. The vector ux is normal to ∂D and

〈e1, ux〉2 = 1. Hence, for ε small enough, 〈G1(x), ux〉2 > 0 for all x ∈ ∂D and
G1(x) 6= 0 for all x ∈ D.

The "formal generator" of the di�usion process (6.12) is the operator L
acting on C2 functions f : Rk → R by the formula:

Lf = G0(f) +
1

2

N∑
i=1

G2
i (f), (6.15)

where Gi(f)(x) = 〈∇f(x), Gi(x)〉 and G2
i (f) = Gi(Gi(f)). Under the condi-

tions (a) and (b) above, there exists, by a theorem of Bony ([13, Theorem
6.1]), a kernel GD : D̄× D̄ → R+, smooth on D×D \ {(x, x) : x ∈ D}, such
that the following holds:

For every f ∈ Cb(D̄), there exists a unique solution g ∈ Cb(D̄) to the
Dirichlet problem{

Lg − g = −f on D( in the sense of distributions )
g|∂D = 0,

and g(x) = GDf(x) :=
∫
GD(x, y)f(y) dy. Furthermore, if f is smooth on D

so is g.
Note that, by continuity of GD o� the diagonal, there exist disjoint open

sets U, V ⊂ D and δ > 0 such that p ∈ U and GD(x, y) ≥ δ for every
(x, y) ∈ U × V.

Let τ = inf{t > 0 : Xx
t 6∈ D}. For f ∈ Cb(D) smooth on D, Itô's formula

implies that (
e−t∧τg(Xx

t∧τ ) +

∫ t∧τ

0

e−sf(Xx
s ) ds

)
t≥0

is a local martingale. Being bounded, it is a uniformly integrable martingale.
Thus,

E

(∫ τ

0

e−sf(Xx
s ) ds

)
= GDf(x).
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It follows that for every x ∈ U and every Borel set A ⊂ Rk,

G(x,A) ≥ GD1A(x) ≥ δλk(A ∩ V ),

proving that p is a Doeblin point for G.

Case 2: p is totally degenerate.
Let {Φ0(t, ·)} be the �ow induced by G0. We �rst assume that k ≥ 2. We

claim that it is possible to choose t > 0 small enough to ensure that Φ0(t, p)
lies in O and is not totally degenerate. By what precedes Φ0(t, p) is then a
Doeblin point for G, and - since it is accessible from p by {Pt}t≥0 -, this makes
p a Doeblin point for G (the proof of this latter assertion is easy and left to
the reader). To prove the claim, assume to the contrary that Gi(Φ0(t, p)) = 0
for all 0 < t < ε and i = 1, . . . , N. Then

0 = DGi(Φ0(t, p))
d

dt
Φ0(t, p) = DGi(Φ0(t, p))G0(Φ0(t, p)) = [G0, Gi](Φ0(t, p)).

Similarly Z(Φ0(t, p)) = 0 for all Z ∈ L(G0, . . . , GN) \ {G0}. This is in contra-
diction with the assumption that L(G0, . . . , GN) has rank k ≥ 2 on O.

Suppose now that k = 1. If for some t > 0, and i ∈ {1, . . . , N}Gi(Φ0(t, p)) 6=
0 the point Φ0(t, p) is not totally degenerate, and like previously, p is a Doe-
blin point. If for all t ≥ 0 and i ∈ {1, . . . , N} Gi(Φ0(t, p)) = 0, then for all
x ∈ {Φ0(t, p) : t > 0} and f ≥ 0,

Gf(x) =

∫ ∞

0

e−tf(Φ0(t, x))dt ≥ e−1

∫ 1

0

f(Φ0(t, x))dt = e−1

∫ Φ0(1,x)

x

f(u)

G0(u)
du.

This easily implies that x, hence p, is Doeblin for G.
(ii). Suppose that p is accessible. Then, by Theorem 6.2, G (and hence

{Pt}t≥0) has at most one invariant probability measure µ. The minoration
G(x,A) ≥ δλk(A∩V ) for all x ∈ U shows that V ⊂ Γ. Thus, Γ has nonempty
interior and consequently (see Proposition 6.2) supp(µ) = Γ. Also, for every
piecewise constant control u, the map x 7→ y(t, x, u) is a di�eomorphism. The
set ∪t,uy(t, V, u), with the union taken over all t ≥ 0 and u piecewise constant,
is then an open set dense in Γ. It remains to prove that µ� λk. Let C(R+,RN)
be the Wiener space equipped with its Borel σ-�eld and the Wiener measure
W (dw) (i.e., the law of B = (B1

t , . . . , B
N
t )t≥0) and let Θ = R+ × C(R+,RN)

be equipped with the product measure m(dtdw) = e−tdtW (dw). Then, for all
f ∈ B(M),

Gf(x) =

∫
Θ

f(Fθ(x)) m(dθ),



160 CHAPTER 6. PETITE SETS AND DOEBLIN POINTS

where F(t,w)(x) = Xx
t (w). Now, for almost all w and all t ≥ 0, the map

x 7→ Xx
t (w) = F(t,w)(x) is a di�eormorphism (see, e.g., [40, Chapter V] or

Kunita [44]). We are then in the situation already considered in Theorem 6.9
and the proof of Theorem 6.9 applies verbatim. QED

Remark 6.35 Suppose that Γ 6= ∅ and that all the points in Γ satisfy the
weak Hörmander condition. Then the density of µ (when µ exists) is C∞.
Indeed, let U be a neighborhood of Γ such that all the points in U satisfy
the weak Hörmander condition. By Hörmander's Theorem [38], L and L∗

are hypoelliptic operators in U, meaning that for every distribution f on U,
Lf ∈ C∞(U) ⇒ f ∈ C∞(U). If f = dµ

dλk , L
∗f = 0 so that f is smooth.

Remark 6.36 Suppose that all the points inM satisfy the strong Hörmander
condition (and, in case M is a manifold, M is connected). Then Γ =M and
the density of µ (when µ exists) is positive everywhere. The �rst statement
follows from Proposition 6.33 and the second from Bony's maximum principle
([13, Corollaire 3.1]) applied to L∗.

Theorem 6.37 Let p ∈ Rk. Suppose that the Hörmander condition holds at
p. Then p is a Doeblin point for some Pt with t > 0. If furthermore p is
accessible, then for all s > 0

Inv(Ps) = Inv({Pt})

and Inv(Ps) has at most cardinality one.

Proof Let D be a neighborhood of p at which the Hörmander condition
holds. Then the law of (Xt) killed at D (see Ichihara and Kunita [39]) has a
density qt(x, y) which is C∞ in t > 0, x, y ∈ D. Thus, qt(p, q) > 0 for some
t > 0 and q ∈ D. This makes p a Doeblin point for Pt. The second statement
follows from Proposition 6.3. QED

Notes

The material on random switching between vector �elds in Section 6.3 is based
on [8] and [5]. The weak bracket condition is closely related to the classical
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Hörmander hypoellipticity condition that yields smoothness of transition den-
sities for di�usions (see, e.g., [51]). More background on the weak and strong
bracket conditions with an emphasis on how they relate to controllability is
provided in [66]. Proposition 6.3 and the material in Section 6.5 are based on
[6] and [10]. The �rst proof that, under a weak Hörmander condition at an
accessible point, an SDE has at most one invariant probability measure goes
back to Arnold and Kliemann [2]. The proof given here (of Theorem 6.34) is
based on the notes [6] and di�ers from the proof in [2].
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Chapter 7

Harris and Positive Recurrence

7.1 Stability and positive recurrence

Let (Xn) denote a Markov chain (de�ned on (Ω,A,F,P)) on M with kernel
P. Recall that we let

νn =
1

n

n∑
i=1

δXk

denote its empirical occupation measure.
If there exists π ∈ P(M) such that, for all x ∈ M and every bounded

continuous (respectively measurable) function f :M 7→ R,

Px( lim
n→∞

νnf = πf) = 1,

the kernel P (or the chain (Xn)) is called stable, respectively positively recur-
rent.

If P is stable, then it is clearly uniquely ergodic with invariant probability
{π} (where π is the probability appearing in the de�nition).

The following partial converse follows from Theorem 4.20.

Proposition 7.1 Suppose that P is Feller, uniquely ergodic and that for all
x ∈M, {νn} is Px almost surely tight. Then P is stable.

Remark 7.2 A Feller stable Markov chain is not necessarily positively re-
current. For instance, let Xn ∈ [−2, 2] be recursively de�ned as

Xn+1 =
1

2
Xn + ξn+1

163
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where (ξn) are independent uniformly distributed random variables taking
values in {−1, 1}. Then, (Xn) is Feller and uniquely ergodic (see e.g Exer-
cise ?? or Theorem 4.31), hence stable. It is not hard to prove that π, its
stationary distribution, is the uniform distribution over [−2, 2]. On the other
hand, for X0 = 0, Xn ∈ D = {

∑m
k=0 2

−kθk : θk ∈ {−1, 1},m ∈ N} so that
νn(D) = 1 while π(D) = 0.

Another example (borrowed from [22]) is the following. Let P be the Ker-
nel on [0,∞[ de�ned by P (0, 0) = 1 and for x > 0, P (x, 0) = 1−P (x, x/2) =
2−x. This kernel is δ0-irreducible, Feller and admits δ0 as (unique) invariant
probability. It is stable (since Xn ≤ X0

2n
) but is not positively recurrent,

because the probability that Xn never touches 0 is positive.

.

Exercise 7.3 Let (Xn) be the deterministic system on S1 = R/Z de�ned by
Xn+1 = (Xn + α) mod 1 where α ∈ R \Q. Show that (Xn) is stable but not
positively recurrent.

Proposition 7.4 Suppose that P is strongly Feller and stable. Then P is
positively recurrent.

Proof If P is strongly Feller, then for every bounded measurable f , Pf is
continuous so that, νn(Pf)− π(Pf) → 0 Px almost surely. By invariance of
π, π(Pf) = πf and, as shown in the proof of Theorem 4.20 νn(Pf)−νnf → 0
Px almost surely. QED

Remark 7.5 A Feller (even strongly Feller) uniquely ergodic Kernel on a non
compact space is not necessarily stable. For instance, let P be the Kernel on
N de�ned as P (0, 0) = 1 and for n ≥ 1 P (n, n − 1) = 1 − p, P (n, n + 1) = p
with 1 > p > 1/2. Then δ0 is the unique invariant probability of this Markov
chain but the chain is not stable since Px(Xn → ∞) > 0 for all x > 0. Another
(similar) example on Rd is given by the deterministic linear dynamical system,
Xn+1 = aXn with a > 1.
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7.2 Harris recurrence

The chain (Xn) is called Harris recurrent if there exists a non zero measure
ξ such that for every Borel set A ⊂M and every x ∈M

ξ(A) > 0 ⇒ Px(lim sup
n→∞

1A(Xn) = 1} = 1.

Note that an Harris recurrent chain is ξ-irreducible. The converse is false as
shown by the following example.

Example 7.6 Let P be the Markov transition matrix on M = N de�ned
by P (i, i + 1) = pi and P (i, 0) = 1 − pi; where p0 = 0, pi > 0 for i ≥ 1
and

∏
i≥1 pi > 0. Then the associated chain is δ0 irreducible but not Harris

recurrent.

Recall that an harmonic function is a measurable function h : M 7→ R such
that

Ph = h.

Theorem 7.7 Suppose that (Xn) is Harris recurrent. Then every bounded
harmonic function is constant.

Proof Let h be bounded and harmonic. Let (Xx
n) denote the chain having

P as transition kernel and initial condition Xx
0 = x. Then Yn = h(Xx

n) is a
bounded (in particular uniformly integrable) martingale. Hence, by Doob's
convergence theorem (Theorem A.7 in the appendix), limn→∞ Yn = Y∞ exists
almost surely and E(Y∞|Fn) = Yn. Given a ∈ R let {h ≥ a} (respectively
{h ≤ a}, {h = a} be the set of u ∈ M such that h(u) ≥ a (respectively
≤,=). If ξ({h ≥ a}) > 0 then (Xx

n) enters {h ≥ a} in�nitely often. Thus
Y∞ ≥ a so that Yn = E(Y∞|Fn) ≥ a. In particular, h(x) = Y0 ≥ a. Similarly
if ξ({h ≤ a}) > 0 then h(x) ≤ a. Let now a be such that {h = a} 6= ∅. Then
ξ({h 6= a}) = ξ(∪n∈N{a− (n+ 1)−1 ≤ h ≤ a+ (n+ 1)−1}c) = 0. This proves
that h = a. QED

Positive recurrence and Harris recurrence are intimately linked as shown
by the next important theorem.

Theorem 7.8 The following assertion are equivalent:

(a) P is Harris recurrent and Inv(P ) 6= ∅;
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(b) P is positively recurrent;

(c) There exists π ∈ Inv(P ) such that for all f ∈ L1(π) and every initial
distribution µ,

Pµ( lim
n→∞

νn(f) = π(f)) = 1.

Proof c⇒ b⇒ a is immediate. Conversely, if P is Harris recurrent with an
invariant probability π then P is uniquely ergodic. Let f ∈ L1(π),A = {ω ∈
MN : limn→∞

1
n

∑n
k=1 f ◦ θk(ω) = πf} and g(x) = Px(A). By the ergodic

theorem g(x) = 1 π almost surely. We now claim that g is harmonic, which
with Theorem 7.7 proves the result. To prove the claim we use the invariance
of A under θ and the Markov property:

g(x) = Ex(1A) = Ex(1A ◦ θ) = Ex(Ex(1A ◦ θ)|F1)) = Ex(g(X1)) = Pg(x).

QED

Theorem 7.9 Suppose P is strong Feller, uniquely ergodic with an invariant
probability π having full support. Then the equivalent conditions of Theorem
7.8 hold true.

Proof Let f ∈ L1(π) and let g be de�ned like in the proof of Theorem
7.8. We have seen that g is harmonic. Since P is strong Feller g is con-
tinuous, and by the ergodic theorem g(x) = 1 for π almost all x. The set
{x ∈M : g(x) = 1} is then a closed set containing the support of π. Since π
has full support, g = 1 and P is positively recurrent. QED

Corollary 7.10 Suppose P is strong Feller with an invariant probability π
having full support. If M is connected, then the equivalent conditions of The-
orem 7.8 hold true.

Proof follows from Theorem 7.9 and Proposition 5.18 QED
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7.2.1 Petite sets and Harris recurrence

A convenient and practical way to ensure that a chain is Harris recurrent is
to exhibit a recurrent petite set.

Given a Borel set C ⊂M we say that x ∈M leads almost surely to C if
Px(τC <∞) = 1 where

τC = min{k ≥ 1 : Xk ∈ C}.

We say that C is recurrent if every x ∈M leads almost surely to C.
For further reference, we de�ne the successive return times in C recursively

by
τ
(n+1)
C = min{k > τ

(n)
C : Xk ∈ C}

with τ
(0)
C = 0.

Proposition 7.11 Let C ⊂M be a recurrent petite set. Then (Xn) is Harris
recurrent.

Proof It easily follows from the de�nition of a petite set (see Section ??),
that for all x ∈ C and A Borel, Px(τA < ∞) ≥ ξ(A). Thus, using the strong
Markov property, for all x ∈M,

Px(τA <∞) ≥ Px(∃k ≥ τC : Xk ∈ A) = Ex(PXτC
(τA <∞)) ≥ ξ(A).

Therefore, by the Markov property, for all n ∈ N

P(τA <∞|Fn) = PXn(τA <∞) ≥ ξ(A).

The �rst term of this inequality converges to 1τA<∞ (see Theorem A.7 in the
appendix). Thus Px(τA <∞) = 1 for all x, whenever ξ(A) > 0. By the strong
Markov property, this implies that Xn ∈ A in�nitely often. QED

7.3 Recurrence criteria and Lyapunov functions

We discuss here simple useful criteria, based on Lyapounov functions, ensur-
ing that a set is recurrent. It also provide moments estimates of the return
times. Conditions (a) and (b) of the next results are folklore (see the notes
at the end of the chapter). We learned condition (a′) from Philippe Robert
(see [60], Proposition 8 in Chapter 8).
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Proposition 7.12 Let V : M 7→ [1,∞[ be a measurable map and C ⊂ M a
Borel set. Assume that for all x ∈ C PV (x) < ∞ and that one of the three
following conditions hold:

(a) PV − V ≤ −1 on M \ C;

(a') Condition (a) and supx∈M Ex(|V (X1)− V (x)|p) <∞ for some p > 1;

(b) PV − V ≤ −λV on M \ C for some 1 > λ > 0.

Then for all x ∈M

(i) Ex(τC) ≤ PV (x) + 1 under condition (a);

(ii) Ex(τ
p
C) ≤ c(1 + V p(x)) for some constant c > 0, under condition (a′);

(iii) Ex(e
λτC ) ≤ Ex(e

− log(1−λ)τC ) ≤ 1
1−λ

PV (x) under condition (b).

In particular, C is a recurrent set.

Proof Let Vn = V (Xn∧τC ) + (n ∧ τC). Then (Vn)n≥1 is a supermartingale.
Indeed, for all n ≥ 1

E(Vn+1 − Vn|Fn) = E(Vn+1 − Vn|Fn)1τC>n = (PV (Xn)− V (Xn))1τC>n ≤ 0.

Thus Ex(n ∧ τC) ≤ Ex(Vn) ≤ Ex(V1) = PV (x) + 1. This proves the �rst

assertion. The proof of assertion (iii) is similar. Set Vn =
V (Xn∧τC

)

(1−λ)n∧τC
. Then

(Vn)n≥1 is a supermartingale. Thus

Ex(e
− log(1−λ)n∧τC ) ≤ Ex(Vn) ≤ Ex(V1) =

PV (x)

1− λ
.

We now prove assertion (ii), following Robert ([60], Proposition 8, Chapter
8).

We claim that for all x > −1

(1 + x)p ≤ 1 + px+ Cpr(x) (7.1)

where

r(x) = x2(1 + |x|)p−2 and Cp =
p(p− 1)

4

for p ≥ 2; And
r(x) = |x|p and Cp = 1
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for 1 < p < 2. Indeed, by Taylor-Lagrange formula, for all x > −1,

(1 + x)p = 1 + px+
p(p− 1)

2
x2R(x)

with R(x) =
∫ 1

0
(1− s)(1 + sx)p−2ds. Thus |R(x)| ≤ 1

2
(1 + |x|)p−2) for p ≥ 2.

For 1 < p < 2, and x > 0, |R(x)| ≤
∫ 1

0
(1 − s)sp−2xp−2 = 1

p(p−1)
xp−2 while for

1 < p < 2 and −1 < x ≤ 0 |R(x)| ≤ 1 (because s ∈ [0, 1] 7→ (1−s)(1+sx)p−2

is decreasing, hence bounded above by 1). This proves the claim.
Now set

Zn = 1 + ε(V (Xn) +
n

2
)

where ε > 0, and

∆n+1 = V (Xn+1)− V (Xn) +
1

2
.

Then

Zp
n+1 = Zp

n(1 +
ε∆n+1

Zn

)p,

so that by (7.1) and condition (a),

Ex(Z
p
n+1|Fn) ≤ Zp

n[1−
pε

2Zn

+ CpEx(r(
ε∆n+1

Zn

)|Fn)]

on the event τC > n. Now, it is easy to check that r( ε∆n+1

Zn
) ≤ ε2

Zn
(1+ |∆n+1|)p)

for p ≥ 2, and r( ε∆n+1

Zn
) ≤ εp |∆n+1|p

Zn
for 1 < p < 2. Thus, for ε > 0 small

enough, condition (a) and (a′) make (Zp
n∧τC ) a supermartingale. The end of

the proof is like the proof of (i). QED

Remark 7.13 if V is a Lyapounov function in the sense that PV ≤ ρV + κ
with 0 ≤ ρ < 1 and κ ≥ 0; the assumptions of the Proposition 7.12 (b) hold
true with 0 < λ < 1 − ρ and C = {x ∈ M : V (x) ≤ κ+1

1−ρ−λ
}. Compare to

Proposition 4.23.

The next proposition extends assertion (iii) of Proposition 7.12 and gives an
alternative condition (to conditions (a), (a′)) to control the moments of τC .
The proof is based on a beautiful argument used in section 4.1 of Hairer's
notes [?].
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Proposition 7.14 Let V : M 7→ [1,∞[ be a measurable map and C ⊂ M a
Borel set. Let φ : [0,∞[ 7→ R∗

+ be a C1 concave function and let h : [1,∞[ 7→
[0,∞[ be the map de�ned by

h(x) =

∫ x

1

ds

φ(s)
.

Assume that for all x ∈ C PV (x) <∞ and that for all x ∈M \ C

PV (x)− V (x) ≤ −φ(V (x)).

Then, for all x ∈M \ C

Ex(h
−1(τC)) ≤ V (x)

and, for all x ∈ C

Ex(h
−1(τC)) ≤ h−1(h(PV (x)) + 1).

Proof First observe that φ′ ≥ 0 (for otherwise by concavity φ could not be
> 0). For x ≥ 1 and t ≥ 0 set H(t, x) = h−1(h(x) + t). It is readily seen that
that

∂H

∂t
(t, x) = φ(H(t, x)) = φ(x)

∂H

∂x
(t, x). (7.2)

Thus
∂2H

∂x2
(t, x) =

(φ′(H(t, x))− φ′(x))φ(H(t, x))

φ(x)2
≤ 0. (7.3)

In particular, H is convex in t and concave in x.
It follows that for all n ≥ 0

H(n+ 1, V (Xn+1))−H(n, V (Xn)) =

H(n+ 1, V (Xn+1))−H(n+ 1, V (Xn)) +H(n+ 1, V (Xn))−H(n, V (Xn))

≤ ∂H

∂x
(n+ 1, V (Xn))(V (Xn+1)− V (Xn)) +

∂H

∂t
(n+ 1, V (Xn)).

Therefore, on the event {Xn 6∈ C},

E(H(n+ 1, V (Xn+1))−H(n, V (Xn))|Fn)

≤ −φ(V (Xn))
∂H

∂x
(n+ 1, V (Xn)) +

∂H

∂t
(n+ 1, V (Xn)) ≤ 0.
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Here the �rst inequality follows from the hypotheses on V and the second
from equation (7.2). This makes the process (H(n ∧ τC , V (Xn∧τC ))n≥1 a su-
permartingale. Thus

Ex(h
−1(n∧τC)) ≤ Ex(H(n∧τC , V (Xn∧τC ))) ≤ Ex(H(1, V (X1)) ≤ H(1, PV (x))

where the last inequality follows from concavity of H in x and Jensen inequal-
ity. In case x ∈M \ C, by monotony and concavity of h

h(PV (x)) ≤ h(V (x)−φ(V (x))) ≤ h(V (x))−h′(V (x))φ(V (x)) = h(V (x))−1.

Thus H(1, PV (x)) ≤ V (x). This proves the result. QED

7.3.1 Subsets of recurrent sets

Let C ⊂ M be a recurrent set for the chain (Xn) (for instance the sublevel
set {V ≤ R} of a Lyapounov function as in ??) and U ⊂ C a measurable
smaller subset (for instance the neighborhood of a Doeblin point). It is often
desirable to deduce recurrence properties of U from recurrence properties of
C. This short section discusses two such results.

The induced chain on C is the process (Yn)n≥1 de�ned as

Yn = X
τ
(n)
C
.

Exercise 7.15 Verify that (Yn)n≥1 is a Markov chain on C.

Proposition 7.16 Let C ⊂ M be a nonempty recurrent set and U ⊂ C a
measurable subset. Suppose that there exists k ≥ 1 and 0 < ε ≤ 1 such that
for all x ∈ C

Px(∃i ∈ {1, . . . , k} Yi ∈ U) ≥ ε

where (Yn) stands for the induced chain on C. Then

(i) U is recurrent;

(ii) If supx∈C Ex(τ
p
C) <∞ for some p ≥ 1, then

sup
x∈C

Ex(τ
p
U) <∞
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(iii) If supx∈C Ex(e
λ0τC ) <∞ for some λ0 > 0, then

sup
x∈C

Ex(e
λτU ) <∞

for some 0 < λ ≤ λ0.

Proof For all x ∈M,Px almost surely

1τU<∞ = lim
n→∞

Px(τU <∞|F
τ
(n)
C

) = lim
n→∞

PYn(τU <∞) ≥ ε.

Here the �rst equality follows from the Martingale convergence theorem A.7
and the second from the strong Markov property. This proves that U is
recurrent.

Let σU = min{n ≥ 1 : Yn ∈ U}. The proofs of assertions (ii) and (iii)

now follow from the identity τU = τ
(σU )
C , exactly as in the proof of Proposi-

tion 2.19 (i), (ii). The veri�cation is an easy exercise left to the reader. QED

When P is Feller, the existence of a compact recurrent set C makes every
accessible open set U recurrent. More precisely,

Proposition 7.17 Suppose that P is Feller. Let C ⊂ M be a nonempty
compact set, x∗ ∈ M an accessible point from C (i.e x∗ ∈ ΓC) and U a
neighborhood of x∗.

(i) If C is recurrent, so is U ;

(ii) If U ⊂ C and supx∈C Ex(τ
p
C) <∞ for some p ≥ 1, then

sup
x∈C

Ex(τ
p
U) <∞

(iii) If U ⊂ C and supx∈C Ex(e
λ0τC ) <∞ for some λ0 > 0, then

sup
x∈C

Ex(e
λτU ) <∞

for some 0 < λ ≤ λ0.

Proof For ε > 0 and i ∈ N∗ let O(ε, i) = {x ∈ M : P i(x, U) > ε}.
By Feller continuity and Portemanteau's theorem 4.1, O(ε, i) is an open set.
By accessibility of x∗ the family {O(ε, i), ε > 0, i ∈ N∗} covers C. Thus,



7.4. PETITE SETS AND POSITIVE RECURRENCE 173

by compactness, there exist ε > 0 and a �nite set I ⊂ N such that C ⊂
∪i∈IO(ε, i). This shows that, for all x ∈ C,

Px(τU ≤ k) ≥ ε (7.4)

with k = max I. Assertions (ii) and (iii) then follow from Proposition 7.16
because, for all x ∈ C,

Px(∃i ∈ {1, . . . , k} Yi ∈ U) ≥ Px(τU ≤ k) ≥ ε.

The proof of �rst assertion is similar to the proof of the �rst assertion in
Proposition 7.16. Namely, for all x ∈M,Px almost surely,

1τU<∞ = lim
n→∞

Px(τU <∞|F
τ
(n)
C

) = lim
n→∞

PYn(τU <∞) ≥ ε.

Thus Px(τU <∞) = 1. QED

7.4 Petite sets and positive recurrence

We have seen (Proposition 7.11) that the existence of a recurrent petite set
for a Markov chain makes it Harris recurrent. If, in addition, the return times
to the set are bounded in L1, then it is positively recurrent.

Theorem 7.18 Let C ⊂M be a recurrent petite set such that

sup
x∈C

Ex(τC) <∞.

Then the equivalent conditions of Theorem 7.8 hold true.

Before proving this theorem, we start with a proposition relating the recur-
rence properties of the chain (Xn) and the sampled chain Yn := XTn , where

Tn := ∆1 + . . .+∆n

for n ≥ 1, T0 := 0, and (∆i)i≥1 is a sequence of i.i.d. random variables taking
on values in N.

Recall that in the particular case where ∆i has a geometric distribution
with parameter a, (i.e. P(∆i = n) = an(1 − a) for all n ∈ N) then (Yn) has
kernel Ra.
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The hazard rate of ∆i is the sequence

λ(n) = P(∆i = n|∆i ≥ n) =
P(∆i = n)

P(∆i ≥ n)
, n ∈ N.

For a geometric distribution with parameter a, the hazard rate is constant
and equals 1− a.

Exercise 7.19 Suppose ∆i has a negative binomial distribution with pa-
rameters (a,m) (see Exercice 5.2 (ii)). Prove that λ(n) is nondecreasing and
converges to 1− a. In particular,

inf
n∈N

λ(n) = λ(0) = (1− a)m.

The next result is an easy consequence of the memoryless property when ∆i

has a geometric distribution (prove it as an exercise) and this is exactly what
we'll need for the proof of Theorem 7.18. It is however interesting to point
out that it remains valid under the weaker assumption that the hazard rate
of ∆i is bounded below. Tom Mountford helped us with the proof of this
proposition and suggested the minorization condition on the hazard rate.

Proposition 7.20 Let (∆n), (Tn) be as above, i.e. (∆n) is an i.i.d. sequence
of N-valued random variables and Tn := ∆1 + . . .+∆n. Assume that there is
α ∈ (0, 1) such that

inf
n∈N

λ(n) ≥ 1− α > 0.

Let N = {n1 < n2 < . . . < nk < . . .} ⊂ N be an in�nite set of integers and

τN := min{n ≥ 1 : Tn ∈ N}.

Then

(i) P(τN <∞) = 1;

(ii) P(TτN > ni) ≤ αi for all i ≥ 1;

(iii) E(∆1)E(τN ) ≤ n1 +
∑

i≥1(ni+1 − ni)α
i;

(iv) If λ(n) = 1 − α for all n ∈ N (meaning that ∆i has a geometric distri-
bution with parameter α), inequalities (ii) and (iii) are equalities.
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Proof (i). For n ≥ 1, let Fn := σ(∆1, . . . ,∆n) and v(n) := P(∃i ≥ 0 : Ti =
n). We claim that v(n) ≥ 1− α for all n ≥ 1. One has

v(n) =E(P(∃i ≥ 0 : Ti = n|F1))

=v(n)P(∆1 = 0) + E(v(n−∆1)10<∆1<n) + P(∆1 = n).

Thus, v(1) = λ(1) ≥ 1−α. Suppose now that v(i) ≥ 1−α for i = 1, . . . , n−1.
Then

v(n)P(∆1 > 0) ≥ (1− α)P(0 < ∆1 < n) + P(∆1 = n) ≥ (1− α)P(∆1 > 0).

This proves the claim by induction. It follows from what precedes that
P(τN <∞|Fn) ≥ 1− (1− α)n, so that P-almost surely

1τN<∞ = lim
n→∞

P(τN <∞|Fn) = 1.

(ii). For k ≥ 1, let Sk := min{i ≥ 0 : nk ≤ Ti < nk+1} ∈ N ∪ {∞}. Then

P(TτN > nk+1) = P(TτN > nk+1;Sk <∞) + P(TτN > nk+1;Sk = ∞).

Using the strong Markov property,

P(TτN > nk+1;Sk <∞) = E(P(TτN > nk+1|FSk
)1{Sk<∞})

= E((1− v(nk+1 − TSk
))1{TτN >nk}1{Sk<∞}) ≤ αP(TτN > nk;Sk <∞).

On the other hand,

P(TτN > nk+1;Sk = ∞)

=
∑
i≥0

P({T0, T1, . . . , Ti} ∩ {n1, . . . , nk} = ∅;Ti < nk;Ti+1 > nk+1),

and

P({T0, T1, . . . , Ti} ∩ {n1, . . . , nk} = ∅;Ti < nk;Ti+1 > nk+1|Fi)

= 1{T0,T1,...,Ti}∩{n1,...,nk}1Ti<nk
P(∆i+1 > nk+1 − Ti|Fi)

≤ α1{T0,T1,...,Ti}∩{n1,...,nk}1Ti<nk
P(∆i+1 ≥ nk+1 − Ti|Fi)
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by the assumption on the hazard rate of (∆i). Therefore,

P(TτN > nk+1;Sk = ∞)

≤α
∑
i≥0

E(1{T0,T1,...,Ti}∩{n1,...,nk}1Ti<nk
P(∆i+1 ≥ nk+1 − Ti|Fi))

=αP(TτN > nk;Sk = ∞).

Finally we have shown that

P(TτN > nk+1) ≤ αP(TτN > nk).

(iii). Let Mn := Tn − E(Tn) = Tn − nm, where m := E(∆i). Then (Mn) is
an (Fn)-martingale with zero mean. Thus, by part (ii) of Theorem A.4,

E(Mn∧τN ) = 0 = E(TτN∧n)−mE(τN ∧ n),

and, by monotone convergence,

mE(τN ) = E(TτN ) =
∑
k≥1

nkP(TτN = nk) =
∑
k≥0

(nk+1 − nk)P(TτN > nk)

with the convention n0 := 0.
(iv). This follows immediately from the proofs of (ii) and (iii). QED

Proof of Theorem 7.18 In view of Theorem 7.8 and Proposition 7.11 it
su�ces to show that there exists an invariant probability measure for (Xn).

First observe that we can always assume that ξ(C) > 0, where ξ is the
minorizing measure of Ra. Indeed, let ξk(·) = ak

∫
ξ(dy)P k(y, ·). Then for all

x ∈ C
Ra(x, ·) ≥ akRaP

k(x, ·) ≥ ξk(·)
so that ξk is another minorizing measure. Now, there exists k such that
ξk(C) > 0, for otherwise we would have P k(y, C) = 0 for all k and ξ-almost
all y, in contradiction with the assumption that C is recurrent. Replacing ξ
by such a ξk proves our claim.

Let τC < τ
(2)
C < τ

(3)
C < . . . be the successive times at which (Xn) enters C,

i.e., τ
(k+1)
C = min{n > τ

(k)
C : Xn ∈ C}. By assumption (iii) (of the theorem

to be proved) and the strong Markov property

Ex(τ
(k)
C ) ≤ kM
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for all x ∈ C. Let (Yn) be the chain with kernel Ra, τ
Y
C = min{n ≥ 1 : Yn ∈ C}

and Q(x, ·) the kernel on C de�ned by Q(x,A) = Px(YτYC ∈ A) for all Borel

sets A ⊂ C. By Proposition 7.20 (i), τYC < ∞ a.s. so that Q is a Markov
kernel (i.e., Q(x,C) = 1). Furthermore Q(x,A) ≥ Ra(x,A) ≥ εψ(A) with

ε = ξ(C) and ψ(A) = ξ(A)
ε
. In other words, Q is a Markov kernel whose full

state space (here C) is a small set. Then, by a theorem that will be proved
later (Theorem 8.7 in Chapter 8), Q has a (unique) invariant probability π.
If Y0 is distributed according to π so is YτYC and by Proposition 7.20 (iii)

Eπ(τ
Y
C ) ≤ M

a
.

By Exercise 4.24 this implies that (Yn) (or equivalently Ra), hence (Xn), ad-
mits an invariant probability measure. QED

7.5 Positive recurrence for Feller chains

The next results give some (much more tractable) conditions ensuring that a
Feller chain is positive recurrent.

Theorem 7.21 Let P be Feller. Assume that there exist a compact recurrent
set C such that supx∈C Ex(τC) < ∞, and an accessible weak Doeblin point
x∗ ∈ Int(C) (the interior of C). Then the equivalent conditions of Theorem
7.8 hold true.

Proof By assumption there exist a neighborhood U ⊂ C of x∗ and a non-
trivial measure ξ such that Ra(x, ·) ≥ ξ(·) for all x ∈ U. By Proposition 7.17
U is recurrent and supx∈C Ex(τU) < ∞. We can then apply Theorem 7.18,
with U in place of C. This proves the result. QED

Corollary 7.22 Let P be Feller. Assume that there exist an accessible weak
Doeblin point, a proper map V : M → R+, and a nonnegative constant R
such that PV ≤ V − 1 on {V > R} and sup{x∈M :V (x)≤R} PV (x) < ∞. Then
the equivalent conditions of Theorem 7.8 hold true.



178 CHAPTER 7. HARRIS AND POSITIVE RECURRENCE

Proof Let x∗ be the accessible weak Doeblin point. Choose R large enough
so that V (x∗) < R. Set C = {V ≤ R} and apply Proposition 7.12 (a) and
Theorem 7.21. QED

Theorem 7.23 Let P be Feller. Assume that there exists an accessible weak
Doeblin point and that for all x ∈ M the empirical occupation measure (νn)
is Px-almost surely tight (this is true for instance under the assumptions of
Corollary 7.22). Then the equivalent conditions of Theorem 7.8 hold true.

Proof By assumption there exists an open accessible petite set C. By Theo-
rem 6.2 and Theorem 4.20, there exists a unique invariant probability measure
π for P and νn ⇒ π, Px-almost surely, for all x ∈ M. Since C is open and
accessible, π(C) > 0 (see Proposition 5.8 (ii)) and, by the Portmanteau Theo-
rem, lim inf νn(C) ≥ π(C). This proves that every point x leads almost surely
to C. The result then follows from Proposition 7.11 and Theorem 7.8. QED

7.5.1 Application to PDMPs

Let E = {1, . . . , N} be a set of environments and {Gi}i∈E a family of smooth
globally integrable vector �elds on Rk.

Consider the PDMP Zt = (Yt, It) ∈ Rk×E as de�ned in Section 6.4. Recall
that, starting from Z0 = (Y0, I0) = (x, i) ∈ Rk, Yt follows the �ow induced
by the vector �eld Gi during a time τ1 having an exponential distribution
with parameter λi and It = i on [0, τ1). Then a new environment j ∈ E is
chosen with probability pj > 0, Yt follows the �ow induced by Gj during a
time τ2− τ1 having an exponential distribution with parameter λj, and It = j
on [τ1, τ2), etc.

If now the initial environment I0 is randomly chosen with law
∑

i∈E piδi,
then Xn = Yτn de�nes a Markov chain on Rk, as explained in Section 6.3,
whose kernel is given as (see formula (6.3))

Pf(x) =
∑
i∈E

pi

∫ ∞

0

f(Φi(t, x))λie
−λit dt. (7.5)

The following exercise shows that if there exists a common Lyapunov function
for some (not necessarily all) of the vector �elds Gi and if this function does
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not grow too fast along the �ows of the other vector �elds, then it can serve
as a Lyapunov function for P.

Exercise 7.24 [Lyapunov function for PDMPs]

(i) Suppose that there exists a C1 proper map V : Rk → R+ and numbers
α1, . . . , αN (non necessarily negative) such that for each i ∈ E,

lim sup
∥x∥→∞

〈∇V (x), Gi(x)〉
V (x)

≤ αi < λi.

Show that, if ∑
i∈E

pi
λi

λi − αi

< 1,

then

PV ≤ ρV + κ

for some 0 ≤ ρ < 1 and κ ≥ 0.

(ii) Let αi(x) be the largest eigenvalue of the symmetric matrix DGi(x) +
DGi(x)

⊤ and let αi = supx αi(x). Show that

lim sup
∥x∥→∞

〈x,Gi(x)〉
‖x‖2

= lim sup
∥x∥→∞

〈x,Gi(x)−Gi(0)〉
‖x‖2

≤ αi

2
.

Using (i), give conditions on α1, . . . , αN ensuring that V (x) = ‖x‖2 is a
Lyapunov function for P.

(iii) Suppose that there exists a C1 proper map W : Rk → R+ and numbers
a1, . . . , aN (not necessarily negative) such that for each i ∈ E,

lim sup
∥x∥→∞

〈∇W (x), Gi(x)〉 ≤ ai.

Show that, if ∑
i∈E

pi
ai
λi
< 0,

then for ε > 0 su�ciently small, the map V = eεW and the numbers
αi = εai satisfy the conditions given in (i).
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Theorem 7.25 Suppose that there exists V as in Exercise 7.24 (i) and an
accessible point (in the sense of Proposition 6.20) at which the weak bracket
condition as de�ned in Section 6.3.1 holds. Then the chain (Xn) is positive
recurrent. Furthermore, the process (Zt) is also positive recurrent, in the
sense that, for all f :M × E → R measurable and bounded,

lim
t→∞

1

t

∫ t

0

f(Zs) ds = µ̂(f)

almost surely, where µ̂ stands for the invariant probability measure of (Zt).

Proof Positive recurrence of (Xn) follows from Corollary 7.22 and Theorem
6.16. We now prove the second statement. Let f ∈ B(Rk × E) and A =
{limt→∞

1
t

∫ t

0
f(Zs) ds = µ̂(f)}. In order to show that Px,i(A) = 1 for all

(x, i) ∈ Rk × E it su�ces to show that
∑

i∈E piPx,i(A) = 1 for all x. This

means one needs to show that limt→∞
1
t

∫ t

0
f(Zx

s ) ds → µ̂(f) almost surely,
where (Zx

t ) stands for the PDMP with initial condition (x, I0) and I0 has
distribution

∑
i∈E piδi.

Let Gn = σ{(I0, τ1), (Iτ1 , τ2−τ1), . . . , (Iτn−1 , τn−τn−1)}. Then
∫ τn
0
f(Zx

s ) ds
is Gn-measurable, and

E

(∫ τn+1

τn

f(Zx
s ) ds

∣∣∣∣Gn

)
= f̂(Xx

n),

where

f̂(x) =
∑
i∈E

pi

∫ ∞

0

∫ t

0

f(Φi(s, x), i)λie
−λis ds dt

=
∑
i∈E

pi

∫ ∞

0

f(Φi(t, x), i)e
−λit dt.

Also,

Var

(∫ τn+1

τn

f(Zx
s ) ds

∣∣∣∣Gn

)
≤ E((τn+1 − τn)

2|Gn)‖f‖2 ≤ max
i

2

λ2i
‖f‖2.

Thus, by the strong law of large numbers for martingales (see Theorem A.8),

lim
n→∞

1

n

(∫ τn

0

f(Zx
s )ds−

n−1∑
k=0

f̂(Xx
k )

)
= 0



7.5. POSITIVE RECURRENCE FOR FELLER CHAINS 181

almost surely. On the other hand, by the strong law of large numbers,
limn→∞

τn
n
=

∑
j∈E pj/λj. Thus

lim
t→∞

1

t

∫ t

0

f(Zx
s ) ds =

1∑
j∈E pj/λj

µ(f̂),

where µ is the invariant probability measure of (Xn). This proves the positive
recurrence of (Zt) and also gives - in this special case - an alternative proof
of Theorem 6.26 (i). QED

7.5.2 Application to SDEs

Using the notation and assumptions of Section 6.5, consider the stochastic
di�erential equation (6.12). Recall from the proof of Theorem 6.34 that the
"formal" generator of (6.12) is the operator L de�ned on C2 functions f :
Rk → R by

Lf(x) = G0(f)(x) +
1

2

N∑
i=1

G2
i (f)(x).

Lemma 7.26 Suppose there exists a C2 proper function U : Rk → R+ and
positive number α, β such that

LU ≤ −αU + β.

Then, for all t ≥ 0,

PtU ≤ e−αtU +
β

α
(1− e−αt).

Proof Set Wt = eαt(U(Xx
t )−

β
α
). By Itô's Formula,

Wt −W0 =

∫ t

0

eαs[αU(Xx
s )− β + LU(Xs)] ds+Mt ≤Mt,

where (Mt)t≥0 is a local martingale with M0 = 0. Thus, for all n ∈ N,
(Mn

t ) = (Mt∧n))t≥0 is a continuous local martingale which is bounded be-
low (by −β

α
eαn− (U(x)− β

α
)). A local martingale that is bounded below may

not be a martingale but is always a supermartingale (see, e.g., [45, Propo-
sition 4.7]). Therefore E(Wt∧n) − U(x) + β

α
≤ E(Mn

t ) ≤ E(M0) = 0. Hence,
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E(U(Xt∧n)) ≤ e−α(t∧n)(U(x)− β
α
)+ β

α
and the desired result follows by Fatou's

Lemma. QED

Corollary 7.27 Suppose there exists a C2 proper function as in Lemma 7.26
for (6.12) and an accessible point p at which the weak Hörmander condition
is satis�ed. Then {Pt}t≥0 has a unique invariant probability measure µ and
for every f ∈ B(Rk) and x ∈ Rk

lim
t→∞

1

t

∫ t

0

f(Xx
s ) ds = µ(f).

Proof Let G be the 1-resolvent. Then, by Lemma 7.26, GU ≤ 1
1+α

U + β
α
.

By Corollary 7.22 and Theorem 6.34, G is a positive recurrent Markov kernel.
The �nal statement follows from Proposition 4.58 (ii). QED



Chapter 8

Harris Ergodic Theorem

8.1 Total variation distance

Recall that B(M) is the set of real-valued bounded measurable maps on M.
For f ∈ B(M), ‖f‖∞ is de�ned by (1.1). Given two probability measures α
and β on M the total variation distance between α and β is de�ned by

|α− β| = sup{|α(f)− β(f)| : f ∈ B(M), ‖f‖∞ ≤ 1}. (8.1)

See also Remark 5.21 in Section 5.3. It is easy to verify that the total variation
distance de�nes a metric on P(M).

Note that if K is a Markov kernel on M ,

|αK − βK| ≤ |α− β| (8.2)

because K maps {f ∈ B(M), ‖f‖∞ ≤ 1} into itself.

Proposition 8.1 Let α, β ∈ P(M).

(i)

|α− β| = 2 sup
A∈B(M)

α(A)− β(A).

(ii) Assume α and β are absolutely continuous with respect to γ ∈ P(M)
with respective densities p and q. Then

|α− β| =
∫

|p− q|dγ.

183
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(iii) The space P(M) equipped with the total variation distance is complete.

Proof We begin by assertion (ii). For all f ∈ B(M) with ‖f‖∞ ≤ 1,
|α(f) − β(f)| ≤

∫
|p − q|dγ so that |α − β| ≤

∫
|p − q|dγ. Conversely, set

f = 1p>q − 1p<q. Then α(f)− β(f) =
∫
|p− q|dγ.

We now pass to the proof of (i). We can always assume that for some
γ ∈ P(M), α and β are absolutely continuous with respect to γ. It su�ces
for instance to choose γ = α+β

2
. Then,

|α− β| =
∫
G

(p− q)dγ +

∫
M\G

(q − p)dγ = 2(α(G)− β(G))

with G = {p > q}. Also, for all A ∈ B(M), α(A) − β(A) ≤ α(A ∩ G) −
β(A ∩ G) ≤ α(G) − β(G). Our last job is to prove completeness. Let (µn)
be a Cauchy sequence for the total variation distance. Then, in view of (i),
for every Borel set A, (µn(A)) is a Cauchy sequence in R, hence converges to
some number µ(A). By the Cauchy property, the convergence is uniform in
A. That is supA∈B(M) |µn(A)− µ(A)| → 0. From this it is easy to verify that
µ is a probability measure over M. QED

Exercise 8.2 For f : M → R, let ∆(f) = sup{ |f(x)−f(y)|
2

: x, y ∈ M}. Show
that

|α− β| = sup{|α(f)− β(f)| : f measurable,∆(f) ≤ 1}.

Remark 8.3 Although the total variation distance (8.1) and the Fortet-
Mourier distance (4.2) look very similar, they induce quite di�erent topologies
on P(M). Clearly,

ρ(α, β) ≤ |α− β|
so that convergence in total variation implies weak convergence; but the con-
verse is false. Let, for example, X be a random variable on R whose law
PX is absolutely continuous with respect to the Lebesgue measure dx (e.g. a
Gaussian random variable) and Xn = X

n
. Then Xn → 0 almost surely, hence

PXn ⇒ δ0, while |PXn − δ0| = 2 by Proposition 8.1, (i).

Remark 8.4 (Total variation of signed measures) A �nite signed mea-
sure onM is a map µ : B(M) → R such that µ(∅) = 0 and which is σ-additive.
That is

µ(
⋃
n

An) =
∑
n

µ(An)
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for any family {An}, An ∈ B(M), having disjoint elements. The Hahn-Jordan
decomposition theorem (see [21], Theorem 5.6.1) asserts that such a measure
can be written as

µ = µ+ − µ−,

where µ+ and µ− are nonnegative measures that are mutually singular: There
exists D ∈ B(M) such that for all A ∈ B(M), µ+(A) = µ(A ∩ D) and
µ−(A) = −µ(A ∩ Dc). The total variation measure of µ is the nonnegative
measure µ+ + µ− and its total variation norm is

|µ| = µ+(M) + µ−(M) = sup{|µ(f)| : f ∈ B(M), ‖f‖∞ ≤ 1}.

When M is a compact metric space, the topological dual C∗(M) of C(M)
can be identi�ed with the space of bounded signed measures equipped with
the total variation norm, so that convergence in total variation coincides with
(strong) convergence in C∗(M). We refer the reader to [21], Chapter 7, for
more details and a proof of this latter point.

Exercise 8.5 Use the Hahn-Jordan decomposition to show assertion (i) of
Proposition 8.1.

8.1.1 Coupling

Given α, β ∈ P(M), a coupling of α and β is a random vector (X,Y ) de�ned
on some probability space (Ω,A,P) taking values in M ×M such that X has
distribution α and Y has distribution β.

Proposition 8.6 Let α, β ∈ P(M). Then

(i) (Coupling Inequality) For every coupling (X,Y ) of (α, β),

|α− β| ≤ 2P(X 6= Y );

(ii) (Maximal coupling) There exists a coupling (X,Y ) of (α, β) such that

|α− β| = 2P(X 6= Y ).

Proof (i). For all A ∈ B(M),

P(X ∈ A)−P(Y ∈ A) = P(X ∈ A;X 6= Y )−P(Y ∈ A;X 6= Y ) ≤ P(X 6= Y ).
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This inequality, combined with Proposition 8.1 (i), proves (i).
(ii). Assume (without loss of generality) that dα = pdγ and dβ = qdγ for

some γ ∈ P(M) (e.g. γ = (α + β)/2). Then, by Proposition 8.1 (ii),

|α− β| =
∫

|p− q|dγ = 2(1− ε)

where ε =
∫
(p ∧ q)dγ. If ε = 0, α and β are mutually singular and any

coupling satis�es the equality |α − β| = 2P(X 6= Y ) = 2. If ε 6= 0, let
U ∈M,V ∈M,W ∈M,Θ ∈ {0, 1} be independent random variables having
distributions 1

ε
(p∧q)dγ, 1

1−ε
(p−(p∧q))dγ, 1

1−ε
(q−(p∧q))dγ and (1−ε)δ0+εδ1,

respectively. Set X = ΘU + (1 − Θ)V and Y = ΘU + (1 − Θ)W. Then
P(X 6= Y ) = P(Θ = 0) = (1− ε), and (X,Y ) is a coupling of (α, β). QED

8.2 Harris convergence theorems

Throughout all this section P is a Markov kernel on M. Recall (see Chapter
6) that a set C ∈ B(M) is called a small set for P if there exists a nontrivial
measure ξ on M (called the minorizing measure of C) such that

P (x, ·) ≥ ξ(·) (8.3)

for all x ∈ C. Recall also that a point is called a Doeblin point if it has a
neighborhood which is a small set.

8.2.1 Geometric convergence

The importance of small sets is emphasized by the following simple version
of Harris's theorem (sometimes called Doeblin's Theorem).

Theorem 8.7 Let m ∈ N,m ≥ 1. Suppose M is a small set for Pm with
minorizing measure ξ. Then for all α, β ∈ P(M),

|αP n − βP n| ≤ (1− ε)[n/m]|α− β|,

where 0 < ε = ξ(M) ≤ 1. Furthermore P has a unique invariant probability
measure π and

|αP n − π| ≤ (1− ε)[n/m]|α− π|.



8.2. HARRIS CONVERGENCE THEOREMS 187

Proof First suppose m = 1. Set ψ = ξ
ξ(M)

, ε = ξ(M), and

K(x, ·) = P (x, ·)− εψ(·)
1− ε

if ε < 1.

Then, K is a Markov kernel and αP = εψ + (1− ε)αK so that

|αP − βP | = (1− ε)|αK − βK| ≤ (1− ε)|α− β|,

where the last inequality follows from (8.2). Hence, α 7→ αP is a strict
contraction for the total variation distance. Then

|αP n − βP n| ≤ (1− ε)n|α− β|

and α 7→ αP has a unique �xed point, by application of the Banach �xed
point theorem, because the space of probability measures endowed with the
total variation distance is complete.

If now m ≥ 1, set Q = Pm. Write n = km+ r for r ∈ {0, . . . ,m− 1} and

|αP n − βP n| = |αP rQk − βP rQk| ≤ (1− ε)k|αP r − βP r| ≤ (1− ε)k|α− β|.

To conclude, recall that if π is invariant for Pm, then 1
m

∑m−1
k=0 πP

k is invari-
ant for P. QED

Remark 8.8 Theorem 8.7 is purely measure-theoretic and does not require
that M is a metric space.

Aperiodic small sets

A measurable set C ⊂M is said to be aperiodic if the set

R(C) = {k ≥ 1 : inf
x∈C

P k(x,C) > 0}

is nonempty and aperiodic as de�ned in Section 2.2.1.

Exercise 8.9 (a) Let P be Feller and let U ⊂ M be an open, accessible
(i.e.Ra(x, U) > 0 for all x ∈M) small set. Show thatR(U) is nonempty.
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(b) Construct a Feller Markov chain having an open recurrent set U for
which R(U) = ∅. Hint. Let {Φt} be the �ow on S1 = R/2πZ induced
by the ode θ̇ = sin2(θ/2). Consider the (deterministic) chain de�ned as
Xx

n = Φn(x). One can show that every proper neighborhood U of 0 is
recurrent, but R(U) = ∅.

Let x∗ ∈ M be an accessible Doeblin point for P Feller. We say that x∗ is
aperiodic if it has a neighboring small set U which is aperiodic. Observe that
if U is a neighboring small set of x∗ such that ξ(U) > 0 (where ξ stands for
the minorizing measure of U) then x∗ is aperiodic.

Proposition 8.10 Assume P is Feller. Let x∗ ∈ M be an accessible and
aperiodic Doeblin point and let C ⊂ M be a compact set. Then there exists
m ≥ 1 such that C is a small set for Pm.

Proof Let U be an open neighboring small set of x∗ with R(U) aperiodic.
Then, by aperiodicity, there exists n0 ∈ N such that k ∈ R(U) for all k ≥ n0

(see Proposition 2.22).
For δ > 0 and k ∈ N∗ let O(δ, k) = {x ∈ M : P k(x, U) > δ}. By Feller

continuity and the Portemanteau theorem (Theorem 4.1), O(δ, k) is an open
set. Since x∗ is accessible, the family {O(δ, k), δ > 0, k ∈ N∗} covers M.
Thus, by compactness, there exist δ > 0 and integers k1, . . . , kn such that
C ⊂ ∪n

i=1O(δ, ki). For x ∈ O(δ, ki) and k > n0,

P ki+k(x, .) ≥
∫
U

P ki(x, dy)P k(y, .)

≥
∫
U

P ki(x, dy)P k−1(y, U)ξ(.) ≥ δ inf
y∈U

P k−1(y, U)ξ(.).

Here ξ stands for the minorizing measure of U. Thus, form = max{k1, . . . , kn}+
n0 + 1 and some δ′ > 0,

inf
x∈C

Pm(x, .) ≥ δ′ξ(.).

QED

Theorem 8.7 and Proposition 8.10 imply the following useful result for Feller
chains on compact sets.
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Corollary 8.11 Assume P is Feller on M compact and that there exists an
accessible and aperiodic Doeblin point. Then the conclusion of Theorem 8.7
holds.

When M is not compact, the assumption (made in Theorem 8.7 or used in
Corollary 8.11) that the whole space is a small set is usually not satis�ed.
A su�cient condition ensuring geometric convergence is the existence of a
small set and a Lyapunov function forcing the system to enter this small set.
A classical proof relying on coupling and renewal properties will be given in
the next section. Hairer and Mattingly in [36] gave an alternative beautiful
proof based on the construction of a suitable semi-norm making P a strict
contraction. This proof is given below.

Theorem 8.12 (Harris, Hairer & Mattingly) Assume that there exist:

(a) A measurable map V :M → R+, 0 < ρ < 1 and κ ≥ 0 such that

PV ≤ ρV + κ;

(b) A probability measure ψ on M and 0 < ε ≤ 1 such that

P (x, ·) ≥ εψ(·)

for all x ∈ VR := {x ∈M : V (x) ≤ R} and R ≥ 2κ/(1− ρ).

Then, there exist a unique invariant probability measure π for P and constants
0 ≤ γ < 1, C > 0 such that for all f : M → R measurable with ‖f‖V :=

supx∈M
|f(x)|

1+V (x)
<∞,

|P nf(x)− π(f)| ≤ Cγn(1 + V (x))‖f‖V

for all x ∈M and n ∈ N∗.

Proof For β > 0 and f :M → R measurable, possibly unbounded, let

‖f‖β = sup{ |f(x)− f(y)|
2 + β(V (x) + V (y))

: x, y ∈M}.

We claim that for some 1 ≥ β > 0 and 0 ≤ γ < 1,

‖f‖β ≤ 1 ⇒ ‖Pf‖β ≤ γ. (8.4)
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Assume the claim is proved. Observe that ‖f‖1 ≤ ‖f‖β ≤ 1
β
‖f‖1 ≤ 1

β
‖f‖V .

Then
‖P nf‖1 ≤ ‖P nf‖β ≤ γn‖f‖β ≤ γnβ−1‖f‖V .

Equivalently

|P nf(x)− P nf(y)| ≤ γnβ−1‖f‖V (2 + V (x) + V (y)), x, y ∈M.

Thus,

|P nf(x)− πf | ≤
∫

|P nf(x)− P nf(y)|π(dy) ≤ γnβ−1‖f‖V (2 + V (x) + πV ),

where π is some (hence unique) invariant probability measure (see Exercise
8.13). This proves the result.

We now prove the claim. Let f be such that ‖f‖β ≤ 1 and let x, y ∈ M .
Suppose �rst that V (x) + V (y) > R. Then

|Pf(x)− Pf(y)| = |
∫

(f(u)− f(v))δxP (du)δyP (dv)|

≤
∫

|f(u)− f(v)|δxP (du)δyP (dv) ≤ 2 + βPV (x) + βPV (y)

≤ 2 + 2βκ+ ρβ(V (x) + V (y)) ≤ γ1(2 + β(V (x) + V (y))),

where

γ1 =
β(2κ+ ρR) + 2

βR + 2
∈]0, 1[.

The last inequality follows from the fact that for all ρ, r > 0 and a ≥ 2ρ,

t ≥ r ⇒ a+ ρt ≤ γ1(2 + t),

where γ1 is the solution to a + ρr = γ1(2 + r). It su�ces to set a = 2 + 2βκ
and r = βR.

Suppose now that V (x) + V (y) ≤ R. In particular, x, y ∈ VR. As in the
proof of Theorem 8.7, write Pf = (1 − ε)Kf + εψ(f), where for all x ∈ VR,
K(x, ·) is a Markov operator. Thus

|Pf(x)−Pf(y)| = (1−ε)|Kf(x)−Kf(y)| ≤ (1−ε)(2+β(KV (x)+KV (y)).

Also, (1− ε)KV (x) = PV (x)− εψV ≤ ρV (x) + κ. Thus

|Pf(x)−Pf(y)| ≤ 2(1−ε)+2βκ+ρβ(V (x)+V (y)) ≤ γ2(2+β(V (x)+V (y))
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with γ2 = max(ρ, 1− ε+ βκ). Finally it su�ces to choose βκ < ε and to set
γ = max(γ1, γ2). QED

Exercise 8.13 (i) Suppose that is M is a Polish space, P is Feller and
that there exists a proper and continuous map V : M → R+ satisfying
assumption (a) of Theorem 8.12. Show that the set Inv(P ) is nonempty.
Hint: Use Corollary 4.23.

(ii) Suppose only that M is a measurable space. Show that PV (M) = {µ ∈
P(M) : V ∈ L1(µ)} is complete for the distance

|µ− ν|β := sup{|µf − νf | : f :M → R measurable, ‖f‖β ≤ 1}.

Deduce that, under the assumptions of Theorem 8.12, there exists a
unique invariant probability measure for P. Hint: Use Inequality (8.4)
to show that

|µP − νP |β ≤ γ|µ− ν|β (8.5)

for some 0 ≤ γ < 1 and β > 0.

Corollary 8.14 Suppose P is Feller and that there exists a proper map V :
M → R+ satisfying assumption (a) of Theorem 8.12. Suppose furthermore
that there exists an accessible aperiodic Doeblin point. Then the conclusion
of Theorem 8.12 holds true.

Proof Choose R > 2κ
(1−ρ)2

. The set C = {V ≤ R} is a compact set

(because V is proper) and small for some Pm by Proposition 8.10. Since
PmV ≤ ρmV + κ

1−ρ
, Theorem 8.12 applies to Pm and the result follows.

QED

8.2.2 Continuous time: geometric convergence

For a weak Feller continuous-time Markov process {Pt}t≥0, aperiodicity is not
an issue. Indeed, if a point p ∈ M is accessible for {Pt}t≥0 and is a Doeblin
point for some PT0 , then p is necessarily aperiodic for PT0 . This is a direct
consequence of Lemma 6.5. Thus, the continuous-time version of Corollary
8.14 reads as follows:
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Theorem 8.15 Let {Pt}t≥0 be a continuous-time weak Feller semigroup. As-
sume in addition the following:

(i) There exists a point p ∈M which is accessible for {Pt}t≥0 and which is a
Doeblin point for some PT0 with T0 > 0;

(ii) There exist a proper map V : M → R+, 0 ≤ ρ < 1, κ ≥ 0, and T1 > 0
such that

PT1V ≤ ρV + κ.

Then there exist a unique invariant probability measure π for {Pt}t≥0 and
constants a > 0, C > 0 such that for all f :M → R measurable,

|Ptf(x)− π(f)| ≤ Ce−at(1 + V (x))‖f‖V

for all x ∈M and t ≥ 0.

Proof Relying on Proposition 6.3, one can �nd a point q and a time T =
mT1 (with m ∈ N∗ su�ciently large) such that q is an accessible Doeblin
point for PT . By Lemma 6.5, it is also aperiodic for PT . By assumption (ii),
PTV ≤ ρk + κ

1−ρ
. Thus, by Corollary 8.14, there exist constants 0 < γ < 1

and C ≥ 0 such that for all n ∈ N and 0 ≤ r < T,

|PnT+rf(x)− π(f)| = |P n
T Prf(x)− π(Prf)| ≤ Cγn(1 + V (x))‖f‖V .

Thus

|Ptf(x)− π(f)| ≤ C

γ
elog(γ)T/t(1 + V (x))‖f‖V

for all x ∈M and t ≥ 0. QED

Example 8.16 (Piecewise deterministic Markov processes) Consider
the piecewise deterministic Markov process de�ned in Section 6.4. Suppose
that there exist an accessible point at which the strong bracket condition
holds and a Lyapunov function as in Exercise 7.24. Then the conclusions of
Theorem 8.15 hold.

Example 8.17 (Stochastic di�erential equations) Consider the stochas-
tic di�erential equation introduced in Section 6.5. Suppose that that there
exist an accessible point at which the Hörmander condition holds and a Lya-
punov function as in Lemma 7.26. Then the conclusions of Theorem 8.15
hold.
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8.2.3 Coupling, splitting, and polynomial convergence

This section is the natural counterpart of Section 2.4 on countable chains. It
revisits the convergence theorems of the previous section and relates the rate
of convergence to the moments of the return time to a recurrent small set.

Theorem 8.18 Let C ⊂M be an aperiodic, recurrent small set for P.

(i) If supx∈C Ex(τC) < ∞, then P is positive recurrent and, letting π denote
its invariant probability measure,

lim
n→∞

|µP n − π| = 0

for every µ ∈ P(M).

(ii) If supx∈C Ex(τ
p
C) < ∞ for some p ≥ 2, then there exists c ≥ 0 such that

for every µ ∈ P(M) and for every n ∈ N∗,

|µP n − π| ≤ 1

np−1
c(1 + Eµ(τ

p−1
C )).

(iii) If supx∈C Ex(e
λ0τC ) < ∞ for some λ0 > 0, then there exist 0 < λ < λ0

and c ≥ 0 such that for every µ ∈ P(M) and for every n ∈ N∗,

|µP n − π| ≤ e−λnc(1 + Eµ(e
λ0τC )).

Proof Positive recurrence follows from Theorem 7.18. The rest of the proof
relies on a coupling argument that goes back to Harris [37] and Nummelin
[52]. Let C be an aperiodic recurrent set for P . We proceed in two steps.

Step 1. We �rst assume that C is an atom, meaning that there exists a
probability measure ξ on M such that for all x ∈ C,P (x, ·) = ξ(·). In this
situation the proof is very much like the proof given for a countable Markov
chain (Theorem 2.36). Let (Xn) and (Yn) be two independent chains (induced
by P ), Pµ⊗ν the law of ((Xn, Yn))n≥0 when (X0, Y0) has law µ⊗ ν, and let

τC×C = min{n ≥ 1 : Xn ∈ C, Yn ∈ C}.

Since C is an atom, for all µ, ν ∈ P(M) and n ∈ N∗,

Pµ⊗ν(Xn ∈ ·; τC×C < n) = Pµ⊗ν(Yn ∈ ·; τC×C < n).
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Hence
|µP n − π| = |µP n − πP n| ≤ Pµ⊗π(τC×C ≥ n), (8.6)

where π is the unique invariant probability measure of P . Let now (τ
(n)
C )

(respectively (τ̃
(n)
C )) denote the successive hitting times of C by (Xn) (respec-

tively (Yn)). The assumption that C is an aperiodic atom makes the processes

T := (τ
(n+1)
C )n≥0 and T̃ := (τ̃

(n+1)
C )n≥0 two aperiodic independent renewal pro-

cesses (see Section 2.3) and τC×C is their �rst common renewal time. The
additional assumption that supx∈C Ex(τC) <∞ makes these processes L1 (as
de�ned in Section 2.3) so that τC×C < ∞ almost surely (see Equation (2.5)
and the discussion preceding it). Together with (8.6), this proves the �rst
assertion. To prove the second assertion, observe that by (8.6), Markov's
inequality, and Theorem 2.34, one has for all 0 < q ≤ p that

|µP n − π| ≤ 1

nq
Eµ⊗π(τ

q
C×C) ≤

1

nq
(c(1 + Eµ(τ

q
C) + Eπ(τ

q
C)).

The problem then reduces to estimate Eπ(τ
q
C). Here again, the assumption

that C is an atom will prove to be very useful. Like for countable Markov
chains, π can be explicitly written as

π(f) =
Ex(f(X1) + . . .+ f(XτC ))

Ex(τC)
= π(C)Ex(f(X1) + . . .+ f(XτC ))

for any x ∈ C and all f ≥ 0 measurable. The proof is similar to the proof
of assertion (iii) in Theorem 2.7 (compare to Exercise 4.24) and left to the
reader. Applying this formula to the map y 7→ Ey(ψ(τC)) for some nonnega-
tive function ψ leads to

Eπ(ψ(τC)) = π(C)Ex(

τC−1∑
k=0

ψ(k)),

for all x ∈ C, exactly as in Proposition 2.15. In particular

Eπ(τ
q
C) ≤ π(C)Ex(τ

q+1
C )

for all x ∈ C. With q = p− 1, this estimate yields

Eπ(τ
p−1
C ) ≤ π(C) sup

x∈C
Ex(τ

p
C) <∞,

which concludes the proof of the second assertion.
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The proof of the third assertion is similar. By Markov's inequality and
Theorem 2.35 there exists 0 < λ ≤ λ0 such that

|µP n − π| ≤ e−λnEµ⊗π(e
λτC×C ) ≤ e−λnc(1 + Eµ(e

λ0τC ) + Eπ(e
λ0τC )).

And for all x ∈ C,

Eπ(e
λ0τC ) = π(C)Ex(

eλ0τC − 1

eλ0 − 1
).

Step 2. We suppose now that C is a small set with minorizing measure ξ. Let

ε = ξ(M) < 1, ψ(·) = ξ(·)
ε
, and let K be the kernel on C de�ned by

K(x, ·) = P (x, ·)− εψ(·)
1− ε

.

The idea of the splitting method consists in constructing a Markov chain
(Xn) with kernel P with the help of an auxiliary sequence (In), In ∈ {0, 1}. If
Xn 6∈ C, then In is set to 0. If Xn ∈ C, In is randomly chosen according to a
Bernoulli distribution with parameter ε. At the next step, Xn+1 is distributed
according to

P (Xn, ·)1{Xn∈M\C} + [(1− In)K(Xn, ·) + Inψ(·)]1{Xn∈C}.

More formally, consider the Markov kernel Q de�ned on

M = {(x, i) ∈M × {0, 1} : x 6∈ C ⇒ i = 0}

as follows: For all x ∈M \ C,

Q(x, 0; dy × {0}) = P (x, dy)(1− ε1C(y)),

Q(x, 0; dy × {1}) = P (x, dy)ε1C(y),

and for all x ∈ C,

Q(x, 0; dy × {0}) = K(x, dy)(1− ε1C(y)),

Q(x, 0; dy × {1}) = K(x, dy)ε1C(y),

Q(x, 1; dy × {0}) = ψ(dy)(1− ε1C(y)),

Q(x, 1; dy × {1}) = ψ(dy)ε1C(y).
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We let (Xn, In) denote the canonical process on (Ω,F) = (MN,B(M)⊗N),
Fn = σ((Xi, Ii)i≤n), and for each ν ∈ P(M),Pν the Markov measure on Ω
making (Xn, In) a Markov chain with kernel Q (with respect to (Fn)) and
initial law ν. As usual we write Px,i for Pδ(x,i) . We shall also use the following
convenient notation:

Px := Px,0 if x ∈M \ C,
Px := (1− ε)Px,0 + εPx,1 if x ∈ C.

Let Gn = σ((Xi)i≤n). It is not hard to verify (but still a good and recom-
mended exercise) that

Pν(Xn+1 ∈ ·|Gn) = P (Xn, ·)

for all n ≥ 1 and ν ∈ P(M); and that

Px(X1 ∈ ·) = P (x, ·).

This shows that (Xn)n≥0 is a Markov chain with kernel P and initial value
X0 = x on (Ω,F , (Gn),Px).

We claim that:

(a) C × {1} is a recurrent aperiodic atom for Q;

(b) If for some p ≥ 1, supx∈C Ex(τ
p
C) < ∞, then there exist a, b ≥ 0 such

that for all (x, i) ∈ M

Ex,i(τ
p
C×1) ≤ aEx(τ

p
C) + b;

(c) If for some λ0 > 0, supx∈C Ex(e
λ0τC ) < ∞, then there exist a ≥ 0 and

0 < λ ≤ λ0 such that for all (x, i) ∈ M,

Ex,i(e
λτC×{1}) ≤ aEx(e

λτC ).

Assume the claims are proved. Then, by step 1, (Xn, In) is positive recurrent,
and so is (Xn). As n → ∞, the sequence of probability measures P n(x, ·) =
Px(Xn ∈ ·) converges in total variation toward π, the invariant probability
measure of P. If supx∈C Ex(τ

p
C) <∞ for some p ≥ 2, then, by (b) in the claim,

supx∈C Ex,1(τ
p
C×{1}) <∞. Thus, by step 1,

|P n(x,A)− π(A)| =|Px(Xn ∈ A)− π(A)|

≤ 1

2np−1
c(1 + Ex(τ

p−1
C×{1})) ≤

1

2np−1
c(1 + aEx(τ

p−1
C ) + b)
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for every x ∈M and A ∈ B(M). Thus, for every µ ∈ P(M),

|µP n − π| = 2 sup
A∈B(M)

|µP n(A)− π(A)| ≤ 1

np−1
c(1 + aEµ(τ

p−1
C ) + b).

This proves the second assertion. The proof of the third one is similar.
We now prove the claims. Clearly C × {1} is an atom for Q. Identify

C with the subset of M consisting of points (x, i) such that x ∈ C. Under
this identi�cation, C ×{1} ⊂ C and we rely on Proposition 7.16 to prove the
claim. By the assumption that C is recurrent for P , for all x ∈M ,

1 = Px(τC <∞) =

{
(1− ε)Px,0(τC <∞) + εPx,1(τC <∞) if x ∈ C,

Px,0(τC <∞) if x ∈M \ C.

Thus, for all (x, i) ∈ M, Px,i(τC < ∞) = 1, showing that C is recurrent for
Q. Also,

Px,i((XτC , IτC ) ∈ C × {1}) = ε

because Px,i((XτC , IτC ) ∈ C × {1}|GτC ) = ε. Thus, by Proposition 7.16 (i),
C×{1} is recurrent for Q.We now prove that it is aperiodic. For x ∈ C, j, k ≥
1,

Px,1(Xj+k ∈ C, Ij+k = 1) = εPx,1(Xj+k ∈ C) ≥ εEx,1(1τC=jP
k(XτC , C))

≥ εPx,1(τC = j) inf
x∈C

P k(x,C).

Since C ×{1} is an atom, Px,1(τC = j) does not depend on x ∈ C and is > 0
for some j = j0 ≥ 1. By aperiodicity of C for P, there exists n0 ∈ N such that
for all k ≥ n0

inf
x∈C

P k(x,C) > 0.

Therefore infx∈C Px,1(Xk ∈ C, Ik = 1) > 0 for all k ≥ n0 + j0. This proves
aperiodicity and concludes the proof of claim (a).

If supx∈C Ex(τ
p
C) < ∞ for some p ≥ 1, then supx∈C Ex,i(τ

p
C) < ∞ for

i ∈ {0, 1}, and by Proposition 7.16 (ii), supx∈C Ex,i(τ
p
C×{1}) <∞. Now

τC×{1} ≤ τC + τC×{1} ◦ θτC ,

so that

Ex,i(τ
p
C×{1}) ≤ 2p−1(Ex,i(τ

p
C) + sup

x∈C,i=0,1
Ex,i(τ

p
C×{1})) = aEx,i(τ

p
C) + b.
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Claim (c) is proved similarly. QED

Remark 8.19 It is interesting to compare Theorems 8.12 and 8.18 (iii).
Under the assumptions of Theorem 8.12, the set C = {V ≤ R} with R ≥ 2κ

1−ρ

satis�es condition (iii) of Theorem 8.18 (with λ0 = 1−ρ
2
). This follows from

Proposition 7.12 (iii) or Proposition 7.14 (choose ϕ(s) = λ0s). Then, by
Theorem 8.18, |P nf(x) − π(f)| ≤ e−λnc(1 + V (x))‖f‖∞ for all f ∈ B(M).
Observe however that the conclusion of Theorem 8.12 is stronger, in the sense
that it allows to deal with functions that are unbounded but majorized by
1 + V times a constant.

8.3 Convergence in Wasserstein distance

Let H be a separable real Hilbert space with norm ‖·‖ and let P be a Markov
kernel on (H,B(H)). Let F (H) be the space of bounded functions f : H → R
with bounded and continuous Fréchet derivative, as de�ned in Section 5.3.2.
Recall from Section 5.3 that for a bounded metric d on H, Lip1(d) denotes the
set of Borel measurable functions ϕ : H → R such that |ϕ(x)−ϕ(y)| ≤ d(x, y)
for every x, y ∈ H. Also recall that

‖µ− ν‖d := sup
ϕ∈Lip1(d)

(µϕ− νϕ), µ, ν ∈ P(H).

If (H, d) is Polish, then

‖µ− ν‖d = W1(µ, ν) := inf
Γ∈C(µ,ν)

∫
H2

d(x, y) Γ(dx, dy)

and the metric W1 on P(H) is called the Wasserstein distance of order 1 (or
simply Wasserstein distance) corresponding to d, see Remark 5.36.

The following theorem provides conditions under which the mapping µ 7→
µP is a strong contraction in a certain Wasserstein distance. It is a discrete-
time version of Theorem 2.5 in [35], which was formulated for a continuous-
time Markov semigroup.

Theorem 8.20 (Hairer, Mattingly) Assume that there exist constants α ∈
(0, 1) and C > 0 such that for every f ∈ F (H), one has Pf ∈ F (H) and

‖∇Pf‖∞ ≤ C‖f‖∞ + α‖∇f‖∞. (8.7)
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De�ne

γ :=
1− α

2C
, B :=

{
(x, y) ∈ H2 : ‖x− y‖ ≤ γ/2

}
,

and assume that

a := inf
x,y∈H

sup {Γ(B) : Γ ∈ C(δxP, δyP )} > 0. (8.8)

Then there exists β ∈ (0, 1) such that

‖µP − νP‖d ≤ β‖µ− ν‖d, ∀µ, ν ∈ P(H)

for the bounded metric d(x, y) := 1 ∧ (γ−1‖x − y‖). One can choose β =
max{(1 + α)/2, 1− a

2
}.

Notice that the condition in (8.7) implies that P is asymptotic strong
Feller (see Theorem 5.30). The condition in (8.8) is relatively strong but, as
we shall see, allows for a short and transparent proof. In [35], Hairer and
Mattingly also formulate a set of Lyapunov-type conditions which imply that
µ 7→ µP is a strong contraction in the Wasserstein distance corresponding to
the metric

d(x, y) := inf
γ

∫ 1

0

V (γ(s))‖γ̇(s)‖ ds,

where V is a suitable Lyapunov function and the in�mum is taken over abso-
lutely continuous paths γ : [0, 1] → H such that γ(0) = x and γ(1) = y. The
latter result is more broadly applicable, in particular to the two-dimensional
stochastic Navier�Stokes equation.

Proof [of Theorem 8.20] We �rst show that there exists β ∈ (0, 1) such
that

‖δxP − δyP‖d ≤ βd(x, y), ∀x, y ∈ H. (8.9)

Let ϕ ∈ Lip1(d). By Remark 5.30, there exists a sequence (ϕn)n≥1 in F (H)∩
Lip1(d) such that

lim
n→∞

ϕn(x) = ϕ(x), ∀x ∈ H.

De�ne ϕ̃ and (ϕ̃n)n≥1 as in the proof of Theorem 5.29. Then ϕ̃n ∈ F (H) ∩
Lip1(d) and ‖∇ϕ̃n‖∞ ≤ γ−1 for every n ∈ N∗. By assumption, for every
n ∈ N∗, one has Pϕ̃n ∈ F (H) and

‖∇Pϕ̃n‖∞ ≤ C‖ϕ̃n‖∞ + α‖∇ϕ̃n‖∞ ≤ C +
2αC

1− α
.
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As shown in the proof of Theorem 5.29, for n ∈ N∗ and x, y ∈ H,

Pϕn(x)− Pϕn(y) ≤ ‖x− y‖‖∇Pϕ̃n‖∞ ≤ ‖x− y‖C(1 + α)

1− α
.

Let x, y ∈ H such that ‖x− y‖ < γ. Then d(x, y) = γ−1‖x− y‖, so

Pϕn(x)− Pϕn(y) ≤ d(x, y)γ
C(1 + α)

1− α
= d(x, y)(1 + α)/2.

By bounded convergence,

Pϕ(x)− Pϕ(y) ≤ d(x, y)(1 + α)/2.

As this estimate holds for all ϕ ∈ Lip1(d),

‖δxP − δyP‖d ≤ d(x, y)(1 + α)/2.

Now let x, y ∈ H such that ‖x − y‖ ≥ γ. Then there exists Γ̃ ∈ C(δxP, δyP )
such that

Γ̃(B) ≥ a/2.

The space H with the norm-induced metric is Polish, and d is a bounded
continuous metric onH. By Kantorovich�Rubinstein duality (Theorem 5.34),

‖δxP − δyP‖d = inf
Γ∈C(δxP,δyP )

∫
H2

d(a, b) Γ(da, db)

≤
∫
H2

d(a, b) Γ̃(da, db)

=

∫
B

d(a, b) Γ̃(da, db) +

∫
H2\B

d(a, b) Γ̃(da, db).

For (a, b) ∈ B, one has

d(a, b) ≤ γ−1‖a− b‖ ≤ 1/2.

Hence ∫
B

d(a, b) Γ̃(da, db) ≤ 1

2
Γ̃(B).

And since the metric d is bounded by 1,∫
H2\B

d(a, b) Γ̃(da, db) ≤ Γ̃(H2 \B) = 1− Γ̃(B).



8.3. CONVERGENCE IN WASSERSTEIN DISTANCE 201

As a result,

‖δxP − δyP‖d ≤ 1− 1

2
Γ̃(B) ≤ 1− a

2
.

Our assumption that ‖x− y‖ ≥ γ implies that d(x, y) = 1. Hence

‖δxP − δyP‖d ≤ d(x, y)
(
1− a

2

)
.

This proves (8.9) for β = max{(1 + α)/2; 1 − a
2
}. To complete the proof of

Theorem 8.20, let µ, ν ∈ P(H). By Theorem 5.34, there exists Γ∗ ∈ C(µ, ν)
such that

‖µ− ν‖d =
∫
H2

d(x, y) Γ∗(dx, dy).

Let ϕ ∈ Lip1(d). Then, by Exercise 5.38,

(µP )ϕ− (νP )ϕ =

∫
H2

((δxP )ϕ− (δyP )ϕ) Γ
∗(dx, dy). (8.10)

For x, y ∈ H,

(δxP )ϕ− (δyP )ϕ ≤ ‖δxP − δyP‖d ≤ βd(x, y).

Hence, the right-hand side of (8.10) is dominated by

β

∫
H2

d(x, y) Γ∗(dx, dy) = β‖µ− ν‖d.

Taking the supremum for the left-hand side of (8.10) over all ϕ ∈ Lip1(d)
yields the desired contraction estimate. QED

Corollary 8.21 Under the assumptions of Theorem 8.20, the Markov kernel
P admits a unique invariant probability measure π and there exists β ∈ (0, 1)
such that for every µ ∈ P(H),

‖µP n − π‖d ≤ βn‖µ− π‖d, ∀n ∈ N∗.

Proof Clearly, d induces the same topology on H as the metric induced
by ‖·‖. Then (H, d) is a Polish space with a bounded metric. By Remark 5.36,
P(H) endowed with the metric (µ, ν) 7→ ‖µ − ν‖d is Polish. Since µ 7→ µP
is a strong contraction on this complete metric space, the Banach �xed point
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theorem yields existence and uniqueness of the invariant probability measure
π. For µ ∈ P(H) and n ∈ N∗, one has

‖µP n − π‖d = ‖µP n − πP n‖d ≤ βn‖µ− π‖d,

where β is the constant from Theorem 8.20. QED
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Appendix A

Monotone class and Martingales

A.1 Monotone class theorem

A set H ⊂ B(M) is said to be stable by bounded monotone convergence if
fn ∈ H and 0 ≤ fn ≤ fn+1 ≤ 1 implies that f = limn fn ∈ H.

Theorem A.1 (Monotone class theorem) Let H ⊂ B(M) be a vector
space of bounded functions containing the constant functions and stable by
bounded monotone convergence. Let C ⊂ B(M) be a set stable by multiplica-
tion and let σ(C) denote the sigma algebra generated by C (i-e the smallest
sigma algebra making the elements of C measurables). If C ⊂ H, then H
contains every bounded σ(C)-measurable function.

A.2 Conditional expectation

We recall here the de�nition of conditional expectation and give some of its
basic properties. More details and proofs can be found in standard textbooks
such as [7].

Let (Ω,F ,P) be a probability space, and let B be a σ-�eld contained in
F . Let X be a real-valued random variable such that E(|X|) < ∞. Then
there exists a real-valued random variable Z with E(|Z|) <∞ such that

(i) Z is B−measurable;

(ii) For all A ∈ B, we have

E(Z1A) = E(X1A).

205
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The random variable Z is unique in the following sense: If Z ′ is any other ran-
dom variable satisfying E(|Z ′|) < ∞ and the conditions in (i) and (ii), then
P(Z ′ = Z) = 1. In other words, the space of equivalence classes L1(Ω,B,P)
has a unique element Z satisfying the condition in (ii). This element of
L1(Ω,B,P) is called the conditional expectation of X given B, and is denoted
by E(X|B). If we write Y = E(X|B) for some B-measurable random variable
Y , we mean that Y is a representative of the equivalence class E(X|B).

One can also de�ne conditional expectation for nonnegative random vari-
ables: Let X : Ω → [0,∞] be measurable, i.e. {ω ∈ Ω : X(ω) ∈ A} ∈ F for
every set A ⊂ [0,∞] such that A \ {∞} is a Borel subset of [0,∞). For every
n ∈ N, let Xn := X ∧ n and let Zn be a B-measurable random variable such
that E(|Zn|) < ∞ and E(Zn1A) = E(Xn1A) for every A ∈ B. By changing
the values of (Zn) on a set of measure 0 if necessary, one can assume that
(Zn(ω))n∈N is nondecreasing for every ω ∈ Ω. The function

Z(ω) := lim
n→∞

Zn(ω)

then maps from Ω to [0,∞] and satis�es the conditions in (i) and (ii). If
Z ′ : Ω → [0,∞] is any other random variable satisfying (i) and (ii), then
P(Z = Z ′) = 1. On the set of B-measurable functions from Ω to [0,∞],
consider the equivalence relation given by equality P-almost surely. The con-
ditional expectation ofX given B, denoted by E(X|B), is de�ned as the unique
equivalence class that satis�es (ii).

Theorem A.2 (Properties of conditional expectation) Let X be a ran-
dom variable, with E(|X|) <∞ or X ∈ [0,∞], and let B be a σ-�eld contained
in F . Then,

(i) E(E(X|B)) = E(X);

(ii) If E(|X|) < ∞ (resp. X ∈ [0,∞]), we have for every B-measurable
random variable Y with E(|XY |) <∞ (resp. Y ∈ [0,∞])

E(XY |B) = Y E(X|B),

with the convention that 0 · ∞ = 0;

(iii) For every σ-�eld A contained in B, we have

E(E(X|B)|A) = E(X|A).

This is often called tower property.
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A.3 Martingales

Here, we recall the few results from martingale theory that are used in this
course. As for conditional expectation, there are many introductory texts on
probability theory that provide more details and proofs, e.g. [69] or [7].

Let (Ω,F ,F,P) be a �ltered probability space. We let F∞ denote the σ
�eld generated by ∪n≥0Fn. A sequence (Mn) of adapted (i.eMn is Fn measur-
able) and L1 real valued random variables is called a martingale (respectively,
a submartingale, respectively a supermartingale) if

E(Mn+1|Fn) =Mn resp. ≥, resp. ≤

for all n ≥ 0.
A simple, but useful consequence of Jensen inequality is the following.

Proposition A.3 Let (Mn) be a martingale (resp. a submartingale) and ϕ a
convex function (resp. a convex non decreasing function) such that ϕ(Mn) ∈
L1; then (ϕ(Mn)) is a submartingale .

It is often useful to extends the martingale (sub, super) property to stopping
times. Doob's optional stopping theorem shows that this is the case for
bounded stopping times.

Theorem A.4 (Optional stopping) Let M = (Mn) be a martingale (resp.
submartingale, supermartingale).

(i) If T is a stopping time, then (Mn∧T )n≥0 is a martingale (resp. submartin-
gale, supermartingale);

(ii) If S ≤ T are stopping times bounded by some constant N , then

E(MT |FS) =MS resp. ≥, resp. ≤ .

Proof (i) For all n ∈ N

Mn+1∧T −Mn∧T = (Mn+1 −Mn)1{T>n}.

Taking the conditional expectation with respect to Fn proves the result.
(ii) Assume (Mn) is a martingale. Proving that E(MT |FS) =MS amounts

to prove that for allA ∈ FS and 0 ≤ k ≤ N, E(MT1A∩{S=k}) = E(Mk1A∩{S=k})).

E(MT1A∩{S=k}) =
N∑
i=k

E(Mi1{T=i}1A∩{S=k}) =
N∑
i=k

E(E(MN |Fi)1{T=i}1A∩{S=k}))
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=
N∑
i=k

E(E(MN1{T=i}1A∩{S=k}|Fi)) = E(MN1A∩{S=k})

= E(E(MN1A∩{S=k}|Fk)) = E(Mk1A∩{S=k}).

The proof for sub and supermartingales is similar. QED

Corollary A.5 (Doob's inequality) Let (Xn) be a non negative sub mar-
tingale. Then for all α > 0

P( sup
0≤i≤N

Xi ≥ α) ≤ E(XN)

α
.

Proof Let T = min{i ≥ 0 : Xi ≥ α}. Then T ∧ N is a stopping time
bounded by N, so that by the optional stopping theorem

E(XN) ≥ E(XN∧T ) = E(XN1T>N) + E(XT1T≤N) ≥ αP(T ≤ N).

QED

The two following theorems are classical convergence results due to Doob.

Theorem A.6 Let (Mn) be a submartingale. Assume that supn E(M
+
n ) <∞.

Then there exists M∞ ∈ L1 such that Mn →M∞ almost surely.

Theorem A.7 Let (Mn) be a martingale. Then the following assertions are
equivalent:

(a) (Mn) is uniformly integrable;

(b) (Mn) converges almost surely and in L1 to some random variable M∞;

(c) Mn = E(M |Fn) for some M ∈ L1.

Furthermore, in case (c) limn→∞Mn =M∞ = E(M |F∞).

Let (Mn) be an L2 martingale (i.e Mn ∈ L2), the predictable quadratic
variation of (Mn) is the process (〈M〉n) recursively de�ned as

〈M〉0 = 0, 〈M〉n+1 − 〈M〉n = E((Mn+1 −Mn)
2|Fn) = E(M2

n+1|Fn)−M2
n.

Note that (〈M〉n) is nondecreasing, predictable (i.e Mn is Fn−1 measur-
able) and that (M2

n − 〈M〉n)n is a zero mean martingale. We let 〈M〉∞ =
limn→∞〈M〉n.
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Theorem A.8 (Strong law of large numbers) Let (Mn) be a L2 martin-
gale. Then,

(i) If E(〈M〉∞) =
∑

k≥0 E((Mk+1 −Mk)
2) < ∞, then (Mn) converges almost

surely and in L2 to some random variable M∞;

(ii) On 〈M∞〉 < ∞ (Mn) converges almost surely to some �nite random
variable M∞;

(iii) On 〈M〉∞ = ∞ limn→∞
Mn

⟨M⟩n = 0 a.s.

(iv) If supn E(
⟨M⟩n
n

) <∞, then limn→∞
Mn

n
= 0 a.s.

Proof We only prove the last statement, which is su�cient in this book and
whose proof is short.By Doob's inequality, for all n ∈ N

P( sup
2n≤k≤2n+1

|Mk|
k

≥ ε) ≤ P( sup
k≤2n+1

|Mk|2 ≥ ε222n) ≤ 1

ε222n
E(〈M〉2n) ≤ C

1

ε22n

and the result follows from Borel-Cantelli lemma QED
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Portmanteau theorem, 61

Positive recurrence, 163, 165, 173

for countable chains, 28

Prohorov metric, 66

Prohorov theorem, 68

Prohorov's theorem, 120

Proper map, 69

Random dynamical system, 51, 132

Random dynamical systems, 78

Random iterative system, see Random dy-
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Total variation distance, 109
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