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Preface

This book is based on a series of lectures given over the recent years in Mas-
ter’s courses in probability. It provides a short, self-contained introduction
to the ergodic theory of Markov chains in metric spaces.

Although primarily intended for graduate and postgraduate students, cer-
tain chapters (e.g. one and two) can be taught at the undergraduate level.
Others (e.g. four and five) can be used as complements to courses in measure
or ergodic theory. Basic knowledge in probability, measure theory, and calcu-
lus is recommended. A certain familiarity with discrete-time martingales is
also useful, but the few results from martingale theory used in this book are
all recalled in the appendix. Each chapter contains several exercises ranging
from simple applications of the theory to more advanced developments and
examples.

Whether in physics, engineering, biology, ecology, economics or elsewhere,
Markov chains are frequently used to describe the random evolution of com-
plex systems. The understanding and analysis of these systems requires, first
of all, a good command of the mathematical techniques that allow to explain
the long-term behavior of a general Markov chain living on a (reasonable)
metric space. Presenting these techniques is, briefly put, our main objective.
Questions that are central to this book and that will be recurrently visited
are: under which conditions does such a chain have an invariant probability
measure? If such a measure exists, is it unique? Does the empirical occupa-
tion measure of the chain converge? Does the law of the chain converge, and
if so, in which sense and at which rate?

There are a variety of tools to address these questions. Some rely on
purely measure-theoretic concepts that are natural generalizations of the ones
developed for countable chains (i.e. chains living on countable state spaces).
This includes notions of irreducibility, recurrence (in the sense of Harris),
petite and small sets, etc. Other tools assume topological properties of the
chain such as the strong Feller or asymptotically strong Feller property (in
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the sense of Hairer and Mattingly). However, when dealing with a specific
model, measure-theoretic conditions - such as irreducibility - might be dif-
ficult to verify, and strong topological properties - such as the strong Feller
condition - are seldom satisfied. A powerful approach is then to combine
much weaker topological conditions - such as the (weak) Feller condition -
with controllability properties of the system to prove that certain measure-
theoretic conditions (e.g. irreducibility, existence of petite or small sets) are
satisfied. This approach is largely developed here and is a key feature of this
book.

The book is organized in eight chapters and a short appendix. Chapter 1
briefly defines Markov chains and kernels and gives their very first properties,
the Markov and strong Markov properties. The end of the chapter gives a
concise introduction to Markov chains in continuous time, also called Markov
processes, as they appear in many examples throughout the book.

Chapter 2 is a self-contained mini course on countable Markov chains.
Classical notions of recurrence (positive and null) and transience are intro-
duced. These are powerful notions, but when students meet them for the
first time and have to verify that a specific chain is either recurrent or tran-
sient, they are often disoriented. Thus, we have chosen to spend some time
here to show how theses properties can be verified "in practice" with the help
of suitable Lyapunov functions. We also explain how Lyapunov functions can
be used to provide estimates on the moments (polynomial and exponential)
of hitting times for a point or a finite set.

Certainly one of the most important results in the theory of countable
chains is the ergodic theorem, which asserts that - for positive recurrent ape-
riodic chains - the law of the chain converges to a unique distribution. The
final three sections of Chapter 2 are organized around this result. We first
prove it quickly - by standard coupling - without any estimate on the rate
of convergence. Then, the Lyapunov method is applied to investigate the
behavior of renewal processes and provide short proofs of coupling theorems
for these processes. Finally, relying on these coupling results, we revisit the
ergodic theorem, this time with some convergence rates.

On uncountable state spaces, the simplest (and also the most natural) ex-
amples of Markov chains are given by random dynamical systems (also called
random iterative systems). These are systems such that the state variable at
time n+1 is a deterministic function of the state variable at time n and a "ran-
dom" input sampled from a sequence of i.i.d. random variables. Chapter 3 is
devoted to this type of chains and explains how any given "abstract" Markov
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chain can be represented by a random dynamical system. Some interesting
examples (Bernoulli convolutions, Propp-Wilson algorithm) are presented in
exercises.

Chapter 4 starts with a detailed section on weak convergence, tightness
and Prohorov’s theorem. Then, invariant probability measures are defined and
it is shown that, for a Feller chain, weak limit points for the family of empiri-
cal occupation measures are almost surely invariant probability measures. We
discuss some practical tightness criteria (for the empirical occupation mea-
sures) based on Lyapunov functions. At this stage of the book, the reader
understands that, under a reasonable control of the chain at infinity (obtained
for instance by a Lyapunov function), uniqueness of the invariant probability
measure equates stability: the empirical occupation measures converge almost
surely to some (unique) distribution, regardless of the initial distribution. So
we found it was a good place to discuss simple examples of uniquely ergodic
chains (i.e. chains having a unique invariant probability measure). This is
done in the third section of Chapter 4, where we analyze random dynamical
systems obtained by random composition of contractions (or mappings that
contract on average). The penultimate section of the chapter is devoted to er-
godic theorems. We first prove several classical results (Poincaré recurrence
theorem, Birkhoff ergodic theorem, and the ergodic decomposition theorem)
and then show how they can be applied to Markov chains. Finally, we discuss
invariant measures of continuous-time processes and explain how their prop-
erties (existence, ergodicity, uniqueness, ergodic decomposition, etc.) can be
studied using discrete-time theory.

Chapter 5 is devoted to various notions of irreducibility which ensure
unique ergodicity. We start with the measure-theoretic notion of irreducibility
(also called 1) irreducibility) and then move on to more topological conditions.
The accessible set of a Feller chain is introduced and its relations with the
support of invariant probability measures are investigated. We then consider
strong Feller chains and prove that for such chains ergodic probability mea-
sures have disjoint support. We also prove the Hairer-Mattingly theorem,
which says that the same property holds under the weaker assumption that
the chain is asymptotically strong Feller. These results have the useful conse-
quence that, on a connected set, if there is an invariant probability measure
having full support, the chain is uniquely ergodic.

We then discuss in Chapter 6 the notions of petite sets, small sets and
(weak) Doeblin points and show that the existence of an accessible weak Doe-
blin point implies irreducibility for (weak) Feller chains. This latter result is
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then applied to a variety of examples both in discrete time (random dynamical
systems, random dynamical systems obtained by random switching between
deterministic flows) and in continuous time (piecewise deterministic Markov
processes, stochastic differential equations). This gives us the opportunity
to show how the accessibility condition is naturally expressed as a control
problem and how the Doeblin properties are naturally related to Horman-
der type conditions (for random switching models, piecewise deterministic
Markov processes and SDEs).

Chapter 7 introduces Harris recurrence. For uniquely ergodic chains, Har-
ris recurrence equates to positive recurrence, meaning that for every bounded
Borel (and not merely for every continuous) function, the Birkhoff averages
of the function converge almost surely. We prove the important result that
Harris recurrence (respectively positive recurrence) is implied by the existence
of a recurrent petite set (respectively a petite set whose first return time is
bounded in L'). We also discuss simple useful criteria (relying on Lyapunov
functions) ensuring that a set is recurrent and provide moment estimates on
the return times.

Chapter 8 revolves around the celebrated Harris ergodic theorem. After
revisiting the notions of total variation distance and coupling for two prob-
ability measures, we state a simple version of the Harris ergodic theorem
where the entire state space is a petite set. Under this strong hypothesis, one
has exponential convergence in total variation distance to the unique invari-
ant probability measure. The same conclusion holds under the existence of
a Lyapunov function that forces the Markov chain to enter a certain small
set - a condition that is better adapted to noncompact state spaces, which
are usually not petite. We give two different proofs for this latter version
of Harris’s ergodic theorem: first the recent proof by Hairer and Mattingly
based on the ingenious construction of a semi-norm for which the Markov
operator is a contraction. And second, a more classical proof using coupling
arguments and ideas from renewal theory. More precisely, under uniform esti-
mates on polynomial (respectively exponential) moments for the return times
to an aperiodic and recurrent small set, we obtain polynomial (respectively
exponential) convergence in total variation distance to the unique invariant
probability measure. Finally, we present a condition, also due to Hairer and
Mattingly, that yields exponential convergence to the unique invariant prob-
ability measure in a certain Wasserstein distance.

The appendix recalls the monotone class theorem and the few results from
discrete time martingales that are used in the book.
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Chapter 1

Markov Chains

The general setting is the following. Throughout all this book, we let M
denote a separable (there exists a countable dense subset) metric space with
metric d (e.g., R, R") equipped with its Borel o-field B(M). We let B(M)
(respectively Cy(M)) denote the set of real-valued bounded measurable (re-
spectively bounded continuous) functions on M equipped with the norm

[flloc == sup | f(2)]. (1.1)
zeM

If i is a (non-negative) measure on M and f € L*(u) (or f > 0 measurable),
we let

pf = y f () p(d)

denote the integral of f with respect to u.

1.1 Markov kernels and chains

1.1.1 Markov kernel

A Markov kernel on M is a family of measures
P ={P(z,)}een
such that
(i) For all z € M, P(x,-) : B(M) — [0, 1] is a probability measure;
(ii) For all G € B(M), the mapping x € M — P(z,G) € R is measurable.

13



14 CHAPTER 1. MARKOV CHAINS

The Markov kernel P acts on functions g € B(M) and measures (respectively
probability measures) according to the formulae:

Py() = /M P, dy)g(y). (1.2)

uP(G) ::/M,u(dx)P(x,G). (1.3)

Remark 1.1 For all g € B(M), we have Pg € B(M) and [|Pglcc < ||9]lco-
Boundedness is immediate and measurability easily follows from the condition
(ii) defining a Markov kernel (use for example the monotone class theorem

from the appendix).

Remark 1.2 The term Pg(x) can also be defined by (1.2) for measurable
functions g : M — R that are nonnegative, but not necessarily bounded. For
such g, Pg(x) is an element of [0,00]. This will play a role in the study of
Lyapunov functions starting in Section 2.1.3.

We let P" denote the operator recursively defined by P’g := ¢ and
P tlg .= P(P"g) for n € N. Or, equivalently,

P%(z,-) := 6, and P""(z,G) := / P"(xz,dy)P(y,G)
M
for all n € N and for all G € B(M). Here and throughout these notes, N
is the set of nonnegative integers (including 0). The set of positive integers
(excluding 0) will be denoted by N*.

Example 1.3 (countable space) Suppose M is countable. We can turn M
into a separable (and complete) metric space by endowing it with the discrete
metric d(z,y) = 1,4,. The corresponding Borel o-field is the collection of all
subsets of M. A Markov transition matriz on M is amap P : M x M — [0, 1]

such that
> Plx,y) =1

yeM
for all z € M. This gives rise to a Markov kernel @) defined by
Qx.G) =3 Pla.y)
yeG

for all G C M. Since there is a one-to-one correspondence between transition
matrices and kernels on M, we shall identify P with ) and refer to it at times
as a transition matrix and at times as a kernel.
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1.1.2 Markov chain

Let (2, F,P) be a probability space. A filtration F = (F,,),>0 is an increasing
sequence of o-fields: F,, C F,41 C F for all n € N. The data (2, F,F,P) is
called a filtered probability space. An M —valued adapted stochastic process
on (2, F,F,P) is a family (X,,),>0 of random variables defined on (2, F,P),
taking values in M and such that X, is F,—measurable for all n € N.

Given a filtered probability space (€2, F,F,P) and a Markov kernel P on
M, a Markov chain with kernel P with respect to F is an M —valued adapted
stochastic process (X,,) on (2, F,F,P) such that

P(Xn+1 € G“Fn) = P<Xn7G)
for all n € N and for all G € B(M). Equivalently,

for all n € N and for all g € B(M) (or all functions g : M — R that are
measurable and nonnegative). Here, E(-|F,,) denotes conditional expectation
with respect to F,, and P(X, 1 € G|F,) := E(1x,,,c¢|F). In the appendix,
we recall the definition of conditional expectation and list some of its basic
properties, which will be used without further comment throughout the text.

Remark 1.4 Let (X,) be a Markov chain with kernel P with respect to
F. Then (X,) is always a Markov chain with kernel P with respect to F¥,
where FX = {FX},50 and FX = o0(Xy,...,X,) is the o-field generated by
Xo, ..., X,. The latter property is equivalent to

E(9(Xnt1)ho(Xo).-hn(Xn)) = E(Pg(Xn)ho(Xo)...1n(Xy))
for all n € N, hy, ..., h, € B(M), and g € B(M).

In view of this remark, when we say that (X,,) is a Markov chain with kernel
P, we implicitly mean that it is a Markov chain with respect to FX.

Given a Markov kernel P and a probability measure v on M, there always
exists a Markov chain (X,,) with kernel P and such that X, has law v. As
outlined in Remark 1.7, this follows from the Ionescu-Tulcea theorem.

Proposition 1.5 (Chapman-Kolmogorov Equation) Let (X,,) be a Markov
chain with kernel P. Let p,, denote the law of X,,. Then, for every n € N,

fini1 = finP = g P
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Proof For every g € B(M),

pnt19 = E(9(Xnt1)) = E(E(9(Xns1)|Fn)) = E(Pg(Xn)) = punPg.
QED

Example 1.6 (countable space) Let (X,) be a Markov chain on a count-
able state space M, with transition matrix P and initial distribution po. The
law g, of the random variable X, then satisfies

pn({2}) =D mo({y}) P (y,x), Vr € M,

yeM

where P" is the nth power of the matrix P. In matrix-vector notation, this
identity can be written as
pn = poP",
where pu, and pgo are row vectors. In particular, if p is the Dirac measure at
a point y € M, then the law of X,, assigns mass P"(y,x) to every singleton
{z}. That is
P(X, = z|Xo=y) = P"(y, 7).

1.1.3 Feller and strong Feller chains

The Markov kernel P (or the associated Markov chain (X)) is said to be
Feller if it takes bounded continuous functions into bounded continuous func-
tions. It is said to be strong Feller if it takes bounded Borel functions into
bounded continuous functions. If M is countable and equipped with the dis-
crete metric, then every function on M is continuous. In particular, every
Markov kernel on a countable set is strong Feller.

1.2 Markov and strong Markov properties

1.2.1 The law of a Markov chain

Let X = (X,)n>0 be a Markov chain with kernel P. Then X can be seen as
a random variable on (2, F, P) taking values in the space of trajectories

]\4N = {X: (xi)iEN 1 x; € M}
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equipped with the product o-field B(M)®N (see Exercise 1.8).

If Xy has law v, we let P, denote the law of X (i.e., the image measure
of P by X) and E, the corresponding expectation. If v is the Dirac measure
at x, we use the standard notation P, := P;, and E, := E;_. In subsequent
chapters, in a slight abuse of notation, we will usually write E, (f(X)) instead
of E,(f) if f is a measurable map from M" to R.

Given k € N and hg, ..., hy € B(M), we let hy ® ... ® hy denote the map
on MY defined as

For further reference such a map will be called a product map of length k + 1.
Then

E(ho(Xo) ... he(Xy) = Eu(ho®...® hy)

The first equality is by definition of [£,. The last one follows from the second
one by induction on k. For the second equality, write

E(ho(Xo) ... hp(X3)) = E(E(ho(Xo). .. (X)) Fir))
= E(ho(X0) ... bt (Xie1 ) Phi(Xir)).

In particular, for all Borel sets Ag,..., Ax C M,

P(XUGAo,...,XkGAk) = ]P),/{XEMNZ($0,...,£L‘k)€AQX...XAk}
= / V(dl’o)/ P(xo,datl).../ P(xy_1,dzy).
AO Ay Ak

Remark 1.7 (The canonical chain) The formula above can be used to
show that for every Markov kernel P and for every probability measure v
on M, there exists a Markov chain (X,) with kernel P and X, distributed
according to v.

Indeed, let Q = MY, and let F = B(M)®N. For n € N, set X,,(w) := wy,
and, as in Remark 1.4, let F.X = 0(Xo, ..., X,). The pair (€, F) is called the
canonical space, (X,,) the canonical process and FX = (FX),>o the natural
filtration with respect to (X,,).



18 CHAPTER 1. MARKOV CHAINS

Now, v is a probability measure on (M, B(M)), and for every n € N and
(wo, .-+, wy) € ML,

P(wo, .- ywp; ) == P(wn, )
defines a probability measure on (M, B(M)). Moreover,
(Woy -+ ywn) = Plwo, - .., wn; A)

is B(M™™!)-measurable for every A € B(M). By the Ionescu-Tulcea theorem
(see, e.g., Theorem 2 in Chapter I1.9 of [63]), there exists a unique probability
measure P, on (€2, F) such that for every n € N and Ay, ..., A, € B(M),

]P)V(CUO S AQ, oo, Wp € An)

= v(dwo) [ Plwo;dwr) ... P(wo, -y wWn—1; dwy,)
J v ], A
= /AO v(dwy) /A1 P(wo, dwy) ... /An P(wp,—1,dw,). (1.5)

Using the result from Exercise 1.8, it is not hard to check that the canonical
process (X,,) is a Markov chain on the filtered probability space (Q, F,FX,P,),
with initial distribution v and kernel P. The chain (X,,) is called the canonical
chain with initial distribution v and kernel P. A probability measure of the
form in (1.5) is called a Markov measure.

Exercise 1.8 Let B(M™") (respectively B(M"Y)) denote the Borel o-field over
M™ (respectively MY, endowed with the product topology). Let B(M)®"
(respectively B(M)®N) denote the product o-field over M™ (respectively MY).
Show that B(M)®" = B(M") and B(M)®N = B(M"Y).

Hint: For the inclusion C one can use the fact that the projection m; :
MY — M, x s x; is continuous, hence measurable. Observe that this doesn’t
require the separability of M. For the converse implication, one can first
show, using separability, that every open subset of M™ is a countable union
of product sets Oy x ... x O,, with O; open.

1.2.2 The Markov properties
For n € N, we let O™ : MY — MY denote the shift operator defined by
0" (x) := (Tntk)k>0-

The following proposition known as the Markov property easily follows
from the definitions.
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Proposition 1.9 (Markov Property) Let H : MY — R be a nonnegative
or bounded measurable function and X a Markov chain with kernel P. Then

E(H(©" o X)|F,) = Ex, (H).

Proof Assume without loss of generality that H is bounded. Indeed, if H
is non-negative and unbounded, there is an increasing sequence of bounded
non-negative functions that converges pointwise to H, and one can apply the
monotone convergence theorem. The set of bounded H satisfying the required
property is a vector space, containing the constant functions and closed under
bounded monotone convergence. Therefore, by the monotone class theorem
(given in the appendix) and by Exercise 1.8, it suffices to check the property
when H = hg ® ... ® hy is a product map. We proceed by induction on k. If
k = 0, this is immediate. If the property holds for all product maps of length
k+ 1, then
E(ho(Xn) - hie( Xng) Py (Xis 1) | F)

= E(ho(Xn) - - Pe( X)) E (Pt (X 1) [ P ) | )
E(ho(X) - . - hi( X)) Phier(Xon) | F) = Ex, (ho @ . .. ® hyPhyy).
By (1.4), this last term equals Ex (ho ® ... ® hx1). QED

A stopping time on a filtered probability space (€2, F,F,P) is a random
variable T' : © — N U {oo} such that for all n € N, the event {T" = n} =
T 1({n}) lies in F,. The o-field generated by T, denoted Fr, is the o-field
consisting of all events A € F such that

AN{T =n} € F,, VneN
Exercise 1.10 (i) Show that Fr is indeed a o-field.

(ii) Let (7,)nen be a sequence of stopping times on a filtered probability
space (2, F,F,P) such that T,, < T, for every n € N. Show that
A, = Fr,, n €N, defines a filtration on (9, F, P).

The following proposition generalizes Proposition 1.9.

Proposition 1.11 (Strong Markov Property) Let H : MY — R be a
nonnegative or bounded measurable function, X a Markov chain, and T a
stopping time living on the same filtered probability space as X. Then

E(H(O" o X)|Fr)1r<ce = Exy(H)1r<oc.
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Proof It suffices to show that for all n € N,
E(H(O©" o X)17_,|Fr) = Ex, (H)1lp—p.
The right-hand side is Fr-measurable, and for all A € Fr,
E(H(O©" o X)17-,14) = E(Ex, (H)1r=,14)

by the Markov property (because 17-,14 is F,-measurable). This proves the
result. QED

1.3 Continuous time: Markov Processes

Although this book is about Markov chains in discrete time, it is useful to
say a few words about Markov chains in continuous time, also called Markov
processes, because they appear in many examples throughout the book. The
definitions are modeled on discrete time.

A Markov semigroup on M is a family {P,};>0 of Markov kernels on M
such that

(i) Po(x,-) = da;
(ii) For all G € B(M), the mapping (¢,x) — Pi(z,G) is measurable;
(iii) For all t,s >0, Pys = P o P,.

Let (€2, F,P) be a probability space and let F = (F;):>0 be a continuous-time
filtration, i.e., a family of o-fields such that F, C F; C F for all 0 < s < t.
An M-valued adapted stochastic process on (£2, F,F,P) is a family (X;);>o of
random variables defined on (€2, F,P), taking values in M and such that X
is F-measurable for all ¢ > 0.

A Markov process with semigroup { P, }+>o with respect to F is an adapted
stochastic process on (€2, F,F,P) such that for all g € B(M) and t,s > 0,

E(g(XH-s)LFt) = (Psg)(Xf)

Exercise 1.12 Suppose M is countable. Let (Y;,) be a Markov chain on
M with kernel P. Let Uy, Us,... be a sequence of independent identically
distributed random variables on (0, c0) having an exponential distribution of
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parameter ), i.e., P(U; > t) = e . Set Ty =0and T}, = U; + ...+ U, for
n > 1. Let (X;)i>0 be the continuous-time process defined by X; =Y, for
T, <t <T,:1. Show that (X;) is a Markov process with semigroup

A AP At ()‘t)kpk
p= et = oy B

k>0

1.3.1 Feller Processes

We use the following terminology. We say that the Markov semigroup { P, }1>0
is weak Feller provided that

(1) P(Cy(M)) C Cp(M) for all t > 0;
(ii) For all f € C4(M) and z € M, limy )y P.f(z) = f(x).

This definition implies that P, is Feller for all ¢ > 0. Observe however that it
is weaker than the usual definition of a Feller semigroup (see, e.g., |26], [59]
or [45]), which assumes that

(i) M is a locally compact metric space;

(i) {P:}+>0 is a strongly continuous semigroup on Cy(M) (the set of contin-
uous functions vanishing at infinity), meaning that

(a) F(Co(M)) C Co(M);
(b) For all f € Co(M), limyyo | Pf — flloo = 0.

Remark 1.13 It is proved in [59, Proposition 2.4| that [(a), (b)] above is
equivalent to [(a), (b)'] where (b)’ is given by the (seemingly) weaker condition
that

lim Py f () = f(2)
for all f € Co(M) and © € M. As shown by the following exercise, this
equivalence does not hold if Cy(M) is replaced by Cy(M).

Exercise 1.14 Let M = (0,00), and let P; be defined on B(M) as
ze!
().

14 z(et — 1)

Show that {P;}+>0 is a weak Feller Markov semigroup which is not Feller.
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Chapter 2

Countable Markov Chains

This chapter presents the basic theory of countable Markov chains. The as-
sumption that M is countable makes the proofs easier and permits to intro-
duce, in a simple setting, some of the key notions (such as invariant probability
measures, irreducibility, positive recurrence, etc.) that will be revisited in the
subsequent chapters. Furthermore, some of the results given here, in partic-
ular in Section 2.3, will be used later to prove the main results in Chapter
7. We assume here that M is a countable set equipped with the o-field S of
all subsets of M, and (X,,) is a Markov chain on M with Markov kernel (or
matrix) P = P(2,y).yem. In most of this chapter, we assume without loss
of generality that O = MY F = S®N X, (w) = w,, and F,, = o(Xy, ..., X,),
i.e. (X,,) is the canonical chain introduced in Remark 1.7.

2.1 Recurrence and transience

For x € M, we let
T =1inf{k >1: X} = x}

denote the first time > 1 at which the chain hits x,
7™ = inf{k > 7"V X, =},

T

the n'* time of hitting x (with 7" := 0), and

N, = Z lix,=2) € NU {o0}

k>1

23
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the number of visits of x at or after time 1. We adopt the convention that
inf () = +00. A point z is said to be recurrent if

P.(7, < o0) =1

and transient otherwise.

Given x,y € M and k € N*, we say that x leads to y in k steps, written
x ~F g if PR(x,y) > 0. We say that x leads to y, written x ~» vy, if x ~F y
for some k € N*. The chain is called irreducible if x ~» y for all x,y € M. To
any Markov chain on a countable set M with transition matrix P, one can
associate a weighted directed graph as follows: Let M be the set of vertices.
For any x,y € M, not necessarily distinct, there is a directed edge of weight
P(z,y) going from z to y if and only if P(z,y) > 0. The chain is then
irreducible if and only if the associated directed graph is connected, i.e. for
any x,y € M there is a path from vertex z to vertex y that moves along
directed edges. Note that a general notion of irreducibility will be defined
in Chapter 5 and that every countable irreducible chain (as defined here)
satisfies this general definition.

Exercise 2.1 Let (X,),>0 be a Markov chain on Z \ {0} whose transition
matrix P is given by

Pliyi4+1) = P(i,—i)=1/2, i >1
P(-1,1) = P(i,i+1) =1, i < —2.

Draw the weighted directed graph associated with (X,,) and determine whether
the chain is irreducible.

Proposition 2.2 (i) If x is transient, then N, < oo a.s. and for all k > 0,
P,(N, = k) = a"(1 — a),

where a = Py (1, < 00). In particular,

E,(N,) =Y P'a,z)=

k>1

< O0.
1—a

(ii) If x is recurrent, then P, (N, = c0) = 1,

E.(N,) = > P*a,z) = oo,

k>1
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and

1 & 1
lim =) 1.y, =
ngléon; K=t T (1)
P,—a.s.

(iii) If the chain is irreducible, then either all points are recurrent or all
points are transient. In the recurrent case, for all x,y € M,

P,(r, < 00) =1 and E,(N,) = oc.
In the transient case, for all x,y € M,
E,(N,) < .
Proof (i). Using the strong Markov property,

P, (N, = k) = Py (1) < 00; i) = 00) = (1 = @) P, (r{?) < o0)

T T

and

(). If x is recurrent, then, using again the strong Markov property,

P, (7™ < 00) = P (7" Y < 00) =... = 1.

xT

Hence P, (N, = c0) = 1 and thus E,(N,) = cc.

For all n > 1, there exists k(n) > 0 such that Té’“(”” <n< Ték(n)ﬂ).
Furthermore, the random variables (ngn—’—l) - ngn))nzo are, under P,, i.i.d.

Thus, by the strong law of large numbers for nonnegative i.i.d. random
variables,
1L . k(n) 1
Jw 2 kz Lxis) = lim ) T B (r,)°

(4i). If the chain is irreducible, for all z,y € M there exist 7,5 > 1 and
e > 0 such that Pi(z,y) > ¢, P/(y,x) > e. Thus P*Hi(z,2) > 2P*(y,vy)
for all £ > 1. Therefore, we have the implication

ZPk(y,y) =00 = ZPk(x,I) = 00,

k>1 E>1

proving that x is recurrent whenever y is recurrent and y is transient whenever
x is transient.
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Suppose the chain is recurrent. Fix x,y € M such that x # y (for z =y
the statement holds trivially true). By irreducibility, recurrence, and the
strong Markov property,

e =P,k <7 : Xp=y9)>0.
Thus, again using the strong Markov property,
Py(ry > T:EHH)) =K, (Px(7, > Tygnﬂ)"’rﬁg’t)))
=E,(1-P,(Fk <7, : Xy = y))lTy>T£n))
=(1—e)Pu(r, >7") = ... = (1 —e)"".

Thus P, (1, > TQE”“)) — 0 as n — oo, showing that P, (7, < co) = 1. The two
statements about E,(NN,) follow from the identity

E.(Ny) = Py(7y < 00)(1+E,(N,)),

which itself follows from the strong Markov property, and is valid for both
recurrent and transient chains. QED

Remark 2.3 Transience does not imply that P,(7, < oco) < 1 for all z,y.
Consider the chain on N whose transition matrix is given by

P(z,x+1)=pe (3,1),P(z+1,2) =1—pfor all z € N and P(0,0) = 1—p.

By the strong law of large numbers, P,(7, < oo) = 1 for all # < y and the
chain is transient.

Example 2.4 (Pélya walks) The Polya walk on Z? is the Markov chain
with transition matrix

1
P(I7y) = Zil{xwy]w
where © ~ y < 27:1 |z; — y;| = 1. In 1921, Polya proved that the associated

chain is recurrent for d < 2 and transient for d > 3.
The proof for d =1 goes as follows. Clearly

1
P#H0,0) = 0 and P*(0,0) = ( Zkk ) :
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Stirling’s formula ( In(n!) = n(In(n) — 1) + 3(In(n) + In(27)) + O(%) ) then
yields

1
V2rk

This proves that Y, P¥(0,0) = oo, hence the recurrence.

For d = 2, recurrence can be deduced from Exercise 2.5 below. The proof
of transience for d > 3 is slightly more involved and can be found in classical
textbooks (see, e.g., [7] or Woess’s book [70] for a more advanced textbook
on Markov chains on graphs and groups).

P?(0,0) ~

Exercise 2.5 [Polya walks| Let X, = (X},..., X%), where the (X!),i =
1,...,d are independent Polya walks on Z. Show that (X,,) is recurrent if

and only if d < 2. Deduce from this result the recurrence of the Polya walk
on Z2.

Exercise 2.6 |Generating functions| Let 0 < p < 1 and ¢ = 1 — p. Consider

the biased walk on Z whose transition matrix is given by P(z,z + 1) =

p, P(x,z — 1) = qgand P(z,y) =0 for |z — y| # 1.
Forall0 <t <1andy € Z, set

Uy(t) = Eo(t™ 17, <o0)

and

Gy (t) = Eq (Z lxk_ytl‘) = PRyt

k>0

(i) Prove the following identities:
Up(t) = t(pU-1(t)+qUi (1)), Ur(t) = t(p+qU-2(t)), U-1(t) = t(g+pU-2(2)),
Uz(t) = U (1), Ua(t) = U (1),
and Go(t) = #O(t)

(ii) Compute Uy(t), Go(t) and show that

1 1 -1
— E mmm<oo)=(1— ——— .
11— 2p| (7] ) ( 2 max(p, q))

Comment on these results.
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2.1.1 Positive recurrence

A recurrent point x is called positive recurrent if E,(7,) < oo and null recur-
rent otherwise.

A probability measure m on M is called invariant for a transition matrix
P if 7P = P, or equivalently,

w(x) =Y w(y)P(y,x)

yeM

for all x € M. Here, we write 7(x) instead of m({z}) to highlight the link with
matrix-vector notation. Precisely, if M = {1,...,N} or M = N* and if z €
M, then 7(z) is the xth entry of the row vector m = (w({1}), 7({2}),...,7({N}))
orm = (w({1}),m({2}),...). Iif 7 is invariant for P and if Xy ~ 7, then X, ~ 7
for all n > 1 by Proposition 1.5.

The next result shows that for an irreducible recurrent kernel, either all
points are positive recurrent or all points are null recurrent. Moreover, posi-
tive recurrence is equivalent to the existence of an invariant probability mea-
sure.

Theorem 2.7 Suppose P is irreducible. Then the following assertions are
equivalent:

(a) There exists an invariant probability measure m for P,
(b) There exists a positive recurrent point.

Under these equivalent conditions:

(1) All the points are positive recurrent;

(i) For every initial probability distribution v on M, and x € M,

P,—a.s. (in particular 7 is unique);

(iii) For allx € M and f: M — R bounded or f : M — [0, 0],

B (X))
E.(7:) ’

mf



2.1. RECURRENCE AND TRANSIENCE 29

(iv) Forallz,y e M, E,(7,) < o0.

Proof Forall x € M, > 1ix,—2) = L{r,<oc} 2_p—r, 1{x,=2}- Then, using
irreducibility and Proposition 2.2 (i), one has for every probability measure
von M

iy ket L=t _ Ln<og)

Tim = B (2.1)

P,—a.s., with the convention that the right-hand term is zero if x is transient.
Suppose now that 7 is an invariant probability measure. By irreducibility and
the relation 7(z) = >, 7(y)P(y,z), one sees that m(z) > 0 for all z € M.
Taking E,-expectation on both sides of (2.1) and using dominated conver-
gence gives

P (7 < 00)
0< = —
7(x) E.(r)
This implies E,(7,) < oo so that x is positive recurrent. By Proposition 2.2
(1ii), recurrence implies P, (7, < oo) = 1. Thus 7(z) = m Suppose now

that there exists a positive recurrent point . Let 7 be the probability measure
defined as in assertion (7ii) of Theorem 2.7. We claim that 7 is an invariant
probability measure (compare with Exercise 4.24). For all f € B(M),

Eo(7p) nf =Eq (Z 1{k<'rz}f(Xk)) =E, (Z 1{k<Tz}f(Xk+1))

k>0 k>0

because f(X,, )= f(x). Thus, using the Markov property and Fubini’s theo-
rem,

Eeo(re) 7f =Y Eu(E(f(Xip1) Lperay | Fr))

k>0

_E, (Z 1{k<ﬁ}Pf<Xk>) —E, (n)(P}).

k>0

This shows that 7Pf = 7 f, hence 7P = 7.
It remains to prove assertion (iv). Let z # y € M. By irreducibility one
can choose k > 1 such that P*(z,y) > 0. Let 7, := inf{n > k : X,, = z}.

Then 74, < Tg(;k) and, consequently,

k+ E:r(EXk (T:t)l{Xk#r}) = Ex(Tk,x) < Ez(ngk)) =
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Here the last equality follows from assertion (ii) and the strong Markov prop-
erty. By the Markov property,

Ex(TkJ) =k+ Ex(]EXk (Txl{Xk;fém})) >k + Pk(ma y)Ey(TI)-

This shows that

K1) _
BT S PRy <

QED

An irreducible kernel (or chain) satisfying one of the equivalent conditions
(a) or (b) of Theorem 2.7 is called a positive recurrent kernel (chain).

Corollary 2.8 If M is finite and P is irreducible, then P s positive recur-
rent.

Proof The set P(M) of probability measures on M is nothing but the unit
simplex in R? with d the cardinality of M. By Brouwer’s fixed point theo-
rem (see, e.g., Corollary XVI.2.2 in [23]), the map P(M) > 7 — 7P € P(M)
has a fixed point, which is then an invariant probability measure for P. QED

Remark 2.9 The proof of Corollary 2.8 shows that every Markov chain on
a finite set, possibly non-irreducible, always admits (at least) one invariant
probability measure.

Exercise 2.10 Give a direct proof of this latter fact. Hint: Consider the
sequence (p,,) defined by g, = £ >°)_, uP*, where p is some probability.

Exercise 2.11 [Polya walks, continued| Show that the Polya walks on Z
and Z? are null recurrent. Hint: Show that they do not have any invariant
probability measure.

Exercise 2.12 |Reflected walks| Let 0 < p < 1l,¢g=1—pand 0 < r < L.
Consider the chain on N whose transition matrix is given by P(x,z + 1) =
p, Plx,x — 1) = ¢qif x > 1,P(0,0) = r and P(0,1) = 1 — r. With the
notation of Exercise 2.6 compute Uy(t) and show that the chain is transient
for p > 1/2, null recurrent for p = 1/2 and positive recurrent for p < 1/2.
Compute Eq(7o|m0 < 00).
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Exercise 2.13 |[Harmonic functions| A function h : M — R is called har-
monic for the Markov kernel P if Ph = h. Suppose P is irreducible and
recurrent. Show that every nonnegative or bounded harmonic function is
constant. (Hint: Show that h(X,) is a nonnegative (or bounded) martin-
gale, hence convergent by Theorem A.6.) Give an example of a nonconstant
unbounded harmonic function for the Polya walk on Z.

Exercise 2.14 [Reversibility] Let 7 be a probability measure on M. A Markov
kernel P is said to be reversible with respect to 7 if 7(x)P(z,y) = 7(y)P(y, x)
for all z,y € M.

(i) Show that if P is reversible with respect to 7, then 7 is invariant for P.

(ii) Show that if P is reversible with respect to 7 and if w(z) > 0 for all
x € M, then Pf(z) :=3_ ), P(z,y)f(y) defines a self-adjoint operator
on the Hilbert space I*(m) :== {f : M = R : Y ., 7(@)|f(2)]* < oo}
with inner product (f, g) := > o, 7(x) f(x)g(x), i.e., (Pf,g) = (f, Pg)
for all f, g € I*(m).

(iii) Give an example of a Markov kernel P and a probability measure 7 such
that 7 is invariant for P, but P is not reversible with respect to 7.

An interesting consequence of Theorem 2.7 (iii) is the next proposition,
which relates moments of the first return time to z to m-mean moments of
the hitting time of x.

Proposition 2.15 Suppose P is positive recurrent with invariant probability
measure w. Then for every nonnegative function v : N — R, and every
r € M,

E.(4(r)) = n(2)E. (2 o(h) ).

In particular, for every A > 0,

6)\

er —1

E(e'™) = m(x) [Ea(eX™) =13

And for every p > 0,
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Proof Fix ¢ : N — R, and z € M. By Theorem 2.7 (iii) applied to
f(y) == Ey(¢¥(7,)), one has

E. (4(r,)) = 7( (Zln Ex, (4 ) (0) 3 Ea(LyoiEx, (6(72).
k>0 k>0

But, by the Markov property,

Eo(Lrs1Ex, (¥(72))) = Eo(Bo (U2 — k) 15k Fi)) = B ((70 — k)1r, k).
This proves the result. QED

2.1.2 Null recurrence

Although an irreducible null recurrent chain has no invariant probability mea-
sure (for otherwise it would be positive recurrent) it always has an unbounded
invariant measure.

Theorem 2.16 Suppose P is irreducible and null recurrent. Given x € M,
let m be the measure on M defined by

rf =E, (% f(Xk)>

for f: M — R nonnegative. Then m is o-finite (w(y) < oo for ally € M),
positive (m(y) > 0 for all y € M), unbounded (m(M) = o0), and invariant
under P (m = nP). Every other o-finite invariant measure is proportional to
TT.

Proof Fory # z, set Ny<, = 21;01 1;x,—,. By the strong Markov prop-
erty, for all £ > 0,

P,(Ny<y > k+1) = ]P’x(rékﬂ) < Ty) = Px(Ty(k) < Ty szkﬂ) < Ty)

=Py (7, ®) < 7P, (1, < 7)) = a™F!
where a = P, (7, < 7,) <1 (by irreducibility). This proves that

0 < m(y) = —

< Q.
1—a
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Invariance of 7 is proved exactly as in Theorem 2.7 (iii). Clearly m(M) = oo
for otherwise 7r(7zrw) would be an invariant probability, in contradiction with
the assumption that the chain is null recurrent.

It remains to show that every other o-finite invariant measure is pro-

portional to u. Let Q(z,y) = %. Then () is a Markov kernel and

Q"(x,y) = W. It follows that @ is also irreducible and null recurrent
by application of Proposition 2.2. Let now v be another o-finite invariant
measure. Then h(z) = % is harmonic for @), hence constant (see Exercice

2.13). This concludes the proof. QED

2.1.3 Recurrence and Lyapunov functions

By Proposition 2.2, the divergence (respectively convergence) of the series
> 1oy P(z,x) is a criterion for the recurrence (transience) of the point z,
but such a criterion may be difficult to verify in practice. We discuss here
other criteria based on Lyapounov functions, a tool that will play a key role
in the next chapters.

Given C C M, we let

TC = Tél) = lnf{n Z 1 : Xn e 0}7

and
(k+1)

7o :=1inf{n > Ték) : X, € C}
for all £ > 1. We also set Téo) := 0. The next proposition shows that, whenever
P is irreducible, recurrence (respectively positive recurrence) of the chain is
equivalent to recurrence (positive recurrence) of any finite subset.

Proposition 2.17 Suppose P is irreducible and let C' C M be a nonempty
finite set such that for all x € C, Pu(1c < 00) =1 (respectively E,(7¢) < 00).
Then P is recurrent (respectively positive recurrent).

Proof Let x € C. Then, since Py(1¢ < oo) = 1 for all y € C, the
strong Markov property implies that (X,,) visits C' infinitely often P,-almost
surely. Since C' is finite, it follows that P,-almost surely, there is y € C' such
that N, = oo. If P was transient, we would have by Proposition 2.2 that
P.(U,ectNy = o0}) = 0, a contradiction. Hence P is recurrent.
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Suppose now that K := max,cc E,(7¢) < 00. Let @ be the Markov kernel
on C defined by Q(z,y) := P, (X,;, = y) for z,y € C. Since C is finite, @
admits an invariant probability measure 7 (see Remark 2.9). Thus, if X, has
law 7, then X, has also law 7. It follows (by a proof similar to the proof of
Theorem 2.7 (iit) or by Exercise 4.24) that the measure p defined by

_E(S (X))
Er(7c)

is invariant for P. Note here that E.(7¢) < K < oo. This proves positive
recurrence. QED

wf

Exercise 2.18 Suppose P is irreducible, C' C M is finite and for all = €
M\ C, P,(7¢ < o) = 1. Show that P is recurrent. Hint: If M\ C' # (), prove
that for all x € C, ]P)m(TM\C < o0) = 1 and then use Proposition 2.17.

The next result extends and generalizes Proposition 2.17. The second part
contains a classical result originally due to Chung [16]. The proof given here
is different.

Proposition 2.19 Suppose P is irreducible and let C C M be a finite set.

(i) Assume that for some \g > 0 and all x € C, E,(e*™) < oo. Then, for
all z,y € M, there exists A € (0, \o] such that

E.(e’) < .

(ii) Let p > 1 and suppose that for all v € C, E,(75) < oco. Then for all
r,y €M,
E, (7)) < o0.

Proof (7). First assume that M = C. In this case there exists, by ir-
reducibility, some ¢ > 0 such that for all x,y € M and k := card(M),
P,(r, > k) < 1 — e. Therefore, by the Markov property and induction on
n>1,

Py(7, > nk) = By (Lo o 1) P (7 > ) < (1— )™

—1)k

Thus, for all n > 0,

P,(1, > n) < P.(1, > k[g]) <(1—¢g)f !,
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where [2] is the largest integer less than or equal to 7. Hence, for a > 0 so

small that e**(1 —¢) < 1,

E.(e") < Z€QRP$(Ty >n) < oo.

n=1

We now turn to the proof of the first statement in full generality. Let
Yn - X (n) .
Tc
Such a definition makes sense because, by recurrence, Té") < 00 almost surely.
Forall y € C, set 0, :==inf{n > 1: Y, = y}. For x € C, (Y,) is a C-valued
Markov chain on the probability space (MY, B(M™Y),P,), with respect to the
filtration {F ) }n, and with Markov kernel Q(a, b) := P, (X, = b) introduced
C
in the proof of Proposition 2.17. Thus, by what precedes,
%%%E‘T(ewy) < 00 (2.2)

for some a > 0.

By assumption, max,cc E,(e*7) < e for some oy > 0. By Jensen’s
inequality, for all ¢ € [0,1],E,(e"07¢) < E,(e*@)! < ¢!, Choose A € (0, 22]
so small that 2 Aag < A\ga. Then

2ATo < @
I;leaéiEx(e ) <e”.

Set M, = e(XEV—na)  he previous inequality combined with the strong

Markov property shows that (M,,) is a supermartingale under P, with respect

to the filtration {F () },. Therefore, using Theorem A.4 on optional stopping,
C

(M0, ) is again a supermartingale, and in particular Eqy(Mpyne,) < Ey(My) =

1. Together with Hélder’s inequality, this yields for all z,y € C

]Ex(e)ﬂ_gmay)) < EI(Mn/\o-y)1/2Ex(6a(n/\ay))l/2 < Ex<€aay)l/2 < 00.

Thus,
(7y)
E.(e*) = E (e’ ") < 00
for all x,y € C.
In order to conclude the proof, it suffices to show that for any finite set C”
containing C, max,ccr E,(e*) < oo. Then, by what precedes (with C’ in
place of C), this will imply that max, yecr E,(eX™) < oo for some X € (0, \).
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We reason like in the proof of Theorem 2.7 (iv). Let C" D C,y € C"\C. Fix
x € C. Then, for Some k>1, P*(x,y) > 0. Let 7p.c = min{n > k: X,, € C}.

One has 7, ¢ < TC Thus,
& P (2, )E, (97 < B, Ex, (€90 1x,40)) = Eo(*C L, go)

< Ew( )\OTék)) < [I?eag{Ez(errc)]k < 00.

This concludes the proof of (7).
(1). Slightly adapting the previous argument, one easily shows that

maxE,(78) <o = maxE,(75) < oo
zeC zeC’

for any finite set C’ containing C. It then suffices to show that, for all z,y € C,
E,(]) < 0.

By the assumption and the strong Markov property, there exists K > 0
such that for every n > 0,

Eo(|r5™) — 78 P|F ) = By, (78) < K7

Therefore, with || - ||, = E,(| - |P)'/?,

Iyl = 170 = |G = 7 lice, || < S0NEE = 78 Lica, Il
>0 1>0

Now

Eo(jre ™ = 18P Lico,) = Ba(Bal|78 ™ = 18 PIF,0)Lico,) < K7Pa(oy > ).

Thus

I7yllp < szx(ay > i)l/p < 00,

>0

because, as seen in the beginning of the proof, the law of o, has a geometric
tail. QED
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Lyapunov functions

In brief, a Lyapunov function is amap V : M — [1,00) such that PV -V <0
outside a certain subset C' C M. Lyapunov functions are practical tools to
ensure that the assumptions of Propositions 2.17 and 2.19 are satisfied.

A map V: M — Ry is called proper if for every R > 0, the set {x € M :
V(z) < R} is finite. If M is finite, every map V : M — R, is proper. If M
is countably infinite and (x,),>1 is any enumeration of the elements of M,
Vi M — R, is proper if and only if lim, ., V(z,) = co.

Apart from the first assertion, the following result is a consequence of a
more general result (Proposition 7.12) that will be proved later.

Theorem 2.20 Let P be a Markov kernel, let V : M — [1,00) be a map,
and let C C M be nonempty. Consider the following conditions:

(a) P is irreducible, PV —V <0 on M\ C and V' is proper;
(b) PV -V <—=10on M\C and PV < oo on C,
(b?) Condition (b) and in addition

sup E,(|V(X;) = V(2)]P) < o0

xeM

for some p > 1,
(c) PV -V < =XV on M\ C for some X € (0,1) and PV < oo on C.
Then, for all x € M,

(1) Under condition (a),
]P)x(TC < OO) = 17

(ii) Under condition (b),
E.(1¢) < PV (x) + 1;

(iii) Under condition (b'),
E.(1¢) < e(1+V(2)")

for some constant ¢ > 0 that depends on p but does not depend on x;
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(iv) Under condition (c),

1
E,(e’) < E, (e lsl-Nme) < X )\PV($).
In particular, if P is irreducible and if C is finite, conditions (a), (b), (b'), (¢)
respectively ensure recurrence of P, positive recurrence of P, p-th moments
for the hitting times 1, under P, and exponential moments for 7, under P,
for every x,y € M.

Proof We only prove the first assertion. The other three follow from Propo-
sition 7.12 to be proved later. When P is irreducible and when C' is finite,
recurrence, positive recurrence, p-th moments, and exponential moments of
hitting times are direct consequences of Propositions 2.17 and 2.19.

By irreducibility, the chain is either recurrent or transient. If it is recur-
rent, P, (7¢ < 00) = 1 for every x € M by Proposition 2.2. Suppose the chain
is transient. For z € M \ C, the sequence V,, := V(Xpar.) is under P, a
supermartingale because E,(V,,11 — V,,|F,) = (PV(X,) — V(X,))1l,>n < 0.
Thus, being nonnegative, (V},) converges P -almost surely to some random
variable V,, taking values in [0, 00) (apply Theorem A.6 to the submartingale
(—=V,)). This shows that V' (X,,) converges P,-almost surely on {7¢ = oco}. On
the other hand, by transience (Proposition 2.2 (ii7)) and by the assumption
that V' is proper, limsup,,_, . V(X,) = oo P,-almost surely, and therefore
P.(1c < o0) = 1. And for z € C, we have by the Markov property

P.(1c < 00) = Po(X; € C) + E.(1x,eancPx, (¢ < 00)) = 1.
QED

Exercise 2.21 Suppose V : M — [1,00) is a proper map. Show that con-
dition (¢) in Theorem 2.20 for a nonempty finite set C' is equivalent to the
existence of constants 0 < p < 1 and xk > 0 such that

PV < pV + k.

Show that under such a condition, every invariant probability measure 7
satisfies p
TV < —— < 0.
L=p
See Corollary 4.23 for a proof of the second assertion.
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2.2 Convergence in distribution

2.2.1 Aperiodicity

We start with a general definition of aperiodicity. Let R C N* be a (nonempty)
set closed under addition. That is

,j€E R=147¢€R.

The period of R is defined as its greatest common divisor. If this period is 1,
R is said to be aperiodic. Aperiodic sets enjoy the following useful property,
that will be used repeatedly throughout the book.

Proposition 2.22 Let R be aperiodic. Then there exists ng € N such that
ngo+N={neN: n>ng} CR.

Proof There exist, by aperiodicity, aq,...,a; € R whose greatest common
divisor is 1. (To see this, take any element of R and call it a;; then a; has a
finite number of divisors strictly greater than 1, which we denote by ds, ..., d;;
for 2 <4 <[, pick a; from R(y) such that d; does not divide a;; such a; exists
because the greatest common divisor of R is 1). By Bézout’s identity, there
exist ¢1,...q € Z such that ), ga; = —1. Set a := Zi:qi>0 gia;. The set R(y)
being closed under addition, both a and a +1 = >_, _—qa; lie in R(y).
Every n > a? can be written as n = ka+r = (k —r)a +r(a + 1) for some
r€{0,...,a—1} and k > a. Thus, every n > a* is an element of R. QED

We now turn to the definition of aperiodicity for a countable Markov chain.
Given a kernel P on M and x € M, let R(z) := {k > 1: x ~* 2} be the set
of possible return times to z. The period of x, per(x), is defined as the period
of R(x) and x is called aperiodic whenever R(z) is. The kernel (or the chain)
is said to be aperiodic if all points x € M are aperiodic.

Proposition 2.23 Suppose P is irreducible. Then
(1) All points x € M have the same period;

(ii) P is aperiodic if and only if for all x,y € M there exists n(x,y) € N
such that x ~"y for all n > n(x,y).

Proof (i). Let z,y € M. By irreducibility, there exist i,7 € N* such that
r~'yand y~» x. Thusi+j € R(z) and for all k € R(y),i+j+k € R(x).
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Therefore, per(z) divides i + j and i + j + k, hence k, for all k € R(y). Thus
per(z) < per(y) and by symmetry per(z) = per(y).

(73). The “if” part is obvious. We prove the “only if” part. Given y € M,
there exists, by Proposition 2.22, ny € N such that n € R(y) for all n > n,.
If now x is another point in M,  ~% y for some i by irreducibility, hence
x~"yforalln>ng+1:. QED

An immediate useful consequence of Proposition 2.23 is the next result. Given
two Markov kernels P and P respectively defined on the countable state space
M and M, we let P ® P denote the Markov kernel on M x M corresponding
to two independent chains with kernels P, P. That is

(P @ P)((w,4): (y,)) := Pl,y) P(a',y/).

Corollary 2.24 If P and P are both irreducible and aperiodic, so is P ® P.
If in addition P and P are positive recurrent, so is P ® P.

Proof Note that (P®I3)” — P"® P" for every n € N*. Thus, irreducibility
(and aperiodicity) of P ® P follows from Proposition 2.23 (ii), applied to P
and P. Also, if 7 and 7 are invariant probability measures for P and P, sois
7@ 7 (defined as (7 ® 7)(z,2') := n(z)7(a’)) for P ® P. By Theorem 2.7,
this proves positive recurrence. QED

Exercise 2.25 Give an example of an irreducible and positive recurrent ker-
nel P such that P ® P is not irreducible, and an example of an irreducible
recurrent kernel P such that P ® P is irreducible and transient.

Exercise 2.26 Show that if P ® ]5~ is irreducible, then both P and P are
irreducible. Also show that if P ® P is irreducible and recurrent, then both
P and P are recurrent.

Exercise 2.27 Consider the Markov chain (X,,),>0 from Exercise 2.1.
(i) Find the period of the chain.

(ii) Find a Lyapunov function V' and a finite set C' C Z \ {0} such that P,
V and C satisfy condition (b) of Theorem 2.20.

(ii) Show that (X,,),>0 is positive recurrent and find its unique invariant
probability measure.
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2.2.2 The convergence theorem

We now state and prove the main result of this section, the convergence
theorem for irreducible aperiodic Markov chains.

Theorem 2.28 Suppose P is irreducible and aperiodic. Let p be a probability
measure on M.

(1) If P is positive recurrent with invariant probability measure 7, then

lim sup |uP"(2) — w(z)| = 0.

n—oo zeM

(ii) If P is not positive recurrent, then for all z € M,

lim puP"(z) = 0.

n—oo

Proof Let (X,,Y;)qen be the canonical chain on (M x M)N (i.e.,
(Xn, Vo) (w, @) := (wn,@n)), and let

A :=inf{n >1 : (X,,Y,) € A},

where A := {(z,z) : © € M} is the diagonal of M. Throughout the proof,
we write P, (respectively P, ,) for the Markov measure on (M x M)N with
kernel P ® P and initial distribution « (respectively d,,). By Corollary 2.24,
P ® P is irreducible, hence either recurrent or transient.

Case 1: P ® P is recurrent. For all x,y,2z € M,

Poy( Xy =2) = Puy(X,=2,7a>n)+P, (X, =272
= P, (X =27a>n) + Py (Y, = 2,74
< Puy(ta >n) + Py (Y, = 2),

where the second equality follows from the strong Markov property and the
fact that X;, = Y.,. Interchanging the roles of X,, and Y,,, one also has

]P)w,y(Yn = Z) S Px,y(TA > n) + Pl',y(XTL = Z).
Hence

[P (,2) = P™(y, 2)| = [Poy(Xn = 2) = oy (Yo, = 2)[ < Pay(7a > 1),
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and by integration
[uP™(2) = vP"(2)] < Pugy(Ta > 1) (2:3)

for every probability measure v on M and every z € M. By recurrence of
P ® P (and Proposition 2.2 (7ii)), one has for every x,y € M that P, ,(7a >
n) — 0 as n — oo. Thus

lim sup |[uP"(z) —vP"(2)] =0 (2.4)

n—oo zeM
by dominated convergence. In light of Exercise 2.26, there are two subcases:
P is either positive recurrent or null recurrent. If P is positive recurrent,
(2.4) applied to v = m, the invariant probability measure of P, proves part
(1) of the theorem. If P is null recurrent, let 7 be an unbounded invariant
measure of P (see Theorem 2.16). For any nonempty finite set A C M, set
ma(z) = %. Then, ma < 55, whence

TP (z) w(2)

m(4)  w(A)
Therefore, by (2.4) applied to v = 74,

A P"(2)

IN

s () < Jing " (2) = maP" ()] + T = T
Letting A T M proves (i7) in this case because 7(M) = oo.
Case 2: P ® P is transient. By Proposition 2.2 (1),

[P"(z,2)]" = (P ® P)"((2,2); (2,2)) = 0

as n — oo, for all z € M. By irreducibility of P, this implies that P"(x,z) — 0
for all z,z € M. Thus pP"(z) — 0 by dominated convergence. This proves
(77) in case 2. QED

As shown below, the convergence in Theorem 2.28 is exponential if there exists
a proper map that satisfies condition (¢) of Theorem 2.20 for a nonempty finite
set C (see also Exercise 2.21).

Theorem 2.29 Suppose P is irreducible and aperiodic, and that there exists
a proper map V : M — [1,00) and constant 0 < p < 1,k > 0 such that

PV < pV + k.

Then P s positive recurrent and, denoting by m its invariant probability mea-
sure:
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(i) One has TV < 1% < o0;

(ii) There exist constants 0 < v < 1 and ¢ > 0 such that for every probability
measure [ on M,

sup |uP"(z) = 7(2)| < A" (uV + 1), VneN.
zeM

Corollary 2.30 Suppose M s finite and P irreducible and aperiodic, with
inwvariant probability measure m. Then there exist constants 0 < v < 1 and
¢ > 0 such that for every probability measure p on M,

sup |[uP"(z) — m(2)] < ey", YneN.
zeM

Proof Take V =1 in Theorem 2.29. QED

Proof [of Theorem 2.29]. We use the same notation, P @ P, (X,,Y,), A,
etc., as in the proof of Theorem 2.28.

Positive recurrence follows from Exercise 2.21 and Theorem 2.20. Asser-
tion (i) follows from Exercise 2.21. By inequality (2.3) from the proof of The-
orem 2.28, it suffices to derive an exponential upper bound on P,g.(7a > n)
in order to prove assertion (ii). Pick z* € M and choose € > 0 small enough
so that V(z*) < £ and p+¢e < 1. Set W(z,y) := V(z) + V(y), z,y € M.
Then

(P ® P)YW(z,y) = PV(x) + PV(y) < pW(z,y) + 25,

so that (P ® P)W < (p+ )W on the complement of the set
2K

By Theorem 2.20 (iv) and assertion (i), we then obtain, for some positive
constant ¢ depending on &, p and ¢,

pm)(P®P)W < p(uV +7V) + 2k
p+e N pt+e

B o (e075re) < | < o1+ 4V).
Since V' is proper, the set C'is finite, and Proposition 2.19 (i) together with

(x*,2*) € C yield the existence of A > 0 such that

A ¥ ¥
S By (€7677) < o0
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Thus

P/J,®7r<7-A > TL) SPH@JW(T@*@*) > TL)
SPN@W(TC > n/2) + Eu@ﬂ(P(XTC,YTc)(T(:E*,m*) > n/2))
<ce M2(1 4 pV)

for some other constant c. Inequality (2.3) concludes the proof. QED

2.3 Application to renewal theory

Let (A;);>1 be a sequence of i.i.d. random variables living on some probability
space (€2, F,P) and taking values in N. Let Ay be another N-valued random
variable on (€, F,P), independent of (A;);>1 but having a possibly different
distribution. Set

T, =No+ A1+ ...+ A,.

The sequence T := (T,,)qen is called a renewal process; Ty = Ag is the delay
of the process, and {7}, : n > 0} is the set of renewal times. Observe that T
is a Markov chain with respect to the filtration F,, := (A, ..., 4,), whose
transition matrix has entries A(7,j) := P(A; = j — ).
Let
pr = P(A; = k)
for k € N. We say that T is aperiodic if pg # 1 and {k > 1: p; > 0} is an
aperiodic set as defined in Section 2.2.1. We say that T is L? if Ay is in LP,

e, D pen KPpr < 0o.
To fix ideas, one can imagine that a certain device breaks down and is

replaced by a generic device at times Ty, 77, .... The lifespan of the initial
device is distributed as Ay and the lifespan of the replacement devices are
distributed as A;.

From now on we shall assume that 7" is aperiodic. For all n € N, let

G :=min{k >0 : T}, > n}.
Then ¢, < oo P-almost surely so that
X, =1, —n

is well-defined. A key observation is the following:
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The set of renewal times for T equals the zero set of (X,,).

That is,
{T, :neN}={neN:X,=0}

It is easily checked that with respect to the filtration {F,,}, (X,) is a Markov
chain on N whose transition matrix is given by

P(k,k—1)=1for k> 1,

P(0,k) = 1p’“+1 for k € N,
— Po

and
Pk,l)=0for k>1,1#k—1.

Let K :==sup{k >1: py >0} € N*U{oo} and M :={0,..., K — 1} (with
the convention that M = N if K = oo0). Then X,, € M for n large enough
(precisely n > (Xo— K +1)"). On M, the chain (X,,) is irreducible, recurrent,
and aperiodic (by aperiodicity of T).

Exercise 2.31 Verify the claims made about (X,,). In particular, show that
(X,) is a Markov chain with the transition matrix given above, and that (X,)
restricted to M is irreducible, recurrent, and aperiodic.

Let 70 = inf{n > 1: X,, = 0}. Then,
E(A
Ba(m) = S (1+HPO.K) = 20

k>0

= E(Al‘Al > O) S (0, OO],

where the expectation of a random variable X conditional on an event A of
positive probability is defined as E(X|A) := E(X14)/P(A). The equation
Eo(70) = E(A1)/(1 — po) implies that (X,,) is positive recurrent if and only if
Tis L.

Exercise 2.32 Assume that (X,,), restricted to M, is positive recurrent. Ex-
press the unique invariant probability measure for the transition matrix P in
terms of the p;’s.

As a consequence of Theorem 2.28, we obtain the following classical re-
newal theorem.
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Theorem 2.33 Assume that T is aperiodic. Then

S 1
fim 2 P =B = gy

with the convention that the right-hand side is zero if E(Ay) = oo.
Proof Let N, := ano 1¢7,—x}. Then

Ny = 1x=03(1 + Z Liri=0}),

i>1
where
71-/ = A§k+1 + e + A?k‘i’i'

Thus E(Ny) = E(E(Ng|F,,)) = P(Xy = O)ﬁ, and by Theorems 2.28 and
2.7,

Iim P(X. =0) = .
Jim P(X} = 0) Eo(o)

This proves the result. QED

2.3.1 Coupling of renewal processes

Suppose that T is L', and let T be another aperiodic L'-renewal process
independent of T" with

T,=Ao+ A1 +...+A,.

The distribution of (A;);>o may be different from the one of (A;);>o. We are
interested in the ﬁrgt time 7 > 0 that is a renewal time for both T and 7.
Equivalently, with X,, defined in analogy to X,

ri=inf{n >1: X, = X,, = 0}.

We know that (X,,) is absorbed by M in finite time and that it is aperiodic
and positive recurrent on M. Hence, (X,, X,,) is absorbed by M x M in finite
time (M defined in analogy to M) and, by Corollary 2.24, it is positive
recurrent on M x M. In particular,

P(1 < 00) = Pagal(m0,0 < 00) =1, (2.5)
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where o (respectively @) denotes the law of A, (respectively Ag). It turns out
that whenever A, Ag and Ay, A; are in LP for some p > 1, the same is true
for 7. A proof of this fact can be found for instance in Lindvall’s book [47]
and goes back to Pitman’s seminal paper [55]. We provide here a short proof
(different from Lindvall’s) based on Proposition 2.19 and Theorem 2.20.

Theorem 2.34 Suppose T and T are aperiodic and in LP for some p > 1.
Then there exists a constant ¢ > 0, independent of the distributions of Ay and

Ay, such that E(t7) < ¢(1 + E(AB) + E(AD)).
Proof Let Q := P® P denote the kernel of (X,,, X,,). Let V be the function
defined on N x N by V(4,j) = max(i, j) + 1. One has
and (by integrability of A; and dominated convergence)
lim QV(0,5) — V(0,7) = lim E(max(A; —j —1,—1)|]A; > 0) = —1.
j—o0 J—00

Similarly, lim;_,., QV'(,0) — V'(,0) = —2. Condition (b) of Theorem 2.20 is
then satisfied for the Markov process (X,, X,) on N x N, with C' = {(i,j) €
N x N: V < R} and R large enough. Condition (V') is easily seen to be
satisfied as well because A; and Al are in LP. Therefore, there is ¢ > 0 such
that for all (i,7) € N x N,

Eij(160) < 2271 (Eiy(18) + (m%Em(ﬁ’io)) < ¢(1+max(i,7)").  (2.6)

i\j
Here, the first inequality follows from the strong Markov property and in-
equality 790 < 7¢ + 70,0 © ©,.. The second inequality follows from Theorem
2.20 (iii) and Proposition 2.19. Note that while (X, X) is not necessarily
irreducible on N x N and thus a key assumption of Proposition 2.19 is not
satisfied, the proof still goes through because any point (i,7) € N x N leads

to (0,0). Integrating the inequality in (2.6) with respect to a ® &, the law of
(Ao, Ag) = (Xo, Xo), gives the result. QED

Theorem 2.35 Suppose T' and T are aperiodic and
E(e*1) + E(e™) < o0
for some A\g > 0. Then there exist 0 < X\ < \g and ¢ > 0 such that

E(e/\r) < C(l + E(GA()AO) + E(e/\OA“)).
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Proof The proof is similar to the proof of Theorem 2.34. Set V (i, j) :=
et 4 e Then QV (i,7) < eV (i,5) + K with

k= E(eMPA] > 0) + E(e)‘"A1|Al > 0).

Condition (c) of Theorem 2.20 is then satisfied for any 0 < A < 1 — e and
C={(i,j) e NxN: V(i,j) < R} with R sufficiently large given the choice
of X (see also Exercise 2.21). Then, relying on 799 < 7¢ 479000, the strong
Markov property, Theorem 2.20 (iv), and Proposition 2.19, we obtain

E;j(e’) < (14 V(i,5)), V(i,j) € NxN

for some ¢ > 0 and some A € (0,1 — e *°). Integrating this inequality with
respect to the law of (Ao, Ag) gives the desired result. QED

2.4 Convergence rates for positive recurrent
chains

We revisit here the ergodic theorems from Section 2.2, Theorems 2.28 and
2.29, with the help of Theorems 2.34 and 2.35.

Let M be countable and let (X, Y, ),>0 be the canonical chain on (M x
M)Y. Let P be an irreducible, aperiodic, and positive recurrent kernel on
M. If m denotes the invariant probability measure of P, we have seen in the
proofs of Theorems 2.28 and 2.29 that for every probability measure p on M
and every z* € M,

sup [uP"(z) — m(x)| < Pu@m(T(:c*,x*) >n),
xeM
where P,,¢, is the Markov measure with kernel P ® P and initial distribution
p @ m, and where 7z« .y = inf{n > 1: X,, =Y, = 2*}.
Let (7\7) (respectively (7)) denote the successive hitting times of z*
by (X,) (respectively (Y;,)). Then, for any probability measures «, 8 on M,

the processes T := (777,50 and T := (F""™),.50 living on the probability
space (M x M)N, B((M x M)N),Pusp) are two independent renewal processes
and Tz »+) is nothing but the first common renewal time for 7" and T.

The Markov inequality, Theorems 2.34, 2.35, and Proposition 2.15 lead to

the following result.
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Theorem 2.36 Let P be iwrreducible, aperiodic, and positive recurrent, with
tnvariant probability measure w. Let x* € M.

(i) If E,«(12.) < oo for some p > 2, then there exists ¢ > 0 such that for

every probability measure p on M and for every n € N*,

1 _
sup [uP"(z) — m(x)] < —=c(1 + E, (72 1))
zeM np

(ii) If E.-(e™™*) < oo for some Ng > 0, then there erist 0 < A\ < X\ and
¢ > 0 such that for every probability measure p on M and for every
n €N,
sup [P () — 7(2)] < e (1 + B, ().
xeM
Combined with Theorem 2.20, Proposition 2.19, and the strong Markov prop-
erty, we recover and extend Theorem 2.29.

Corollary 2.37 Let P be irreducible, aperiodic, and positive recurrent, with
invariant probability measure 7. Let V : M — [1,00) and let C C M be as in
Theorem 2.20 ((V') or (c)) with C finite. Then

(1) Under condition (V') of Theorem 2.20 for p > 2, there is ¢ > 0 such that
for every probability measure p on M and for every n € N*,

sup |pP"(x) — m(x)] <

up < e+ uVP);

(ii) Under condition (c) of Theorem 2.20, there are ¢, > 0 such that for
every probability measure p on M and for every n € N,

sup |uP"(z) — 7(2)] < e Ve(1+ V).
zeM

Notes

The book by Aldous and Fill [1] contains numerous interesting identities for
the mean hitting times (E,(7,)), the occupation times (E,(1V,)) and their re-
lation to the rate of convergence. Convergence rates for finite Markov chains,
in terms of the geometry of the chain, are thoroughly investigated in the
monograph by Saloff-Coste [62| and the book by Levin, Peres, and Wilmer
[46]. A nice extension of Chung’s theorem can be found in the recent paper
[3]. The coupling method leading to the convergence rate Theorem 2.36 goes
back to Pitman [55] (see also Lindvall’s book [47]).



50

CHAPTER 2. COUNTABLE MARKOV CHAINS



Chapter 3

Random Dynamical Systems

Numerous examples of Markov chains in the applied literature are given by
random dynamical systems (also called random iterative systems). These are
defined as follows.

Let (©,.A,m) be a probability space,

F:OxM— M
(6, 2) = Fy(),

a measurable map, and (6,),>1 a sequence of independent identically dis-
tributed (i.i.d.) ©O-valued random variables having law m. Consider an M-
valued process recursively defined by

X1 = Fy . (X,) (3.1)

n+1
for some given random variable X|.

Proposition 3.1 Assume that X, is a random variable independent of (6,,).
Then (X,,) is a Markov chain on M whose Markov kernel is given by

P(z,G) =m(0 € © : Fy(z) € G). (3.2)
If furthermore Fy is continuous for m-almost every 0, then P is Feller.

Proof The proof follows (almost) directly from the definitions. Measura-
bility of z — P(x,G) is a by-product of Fubini’s theorem since P(z,G) =
Jo 1 o Fy(x) m(df). The Feller property follows from continuity under the
integral sign. QED

o1
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Exercise 3.2 [additive noise| Suppose M = R™ (or an abelian locally com-
pact group), © = M, F: M — M,

and m(df) = h(0)df with h € L'(df). Here df stands for the Lebesgue
measure (or the Haar measure) on M. Let P denote the corresponding Markov
kernel given by (3.2).

Given © € M, let U, : L'(dx) — L'(dz) be the translation operator
defined as U,(g)(y ) = g(y — x). Show that for all f € B(M),

[Pf(x) = PFY)l < [[flloolUpe)(R) = Urg)(A)]l1-

Deduce that P is strong Feller whenever F is continuous. One can use (or
better, prove) that for all g € L'(dz),z € M + U,(g) € L*(dz) is continuous.

The kernel P defined by (3.2) is called the Markov kernel induced by (F,m).
The sequence of random maps (F"™) defined by
F":=Fy oFy ,o...0kFy

n—1

is called the random dynamical system (RDS) induced by (F,m).

Note that, by Chapman-Kolmogorov, the law of F™(z) is determined by
P (F™(x) has law P"(z,-)) but, as shown by the next example, P is not
sufficient to characterize the law of F™.

Example 3.3 This example is due to Kifer [43]. Tet M = S = {z € C :
|z| = 1} be the unit circle, © = [0, 1], and m(df) = df the uniform Lebesgue
measure. Let f : ST — ST be any, say continuous, map and Fy(z) = €% f(z).
Then P(z,-) is the uniform measure on S* for every 2z € S', but the random
dynamical system induced by (F,m) clearly depends on the choice of f. For
instance, if f(z) = z, F™ preserves the distance between points, while for
f(2) = 22, F™ locally increases the distance exponentially.

Example 3.4 This example is due to Diaconis and Freedman [19]. Let M =
[0, 1] be the closed unit interval, and

1

2(1-x)

Here we adopt the convenient convention that 10“” ®) === dy = do(dy) for x =0

and [’” ” dy = 61(dy) for x = 1. In words, if the chaln is at z it moves to a
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point y randomly chosen in the right interval [x, 1] (respectively left interval
[0, x]) with probability 1/2.
Let F:(0,1) x [0,1] — [0, 1] be defined by

Fop(x) :=20x1gcq/0 + [x + (20 — 1)(1 — 2)]1p>1 /2.

Then P is induced by (F,dz).

3.1 Representation of Markov chains by RDS

Proposition 3.1 shows that every RDS defines a Markov chain. Here we
briefly discuss the converse problem and consider the question of representing
a Markov chain by a suitable RDS.

A transformation space is a set of maps f : M — M closed under compo-
sition. Let T be a transformation space and P a Markov kernel on M.

We say that P can be represented by T if there exists a probability space
(0, A,m) and a measurable map F : © x M — M such that

(i) Fy € T for all 6 € ©;
(ii) P is induced by (F,m).

Recall that a separable metric space M is called Polish if it is complete.
The following result is folklore.

Theorem 3.5 If M is a Borel subset of a Polish space, then any Markov ker-
nel on M can be represented by a space T of measurable maps with (0, A, m) =

((0,1),B((0,1)), ) and X the Lebesgue measure on (0,1).

Proof When M is a Borel subset of R, the proof is constructive and
makes I’ explicit. Indeed, let G, be the cumulative distribution function of
P(xz,.), i.e.,

G.(t) = P(x,(—00,t]).

For all € (0,1) and x € M, set

where G ! : (0,1) — R, the generalized inverse of G, is defined as

G, Mu) :=1inf{t € R: G,(t) > u}.

T
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Then
AO € (0,1): Fy(x) <t)=A0€(0,1): 0 <G(1) = Gal(t).

The proof in the general case follows from the following abstract result of
measure theory: Every Borel subset M of a Polish space is isomorphic to a
Borel subset of [0,1]. That is, there exists a Borel set M C [0,1] and a bi-
measurable bijection ¥ : M — M (meaning that both ¥ and its inverse are
Borel measurable). Chapter 13 of Dudley’s book [21] contains a detailed proof
of this result. Exercise 4.9 treats the particular case where M is compact or
locally compact.

Given such a U and a Markov kernel P on M, let P be the Markov kernel
on M defined as P(z, A) := P(U~'(z), U~1(A)). Then P is induced by (F,\)
for some measurable F:(0,1)x M — M so that P is induced by (F,\) with
Fylw) = U (Fy(W(x))). QED

Blumenthal and Corson [12] prove the following result (see also Kifer [43],
Theorem 1.2).

Theorem 3.6 (Blumenthal and Corson, 1972). Let M be a connected and
locally connected compact metric space. Let P be a Feller Markov kernel such
that P(x,-) has full support for all x € M, i.e., for all x € M and for every
closed set F strictly contained in M, we have P(x,F) < 1. Then P may be
represented by T = CO(M, M) (the space of continuous maps f: M — M).

The question of representation by smooth maps has been considered by
Quas [58]. Before stating Quas’s theorem, we state a result due to Jiirgen
Moser from which it will be deduced.

Let M be a smooth (C*) compact orientable Riemannian manifold with-
out boundary, with normalized Riemannian probability measure A. If p :
M — R, is a C'-density on M and ® : M — M a C'-diffeomorphism, we let
®*p denote the image of p by ®. That is,

. plx)
(@) (@) =
where J®(z) is the Jacobian of @, i.e., the determinant of the derivative
D®(x) : T,M — Ty M. In other words, if X is a random variable with
density p, then ®(X) is a random variable with density ®*p.
In 1965, Moser [50], using the “homotopy trick” argument, proved part
(1) of the following result in the C* case. For every positive integer k and
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0 < a<1,welet C* (M) denote the space of C** (C* with a-Holder kth
derivatives if a > 0) functions h : M — R endowed with the C*"*-topology,

EFe = [h e CFo(M) - /M h(z)\(dz) = t},

and DF** .= {p € E¥*™ . p(x) > 0 Vo € M} the space of positive CF+o-
densities. Plainly, £ is a closed subset of C***(M), which can be identified
with the Banach space E§+°‘, and D*+% is an open subset of B

Theorem 3.7 (Moser, 1965). Let py be a positive C*-density for some k >
1. Then

(i) For any positive C*-density p, there exists a C*-diffeomorphism ®, on M
with the property that

700 = p;
(ii) The C*-diffeomorphism ®, from part (i) can be chosen in such a way

that the mapping
D¥ x M — M,

(p,x) = ®p(x)
is CF.

Proof Tet p, = po+ t(p — po) for 0 < t < 1. We look for a family of
diffeomorphisms (®;).cp,1) such that ®;py = p; for all ¢t € [0,1]. That is,

3t ) pi(®1(x)) = po(), (3:3)

where j(t,z) is the Jacobian of ®;, evaluated at z. More precisely, we look
for a family of vector fields {X;},c01) on M such that ®(z) is the solution
to the non-autonomous Cauchy problem

dy
—_— =
i Xt(?/)

with initial condition y(0) = x. Using Jacobi’s formula for the derivative of
the determinant of a matrix-valued function, one obtains that j(¢, z) solves
dj

= div(Xy) [P (2)]4 (1)
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= 1. Thus, taking the time derivative of (3.3)
po — p gives
) —

n(y)+ < Vpi(y), Xi(y) >,= 0.

with initial condition j(0, )
and setting y := ®4(x), n =

div(Xe)(y)pe(y

Hence
div(peXe)(y) = n(y).

If one sets Xy = VU/py, the problem reduces to finding a function U : M — R
such that
AU = div(VU) =, (3.4)

where one should recall that n = pg — p.

Since
A ()N (d) =0,

(3.4) admits a solution, and we may define A~1n as the particular solution

T 2/00O Qm(z)dt

where Qin(x) := E(n(W;)|Wy = z) and W; a Brownian motion on M. Fur-
thermore, by Schauder estimates (see, e.g., Chapter 6 in [30]) A~ maps
EF17(M) continuously into C*+*%(M) for every positive integer k and
0 < a < 1. This makes the vector field

X7 =VU/p
a CF-vector field. It also implies that the continuous mapping
[0,1] x D¥ x M — TM,
(t,p,x) = X{(x)

is C*.
Let t — ®;(p, z) denote the solution to the Cauchy problem 2 Y =X (y)
with initial condition ®y(p,x) = z. It then follows from standard results

on differential equations that x — ®;(p,x) is a C*-diffeormorphism for all
(t,p) € [0,1] x D*, and that (z,p) — ®i(p,z) is C* for all t € [0,1]. To
conclude the proof, set ®,(z) := ®1(p,z). QED

From Moser’s theorem we deduce the following result proved by Quas [58|
in the C*° case.
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Corollary 3.8 (Quas, 1991). Let P be a Markov kernel on M, a smooth
compact orientable connected Riemannian manifold without boundary. As-
sume that for each x € M, P, has a C*. k > 1, positive density p, with

respect to the Riemannian measure, and that x € M s p, € DF is C",r > 0.
Then P may be represented by T = C™(M, M).

Proof Let py = p,, for some 2o € M and let ¥, = ®, denote the C*-
diffeormorphism produced by Moser’s Theorem (Theorem 3.7). Then

P(z,G) = P(z, ¥, (G)).
Let T = C"(M, M) and let f, € T be defined by f,(z) := ¥,(y). Then
P(z,G)=m(f €T: f(x) € G),

where m is the image of P, by the mappingy € M — f, € T. QED

Exercise 3.9 [Bernoulli convolutions| Bernoulli convolutions are very sim-
ple, still fascinating, examples of random dynamical systems.
Let 0 < a < 1 and let (X,,) be the sequence of real-valued random variables
recursively defined by
XnJrl =aX, + 9n+17

where (6,) is a sequence of i.i.d. random variables taking values in {—1,1},

independent of Xy, and having uniform distribution m = LB R

2
Set Y, = Z?;ol a‘6;,1 and let

Y=I1lmY, = Z ai9i+1.

n—o0
i>0
Throughout, we let u, denote the law of Y and F, its cumulative distribution
function (cdf) defined as F,(t) = pq(] — 00, t]).
(i) Show that X,, — a" X, and Y, have the same law and deduce that (X,,)

converges in law to fig, i.e.,

lim E(f (X)) = paf

n—oo

for all f € Cy(R). Convergence in law will be further discussed in Section
4.1 of Chapter 4.
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(ii) Show that F, is the unique cdf solution to the functional equation

=35 (1)

(iii) Show that F, is continuous.

(iv) (Law of pure types) Recall that p, is called absolutely continuous (with
respect to Lebesgue measure) if every Borel set having zero Lebesgue
measure has zero p,-measure. By the Radon—Nikodym Theorem, this
amounts to

Rty = [ fa) do

for some nonnegative function f, € L'(R). The measure p, is called
singular if p,(N) = 1 for some Borel set N having zero Lebesgue mea-
sure. Show that p, is either absolutely continuous or singular (compare
with Lemma 4.26 in Chapter 4).

(v) (Devil’s staircase) The topological support of i, is the set of ¢ € R such
that p,(I) > 0 for every open interval I containing ¢. Equivalently, this
is the set of t € R at which F} strictly increases.

Suppose a < % Show that the support of i, is a Cantor set having zero
Lebesgue measure. In this case F, is a Dewvil’s staircase: a continuous
function increasing from 0 to 1 but almost everywhere nonincreasing.

(vi) Show that /15 is the uniform distribution over [—2,2].

(vii) Show that for a > 3, the support of 1, is the interval [——, 1.

Remark 3.10 The study of Bernoulli convolutions has a long history. It
started around 1930 with the work of Wintner and his collaborators Jessen
and Kershner (see, e.g., [53] for a comprehensive bibliography). As seen in
the previous exercise, when a > %, F, is continuous and strictly increasing
on [—1, -L]. Wintner proved that it is C¥~! for « = 27V* and k > 2,
but Erdos [25] in 1939 proved that whenever % is a Pisot number, then p,
is singular! A Pisot number is a real algebraic integer (i.e., the root of a
unitary polynomial having integer coefficients) whose conjugates (i.e., the

other roots of the polynomial) have modulus < 1. For instance, the golden

number g = 1+2\/5 is a Pisot number as the root of the polynomial X2 — X —1.
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After Erdos, the question of describing the set of a > % for which g, is
absolutely continuous has challenged the community. In 1995 Solomyak [64]
(see also the beautiful short proof by Solomyak and Peres [54]) proved the
remarkable result that for almost all a > %, e 1S absolutely continuous.

Exercise 3.11 |[The Propp and Wilson algorithm| The representation of a
Markov chain by a RDS can obviously be used to simulate trajectories of
a given finite Markov chain. More surprisingly it can also serve to sample
exactly and in finite time the invariant probability measure of a positive re-
current finite chain. This is the Propp and Wilson algorithm introduced by
J. Propp and D. Wilson [57] in 1996.

Let M be a finite set and let (F™) be a RDS on M. Recall that this means
that

Fn:FQ"O...OFgl,

where (6;) is a sequence of i.i.d. random variables on some probability space
(©,A,m) and © x M > (0,x) — Fy(x) is a measurable map.
Associated to F™ is the right product

Rn:FQIO...Oan.

A map f: M — M is called constant if f(xz) = f(y) for all z,y € M. We let
Cst denote the set of such maps, and

T. =min{n >0: R" € Cst}.
(i) Show that R™ and F™ have the same distribution.

(ii) Suppose that T. is almost surely finite. Let Z = R”¢(x) (which is in-
dependent of x). Show that for all n > T, and y € M, R"(y) = Z.
Deduce that the law of Z is the unique invariant probability measure
of the chain induced by (F™).

(iii) Suppose that for some o > 0, m({f# € © : Fp € Cst}) > «. Show that
T. has a geometric tail, and is therefore almost surely finite.

(iv) Suppose, more generally, that for some a > 0 and every subset A C M
having cardinality |A| > 2,

m{0 €0 [Fy(A)] <A} > a.

Show that 7, has a geometric tail and is therefore almost surely finite.
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(v) Suppose now that P is a Markov transition matrix on M having positive
entries. Show that it is always possible to represent it by a RDS such
that the condition assumed in question (7i7) is satisfied. Explain how
this can be used to produce an algorithm which samples the invariant
probability measure of P in finite time.

(vi) Let M = {0,1} and let P be the Markov transition matrix defined by
P(z,y) = 5. Let © = {0,1},m = 3(do + 61), and Fy(z) = 0z + (1 —
0)(1 — x). Show that the Markov kernel P is represented by (F,m) but
that T, = oo almost surely.

Notes

The proof of Erdos’s theorem on Bernoulli convolutions (see Remark 3.10)
as well as numerous illustrating simulations can be found in the first chapter
of |[7]. For (much) more on Bernoulli convolutions we recommend the survey
papers [53] and [67]. The book [46] contains a full chapter on the Propp and
Wilson algorithm including many examples of applications.



Chapter 4

Invariant and Ergodic Probability
Measures

4.1 Weak convergence of probability measures

Let P(M) denote the set of probability measures on (M, B(M)). A sequence
{pn} C P(M) is said to converge weakly to p € P(M), written
Hn = 4,
provided
lim i f = puf
n—oo

for all f € Cy(M). The following theorem, known as Portmanteau Theorem,
gives equivalent conditions for weak convergence. Note that this theorem is
true in any metric space (without assumption of separability or completeness).

Let Uy(M) C Cy(M) (resp. Ly(M) C Uy(M)) denote the set of bounded
and uniformly continuous (resp. bounded and Lipschitz) mappings f : M —
R.

Theorem 4.1 (Portmanteau theorem) Let {u,} C P(M) and pn € P(M).
The following conditions are equivalent:

(@) pn = 15
(b) jinf — uf for all f € Up(M);

() inf = uf for all f € Ly(M);

61
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(d) limsup,,_, pin(F) < u(F) for all closed sets F C M;
(e) liminf, oo pn(O) > u(O) for all open sets O C M;

(f) limy, o0 pn(A)

= u(A) for all A € B(M) such that 1(0A) = 0, where
OA == A\ int(A)

denotes the boundary of A.

Proof (a) = (b) = (c)is clear and (d) < (e) holds by set complementation.
Assume (c). Let F be a closed set, ¢ > 0, and fa(z) = (1 — 42fy+

where d(z, F') = inf cpd(z,y). Then 1 > f. > 1p and f. € Ly,(M). 8Thus,
lim sup p,(F) < limsup p, f: = pfe and, by dominated convergence, puf. —
w(F) as € — 0. This proves that (¢) = (d).

Assume (d) (and thus also(e)). Let A € B(M) be such that u(0A) = 0.
Let F' be the closure of A and O its interior. Then p(F) = p(O) and,
by (d) and (e), liminf u,,(A) > liminf u,,(0) > p(O) and limsup p,(A) <
lim sup pu, (F') < p(F'). This proves that (d), (e) = (f).

It remains to show that (f) = (a). Assume (f) and let f € Cy(M).
Replacing f by f + ¢ for some ¢ > 0 if necessary, we can assume that f > 0.
For all a > 0, the set {f > a} is open and its boundary is contained in
{f = a}. Furthermore, the set of a > 0 such that pu({f = a}) > 0 is at most
countable (as the set of discontinuity points of the cumulative distribution
function a — p({f < a})). Thus, by Fubini’s theorem, (f), and dominated

convergence, fi,f = fH e 1 (f > a)da — f”fH"" (f > a)da = uf.
QED

The following corollary is often useful.

Corollary 4.2 Let f € B(M) and let Dy denote the set of discontinuities of
£ 1f o = 1 and p(Dy) =0, then p f — pf:

Proof Let p! := p,(f~!(-)) be the image measure of p, by f. It suf-
fices to show that pf = p/. Indeed, let g(t) = t for |t| < || f]loo, and
g(t) = sign(t)|| flleo for [t > [[flloc. Then plg = puf and p'g = pf. To
prove that puf = p/, we rely on assertion (d) of the Portmanteau Theorem.
Let F be a closed subset of R. Then limsup uf (F) < limsup u,(f~1(F)) <

pw(f=1(F)) because p, = p. Now, f~1(F) C DyUf1(F) so that pu(f~1(F)) =
p(f~H(F)) = p/(F). QED
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Exercise 4.3 For £,0 > 0 let A.s be the set of x € M such that |f(y) —
f(2)| > € for some y, z € B(x,§). Show that Dy = Upens Mimen+ Ai/n,1/m and
that Dy is measurable (even if f is not).

Exercise 4.4 Let P be a Markov kernel on a metric space M. Show that P
is Feller if and only if the map ¢ : M — P(M), = — P(x,-) is continuous
(where P(M) is equipped with the topology of weak convergence).

The space P(M) equipped with the topology of weak convergence is ac-
tually a metric space, as shown by the next proposition.

Proposition 4.5 There exists a countable family { f,. }n>0 C Co(M) such that

D(u,v) = Z Qin min(|pfn — vfal, 1)

n>0

is a distance on P(M) whose induced topology is the topology of weak conver-
gence. That is, p, = w1 if and only if D(pen, 1) — 0.

Remark 4.6 Unless when M is compact, the family {f,},>0 is not dense in
Cy(M) (see Exercise 4.8).

Proof If M is compact, Cy(M) is separable (see Exercise 4.7) and it suffices
to choose a dense sequence {f,} C Cy(M). If M is not compact, Cy(M) is
no longer separable (see Exercise 4.8), but we shall prove that there exists a
metric d on M , topologically equivalent to d, making M homeomorphic to a

subset of a compact metric space. It will then follow that Uy,(M, d), the space
of bounded uniformly continuous functions on (M, d), is separable. (Here one
should recall that two topologically equivalent metrics may yield distinct sets
of uniformly continuous functions.)

Replacing d by #‘ld (which remains a distance on M inducing the same
topology as d), we can assume that d < 1. Let {a,},>0 C M be countable

and dense, and let H : M — [0, 1]Y be the map defined by
H(ZE) = (d(ZE, an))nZO-

By Tychonoff’s Theorem (see, e.g., Theorem 2.2.8 in [21]), [0, 1]Y is a compact
metric space. A metric for [0, 1] is given by

|$k; - yk:|
exy) =) 5

k>0
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where x = (Ik)kzo,y = (yk)kzo. Set

d(x,y) == e(H (x), H(y))-

It is not hard to check that d is a metric on M inducing the same topology

as d. The spaces (M, d) and (H(M),e) are thus isometric. Let K := H(M).
Then K is compact (as a closed subset of a compact space) and thus, there

exists a countable and dense family {g,} C Cy(K). Let f € Uy(M,d). Since
H is an isometry, the map f o H ! : H(M) — R is uniformly continuous. It

then extends to a continuous map f : H(M) — R. By density of {g,}, there
exists, for all € > 0, some n such that

If = gnoHllow= sup |foH'(x) = ga(x)| < sup [ f(x) = gu(x)] < e.
x€H (M) xeK

This proves that the sequence {f,}, with f, := g, o H, is dense in Uy(M, d).
Now, by Theorem 4.1 (b) and density of {fx}, i, = w if and only if p, fr, —
wfx for all k& € N. This is equivalent to D(u,, ) — 0. QED

Exercise 4.7 Let K be a compact metric space (and thus also a Polish
space). Using the proof of Proposition 4.5, show that K is homeomorphic
to a compact subset of [0, 1]N, equipped with the metric e. We now identify
K with a subset of [0, 1]N. Let P be the set of real-valued functions on [0, 1]N
of the form p(x) = q(xq,...,x,), where ¢ : [0,1]"" — R is a polynomial in
(n+1) variables with rational coefficients. Use the Stone-Weierstrass theorem
to show that P|x = {p|x : p € P} is dense in C(K). This shows that C(K)
is separable. Since Cy(K) is a subset of the separable metric space C(K), it
15 itself separable.

Exercise 4.8 Let X be a topological space. Suppose that there exists an
uncountable family {O,} of open sets such that O, NOg = () for a # 5. Show
that X is not separable. Show that C,(R), the set of continuous bounded
functions on R, is not separable. Hint: Let f € Cp(R) be such that f(n) =0
and f = 1lon [n+1/(n+1),n+1—-1/(n+1)] for alln € N*. Set f,(t) :== f(z+t)
and consider the family {O,},c(0,1), where Oy := {g € Cy(R) : || fo — gl <

1/2}.

Exercise 4.9 [Borel Isomorphism| We say that two measurable spaces X
and Y are isomorphic if there exists a bi-measurable bijection ¥ : X — Y,
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meaning that both ¥ and ¥~! are measurable. It turns out that every Borel
subset M of a Polish space is isomorphic to a Borel subset of [0, 1] (see Remark
4.10). The purpose of this exercise is to prove this result when M is compact
or locally compact and separable.

(i) Let {0,1}"" be equipped with the product topology and Borel o-field.
Show that {0,1}Y" is a metric space with the metric d defined as

jwi — a
d(w, ) == Z —r

i>1

(ii) Show that the map
{0, 1} —[0,1],
Wi
— —
W Z A
i>1
is 1-Lipschitz continuous.
(iii) Let I C {0,1}Y" be the set of w such that w; = 0 for infinitely many i and
w; = 1 for infinitely many j. Show that I is a Borel subset of {0, 1}

and that U|; (¥ restricted to I) is a homeomorphism onto ¥(I), i.e., a
continuous bijection with continuous inverse.

(iv) Show that [0,1] and {0,1}"" are isomorphic. Hint: Use (iii) and the
fact that the complement of I in {0, 1} is countably infinite.

(v) Show that there is a homeomorphism between {0, 1} and {0, 1}"™>N"
equipped with the metric

(4, B) = Y WAt (Bu)iz)

21
Jjz1

Then show that [0,1] and [0, 1] are isomorphic. Relying on the proof
of Proposition 4.5, deduce that every compact (or locally compact sep-
arable) metric space is isomorphic to a Borel subset of [0,1]. Hint: Any

locally compact separable metric space can be written as a countable
union of compact sets, see, e.g., Theorem XI.6.3 in [23].
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Remark 4.10 Theorem 13.1.1 in [21] implies the following: If M is a Borel
subset of a Polish space, and if B is a Borel subset of [0, 1] whose cardinality
equals the cardinality of M, then M and B are isomorphic. Since the cardi-
nality of a Borel subset of a Polish space is either finite, countably infinite,
or the cardinality of the continuum, every such set is in fact isomorphic to a
large class of Borel subsets of [0, 1].

One of the main advantages of the distance defined in Proposition 4.5 is that
it allows to verify weak convergence by testing the condition u,f — uf over
a countable set of functions.

Two other classical distances over P(M) are the following:

Prohorov metric For any A C M and € > 0, let
A ={ye M: dy,A) <e}.

For all u,v € P(M) the Prohorov distance (also called the Lévy-Prohorov
distance) between p and v is defined as

m(u,v) :=inf{e >0 : u(A) <v(A®)+eforall Aec B(M)}. (4.1)

Fortet-Mourier metric Let Ly(M) C C,(M) be the space of bounded
Lipschitz maps equipped with the norm

[1f ot = [[flloc + Lip(f),

where

Lip(f) = sup{% (x,y) € M? x # y}.

For all u,v € P(M) the Fortet-Mourier distance between p and v is defined
as

plt,v) = sup{|uf — vf| : £ € Lo(M), || fllu < 1}. (4.2)

Theorem 4.11 The maps 7 and p are distances on P(M). Let {u,} C P(M)
and p € P(M). The following conditions are equivalent:

(a) pn = 1

(b) p(ptn, 1) = 0;
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(€) m(n, p) = 0.

Proof We only prove that (a) < (b). For more details and the proof of (b) <
(¢), see Dudley [21]. The implication (b) = (a) follows from assertion (c) of
Theorem 4.1. Conversely assume (a). We first assume that M is complete.
Fix € > 0. By Ulam’s Theorem (or Prohorov’s Theorem 4.13 below), one can
choose K C M compact such that

p(K)>1—e. (4.3)
Let K. ={x € M :d(z,K) < e}. By assertion (e) of Theorem 4.1,
pn(K) > 1—¢ (4.4)

for n sufficiently large. By the Arzela—Ascoli Theorem, the unit ball L;; :=
{f € Ly : ||f|lm < 1} restricted to K is a compact subset of Cy(K). There
exists then a finite set {f1,..., fv} C Ly, such that for all f € L, there is
some ¢ € {1,..., N} such that |f(z) — fi(x)| < e for all x € K. Since f and
fi have a Lipschitz constant < 1, we also get that

|f(z) = fi(z)] < 3 (4.5)
for all x € K.. Now

in f = i f] < (= ) il 4 [ (e = ) ((F = fi) L) 4 [ (e = ) ((f = fi) Lanni.)]-

Thus, using inequalities (4.3), (4.4), and (4.5), we obtain

< _ .
Ppin; 1) < max |(pn — p) fil + 8e.
This proves (b) for M complete. If M is not complete, we can replace it by
its completion M. Any map f € L; extends to a bounded Lipschitz map on
M and the measures (u,) and g can be seen as measures on M so that the
proof goes through. QED

Remark 4.12 Theorem 4.1 is true in any (not necessarily separable) met-
ric space. The equivalences in Theorem 4.11 require separability (but not
completeness).
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4.1.1 Tightness and Prohorov’s Theorem

A set P C P(M) is called tight (sometimes uniformly tight) if for every € > 0
there exists a compact set K C M such that

pK)=1-e¢

for all p € P. Observe in particular that if M is compact, every subset of
P(M) is tight. A set P C P(M) is called relatively compact if it has compact
closure in P(M) (equipped with one of the distances 7, p or any other distance
characterizing weak convergence). Finally, it is called totally bounded if for
every € > 0 there is a finite set A C P such that the following holds: For every
i € P there is v € A with d(u,v) < e. Here, d can be the Prohorov metric,
the Fortet-Mourier metric, or any other metric on P(M) characterizing weak
convergence.

The following theorem usually referred to as Prohorov’s Theorem asserts
that tightness and relative compactness are equivalent in a Polish space (com-
plete and separable metric space). Here the assumption that M is a Polish
space is crucial, for otherwise the implication (b) = (a) may be false. See,
e.g., Billingsley [11] or Dudley [21, Chapter 11.5] for a proof of Prohorov’s
Theorem.

Theorem 4.13 (Prohorov’s Theorem) Assume M is a Polish space (i.e.,
a complete separable metric space). Then the following assertions are equiv-
alent:

(a) P is tight;
(b) P is relatively compact;

(c) Every sequence {un,} C P has a convergent subsequence p,, = p €
P(M);

(d) P is totally bounded for m or p.

Remark 4.14 The latter property shows that P(M) is complete for p or ™
since every Cauchy sequence is totally bounded.



4.1. WEAK CONVERGENCE OF PROBABILITY MEASURES 69

Tightness Criteria

We conclude this subsection with a simple practical Lyapunov-type condition
ensuring tightness of a sequence of probability measures.
A measurable map V : M — R is called proper if for all R € R the set

{V<LR}={zxeM: V(z)<R}
has compact closure.

Proposition 4.15 Let V : M — R" be a proper map and let {u,} be a
sequence in P(M) such that

limsup p,,V < K < 0.

n—oo

Then {p,} is tight. Assume furthermore that V is continuous. Then

(1) For every limit point p of {u,}, pV < K;

(ii) Let H : M — R be a continuous function such that G = 1+‘|/H| 1S proper.
If pn, = b, then pu, H — pH.

Proof Fix e >0 and let R > 0 be so large that limsup,,_, . i,V < eR. By

the Markov Inequality, limsup,, ., pt,{V > R} < limsup,_,, 22" < e. Let

now g = lim y,, be a limit point of {x,}. Then for all R > 0, u(V A R) =
limy 00 ftn, (V A R) < K. Thus £V < K by monotone convergence.

We pass to the proof of (i7). Let G = ﬁ For all R € R\ D with D at
most countable, u{G = R} = 0 and, therefore,

lim i, (Hlg<p) = p(H1c<r)-

On the other hand 11, (|H|1gsr) < pin(Elesr) < Fn(V). Thus

im limsup p,(|H|1gsg) =0

1
R—oc0 pno0o

and, similarly,
lim pu(|H|1gsr) = 0.
R—o0

This proves the result. QED



70CHAPTER 4. INVARIANT AND ERGODIC PROBABILITY MEASURES

4.2 Invariant probability measures

Given a Markov kernel P, a measure (respectively a probability measure)
is called P-invariant or simply invariant if

uPf = uf (4.6)
for all f € B(M), where Pf is defined by (1.2). Equivalently,

pwP = p,
where pP is defined by (1.3).

Exercise 4.16 Let R/Z denote the set of equivalence classes with respect
to the equivalence relation x ~ y < = —y € Z on R. The set R/Z can be
thought of as the unit interval [0, 1], where 0 and 1 are identified with each
other. Let (6,),>1 be an i.i.d. sequence of random variables with distribution
m, where m is a Borel probability measure on R/Z. For every 6 € R, let

Fy:R/Z —-R/Z, v — x+6 mod 1.

Show that the Lebesgue measure on R/Z is an invariant probability measure
for the Markov kernel induced by (F,m).

Remark 4.17 Let C denote a set of bounded, measurable mappings f : M —
R, closed under multiplication and such that B(M) = o(C) (the smallest
o-field making elements of C measurable). By a monotone class argument
(see Theorem A.1), it suffices to check (4.6) on C to prove P-invariance of
p € P(M).

For instance, one can choose C = C,(M), the set of bounded continuous
functions. One can also choose any set C C C(M) closed under multiplication
and such that for all f € Cy(M) there is a sequence {f,} C C such that
limy, o0 fu(z) = f(x) for all z € M.

We let Inv(P) denote the set of P-invariant probability measures. The set
Inv(P) might be empty as shown by the following two examples.

Example 4.18 Let M = [0,1] and f : M — M be the map defined by
f(z) =x/2 for x # 0 and f(0) = 1. Then, the (deterministic) chain X, ; =
f(X,) has no invariant probability measure. For otherwise the Poincaré Re-
currence Theorem (see Theorem 4.41 below) would imply that such a measure

is dg, but f(0) = 1.
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Example 4.19 Consider the pair (F,m) introduced in Exercise 4.16. Let us
assume in addition that [G[0] m(df) < oo and set a := [, 6 m(df). While
the corresponding Markov kernel P has the Lebesgue measure as an invariant
measure, P does not admit any invariant probability measures if o # 0.

To see this, let p be a probability measure on (R, B(R)). Then there is
K > 0 such that u([—K, K]) > 0. If u was invariant for P, the Markov chain
(Xn)nen induced by (F,m) and with Xy ~ p would satisfy

O<M([—K,K])=MP”([—K,K]):P(|Xn| SK)7 Vn € N*.

But if @ > 0 (o < 0), one has lim, o X, = oo (lim, 0 X, = —00) P-
almost surely by the law of large numbers. Hence lim,,_,, P(| X, | < K) =0,
a contradiction.

Given a Markov chain (X,) on M, the associated family of empirical
occupation measures is defined as

n—1
1
Vn = ;axi, n e N*. (4.7)

Notice that each v, is a random element of P(M).
A sufficient condition ensuring existence of invariant probability measures
is given by the following classical theorem (see, e.g., [22]).

Theorem 4.20 Let (X,,) denote a Markov chain (defined on (Q2, A, F,P)) on
M with kernel P that s Feller. Then the following statements hold.

(1) P-almost surely, every limit point of the family of empirical occupation
measures (Vn)n>1 48 P-invariant;
(i1) If (Vn)n>1 is tight with positive P-probability, then Inv(P) is nonempty.

Proof (i). Let f € B(M). Set Upy1 := f(Xpi1) — Pf(X,), My := 0, and
M, 1 = M, + U,y1 for n > 0. Then (M,) is an L*-martingale, whose pre-
dictable quadratic variation (see the section on martingale theory in the ap-
pendix) verifies

(M)ns1 = (M)n = E(Up | Fa) = PA(X0) = (Pf)*(Xa) < 2||f] ]2

Hence by the strong law of large numbers for martingales (see Theorem A.8),

0= lim M, _ lim v, f — v, (Pf) (4.8)

n—oo n n—00
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almost surely. Let {fi} C Cy(M) be as in Proposition 4.5. Then, by the
Feller property, P fy. is in Cy(M) for all k and, consequently, with probability
one

l/k—I/(Pfk):O

for every limit point v of {v,,} and every k € N. Thus, v = vP.

(77). Let w € Q such that (v,(w)),>1 is tight and all of its limit points
are P-invariant. By Prohorov’s theorem, (v, (w)),>1 admits at least one limit
point, so Inv(P) is nonempty. QED

Corollary 4.21 If M is compact and P is Feller, Inv(P) is a nonempty com-
pact convex subset of P(M). Convezity of Inv(P) holds for arbitrary metric
spaces and Markov kernels.

Tightness Criteria for Empirical Occupation Measures

When M is noncompact, the tightness of the empirical occupation measures
(v,,) can be ensured by the existence of a convenient Lyapunov function. This
is a proper map V : M — R, such that PV — V is "sufficiently" negative.

Corollary 4.22 Let V : M — R, be a proper map. Assume that PV <V
and that E(V (X)) < o0o. Then the family of empirical occupation measures
(vn) is almost surely tight.

Proof The sequence {V,, = V(X,,)} being a nonnegative supermartingale
with E(V)) < oo, it converges almost surely to some finite random variable
Vs (see Theorem A.6). This implies that v,V — V., almost surely and the
result follows from Proposition 4.15. QED

Another result, in the same spirit, is

Corollary 4.23 Let V : M — R, be a proper map. Assume that
PV < pV + K,

with £ > 0,0 < p <1, and E(V(Xy)) < co. Then

lim su un\/V <
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almost surely. In particular, (v,) is tight. The set Inv(P) is a nonempty
compact convex subset of P(M) and for all p € Inv(P), pV < £

>
Proof Set W = v/V. Then by Jensen’s Inequality, PW < VPV < /pV + r <
VAW + /K. Set LW (z) = PW (x) — W(x), M, = 0, and

M, = W<Xn) - W(XO) - ZLW(Xk)

for all n > 1. Then (M,) is an L?*-martingale whose predictable quadratic
variation process is given as (M) = 0 and

<M>n+1_ <M>n = E((Mn+1_Mn)2|fn)) = Pv<Xn) ( ) ( PV ( )

n) <
for n > 0. Thus E((M),) < Y1 E(PMV(Xy)) < ns ria lLE(V(XO))
where the last inequality easily follows from the assumptlons on V. Then,
by the second strong law of large numbers for L2-martingales (Theorem A.8

(iv)), 2= — 0 almost surely. Now, because —LW > (1 — \/p)W — /&,

(1—\/‘)an<\/_+% W(Xo)

This, combined with Proposition 4.15, proves the first statement.
By Theorem 4.20, Inv(P) is nonempty. Let u € Inv(P). For all n € N*,

1—p 1
PV <"V 4 kL < 'V 4k
1—p 1-—

Thus, by invariance and Jensen’s Inequality,

(VA M) = uP"(V A M) < u(P"V A M) < p((p ") A M),

- P

Letting n — oo in the right-hand term and using dominated convergence
shows that u(V A M) < - Then V' < = by monotone convergence.
Compactness follows from Proposition 4.15 and Prohorov’s Theorem. QED

Exercise 4.24 [Invariant measures and mean-occupation| Let (Xj) be a
Markov chain, 7" a finite stopping time (i.e., T < oo a.s) and let v be the
"mean occupation measure up to time 7" defined for all f € B(M), f > 0,

as
T-1
k=0
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(i) Show that v(Pf) — vf = E(f(Xr)) — E(f(Xo))
(ii) Show that if X, and X7 have the same distribution and E(T") < oo, then

ﬁ is an invariant probability measure for the chain.

4.2.1 Excessive measures

A measure p is called ezcessive provided
pP < p.
Lemma 4.25 FEvery finite excessive measure is invariant.

Proof If p is a finite excessive measure, then pP(A) < p(A) and p(M) —
pP(A) = pP(A°) < p(A) = (M) — p(A), so that pP(A) = u(4). QED

Given two Borel measures o and  on M, one calls a absolutely continuous
with respect to 5 and writes a < f3 if for every A € B(M), f(A) = 0 implies
that a(A) = 0. One says that o and 5 are mutually singular and writes o L 3
if there is A € B(M) such that a(A) = B(A°) = 0. Let p and v be Borel
measures on M. By Lebesgue’s Decomposition Theorem (see, e.g., Theorem
3.8 in [27]), v = V4e + Vs, where v, < p and vs L . Equivalently,

v(dx) = h(z)u(dx) + La(x)v(dx),
where h € L'(p) and pu(A) = 0.

Lemma 4.26 Let p,v € Inv(P). Then the absolutely continuous and the sin-
gular parts of v with respect to p are invariant measures.

Proof Write v(dz) = h(x)u(dx)+14(x)v(dx) with h € L' (i) and u(A) = 0.
By invariance, u(A) = [ P(z, A)u(dz) = 0, so that P(x, A) = 0 for p-almost
every x € M. Thus, for every Borel set B,

/P(x, B)h(x) p(dx) = /P(LB N A9)h(x) p(dx) < v(BNA°) = (hu)(B).

This proves that h(z)u(dr) is finite and excessive, hence invariant. Since
14(z)v(dz) = v(dx)—h(x)u(dz) and since v € Inv(P), the measure 1 4(x)v(dx)
is invariant as well. QED



4.2. INVARIANT PROBABILITY MEASURES 75

4.2.2 Ergodic probability measures

Let p € Inv(P). A bounded, measurable function ¢ is called (P, p)-invariant
provided Pg = g, p-almost surely. A set A € B(M) is called (P, u)-invariant
if 1,4 is (P, p)-invariant.

An invariant probability measure pu is called ergodic (for P) if every (P, u)-
invariant function is p-almost surely constant. (A function f : M — R is
called p-almost surely constant if there is ¢ € R such that f(z) = ¢ for
p-almost every x € M.)

Lemma 4.27 A probability measure p € Inv(P) is ergodic if and only if every
(P, p)-invariant set has p-measure 0 or 1.

Proof Suppose first that u € Inv(P) is not ergodic. Then there exists a
bounded, measurable function h such that Ph = h, p-almost surely, and for
every ¢ € R

p({x e M: h(z)=c}) <1

It follows that for some ¢ € R, A := {x € M : h(x) > c} has p-measure
different from 0 and 1.

Claim: A is (P, u)-invariant.

Proof of the claim: By Jensen’s Inequality, |Ph| < P|h|. Since u(P|h| —
|h|) = 0 by P-invariance of p, and since Ph = h p-almost surely, this proves
that |h| is (P, p)-invariant as well. Hence, max(0,h) = $(h + |h]) is (P, p)-
invariant. Similarly,

h,, := min(n max(0,h — ¢), 1)

is (P, p)-invariant for every n > 1. Since lim, oo hy, = 1a, 14 is (P, p)-
invariant as the pointwise limit of a uniformly bounded sequence of (P, u)-
invariant functions. This proves the claim and one direction of the lemma.

For the converse direction, let p be ergodic and let A be a (P, i)-invariant
set. Then 1, is a (P, u)-invariant function, and ergodicity of p implies that
there is ¢ € R such that 1, is p-almost surely equal to c. Necessarily, ¢ €
{0,1}, whence it follows that u(A) € {0,1}. QED

Remark 4.28 One usually defines a harmonic map as a measurable map
(bounded or nonnegative) such that Pf = f. Note that a harmonic map is
(P, pv)-invariant for every u € Inv(P).
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A probability measure p € Inv(P) is called extremal if it cannot be written as
= (1—1)uo+tuy with po, 1 € Inv(P),0 <t < 1, and po # p1. Notice that
an extremal invariant probability measure cannot be written as the sum of
two nontrivial invariant measures that are mutually singular. This fact will
be used below in the proof of Proposition 4.29 (7).

Proposition 4.29 (i) An invariant probability measure p is ergodic if and
only if it is extremal.

(ii) Two distinct ergodic probability measures are mutually singular.

Proof (i). Suppose that p is nonergodic. By Lemma 4.27, there exists a
(P, pv)-invariant set A such that 0 < p(A) < 1. Let pa(:) := p(AN-)/u(A).
We claim that for every g € B(M),

P(gla) = (Pg)la
p-almost surely. Indeed, by the Cauchy—Schwarz Inequality,
[P(g14)]* < P(g°)P(14) = P(¢*)1a

p-almost surely. Thus P(gls)lse = 0, p-almost surely, and, interchanging
the roles of A and A°, P(glc)14 = 0, p-almost surely. On the other hand,

P(g1la) — (Pg)1la = [P(gla) — Pg]la+ P(g14)14e

This proves the claim. Therefore,

1a(Pg) = @M«Pmm - ﬁ)u(zﬂ(gm

— ﬁmm = 11a(g).

This proves that p4 is an invariant probability measure. Similarly, - is an
invariant probability measure, and since p = pu(A)pa + (1 — p(A))pac, the
probability measure p is nonextremal.

Suppose now that u is ergodic and that p = (1 — ) + tpy with pg, g €
Inv(P) and t € [0,1]. If t # 0, 1y < p. Hence, there exists h € L'(u) such
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that py(dx) = h(x)p(dx). Furthermore, h < 1/t, p-almost surely, because for
all ¢ > 0,
teu{h > ¢} <t {h > c} < p{h >c}.

In particular, » and Ph lie in L?(p1). Then, by Jensen’s Inequality,
0 < u((Ph — h)*) = u((Ph)* — 2nPh + h*) < pu(Ph* — 2hPh + h?)

= 2uh* — 2y Ph = 2uh* — 2j,h = 0,

from which it follows that Ph = h, p-almost surely, and, by ergodicity and
the fact that p and py are probability measures, h = 1. As a result, ¢ = 1 and
1 is extremal.

(7). Let u and v be ergodic. Write v(dz) = h(z)u(dx) + ps(dx) with g
singular with respect to p and h € L'(p). By Lemma 4.26, h(z)u(dz) and p,
are invariant, and by extremality either h = 0 or pus = 0. If h = 0, we are
done. If ps = 0, we claim that Ph = h, p-almost surely. Thus, by ergodicity,
h =1, p-almost surely. This yields i = v and we are done. The proof of the
claim is easy if h € L?*(u) because, reasoning exactly as in the end of the proof
of (i), one finds that u(Ph—h)?> = 0. If now h € L*(u)\ L*(u), set h, = hAn
and g, = hpp. Then, for all A € B(M), u,P(A) < nuP(A) = nu(A) and
pn(A) < vP(A) = v(A). Thus

i P(A) = 1 PAN {h < n}) + i P(A N {h > n})

<v(ANn{h <n})+nu(AN{h >n}) = pu,(A).

This shows that u, is excessive, hence invariant, by Lemma 4.2.1. Thus,
Ph,, = h,, by what precedes, and Ph = h, p-almost surely, by monotone
convergence. QED

4.3 Unique ergodicity

We say that (X,,) or P is uniquely ergodic if the set of P-invariant probability
measures has cardinality one. An immediate consequence of the preceding
section is

Proposition 4.30 If P is uniquely ergodic, then its invariant probability
measure is ergodic.



78CHAPTER 4. INVARIANT AND ERGODIC PROBABILITY MEASURES

While a deterministic dynamical system is rarely uniquely ergodic (see Section
4.4 for a definition of ergodic probability measures for deterministic dynamical
systems), this property is much more often satisfied by random dynamical
systems and Markov chains. We start with a simple situation, which can be
seen as a random version of the Banach fixed point theorem.

4.3.1 Unique ergodicity of random contractions

Throughout this subsection, let M be a complete, separable metric space.
Recall that a map f: M — M is a contraction if its Lipschitz constant

d(f(2), f()
d(z,y) %y}

is < 1. By the Banach fixed point theorem, a contraction f has a unique
fixed point z*, and for all x € M, f"(x) — x* at an exponential rate. Here,
using the notation of Chapter 3, we shall consider a Markov chain recursively
defined by

LWU%=$W{

Xn+1 = Fy Xn)

under the assumption that the maps Fy are contracting on average.

More precisely, we assume that for each 6 € ©, the map Fj is Lipschitz
continuous, and we let ly := Lip(Fy). Note that, by separability, the supre-
mum in the definition of the Lipschitz constant can be chosen over a countable
set, so that [y is measurable in 6.

We say that the family {Fy} is contracting on averageif [log(lg)™ m(df) <
oo and

n+1(

/bg@wmwy:—a<u

Here, we allow for a to be +-00. The next result is classical and has been proved
in several places. Here we follow the approach of Diaconis and Freedman [19].

Theorem 4.31 Assume that {Fy} is contracting on average and that

/mw%mmm+mm<m (4.9)

for some xo € M. Then the induced Markov chain has a unique invariant
probability measure *, and X,, converges in distribution to p*. In other words,
for every probability measure p on M,

uP™ = u*.
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If we furthermore assume that o < 00,

A= sup | log(ly) + a |< o0
0

and

B /d(Fg(mo),xo) m(df) < o,
then for every x € M there is C(x) > 0 such that
p(6,P", 1i*) < C(z)e ™, Vn €N,

where p stands for the Fortet-Mourier distance (see (4.2)), and
B :=min{a/4,a?/(324%)}.

Proof Forallz € M, set XZ:= Fy o...0Fy (x)and Y,” := Fy,0...0F (x).
The idea of the proof is to show that (Y,7) converges almost surely (and thus
in law) to some random variable Y, independent of x. Since X7 and Y,* have
the same law, this implies that (X?) converges in law to Y.

To shorten notation, set l,, :=ly, , L, := H?:l l;, and Y, := Y0 for z as
in (4.9). By the strong law of large numbers, P-almost surely,

log(Ly,)

nh_{]élo =€ [—00,0). (4.10)
Thus, P-almost surely,
log(d(Y.*,Y,
oy OB
Nn—00 n

because d(Y,*, YY) < L,d(x,y). We shall now show that (Y,,) is almost surely

n»n

Cauchy, by completeness of M hence convergent.
For all n,p € N,

[y

p—
d<Yn+P7 YTL) S d(Yn-H-‘rl? YTH-Z) S Z Ln+id<F9n+i+1 (l’o), 1‘0). (411)

>0

Il
=)

Let 0 < & < /2. Then

> P(logd(Fy, (o), 79) > en) < > P(log(d(Fy, (x0),x0))" > en)

n>1 n>1
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< ~E(lo(d(Fy,(x0), 70))") < o0.

(Here, we used that > -, P(§ > n) < E({) for every nonnegative random
variable £, as well as the integrability condition in (4.9).) Thus, by Borel-
Cantelli,

log d( F|
lim sup og d(Fy, (o), o) <e
n—oo n

almost surely. Combined with (4.11) and (4.10), it follows that, almost surely,

for n large enough,
n+p7 n < Z (n+d (a—2€

i>0

This concludes the proof of the first statement, with p* the law of the limiting
random variable Y, (see also Exercise 4.32).

We now pass to the second statement. For every bounded Lipschitz func-
tion f with || f||n < 1 and for every ¢ > 0,

0P f = " f] = [B(f (V) = f(Yao))| <0+ 2P(d(Yy, Yoo) 2 0). (4.12)
First observe that by (4.11),

d(Y,?, Vao) < d(Y7,Yy) +d(Yn, Yoo) < Lud(z,70) + Y Lusid(wo, Fy, ., (20))-

i>0
By Markov’s Inequality,

P(d(xo, Fy,(z)) > ") < Be ™"
and by a standard Chernoff inequality (see Exercise 4.33 below),

P(Ln > e(—a+a)n) < 6—77,(52/2142)‘

Thus
P(d(Ynm Yo )> 6 —a+e) nd(l’ To +Z —a+e)(n+i) s(nJﬂ))
>0
< ) | 5 (I | pemetntd).

>0

Choose € = a/4. Then

x —na/2
P(A(Y)!, Yao) = €™ (d(, m0) + m))
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1 1
—na?/(3242) —na/4
=¢ (1 1o e—a2/<32A2>) M p—

and we obtain the desired estimate with the help of (4.12). QED

Exercise 4.32 Let P be a Markov kernel on a separable metric space M,
and let u* be a Borel probability measure on M such that for every z € M,
0, P™ converges weakly to u* as n — oo. Show that if P is Feller, then p* is
the unique invariant probability measure for P.

Exercise 4.33 [Chernoff bounds| Let X be an L'-random variable with zero
mean. Assume that E(e*X) < oo for some \g > 0. Let g(A\) := In(E(e)).

(i) Show that for all ¢ > 0 and 0 < X < A,
P(X > 8) < 67)\5+g()\)

and
P(X >¢) < e 9 ()

where

g°(e) == sup (Ae —g(A)).

0<A<L o

(i) Assume |X| < A < co. Show that g(\) < % and g*(g) > %. Hint:

For the first inequality, it may help to use convexity of g.

(iii) Let (X,) be a sequence of i.i.d. random variables with the same distri-
bution as X. Show that

P(X1+...+ X, >neg) <e ™),

4.4 Ergodic theorems

4.4.1 Classical results from ergodic theory

We first recall some basic definitions from ergodic theory. There are numerous
textbooks on the subject including Cornfeld, Fomin, Sinai [17|, Mafe [48],
Katok and Haselblatt [42].



82CHAPTER 4. INVARIANT AND ERGODIC PROBABILITY MEASURES

Let (X, F) be a measurable space and T : X — X a measurable mapping.
A probability measure P over X is called T-invariant (or simply invariant) if

P(T™(A)) = P(A)

for all A € F. Given such a P, a measurable function g : X — R is called
(T, P)-invariant if g o T' = g, P-almost surely, and a measurable set A € F is
called (T, P)-invariant if 14 is (T, P)-invariant. One also defines a T-invariant
set (or simply invariant set) as a set A € F such that T-'(A) = A. Note that
this definition of invariance makes no reference to the measure P and that a
T-invariant set is clearly (7', P)-invariant.

A T-invariant probability measure P is called T-ergodic (or simply ergodic)
provided that every (7', P)-invariant function is P-almost surely constant.

Example 4.34 A periodic point of period d > 1 for T is a point x € X such
that T%(x) = x and T%(x) # x for i = 1,...,d — 1. Given such a point, the
measure !

d(5z —+ (5T(x) + ...+ 6Td71($))

is T-ergodic.

Remark 4.35 One sometimes says that T is ergodic with respect to P to
mean that P is T-ergodic.

Proposition 4.36 The following assertions are equivalent:
(a) The probability measure P is T-ergodic;

(b) Ewvery (T,P)-invariant set has P-measure 0 or 1;

(c) EBvery T-invariant set has P-measure 0 or 1.

Proof The implications (a) = (b) = (c) are obvious. To show that (¢) =
(b), let A be a (T,P)-invariant set. The set

A:={x e X: T*(z) € A for infinitely many k € N}

is invariant. Hence, by (c), P(A) € {0, ). Ifx € A\ A, there exists k > 1
such that z € A\ T %(A), and if z € A\ A, there exists k > 1 such that
x € T7F(A) \ A. Tt then follows that

AANA C | JAATH(A).

k>1
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Thus
P(AAA) <) P(AAT*(A)).

Now

o
—_

P(AAT*(A)) <Y P(TH(A)AT- D (A)) = kP(AAT1(A)) = 0.

7

I
o

It remains to prove that (b) = (a). Let h be (T, P)-invariant. Then, for each
c € R, the set {x € X : h(x) > ¢} is (T, P)-invariant and the result follows.
QED

Exercise 4.37 [Rotations| Let S' = R/Z,a € S*, and T, : S* — S! be the
rotation x — x + . Describe the invariant and ergodic probability measures
of T,,. Show that when « is irrational (i.e., « = £ +7Z with € € (0,1) \ Q), T,
is uniquely ergodic and, more precisely, the normalized Lebesgue measure A
on S! is the unique invariant probability measure for T,,.

Exercise 4.38 Let k > 2 be an integer and Z* : S' — S,z — kz. Show
that the normalized Lebesgue measure \ is ergodic for Z*. Show that Z* has
infinitely many periodic points, hence infinitely many ergodic measures.

Exercise 4.39 [Shift] Let M = {0,1}!"" and let © be the shift map on M
defined by ©(w); = w;;1. Show the following statements.

(a) Forall n > 1, © has 2" periodic orbits of period n, and the set of periodic
points is dense in M;

(b) There is a point « € M whose orbit is dense in M;
(c) The probability measure (£ (8 + 1)) is ergodic for ©;
(d) There exists a continuous surjective map ¥ : M — S! such that
VoO =701,
where Z* is defined as in Exercise 4.38. Hint: One can use Exercise 4.9.

Using (d), prove that 7? possesses a dense orbit and give an alternative proof
of the results of Exercise 4.38 when k = 2.
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Exercise 4.40 Let T : S' x St — St x St (z,y) — (z + o,y + x) with «
irrational. Show that A ® A is ergodic. Hint: One can use the fact that every
f € L*(A®) can be written as a Fourier series f(x,y) = >_, ez cuer(w)er(y),
where ej.(z) = e*™* and 37, | |en]? < oo.

The first important result from ergodic theory is the Poincaré Recurrence
Theorem. Notice that there is no assumption here that P is ergodic.

Theorem 4.41 (Poincaré Recurrence Theorem) Let P be a T-invariant
probability measure. For every measurable set A C X,

P(A) =P{z e A: T"(z) € A for infinitely many n}).
Proof For N € N, let
By ={ze€eA: {T"(z): n>N} C X\ A4}

Then T"(B;1) N By = 0 for all n > 1. Hence T-"(B1) N T~ (By) = 0 for all
m,n € N and n # m. Thus

1> P(I"(By) =Y P(B)

neN neN
and P(B;) = 0. Replacing T with T" proves that P(By) =0. QED

Let Z denote the set of all invariant sets. Then Z is a o-field. The next result
is the celebrated pointwise Birkhoff Ergodic Theorem. The proof given here
follows [42] and goes back to Neveu.

Theorem 4.42 (Birkhoff Ergodic Theorem) Let P be a T-invariant prob-
ability measure and let f € LY(P). Then f :=E(f|Z) is (T,P)-invariant and

n—1
. ]- i 7
fm 2 feT =]
P-almost surely. In particular, if P is T-ergodic, then
1 n—1
lim — T'=E
Jim ;) fo (f)

P-almost surely.
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Proof For f € L'(P), set S,(f)(z) := 31~} foT(z) and f := E(f|T). We
claim that

£ Sn(f)

f <0, P-almost surely = limsup

n—00 n

<0, P-almost surely.

Let us first derive the theorem from the claim. For ¢ > 0, set f. := f — f—e.
Then f. = —e < 0, and since f is (T, P)-invariant (the proof is easy and left
to the reader),

<0.

lim sup Sulf) _ f—¢e=limsup Sulfe)
n—00 n n—00 n

Sn(f)

n

Sulf)

n

Thus, € being arbitrary, limsup,,_, < f Similarly, liminf,,_,

3

We now move on to the proof of the claim. For n € N* and = € X, let
Fo(z) == max{Sp(f)(z) : k=1,...,n},
Foo(z) = lim, o Fl.(z) € RU {00}, and A := {F, = oo}. Clearly
Su(f)

limsup ——= <0
n—oo n
on X \ A and it suffices to prove that P(A) = 0. Now observe that F,, 1 —
F,oT = f—min(0, F, o T). Consequently, A € Z and (F,;1 — F,, o T)
decreases to f — min(0, Fy, o 7). In particular, by monotone convergence,
limy, o0 B((Fyr — F 0 T)14) = E(f14) = E(f14). By T-invariance of P,
the left-hand side is nonnegative. Hence, if f < 0, P-almost surely, then
necessarily P(4) = 0. QED

The next theorem, known as the Ergodic Decomposition Theorem, shows that
every invariant measure on a Borel subset of a Polish space equipped with
the Borel o-field can be written as a “sum” of ergodic measures.

Theorem 4.43 (Ergodic Decomposition Theorem) Let M be a Borel
subset of a Polish space, with Borel o-field B(M). Let T : M — M be a
measurable transformation. FEvery T-invariant probability measure P can be
decomposed as

P() = / Pla.) Bldo)

where P is a Markov kernel on (M,B(M)) such that P(z,-) is ergodic for
P-almost every x.
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Before proving the Ergodic Decomposition Theorem, we state without
proof a lemma that can be deduced from Theorem 10.2.2 in [21] and the
Monotone Class Theorem in the appendix.

Lemma 4.44 Let M be a Borel subset of a Polish space, with Borel o-field
B(M). Let P be a probability measure on (M,B(M)), and let A be a sub-
o-field of B(M). Then there erists a Markov kernel P on (M,B(M)) such
that for every f € B(M), Pf is a representative of E(f|A), i.e., Pf is A-
measurable and B(LoAPf) =E(1af) for every A € A.

Proof [Theorem 4.43] Recall that Z denotes the o-field of T-invariant
sets in B(M). By Lemma 4.44, there is a Markov kernel P on (M, B(M)) such
that for every f € B(M), Pf is a representative of E(f|Z). This yields

P(A) = E(E(1,4|T)) = / P(z, A) P(dz), VYA e B(M).

M

As a subset of a separable metric space, M is separable (see Exercise 4.45 (i7)
below). Proposition 4.5 implies the existence of a countable family { f,, }nen C
Cy(M) such that for every p,v € P(M), p = v if and only if uf, = vf,
for all n € N. For every n € N, Pf, is a representative of E(f,|Z), and
x— P(x, T7*("))fn = P(fnoT)(x) is a representative of E(f, o T|Z). Since P
is T-invariant, we have E(f,|Z) = E(f, o T|Z) for every n € N, hence P(z,-)
is T-invariant for P-almost every z.

To show that P(z,-) is ergodic for P-almost every x, we follow the proof of
Theorem 6.2 in [24]. Since M is a separable metric space, the o-field B(M) is
countably generated, i.e., there is a countable family of sets { A, },en such that
B(M) = 0(A, :n € N) (see Exercise 4.45 (4ii)). As a result, L'(M, B(M),P)
is separable (see parts (i) and (ii) of Exercise 4.46 below). Since the set
{14 : A € T} is contained in L'(M,B(M),P), it is also separable in the
L'-topology, so there is a countable family {A, },en C Z such that for every
A € T and for every € > 0, there is n € N with P(AAA,) <e.

Let Zy := o(A, : n € N). By definition, Z; is a countably generated
sub-o-field of Z. Moreover, Z; and Z are P-equivalent, i.e., for every A € 7
there is B € Zy such that P(AAB) = 0 (see Exercise 4.46 (iii)). As Z need
not be countably generated (see Exercise 4.48 below), we will work with Z; in
the remainder of the proof. Applying Lemma 4.44 to Z;, we obtain a Markov
kernel Q on (M, B(M)) such that for every f € B(M), Qf is a representative
of E(f|Zy). Let {fn}nen C Cyo(M) be as above. For n € N, consider the
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function h,, := Qf,. Since Z and Z, are P-equivalent, E(f,|Z) = E(f,.|Zo). As
a result, there is M' € B(M) such that P(M') = 1 and for every z € M',
P(x,-) is T-invariant and

hn(x) = P(x,:) fn, ¥né€N.

Hence, Q(z,-) = P(x,-) is T-invariant for every x € M'. By Birkhoff’s Er-
godic Theorem 4.42, there is M? C M such that P(M?) = 1 and for every
x € M?,

N—-1
1 1
Jim ; fuTH(x)) = hy(z), VneN.

And as both Q(+, A,,) and 14, are representatives of E(14, |Zp), there is M3 C
M? such that P(M?3) = 1 and Q(z, A,) = 14, () for every x € M3 and n € N.
Finally, as Q(-, M?) is a representative of E(1,3|Zy) and as P(M?) = 1, there
is M* C M? such that P(M*) =1 and Q(x, M?) =1 for every x € M*.

Let us show that Q(x,-) is ergodic for every z € M*, which will complete
the proof of the Ergodic Decomposition Theorem. Fix 2 € M* and A € T.
In light of Proposition 4.36, it is enough to show that Q(z, A) € {0,1}. If
Q(z, A) =0, we are done. If Q(x, A) > 0, consider the probability measure

Q(z, AN B)
Qz,A)
Since v(A) = 1, it suffices to show that Q(z,-) = v, which will follow from

v(B) = B e B(M).

ho(x) =vf,, VYneN. (4.13)

[x] := ﬂ A.

Aelp:xeA

Set

By part Exercise 4.47 (i) below, one has
2= ) 4.0 [) 4 (4.14)
n:x€An n:x¢ An

and [z] € Zy. Fix n € N. Since h,, is Zp-measurable, it is constant on the set
[z] by Exercise 4.47 (ii). Therefore, we have for every y € [z] N M3

N—o0

) = haly) = Tim S Fu(T¥()).
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Since x € M3, the representation of [z] in (4.14) implies Q(z,[z]) = 1 and
thus Q(z, [x] N M?) = 1. Since Q(z,-) is T-invariant, another application of
Birkhoff’s Ergodic Theorem then yields that the constant h,(z) is a repre-
sentative of Eq..)(fn|Z), where Eg(,,.) denotes expectation with respect to
Q(z,-). Consequently,

() Qs A) = Eogony(Lahn(2)) = Eoony(Lafi) = / Lu(:)(2) Q. dz).

Dividing both sides by Q(z, A) gives (4.13). QED

Exercise 4.45 |Properties of separable metric spaces| Let (M,d) be a sep-
arable metric space.

(i) Let D C M be countable and dense. Show that {B(z,r): z € D,r € Q% }
is a basis for the topology on M, where B(x,r) stands for the open ball
with center x and radius 7.

(ii) Let A be any subset of M. Show that A with the metric induced from
M is itself a separable metric space.

(iii) Show that the Borel o-field B(M) is countably generated.

Exercise 4.46 For an arbitrary probability space (2, F,P), prove the fol-
lowing statements:

(i) If F is countably generated, then (2, F,IP) is separable, i.e., there is a
countable family D C F such that for every A € F and € > 0 there is
B € D with P(AAB) < e.

(ii) If (2, F,P) is separable, then L'(Q2, F,P) is a separable metric space.

(iii) If (2, F,P) is separable, then for every A € F there is B € (D) such
that P(AAB) = 0.

Exercise 4.47 Let (€2, F) be a measurable space, let {A,},en € F be a
countable family of sets, and let A :=o(A, : n € N). For z € (2, set

[SE]A = m A.

AcA:ixeA
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(i) Show that for every x € €,
Zla= () 4N () A
n:x€An n:x¢An

and deduce that [z]4 € A.

(ii) Let f: Q — R be A-measurable and let € Q. Show that f is constant
on [z] 4.

The next exercise shows that Z, the o-field of T-invariant sets, need not
be countably generated.

Exercise 4.48 Consider the irrational rotation 7, of Exercise 4.37 with «
irrational. Let Z be the o-field of T, -invariant sets. Use the formula from
Exercise 4.47 (i) to show that Z is not countably generated, even though
B(S') is.

4.4.2 Application to Markov chains

Consider now the canonical chain introduced in Remark 1.7 in Section 1.2.1.
Let © : MY — MY be the shift operator defined by ©(w), 1= w,41 and let
P, be the law of the canonical chain with initial distribution v and kernel P.
Recall that P, is a probability measure over M" characterized by (1.5).

Proposition 4.49 (i) P, is ©-invariant if and only if v € Inv(P).

(ii) Let v € Inv(P) and let h € L*(P,) be (O,P,)-invariant. For x € M such
that h € LY(P,), let

Then

(a) h(w) = h(wy), P,-almost surely;
(b) h is (P,v)-invariant.

(iii) P, is O-ergodic if and only if v is P-ergodic.
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Proof (i). This follows easily from the definitions.

(i1). Let h € L'(P,) be (O, P,)-invariant. For n € N, set, h,, := E,(h|F,).
By Doob’s martingale convergence theorem (Theorem A.7), h, converges
P,-almost surely, hence in probability, to h. In particular, for all € > 0,
limy, 00 Py (|Ans1 — hn| > €) = 0. By (©,P,)-invariance of h and by the
Markov property from Proposition 1.9,

hy = E,(hoO"|F,) = E,, (h) = h(wn).

Thus, B B
P,(|hns1 — ha| > €) = Pu(|h(wni1) — h(wn)| > €). (4.15)

Since v € Inv(P), (i) implies that P, is O-invariant. The expression on the
right-hand side of (4.15) thus equals P, (|h(w;) — h(wg)| > €), which proves
that h, = hg = h. Also, by the Markov property, Ph(z) = E.(Ex,(h)) =
E.(E.(h o ©|F))) = E.(ho©). And as h is (O,P,)-invariant, we have for
v-almost every x € M that E,(h o ©) = h(z).

(7ii). Let v be P-ergodic. We will show that every (©,P,)-invariant func-
tion h € L'(P,) is P,-almost surely constant. In particular, every (©,P,)-
invariant set has P,-measure 0 or 1, so P, is ©-ergodic by Proposition 4.36.
If h € LY(P,) is (©,P,)-invariant, then A is v-almost surely constant by (i7)
and P-ergodicity of v. By (it), this proves that h is P,-almost surely constant.

Conversely, assume that P, is ©-ergodic. Let A be a (P, 1/) 1nvar1ant set.
Set A := {we MY :w e A}. Then[P(Aﬂ@ = [,v(dz)P(z, A) =
v(A) = IPV(A). This shows that A is (0,P,)- 1nvar1ant. Hence V(A) = IP’V(A) €
{0,1}. QED

Theorem 4.50 Let P be a Markov kernel, pu € Inv(P), and h € L'(P,,). Then
there exist a set N € B(M) and a function h € L*(u) such that p(N) = 1
and, for all x € N,

P,-almost surely. If ju is ergodic, then h(z) = E,(h).

Proof By Birkhoff’s Ergodic Theorem, %Zz;éh o ©F(w) converges P,-
almost surely to a (O, P, )-invariant function € L'(P,). According to Propo-
sition 4.49 (i), h(w) = h(wp), P,-almost surely, where h(wg) := E,,(h). To
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conclude the proof, we use the fact that P,(-) = [}, P.(-)u(dz). QED

Exercise 4.51 [Skew product chains| Let M, N be two metric spaces and

T:Mx N — N,

(z,y) = T(y)

a measurable map. Let (X,,) be an M-valued Markov chain defined on some
filtered probability space (2, F,F,P) and let Yy € N be an Fy-measurable
random variable. Consider the stochastic process (Y;,) defined by

Yn+1 = TX‘/L(Yn)'
(i) Show that (X,,Y,) is a Markov chain on (92, F,F, P).

(ii) Suppose p € P(M) is an invariant probability measure for (X,) and
v € P(M) is T,-invariant for all € M. Show that p ® v is invariant
for (X,,Y,).

(iii) We suppose here that p is the unique invariant probability measure of
(Xn).

(a) Give an example where v is T,-ergodic, but p ® v is not.

(b) (inspired by Lemma 2.1 in [29]) Suppose that p ® v is ergodic for
(Xn,Yy) and that for all z € M, T, is 1-Lipschitz, i.e.,

d(To(y), To(2)) < d(y, 2)

for all x € M,y,z € N. Show that for all f € L,(M x N), p-almost
all x € M, and all y € supp(v),

By(lim -3 F(Xe Vi) = (n@ v)(7) = 1
k=1

Deduce that, if supp(v) = N, then (X,,,Y,) is uniquely ergodic.

(iv) Using (4i7) show that the map defined in Exercise 4.40 is uniquely er-
godic. Deduce that for all § irrational, the sequence (n?8),>; is equidis-
tributed on S'. Hint: Choose 8 = 2a. See 28], Corollaries 1.12 and
1.13.
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Exercise 4.52 |[Markov rotations| With the notation of the preceding Exer-
cise 4.51, we assume here that M = {1,...,n}, N = S, (X,,) is a Markov
chain on M whose transition probability matrix K is irreducible, and that
for all i € M, T;(y) = y + «; for some «; € S*.

A circuit for K is a sequence (i, . ..,i4) of d > 1 distinct points such that
K(ig,ip41) > 0for k=1,...,d and iq.1 = ;. The purpose of this exercise is
to show that the chain (X,,,Y,,) is uniquely ergodic if and only if there exists
a circuit (i1, ...,74) such that a;, + ...+ «;, is irrational.

(i) (preliminary) Let D be a diagonal matrix whose entries 6y,...,6, are
complex numbers having modulus 1. Consider the linear equation

Ku = Du (4.16)
with v € C". Assume that u € C" is a nonzero solution to (4.16). Show
that:

(@) |u| = |w| fori=1,...,n;
(b) Kij >0= U; = QZUZ,
(c) For every circuit (iy,...,4q), 0; ... 0;, = 1.

Prove that there exists a nonzero solution to (4.16) if and only if for
every circuit (i1,...,4q), 0;, ...0;, = 1.

(ii) Let p be the unique invariant probability measure of (X,) and f
(f1s---s fn) € L2(u®N). Set f(x) = 3 4cpuj(k)e* ™ with 37, u;(k
co. Show that Pf = f if and only if Ku(k) = D*u(k) for all k € Z,
where D is the diagonal matrix with entries e*™1 ... e*™ and u(k)
(u;(k))j=1,. n. Here P stands for the kernel of (X,,Y,).

2 <

N—

(iii) Prove the desired result.

The next theorem is the Ergocic Decomposition Theorem for a Markov kernel.

Theorem 4.53 Let M be a Borel subset of a Polish space and let P be a
Markov kernel on (M,B(M)). Every P-invariant probability measure p can
be decomposed as
u()= [ Q) uldx), (4.17)
M
where Q is a Markov kernel on (M,B(M)) such that Q(z,-) is P-ergodic for
p-almost every x.
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Proof Let Z(P,p) be the collection of (P, pu)-invariant sets in B(M). In
Exercise 4.54 below, you are asked to show that Z(P,u) is a o-field. By
Lemma 4.44, there is a Markov kernel @ on (M, B(M)) such that for every f €
B(M), Qf is a representative of E,(f|Z(P, 1)), where E,, denotes expectation
with respect to p. In complete analogy to the proof of Theorem 4.43, this
yields the representation in (4.17).

It remains to show that Q(z,-) is P-ergodic for p-almost every » € M.
Let (M,d) be a Polish space such that M is a Borel subset of M. The space
MY equipped with the metric

ZQ_Z C%Oéz)
1+ d(w;, o)

is Polish as well; the corresponding Borel o-field equals the product o-field
B(M)®N. Thus, MY is a Borel subset of the Polish space MY. By Proposition
4.49 (i), the Markov measure P, on (MM, B(M)*®N) is O-invariant. Hence,
by the Ergodic Decomposition Theorem 4.43, there is a Markov kernel P on
(MY, B(M)®Y) such that

Pu() = | Pw,:) Pu(dw),

MN

and P(w,-) is O-ergodic for P,-almost every w € M. Moreover, as seen
in the proof of Theorem 4.43, Pf is a representative of E,(f|Z) for every
f € B(MY), where Z is the o-field of O-invariant sets in B(M)®N. We will
now relate the Markov kernels () and P by showing that P ,-almost surely,

P(w,") = Pgu,) ()

Let {F,}nen C Cyo(MY) such that for every P,Q € P(MY), P = Q if and
only if PF,, = QF,, for all n € N. In Exercise 1.8, we introduced the canonical
projections m, : MY — M™ W — (w;)i=o.. .. We use my to define the
o-field

T ={mg"(A): A€ T(Pu)}.

Claim: The o-fields J and Z are P,-equivalent.
Proof of the claim: Let S € Z and define ¢(z) := P,(S5) and

A={zeM: o) =1}
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By Proposition 4.49 (i7)(b), ¢ is (P, p)-invariant. Since every x € A such that
o(x) = Py(z) satisfies P(z, A) = 1, it follows with Exercise 4.54 (i) that
A € Z(P, j1), and hence 7, *(A) € J. By Proposition 4.49 (ii)(a),

Ls(w) = ¢(wo)
for P,-almost every w. In particular, ¢(wo) € {0, 1}, P,-almost surely, so
1S — 17_(_071(14)7 P#—a.s-

Hence,
P#(SAwal(A)) = 0.

Let us now fix a set S € J. Then there is A € Z(P, u) such that S = 7, ' (A).
Set S = AN = N, oy (A", A simple induction argument using A €
Z(P, ) implies that P, (m, '(A""!)) = u(A) for all n € N. Continuity of P,
from above yields

P(3) = u(A) = P,(S).
Since S C S, it follows that IP’M(SAS’) = 0. And in the proof of Proposition

4.36, it was shown that for every S € Z(P,u) there is S € T such that
P,(SAS) = 0. This completes the proof of the claim.

We now complete the proof of Theorem 4.53. Since Z and J are P,-
equivalent, we have for every n € N that the representatives of E,(F},|Z) and
the representatives of E,(F,|J) are representatives of E,(F,|0(Z,J)). The
function PF), is a representative of E,(F},|Z) and thus also of E,(F,|0(Z,J)).
Let

Fo:={my (A): Ae B(M)}.
For n € N, consider the functions
EF,: M =R, z— E.(F,)

and
Gn: MY = R, wrs Fy(wp).

By the Markov property from Proposition 1.9, G, is a representative of
E,(F,|Fo). As a result,

B (FolT) = Eu(Bu(FnlFo)|T) = Eu(GnlT ).
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Next, observe that w — QF,(w) is a representative of E,(G,|J), and thus
also of E,(F,|J) and E,(F,|0(Z,J)). This shows that

1 =P, ({w e MM . PE,(w) = QE(WO)})
=P, ({w € M : P(w, ) Fy = Pouon B }) »
and hence
PM ({w S M"Y P(wv ) = PQ(WO,')}) =L

Let S € B(M)®N such that P,(S) =1 and for every w € S, P(w, ) = Pow,)
and P(w,-) is ©-ergodic. By Proposition 4.49 (iii), Q(wo, ) is P-ergodic for
every w € S. Since S € B(M)®N and since 7 is continuous, the set my(S)
is analytic (see Theorem 13.2.1 in [21]). Theorem 13.2.6 in [21] implies that
there are A, N € B(M) and B C N such that u(N) =0 and 7y(S) = AU B.
It follows that

1 =P,(S) <Pu(mg (AUN)) = w(AUN) < p(A) + u(N) = p(A),
which completes the proof. QED

Exercise 4.54 Let
Z(P,pu) ={AeBM): 1,=P(-,A) p-as.}
be the collection of (P, i)-invariant sets in B(M ).
(i) Show that
Z(Pp)={AeBM): p{reA: P(x,A°) >0}) =0}.

(ii) With the help of the representation in part (i), show that Z(P, ) is a
o-field.

4.5 Continuous time: Invariant measures for
Markov processes

Let {P,}i>0 be a Markov semigroup on M, as defined in Section 1.3. A
probability measure p € P(M) is called invariant for {P,}i>o if it is invariant
for P, for all t > 0, ie., uP; = p,vt > 0. As shown by the following
simple example, being invariant for some P; is not sufficient to be invariant

fOI' {Pt}tZO'
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Example 4.55 Consider the deterministic continuous-time rotation on M =
R/Z, given by X} = (v +t) mod 1. The associated semigroup is given by
P f(x) = f(X[). Its unique invariant probability measure is the uniform
measure on M. However, for all £ € N* and x € M, %Zk_ol Og+i/k 1S invariant
for Pl/k~

1=
Nevertheless, existence of an invariant probability measure for some P, always

implies existence of some invariant probability measure for {P;};>.

Proposition 4.56 Suppose p is an invariant probability measure for Pr for
some T > 0. Then

1 /T
= — P.()d
pr T/o pPs(+) ds

is invariant for {P;}i>o.

Proof For all 7 >0 and f € B(M),

T T THr T
/ :uPsPTf ds = / MPS-H"f ds = / ;uPsf ds = / MPsf ds,
0 0 r 0

where the last equality follows from the fact that, by Pr-invariance, the map
s +— puPsf is T-periodic. QED

We now introduce a Markov kernel whose invariant probability measures co-
incide with the invariant probability measures of {P,}. This kernel is usually
called the 1-resolvent (or simply the resolvent of {P,}:>¢. It is defined, for all
f e B(M), as

Gf = /Ooo e 'P.f dt. (4.18)

Proposition 4.57 A probability measure u is invariant for G if and only if
it is invariant for {P;}i>o.

Proof Suppose uG = u. Then, for all f € B(M) and s > 0,

pPf =nGPf = [ [T IR @) dt plde) = [ eup ar
M JO S

This shows, by a simple bootstrap argument, that s — pP,f is C* and that
L 1P, f|s—o = 0. Thus

d d

d
Eﬂptf = %Mpt+sf|s:0 = EMPS(Ptfﬂs:o =0.
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This proves that uPsf = puf. The converse statement is obvious. QED

One of the main interests of Proposition 4.57 is that it allows to extend
easily certain notions introduced for discrete-time chains to continuous-time
processes. For instance, an invariant probability measure for { P, };>¢ is ergodic
for {P;}i>0 if it is ergodic for the Markov kernel G, as defined in Section 4.2.2.
With such a definition, the results of Section 4.2.2 as well as the Ergodic
Decomposition Theorem 4.53 apply. Another consequence is the continuous-
time version of the Ergodic Theorem given below as Proposition 4.58.

We first define the notion of a progressive process. A continuous-time
process (X¢)i>o defined on a filtered probability space (£, F,F,P) is called
progressively measurable (with respect to F), or simply progressive, if for all
t > 0, the map (s,w) € [0,t] X Q — X (w) € M is measurable with respect
to B([0,t]) ® F;. A progressive process is obviously adapted. Conversely, an
adapted process having right-continuous (or left-continuous) paths is progres-
sive (see, e.g., [45] for a proof).

Proposition 4.58 Suppose (X;)i>o is a progressive Markov process with semi-
group {Pi}i>o. Let Uy, Us,... be a sequence of independent identically dis-
tributed random variables having an exponential distribution with parameter
1 and independent of (Xi)i>0. Set Ty = 0,141 = Tp, + Upy1 forn >0, and
Y, = X, forn > 0. Then

(1) The process (Y,,) is a Markov chain with kernel G;

(ii) For all f € B(M),

t—oo t

L 1 [t)-1
hm—/o f(Xs) ds—mng(Yk):O

almost surely, where [t] := max{z € Z : z < t};

(iii) In particular, if p is ergodic for {P;}1>0 and Xq is distributed according
to u, then
1 t
fim 7 [ F0X) ds = u(f)
0

t—o00

almost surely.
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Proof (i). Let g,ho,...,h, € B(M). Set £, = {(t1,...,t,) € R} :t; <
to < ...<t,}. By Fubini’s Theorem and the Markov property,

E(9(Ynt1)ho(Y0) - .. hn(Yn))

_ / </R+ E(g( X0 ) ho(Xo)h1 (X0,) - hn(X0,)) e du> e dty L dt,,
_ /Z n ( /R BRI X0) - (X)) du> et dt, . dt,

_ / E(Go(Xo ho(Xo)ha (Xo,) - o (Xo e dty .. db,

n

— E(Gg(Ya)ho(Y) . ha(Ya).

(i7). Fix f € B(M) and let t = (tx)r>1 be a deterministic increasing
sequence of positive numbers such that ¢, 1 0o and limsup,, o, = > "p_; (fe1 —
tr)? < oo. Let

tn n te—tp—1
MrtL - / f(Xs> ds — Z/ Psf<th_1) dS7
0 1 70

with the convention that ty = 0. Then the sequence (M}!),>o is a martingale
with respect to {Fy, tnso such that (M), 1 — (M), < (tni1—t0)?]| f]|%- Thus,
by the strong law of large numbers for martingales (see Theorem A.8),

t
n

lim — =0
n—oo M
almost surely.

Let now oo = {t € RY" : 0 < #; <ty ...} be equipped with its Borel
o-field and let v denote the law of (7),),>1. By what precedes, for v-almost
every t € Y, one has lim,,_, % = 0 for P-almost every w € ). Thus, by
Fubini’s Theorem, the convergence of Mf(w)/n to 0 holds for v ® P-almost
every (t,w) € ¥ x Q.

The sequence (M) ),>o defined as

M = i (/OTk_Tk_l Pf(Yi-1) ds — Gf(Ykl))

k=1



4.5. CONTINUOUS TIME: INVARIANT MEASURES FOR MARKOV PROCESSES99

is a martingale with respect to the filtration {G, }n>0, where G,, = o((Y%, T}) :
0 < k < n). Hence, relying again on the strong law of large numbers for
martingales, lim, ., M/ /n = 0 almost surely. Since lim,,_,, T,,/n = E(T}) =
1 holds P-almost surely, the desired convergence follows.

(23i). If p is ergodic for { P} and Xy = Y{ has law pu, then

o1
lim —
n—oo M

> GI(i) = uGf =pf
k=0

almost surely by application of Theorem 4.50. QED

Notes

The proof of the Ergodic Decomposition Theorem 4.53 for a Markov kernel
is taken from unpublished lecture notes by Yuri Bakhtin [4].
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Chapter 5

Irreducibility

5.1 Resolvent and &-irreducibility

Given a (nonzero) Borel measure £ on M, P is called &-irreducible if for every
Borel set A C M and every x € M

£(A) > 0= 3k>0,Px, A) > 0.

Equivalently,
E(A) > 0= R,(z,A) >0

where R,(.,.) is the Resolvent Kernel defined as

R.(z,A) = (1—a) ZakPk(x, A)

£>0
for some 0 < a < 1.

Remarks 5.1

(i) Let (X,) be a Markov chain with kernel P and (A,) a sequence of i.i.d.
random variables independent from (X,,) having a geometric distribu-
tion with parameter a, i.e.,

P(A; =k)=d"(1 —a), k€EN;

Then R, is the kernel of the sampled chain Y, = X, with
i=1

101
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(ii) P and R, have the same invariant probability measures;

(iii) If P is &-irreducible, then for all n € Nyx € M, and A € B(M) such
that £(A) > 0 there exists k > n such that P*(z, A) > 0.

Exercise 5.2 (i) Check the assertions of the preceding remark.

(ii) Using the notation of Remark 5.1, show that for all m € N*, T,,, has a
negative bimomial distribution with parameters (a,m), i.e.,

oy [ k+m—1 K m
P(T, =k) = ( m— 1 )a (1—a)
for all k € N. Let Y, = Xr,,,,. Show that (Y,)*),, is a Markov chain with
kernel R

Example 5.3 (Doeblin condition) Suppose that, for some nonzero mea-
sure &, R,(z,A) > {(A) for allz € M and A € B(M). Then P is {-irreducible.

Example 5.4 (Countable chains) If M is countable and P is irreducible
in the usual sense (see Chapter 2), then it is &-irreducible for &€ = ) d, .

Theorem 5.5 Suppose that P is &-irreducible. Then P admits at most one
tnvariant probability measure.

Proof The assumption implies that & is absolutely continuous with respect
to every invariant probability measure, but since distinct ergodic measures
are mutually singular (Proposition 4.29), there is at most one such probability
measure. If M is a Borel subset of a Polish space, the Ergodic Decomposition
Theorem 4.53 implies the result.

For a general M (which does not even have to be a metric space but just
a measurable set), we cannot rely on ergodic decomposition but can proceed
as follows. Let us first observe that any two invariant probability measures
i, v are equivalent, i.e., their null sets coincide. Indeed, by Lemma 4.26, the
singular part of v with respect to p is either 0 or a nonzero invariant mea-
sure. The latter case is impossible, because £ is absolutely continuous with
respect to any invariant probability measure. Thus, v = hu with h € L'(u).
As shown in the proof of Proposition 4.29 (i), for all @ > 0 the measure
ta = (h A a)u is also invariant. Thus (a — h A a)u is either 0 or invariant. In
the first case, u({h > a}) = 1. In the second, case u({h > a}) = 0 because
(a — h A a)p and p, both being invariant, are equivalent. This proves that h
is p-almost surely constant. Thus p =v. QED
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5.2 The accessible set

With the exception of a few particular cases (such as Examples 5.3 and 5.4) it
is in general not an easy task to verify that a Markov chain is &-irreducible. A
purely topological notion of irreducibility is defined below. Combined with the
existence of certain points satisfying a local Doeblin condition (see Chapter
6), this will ensure &-irreducibility.

Recall that the (topological) support of a measure p is the closed set
supp(u) defined as the intersection of all closed sets I C M such that u(M \
F) = 0. It enjoys the following properties:

(a) u(M \ supp(p)) = 0;

(b) x € supp(p) if and only if ;(O) > 0 for every open set O containing .

Exercise 5.6 Prove that assertions (a), (b) above hold in any separable met-
ric space. Use the fact that such a space has a countable basis of open sets
(see Exercise 4.45 (7).

We define the set of points that are accessible from = € M (for P) as
Iy = supp(Ru(z,)).

Equivalently, y is accessible from x if for every neighborhood U of y there
exists k > 0 such that P*(z,U) > 0.

For C C M, we let I'c = N eI, denote the set of points that are accessi-
ble from C' and I' := I"j; the set of accessible points. Note that I'¢ is a closed
(but possibly empty) set. We say that P is (topologically) indecomposable if
I # 0.

Remark 5.7 If P is &-irreducible, then it is indecomposable and

supp(§) C T

The converse implication is false in general (see Theorem 5.5 and Remark
5.10) but true for strong Feller chains (see Proposition 5.17).

Proposition 5.8 Assume P is Feller and topologically indecomposable. Then

(i) P(z,I') =1 for all x € T}
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(i) T C supp() for all p € Inv(P);
(iii) If ' has nonempty interior, supp(p) = I for all p € Inv(P);
(iv) If T is compact, there exists pu € Inv(P) such that supp(u) =T

(v) If I' is compact and g : I' — R is a continuous and harmonic function
on I (i.e., Pg(x) = g(z) for all x € '), then g is constant.

Proof (i). Let z € I'. Tt is enough to prove that supp(P(x,.)) C I'. Let 2* €
supp(P(z,.)) and O an open set containing z*. Then § := P(z,0) > 0. By
Feller continuity and the Portmanteau Theorem 4.1, V :={y € M : P(y,0) >
d/2} is an open set containing x. Let z € M and k£ € N be such that
P*(2,V) > 0 (recall that z € T'). Then

PR 0) > / Pz, dy) P(y, 0) > gpk(z,V) > 0.
%
This proves that =* € I'.

(77). Let * € T',U a neighborhood of x, and g an invariant probability
measure. Then p(U) = [ u(dy)R(y,U) > 0.

(#44). By invariance, (') = [, p(dz)R(2,T)+ [p. p(dz)R(x,T), and since,
by (i), R(z,I') = 1 for all z € T, it follows that [.. u(dz)R(x,I') = 0. If
furthermore [ has nonempty interior, then R(z,I') > 0 for all x, so that
w(I'°) = 0. This proves that supp(u) C I

(iv). By (7), Feller continuity, and Theorem 4.20, there exists an invariant
probability measure p with u(I') = 1; hence the result.

(v). By (i) we can assume without loss of generality that I' = M. By
compactness, accessibility, and Feller continuity, for every open set O C M
there exists a finite cover of M by open sets Uy, ..., Uy, integers ny, ..., ng,
and 0 > 0 such that P"(z,0) > ¢ for all x € U;, 1 < i < k. Thus
P,(t0 > n) < (1 —6) for n = max(n4,...,ny), hence P.(10 > kn) < (1 —9)k
by the Markov property. Thus P,(70 < co) = 1. The assumption that g is
harmonic makes (g(X,,)) a bounded martingale. Tt then converges P -almost
surely. If g is nonconstant, there exist a < b such that {g < a} and {g > b}
are nonempty open sets, and, by what precedes, (X,,) visits infinitely often
these sets P,-almost surely, a contradiction. QED

Remark 5.9 The inclusion I' C supp(i) does not require Feller continuity.
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Remark 5.10 The inclusion I' C supp(p) may be strict when I' has empty
interior as shown by the following exercise. Other examples where the inclu-
sion I C supp(p) is strict can be found in [8] and [9].

Exercise 5.11 Let F': {0,1} x [0,1] — [0, 1] be the map defined by
F(0,z2) = ax, F(1,2) = bz(1l — x),

where 0 < a < 1 and 1 < b < 4. Let (X,,) be the Markov chain on [0, 1]
defined by X,,11 = F(0,41, X,,), Xo = x > 0, where (6,,) is an i.i.d. Bernoulli
sequence with distribution (1 — p)dy + pd; for some 0 < p < 1. Show that
I' = {0} and that when (1 —p)loga + plogb > 0, there exists an invariant
probability measure u such that u({0}) = 0, hence supp(u) ¢ T

In case P is uniquely ergodic on a compact set, it is topologically inde-
composable.

Proposition 5.12 Suppose M is compact, P is Feller and uniquely ergodic
with Inv(P) = {u}. Then P is indecomposable and I' = supp(u).

Proof By Proposition 5.8 it suffices to prove that I' is nonempty. By Theo-
rem 4.20, 3" | P*(z,-) = p for all z € M. Hence for any open set O such
that 4£(O) > 0, liminf, o = >°7_| P*(2,0) > 0. Thus R(z,0) > 0. QED

A partial converse to Proposition 5.12 is the following result. Recall that
Ly(M) is the set of real-valued bounded Lipschitz functions on M.

Proposition 5.13 Assume that M s compact, P is Feller, I' has nonempty
interior, and for all f € Ly(M) the sequence (P"f)y,>1 is equicontinuous.
Then P is uniquely ergodic.

Proof By equicontinuity of (P"f),>1, the sequence (f,),>1 defined by

7, =z
n

is also equicontinuous, hence relatively compact in Cy(M) by the Arzela-

Ascoli Theorem. Let g be a limit point of (f,,),>1. Then g is continuous and
Pg = g. By Proposition 5.8 (v), g|r is a constant C;. Let now p and v be two

invariant probability measures. Then puPf = pf implies that u(f,,) = p(f).
Therefore pu(f) = pu(g) = p(glr) = Cy. Similarly v(f) = Cy. This proves that

pw=v. QED
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Exercise 5.14 Deduce from Proposition 5.13 that the irrational rotation 7,
(see Exercise 4.37) is uniquely ergodic.

Exercise 5.15 Let M be a compact space. Using the notation of Chapter 3
and Section 4.3.1, consider the Markov chain on M recursively defined by

Xpir = Fp . (X0).

n+1(

Assume that © is a metric space, (0, z) — Fy(x) is continuous, and for each
0 € ©, Fy is Lipschitz with Lipschitz constant lg. Assume furthermore that

(i) [lem(df) <1 (compare with the condition of Theorem 4.31);

(ii) For every x € M and every open set O C M, there exists a sequence
01,...,0, with 6; € supp(m), 1 <i <n, such that fy, o... fp (x) € O.

Show that (X,,) is uniquely ergodic.

Remark 5.16 It is important to emphasize here that the condition that I'
has nonempty interior is not sufficient to ensure uniqueness of the invariant
probability measure. For instance, Furstenberg, in a remarkable work [29]
(see also [48]), has shown that for a convenient choice of @ € R\ Q and 3 a
smooth map on S! := R/Z, the diffeomorphism

T:S" % 8" = 8" x S,

(z,y) = (z + a,y + B(x))

is minimal (i.e., all the orbits are dense) but not uniquely ergodic.

Another example is given by the Ising Model on Z2. This is a Feller Markov
process on the compact set M = {—1, 1}Z2 for which all points are accessi-
ble (i.e., I' = M) and which admits (at low temperature) several invariant
probability measures. See Example 2.3 in [33] for a discussion and further
references.

Recall that a function f : M — R is lower semicontinuous (respectively,
upper semicontinuous) at a point xo € M if

f(zo) < liminf f(x), resp. f(xo) > limsup f(x).

T—T0 T—x0

Clearly, f is continuous at a point xo € X if and only if f is both upper and
lower semicontinuous at xg.
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Proposition 5.17 Suppose that P is topologically indecomposable and that
for some x* € I' and all A € B(M), v — P(x,A) is lower semicontinuous at
x*. Then P is &-irreducible for € = P(x*,.). In particular P admits at most
one invariant probability measure.

Proof Let A be such that P(2*, A) > 0. Then for all z € M there exist a
neighborhood O of z* and n > 0 such that P"(z,0) > 0 and P(y, A) > 0 for
all y € O (by lower semicontinuity of z — P(z, A) at z*). Thus P""'14(z) >
Jo P"(z,dy)P(y, A) > 0. QED

Note that the assumption that z — P(xz, A) is lower semicontinuous at z* is
automatically satisfied if P is strong Feller. Hence Proposition 5.17 gives a
practical tool to ensure that a strong Feller chain is uniquely ergodic. Another
result about strong Feller chains is the following.

Proposition 5.18 Suppose that P is strong Feller. Then
(1) Two distinct ergodic measures have disjoint support;

(ii) The support of an invariant non-ergodic probability measure is discon-
nected;

(iii) If M is connected and P has an invariant probability measure having
full support, then P is uniquely ergodic.

Proof (i). Let p,v be two distinct ergodic measures. By Proposition 4.29
they are mutually singular. Hence there exists a Borel set A C M such that
u(A) =1 and v(A) = 0. The set {xz € M : P(x,A) = 1} is closed (strong
Feller property) and has p-measure 1 because 1 = p(A) = [ u(dz)P(z, A).
Thus supp(p) C {zr € M : P(x,A) = 1}. Similarly supp(v) C {x € M :
Pz, M\ A) =1}.

(77). Let p be invariant and let A be such that P14 = 14, p-almost surely,
and 0 < p(A) < 1. Set f = P1ly. Then f(x) € {0,1} for p-almost every
x and, by the strong Feller property, f is continuous. Thus f restricted to
supp() takes values in {0, 1}. If now supp(u) is connected, then f restricted
to supp(p) is constant and p(A) € {0,1}. (di7) follows from (i7). QED
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5.2.1 Continuous time: accessibility

For a continuous-time semigroup {P;}:>o one defines, by analogy with the
discrete-time setting, the set of points that are accessible from = € M (for
{Pi}i>0) as

r,= SUpp(G(xa ))7

where G is the l-resolvent (see equation (4.18)).

Proposition 5.19 Suppose {P;}i>0 is weakly Feller and let x,y € M. Then
the following assertions are equivalent:

(1) The point y is accessible from x for {P;}i>o;
(ii) The point y is accessible from x for G
(iii) For every neighborhood U of y there exists t > 0 such that Py(x,U) > 0.

Proof Clearly (i) = (ii) and (i7) = (i77) because
)= [ P dt,
(= [ wons

where 7, (t) = e~ =1 /k!. To prove that (iii) = (i) suppose that Pi(x,U) > 0
for some t > 0. By the weak Feller property, Py (z,:) = Pi(z,-) as s | 0.
Thus, by the Portmanteau Theorem 4.1, liminf, o Pys(x,U) > 0. Hence
G(z,U) > 0. QED

5.3 The asymptotic strong Feller property

The asymptotic strong Feller property was introduced in [34]| by Hairer and
Mattingly to prove uniqueness for the invariant probability measure of the
Navier—Stokes equation on the two-dimensional torus, subject to degenerate
stochastic forcing. Before we define this property, we introduce some notation.

Let (M, d*) be a separable metric space, with P(M) the space of probabil-
ity measures on (M, B(M)). One important idea in this section is to consider
a whole family of metrics on M, but throughout, d* will be the metric that
gives rise to the topology on M, and in particular induces the o-field B(M).
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For any bounded metric d on M, we let Lip,(d) denote the set of B(M)-
measurable functions ¢ : M — R such that

lo(z) — o(y)| < d(x,y), Vrz,y€ M.

Notice that Lip,(d) contains all constant functions. If the metric d is contin-
uous with respect to the topology induced by d* and if B;(M) denotes the
Borel o-field with respect to d, then Lip,(d) is equal to the set of By(M)-
measurable functions ¢ : M — R such that |¢(z) — ¢(y)| < d(z,y) for all
x,y € M. For u,v € P(M), we define

ln=vla:="sup (up—vo).
¢€Lip, (d)
Boundedness of d guarantees that every function in Lip,(d) is bounded and
thus integrable with respect to any Borel probability measure on M.

Exercise 5.20 Let d* be bounded. Show that (u,v) — || — v||q+ defines a

bounded metric on P(M).

Remark 5.21 If 6(z,y) := 1,,, is the discrete metric, then

= vlis = glu— vl = gsup{lpf —vfl: f € B(M), | fllo <1},

where | — v| is the so-called total variation distance between p and v. The
latter will play a key role in Chapter 8.

We call a metric d on M continuous if it is continuous as a function from
M x M to [0,00), where M x M has the topology induced by the product
metric (d* * d*)((x,y), (z',y')) = d*(x,2') + d*(y,y’). Notice in particular
that d* itself is continuous. A sequence of metrics (d,),>1 on M is called
nondecreasing if for every n € N*,

dpi1(x,y) > dp(z,y), VYr,ye M.

Recall that 0(z,y) := 1,4, and that J, is the Dirac measure that assigns mass
1 to {x}.

Definition 5.22 (Hairer, Mattingly) We say that a Markov kernel P on
M is asymptotic strong Feller at x € M if there exist a nondecreasing se-
quence (ng)k>1 of positive integers and a nondecreasing sequence (dy)g>1 of
continuous metrics on M such that

lim di(y,z) =0(y,2), Yy,z € M,
k—o00
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and
inf {lim sup sup ||0, P — §, P ||q, : Uopen,z € U} = 0.

k—oco yeU
We call P asymptotic strong Feller if it is asymptotic strong Feller at every
xre M.

Since (di)g>1 is nondecreasing and converges to a bounded metric, each
metric d is, of course, bounded.

5.3.1 Strong Feller implies asymptotic strong Feller

In this subsection, we show that every strong Feller Markov kernel also has
the asymptotic strong Feller property. The proof of this statement makes use
of the ultra Feller property, which we now define. A Markov kernel P on
M is called ultra Feller if the mapping x — 0, P is continuous with respect
to the total variation distance (see Remark 5.21). In particular, every ultra
Feller Markov kernel is strong Feller. The following statement corresponds to
Theorem 1.6.6 in [32]. It is due to Dellacherie and Meyer, see [18].

Proposition 5.23 Let P and () be strong Feller Markov kernels on M. Then
the Markov kernel PQ) is ultra Feller.

The proof of Proposition 5.23 we present here is taken from [32|. Tt is an
adaptation of an argument due to Seidler. We begin by stating two lemmas.

Lemma 5.24 Let P be a strong Feller Markov kernel on M. Then there
exists m € P(M) such that P(x,-) < 7 for every x € M.

Proof Since M is separable, there is a dense sequence (z,,),>1 of elements
of M. We define the probability measure

(A) = iZ‘”P(zn,A), Ae B(M).

n=1

To obtain a contradiction, assume there is © € M such that P(z,-) is not
absolutely continuous with respect to w. Then there is A € B(M) such that
m(A) =0 and P(z,A) > 0. Let f := 1,4 € B(M). Since P is strong Feller,
Pf is continuous. We have Pf(x) = P(x,A) > 0. Since m(A) = 0, we have
0= P(x,,A) = Pf(x,) for every n € N*. But then continuity of Pf and the
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fact that (z,,) is dense in M imply that Pf = 0, a contradiction. QED

The following real-analysis lemma corresponds to Corollary 1.6.3 in [32].
Recall from the proof of Lemma 4.44 in Section 4.4 that a o-field F is called
countably generated if there exists a countable family of sets {A, },en such
that F = o(A, :n € N).

Lemma 5.25 Let (0, F,m) be a measure space such that F is countably gen-
erated. Let (¢,) be a bounded sequence in L>®°(Q, F, 7). Then there erist a
subsequence (¢n, )k>1 and ¢ € L>®(Q, F,m) such that

lim /qunk(x)f(x) m(dx) = /Q(ﬁ(x)f(x) m(dz), Yfe LY (Q,F, 7).

k—o0

Proof The space L>®(Q, F,7) being the dual of L'(Q, F,7) its unit ball
is compact for the weak™ topology by the Banach—Alaoglu Theorem. Fur-
thermore, the assumption that F is countably generated makes L'(Q, F, )
separable (see Exercise 4.46). Thus, the unit ball of L'(Q2, F, 7) is sequen-
tially compact for the weak™ topology. This proves the result. QED

We proceed to the proof of Proposition 5.23.

Proof |[of Proposition 5.23] Since @ is strong Feller, Lemma 5.24 yields
existence of a probability measure 7 on (M,B(M)) such that Q(z,:) < =
for every x € M. To obtain a contradiction, suppose that the kernel P() is
not ultra Feller. Then there are x € M and € > 0 such that for every open
neighborhood U of x,

sup |6, PQ — 6,PQ||s > ¢.
yelU

Forr >0and y € M, let B,.(y) :={z € M : d*(y,z) < r} be the open d*-ball
of radius 7 centered at y. Then for every n € N*, there is y, € By,(x) such
that

16:PQ — by, PQ|ls > €.
According to Remark 5.21,

sip  (PQé(x) — PQo(ya)) > 25, Vn € N,
PEB(M):[|¢]loo<1



112 CHAPTER 5. IRREDUCIBILITY

where the expression on the left-hand side denotes the total variation distance
between 0, P() and d,, PQ). As a result, there is a sequence (¢,),>1 in B(M)
such that ||¢n]le < 1 and

PQon(r) — PQon(yn) > 2e, Vn e N (5.1)

Since M is a separable metric space, Exercise 4.45 (i) implies that the o-
field B(M) is countably generated. And since (¢,) is a bounded sequence in
L>*(M,B(M), ), Lemma 5.25 implies that there exist a subsequence (¢, )g>1
and a function ¢ € L>*(M,B(M), ) such that

k—o0

lim /M b () () (d) = /M o) f(x) (da), Vf € L'(M, B(M), 7).

Since Q(x,-) < 7 for every x € M, we have that for every = € M there is
h, € LY(M,B(M), ) with Q(x,dy) = h,(y) 7(dy). Then, for every x € M,

lim Qo () = Qo().

To keep notation short, set ¥y, := Q¢,, for every k € N*, and set ¢ := Q¢.
We also introduce the functions (p;);>1 defined by

p;(x) := sup|yy(z) —p(2)], =€ M,

k>j

and note that lim; . p;(z) = 0 for every x € M. For every k > 1,

[Prlloo < ldnilloc <1 and |Ipkllo < f19]loc + sup [Pl < ll¢lloo + 1,

so bounded convergence implies that
lim Pyy(x) = Po(z) (5.2)
—00

and
lim Pp;(z) =0
J—00
for every x € M. For every m € N¥,
limsup Pp;(yn;) < limsup Ppi(yn,;) = Ppm(z)

j—0o0 j—o00
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because (p;) is a nonincreasing sequence of nonnegative functions in B(M),
lim; ;00 Yn, = x, and P is strong Feller. Since the estimate above holds for
every m € N* and since lim,, o, Pp,,(x) = 0, it follows that

lim Pp;(yn,) = 0. (5.3)
Consequently,
liglj:jp (PQon, () — PQn, (Yn,))
glillgi)soliplpl/}k(lf) — Py(z)]
+ li?_)sogp\Pw(a:) — PY(yn, )| + hfis;fpypw(y“’“) — Pi(yn,,)|

< lim sup P,ok(ynk) =0,

k—o0

where we used (5.2), the assumption that P is strong Feller, and (5.3). This
contradicts (5.1). QED

We are now ready to state and prove the main result of this subsection.

Proposition 5.26 Let P be a Markov kernel on a separable metric space
(M, d*). If P is strong Feller, then it is also asymptotic strong Feller.

Proof Consider the sequence of continuous metrics
di(z,y) == LA (kd"(z,y)), keN,

where a A b denotes the minimum of a and b. The sequence is clearly nonde-
creasing, and

klim di(z,y) =0(z,y), Va,y e M.

—00

If P is strong Feller, then Proposition 5.23 implies that P? is ultra Feller.
Therefore
0 = inf {sup |6, P? — 6,P?||s : U open,x € U} . (5.4)
yelU
Since (di)r>1 is nondecreasing and converges pointwise to d, the sequence
of functions fi(y) := ||0.P? — 6,P?||4, is nondecreasing and dominated by
f(y) :==||6.P? — 6,P?||s. Thus, for every open neighborhood U of z,

limsupsup fuly) < sup lim fuly) < sup J()
k—oo yeU yeU k—o0 yelU
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Together with (5.4) and ny := 2 for all £ > 1, this yields

inf {hmsup sup |0, P"™ — 6, P"* |4, : U open,x € U} = 0.

k—oo yeU

QED

Remark 5.27 If P is a Markov kernel on a separable metric space such that
P" is strong Feller for some n € N*, then P is asymptotic strong Feller. This
follows if one replaces P? in the proof of Proposition 5.26 with P?".

The following exercise shows that the converse of Proposition 5.26 does
not hold, i.e., there are Markov kernels which are asymptotic strong Feller
but not strong Feller.

Exercise 5.28 Consider the mapping
F:R? = R? (21,73) = (23, 71).

For (z,0) € R? x R, set Fy(z) := F(x) + ey, where e; := (1,0)" (cf. Exer-
cise 6.11 (77) in Section 6.2). Let m be a probability measure on (R, B(R))
that is absolutely continuous with respect to Lebesgue measure.

(i) Show that the Markov kernel P corresponding to the random dynamical
system (F,m) is not strong Feller. Hint: Consider for instance the
function f(z1,22) := 14,50

(ii) Use the result from Exercise 6.10 in Subsection 6.2 to show that P? is
strong Feller, and conclude that P is asymptotic strong Feller.

5.3.2 A sufficient condition for the asymptotic strong
Feller property
Throughout Subsection 5.3.2, let H be a separable real Hilbert space with

norm || - ||, and let || f||leo := sup,epy|f(z)| for f € B(H), the set of real-valued
bounded Borel-measurable functions on H.



5.3. THE ASYMPTOTIC STRONG FELLER PROPERTY 115

Definition 5.29 A function f : H — R is called Fréchet differentiable at a
point © € H if there exists a bounded linear operator A : H — R such that

i @+ h) — fz) — Ah| _

0.
[ A

The operator A is uniquely defined by the above condition, and it is called the
Fréchet derivative of f at the point x.

Let F'(H) denote the space of bounded functions f : H — R that are
Fréchet differentiable and whose Fréchet derivative V f satisfies the following
conditions:

(i)
IVflloo :=sup sup |Vf(z)h| < oo;
v€H heH:||h|<1

(ii) The mapping = — V f(x)h is continuous for every h € H.

The following statement is a special case of Proposition 3.12 in [34].

Theorem 5.30 (Hairer, Mattingly) Let P be a Markov kernel on (H,B(H)).
Assume that there exist constants o € (0,1) and C > 0 such that for every
f e F(H), one has Pf € F(H) and

IVPfllo < Cliflloc + al|V |- (5.5)
Then P is asymptotic strong Feller.
Proof Consider the sequence of continuous metrics
de(z,y) == 1A (a”"?|z —y||), k€N

Similarly to the sequence of metrics defined in the proof of Proposition 5.26,
(dk)k>1 is nondecreasing and converges pointwise to the discrete metric J. Fix
k € N* and ¢ € Lip,(di). As explained in Remark 5.31 below, there exists a
sequence (¢p)n>1 in F(H) N Lip,(dg) such that

lim ¢,(z) = ¢(x), Ve H.
n—oo
For x € H and n € N*, set

o(x) = d(z) —supd(y) and  Gu(x) := Gu(x) — sup du(y).

yeH yeH
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Notice that ||¢[|c = sup,cx ¢(y) — infyem ¢(y) < 1 because ¢ € Lip,(dy) and
d, < 1. Similarly, HénHoo < 1 for every n € N*. Since b, and b, only differ
by a constant, we also have ¢, € F(H)NLip, (dy) for every n € N*. It is then
not hard to see that

IVénlleo < a7 V¥ne N
Now, fix x,y € H and define
v(s) =1 —-9s)y+sz, se]0,1].

By assumption, P*¢, € F(H) for every n € N*. By the chain rule for the
Fréchet derivative, the function P¥¢, o v is differentiable with

(Pk, 07)(s) = VP u(v(s))(z —y), Vs e (0,1).

Since the expression on the right-hand side is continuous in s, one obtains
with the fundamental theorem of calculus

Pk¢n(x) - Pk¢n(y> = Pkén(’y(l)) - Pkén(’y(()))

=/ VP 6, (y(s)(x —y) ds < [lz — yl[[|VP 6|

0
Iteratively applying the estimate in (5.5), one has

k—1

IVP Gl < O o dulloc + ¥ [Vl

=0
Since ||fnlloe <1 and |[Voy,|leo < a*/2, this yields
Pkgbn(z) - Pk¢n(y) < C(Ca O‘)Hx - y”,

where ¢(C,a) := a'/? + C/(1 — a). Letting n — oo, we have by bounded
convergence

Pro(x) — Pro(y) < ¢(C,a)llz — yl.
As this estimate holds for all ¢ € Lip,(dy),

162 P* = 8, P*||a, < c(C,a)llz —yll.
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Now, for € > 0 fixed, let U be the open || - ||-ball of radius e centered at z.

For any z € U,
16, P — 6.P*||4, < c(C, e,

hence
inf {lim supsup |6, P* — 8. P*||q, : U open,z € U} < ¢(C,a)e.
k—oo zeU

Since € was arbitrarily chosen, P is asymptotic strong Feller. QED

Remark 5.31 The proof of Theorem 5.30 uses the following approximation
result: For every ¢ € Lip,(dx) there exists a sequence (¢,)n>1 in F(H) N
Lip, (dx) that converges pointwise to ¢. To see this, let (e;);es be a complete
orthonormal system in H, where either 7 = N* or J = {1,..., N} for some
N € N*. For t > 0, define the bounded linear operator

A(t): H— H, x+— Ze’j%(x,e])ej,
JjeT
where (-,-) denotes the inner product on H. The collection of operators

(A(t))s>0 is a Cp-semigroup on H, and [|A(t)],p, < e ' for all ¢ > 0. For ¢ > 0,
let

t
Q:H—H, x+— / A(2s)x ds, (5.6)
0

where the integral is to be interpreted as a Bochner integral. It is not hard
to see that @, is of trace class, so there is a well-defined Gaussian measure f,
on (H,B(H)) with mean 0 and covariance operator ();. For n € N*, define

0u(0)i= [ S(AW )z +9) mldy), @€ B
H
It is not hard to check that A(t)(H) C Qi/Q(H) for every t > 0. Then, by
Theorem 2.1 in [56], ¢,, has Fréchet derivatives of any order, and all derivatives

and the function itself are bounded. In particular, ¢,, € F(H) for all n € N*.
For n € N* and x,y € H, one has

60(@) — buly)| < /H B(A(L/n)z + 2) — G(A(L/n)y + 2)| ue(d2)

< /H dp(A(1/n)x + 2, A(1/n)y + 2) p(dz) < di(2,y).
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Finally, the pointwise convergence of (¢ ),>1 to ¢ follows from Proposition
6.2 in [14].

5.3.3 Uniqueness of the invariant probability measure

The following theorem, first shown in [34], provides an important justification
for introducing the asymptotic strong Feller property. It can be seen as a
strengthening of Proposition 5.18 (7) for Polish spaces.

Theorem 5.32 (Hairer, Mattingly) Let (M,d*) be a Polish space, i.e.,
a complete and separable metric space, and let P be a Markov kernel on
(M,B(M)). Let u,v be ergodic probability measures with respect to P. If P
is asymptotic strong Feller at a point x € supp(p) Nsupp(v), then p=v. In
particular, if P is asymptotic strong Feller, then two distinct ergodic measures
have disjoint support.

The proof of Theorem 5.32 requires several tools we yet need to introduce.
We therefore postpone it to the end of this subsection. Let (X,e) be an
arbitrary metric space and let p,v € P(X). A coupling of 1 and v is a
probability measure I" on (X2 B(X) ® B(X)) such that

MNAx X)=pu(A), (X xA)=vA), VAecBX).
We denote by C(u, ) the set of couplings of 1 and v.

Exercise 5.33 Assume in addition that X is separable and let P(X?) be the
set of Borel probability measures on X?, endowed with the topology of weak

convergence. Show that for every p,v € P(X), C(u,v) is a closed subset of
P(X?).

The following exercise explores the concept of lower semicontinuity. Given
a metric space (X, e), a function f: X — R is called lower semicontinuous if
f(zo) < liminf,,,, f(z) for every zp € X.

Exercise 5.34 Let f: X — [0,00) be a function.

(i) Show that 3
f(x) = inf{f(y) +e(z,y) :y € X}

defines a continuous function on X.
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(ii) Show that f is lower semicontinuous if and only if there exists a non-
decreasing sequence (f,)n,>1 of continuous functions from X to [0, 00)
that converges pointwise to f. Hint: Consider the functions f,(x) :=
inf{ f(y) + ne(z,y) : y € X},n € N*, and use part (7).

The following statement, cited without proof here, can be found in [68]
(see Particular Case 5.16 of Theorem 5.10 for the formula and Theorem 4.1
for existence of a minimizing coupling). It is an instance of the famous
Kantorovich-Rubinstein Duality Theorem. The term duality refers to the
asserted equivalence of a maximization and a minimization problem.

Theorem 5.35 Let (M,d*) be a Polish space and let d be a bounded metric
on M that is lower semicontinuous as a function from the product metric
space (M x M, d* xd*) to [0,00). Then, for every p,v € P(M), we have

== inf / d(z.y) T(dz, dy)
M2

reC(pv)

and the infimum on the right-hand side is attained.

Remark 5.36 Let (M,d*) be a Polish space. The Wasserstein distance of
order 1 between u,v € P(M) is defined as

Wi(u,v) ;== inf / d*(xz,y) I'(dz, dy).
M2

rec(u,v)

In light of Theorem 5.35, if d* is bounded, then

Wl(:u?l/):H:u_V d* VM7V€P(M)

Exercise 5.20 shows that in this case, W is a bounded metric on P(M).
One can show that the metric space (P(M),W;) is Polish as well (see, e.g.,
Theorem 6.18 in [68]).

Lemma 5.37 Let (M,d*) be a Polish space, let (d,,),>1 be a nondecreasing
sequence of continuous metrics on M, and let d be a bounded metric on M
such that

lim d,(z,y) = d(z,y), Vz,ye€ M.

n—o0

Then, for every p,v € P(M), we have

lim [l =vlla, = llp = vla
n—oo
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Proof Let u,v € P(M). Since (d,)n>1 is nondecreasing and since d is
bounded, we have

e = vlla, < llpp = vllans <l —vlla <oo, VneN.

Therefore,
[:= lim ||p—va,
n—oo

exists and is less than or equal to || — v||q- By Theorem 5.35, there are
couplings (I';,),>1 of u and v such that

I — vlla, = / dulwy) Taldedy), Wn e N
M

Since p and v are Borel probability measures on a Polish space, they are
tight by Prohorov’s Theorem 4.13, i.e., for every € > 0 there is a compact set
K C M such that u(K),v(K) > 1 —e. Hence, by Exercise 5.38 below, the
family of couplings (I',),>1 is tight as well. Again by Prohorov’s Theorem,
(I'2)n>1 admits a subsequence that converges weakly to a probability measure
[y € P(M?). And by Exercise 5.33, I's, € C(,v). For simplicity, we denote
the convergent subsequence again by (I',),>1. For n < m, we have

/ d(2,y) Tn(dz, dy) < / d(2,y) Tm(da, dy) = | — v, < 1.
M?2 M?2

Since each d,, is continuous and bounded, and since I',, converges weakly to
', we have

m—r0o0

lim/ dy(z,y) Fm(dx,dy):/ dy(z,y) 'eo(dx, dy).
M2 M2

Thus,
/ dy(z,y) Too(dx, dy) <.
M?2

By monotone convergence,

1> [ dwy) Tutdndy) = nt [ dlwy) Ddndy). (50
M2 reC(uv) J 2

Since d is the pointwise limit of a nondecreasing sequence of continuous func-

tions, Exercise 5.34 implies that d is lower semicontinuous. Hence, by virtue of

Theorem 5.35, the expression on the right-hand side of (5.7) equals ||x —v||q4.
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We have thus shown that [ > || — v||4, and together with | < ||u — v||4 one
obtains lim,, e [|[ft — V||a, = ||t — v[|s. QED

Exercise 5.38 Let (X, e) be a metric space and let p,v € P(X) be tight.
Show that C(u,v) C P(X?) is a tight family of probability measures.

Lemma 5.39 Let (M,d*) be a separable metric space, let P be a Markov
kernel on (M,B(M)), and let d be a metric on M that is bounded by 1.
Assume further that there are € > 0 and U € B(M) such that

sup |0, P — 6, P[4 <.

z,ycU
Let p,v € P(M) and set o :== p(U) Av(U). Then
|uP —vP|lg <1—a(l—e¢).

Proof Since d is bounded by 1, we have ||uP—vP||; < 1, so the assertion
holds if &« = 0. If a > 0, define for A € B(M) the Borel probability measures

W (4) ::—Mﬁ(;;f ) S (4) ::—”(f(;)m ,
oy (A) — ap”(A) o w(A) - al(A)
() A=) () =2 ),

and observe that

p=01—-a)p+ap’,

v=(1-a)v+a’.

Let ¢ € Lip,(d). Exercise 5.40 below and the fact that u¥(U¢) = vY(U¢) =0
yield

(LP)p— (WP = | ((6.P)p — (6,P)9) p"(dx) vV (dy)

U2

§/ 10.P — 0, P||a uU(da:) VU(dy) <e.
U2

Taking the supremum over Lip,(d) gives

InP =Pl < e.
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The triangle inequality for || - ||4 then implies
lnP —vPlla < (1 = e)|aiP = 7Plla+ of|p” P =" Plla <1 - o+ ac.

QED

Exercise 5.40 Let (M, d*) be a separable metric space, let P be a Markov
kernel on (M,B(M)), and let d be a bounded metric on M. Show that for
every u,v € P(M),I' € C(u,v), and ¢ € Lip,(d), one has

(uP)p —(wP)p = [ ((6:P)p — (6,P)) I'(dx,dy).

M2

We are now ready to prove Theorem 5.32.

Proof [of Theorem 5.32] Let = € supp(p) N supp(r) such that P is
asymptotic strong Feller at . Then there exist a nondecreasing sequence
(ng)k>1 of positive integers as well as a nondecreasing sequence (di)g>1 of
continuous metrics on M such that limy_,. di(y, 2) = d(y, 2), y, 2 € M, and

inf limsupsup ||6, P — 6, P"*||q, = 0.

T€UCM, koo yeU
Uopen

Let U be an open neighborhood of  and let K € N such that

1
sup ||0, P™ — 6, P™ |4, < —, Vk> K.
yeU 4

Since || - ||4 satisfies the triangle inequality for every metric d on (M, d*), we
have

1
sup ||0,P™ — 6,P™ |4, < =, Vk> K.
y,z€U 2
Set av:= pu(U) Av(U). Lemma 5.39 implies
«
|pP™ — v P, <1— 5 Vk > K.

Since p and v are invariant probability measures,

(0
HM_VHdkSl_E? Vk > K.
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As
khIIl Hp’ V”dk ||:u V||5
—00

by Lemma 5.37, it follows that

el

vl <1-2
Since = € supp(u) Nsupp(v), we have @ > 0, so || — v||s < 1. In particular,
for every A € B(M),

2> [p(la = Lae) = v(1a — Lae)| = 2|u(A) — v(A)]

in view of Remark 5.21. This implies that ; and v are not mutually singular.
Since p and v are ergodic, it follows from Proposition 4.29 (i) that pu = v.
QED

For a Markov kernel P, let Erg(P) denote the set of P-ergodic measures.
From the proof of Theorem 5.32, one obtains the following corollary.

Corollary 5.41 Let M be a Polish space and let P be asymptotic strong
Feller at a point x € M. Then there exist a neighborhood U of x and an
ergodic measure v such that 7(U) =0 for every m € Erg(P) \ {v}.

Proof Suppose the statement does not hold. Then, for every neigh-
borhood U of z there are at least two distinct vy, € Erg(P) such that
11 (U),v2(U) > 0. As in the proof of Theorem 5.32, one then shows existence
of distinct v, 5 € Erg(P) that are not mutually singular, which contradicts
Proposition 4.29. QED

In the following proposition, we exploit Theorem 5.32 and its corollary to
further elucidate the structure of Erg(P) under the asymptotic strong Feller
property. In particular, we obtain a counterpart of Proposition 5.18 (ii7).

Proposition 5.42 Let M be a Polish space and let P be asymptotic strong
Feller.

(1) The set Erg(P) is countable, and for every P-invariant probability measure
[ one has
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where X (v) ={x € M : Q(x,supp v) =1} and Q is the Markov kernel
from Theorem 4.53;

(ii) If P has an invariant probability measure having full support, then

*

M = U supp v,

vEErg(P)

where the asterisk indicates that supp vy N supp vo = O for distinct
v, v € Erg(P);

(iii) If P has an invariant probability measure v having full support and if M
is connected, then Erg(P) is either countably infinite or Erg(P) = {u};

(iv) Suppose that P has an invariant probability measure p having full sup-
port. Assume in addition that for every € > 0 there exists a connected
compact set K C M such that f(K) > 1—¢e. Then Erg(P) = {u}.

Remark 5.43 The condition from part (iv) that for every ¢ > 0 there is
a connected compact set K C M with pu(K) > 1 — ¢ clearly holds if M is
connected and compact. But it also holds, for instance, if M is a separable
Banach space or, more generally, a separable Fréchet space. By Fréchet space
we mean a locally convex topological vector space whose topology is induced
by a complete metric d that satisfies d(x + 2,y + z) = d(x,y) for every
x,y,z € M. Indeed, since Borel probability measures on a Polish space are
tight, for every e > 0 there is a compact set K C M such that pu(K) > 1 —e.
Let K be the closure of the convex hull of K. Then pu(K) > 1—¢ and K is
convex, hence connected. By Theorem 3.20 (¢) in [61], K is also compact as

the closure of the convex hull of a compact set in a Fréchet space.
The following lemma is used in the proof of Proposition 5.42.

Lemma 5.44 Let M be a Polish space and let P be asymptotic strong Feller
at a point x € M. If there is an invariant probability measure p such that
x € supp jui, then x € supp v for some v € Erg(P).

Proof By Corollary 5.41, there are a neighborhood U, of z and v €
Erg(P) such that w(U,) = 0 for every m € Erg(P) \ {v}. To see that = €
supp v, fix a neighborhood U of z. Then U N U, is also a neighborhood of
x. Since z € supp p, one has (U NU,) > 0. By the Ergodic Decomposition
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Theorem 4.53, there is a Markov kernel @) such that Q(y,-) € Erg(P) for
p-almost every y € M, and

0<uwUNU,) = | Qy,UNU,) u(dy).
M
Hence, there is y € M such that Q(y,-) € Erg(P) and Q(y,U NU,) > 0. Tt
follows that Q(y,U,) > 0, so Q(y,-) = v. Consequently,

W(U) = Q,U) > Q(y, UNT,) > 0.
QED

Proof |of Proposition 5.42| (¢). Since M is separable, so is its subset
S = U, ceg(p) supp v (see Exercise 4.45 (i)). Let D be countable and dense
in S. By Theorem 5.32, the supports of distinct P-ergodic measures are
disjoint. To show that Erg(P) is countable, it is enough to prove that for every
v € Erg(P) there is € D with x ¢ UﬂeErg P)\(v} SUPP . Let v € Erg(P)
and let y € supp v. By Corollary 5.41, there is an open neighborhood U of y
such that 7(U) = 0 for every m € Erg(P) \ {v}. Since y € S and since D is
dense in .S, there is a point z € DNU. As U is a neighborhood of x, one has
x ¢ supp w for every 7 € Erg(P) \ {v}.

By Theorem 5.32, X (v) N X () = () whenever v, m € Erg(P) are distinct.
Let
X={xeM: Qx,-) € Erg(P)}.

Theorem 4.53 implies that there is B € B(M ) such that B C X and p(B) = 1.

Since X' C U, cgg(p) X (), one has
Bc |J X(
veErg(P)
and hence
1 = u(B) (Bm U X(v ) ( U (BﬂX(y))).
veErg(P veErg(P)

With Theorem 4.53, this yields for every A € B(M)

p(A) = [ Qe A) Z/B pldr). (58)

M VeErg(P mX(u
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For v € Erg(P), let x € BN X(v). Since v € B C X, we have Q(z,-) €
Erg(P). And since x € X(v), we have Q(z,supp v) = 1. Then, by The-
orem 5.32, Q(z,supp m) = 0 for every m € Erg(P) \ {v}. In particular,
Q(z,-) = v. Thus, the expression on the right-hand side of (5.8) equals

/BmX( )V<A) plde) = Z v(A)u(BNX(v)) = Z v(A)p(X(v)).

veErg(P) veErg(P) veErg(P)

(). This follows immediately from Lemma 5.44 and Theorem 5.32.

(737). In light of part (i) and the Ergodic Decomposition Theorem, all we
need to show is that if Erg(P) is finite, then it has cardinality 1. Suppose
that Erg(P) = {v1,...,v,}, where n is a positive integer and vy, ..., 1, are
pairwise distinct. By part (i7), M is a finite and disjoint union of nonempty
closed sets. As M is connected, this is only possible if n = 1.

(iv). The following claim will be proved later on:

Claim 1: If K C M is connected and compact, then there is v € Erg(P)
such that m(K) =0 for every w € Erg(P) \ {v}.

We use Claim 1 now to show

Claim 2: There are S € B(M) and v € Erg(P) such that (S) =1 and
w(S) =0 for every m € Erg(P) \ {v}.

By assumption, for every integer n > 2 there is a connected compact set
K, C M such that u(K,) >1— L. Set

S = UK"'

n>2

Then, for every m > 2,

u(S) = w(Km) > 1=,
which implies u(S) = 1.

Claim 1 implies that for every n > 2 there is v, € Erg(P) such that
m(K,) = 0 for every w € Erg(P) \ {vn}. Set v := vp. To show that 7(S) =0
for every m € Erg(P) \ {v}, it is then sufficient to prove v, = v for every
n > 2. Suppose this is not the case. Then there is n > 2 such that v, # v.
Since 7(K,) = 0 for every m € Erg(P) \ {v,} and n(K3) = 0 for every
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7 € Erg(P)\ {v}, we have in particular 7(K,, N K>) = 0 for every = € Erg(P).
On the other hand,

Hence, by part (i),

0<p(K,NEy) = Y  w(K,NEK)u(X(m)) =0,

w€Erg(P)

a contradiction. This completes the proof of Claim 2.

Let S and v be as stipulated in Claim 2. By the formula in part (7),

w€Erg(P)

In particular, (X (v)) = 1. Since X (m)NX (1)) = 0 for distinct 7, 1) € Erg(P),
this yields p = v, so u € Erg(P). As supp u = M and as distinct P-ergodic
measures have disjoint supports, one obtains Erg(P) = {u}.

Finally we need to prove Claim 1. By Corollary 5.41, we can associate
every y € K with an open neighborhood U, of y and v, € Erg(P) such that
m(U,) = 0 for every m € Erg(P) \ {v,}. Since K is compact, there are finitely
many yi, ..., %, € K such that

KclJu,. (5.9)
k=1

To simplify notation, we write v; instead of v, from now on. Let 7w € Erg(P)\
{v1,...,vn}. Then

n(K) <) =(U,)=0.

To prove Claim 1, it remains to show that v; = ... =v,. For 1 <i < n, let
F; :=supp v;N K. As the intersection of two closed sets, each set Fj is closed.
Besides, F; is nonempty: Clearly y; € K, and since n(U,,) = 0 for every
m € Erg(P) \ {v;}, part (ii) yields y; € supp v;. Together with (5.9), part (i7)
also implies K = (J;_, F;. Moreover, ;N F; = () if v; # v;. Connectedness of
K then yields vy = ... =v,. QED
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Notes

The notion of -irreducibility introduced at the beginning of Section 5.1
is called @-irreducibility in [49]. For the resolvent kernel R,, Meyn and
Tweedie [49] use the notation K,_, where ¢ € (0,1) corresponds to our pa-
rameter a. Section 4.5 of [49] contains additional information, some of it
bibliographic, on the use of irreducibility in the study of Markov chains.

The original definition of the asymptotic strong Feller property in [34] is
for Markov semigroups (P;), where ¢ > 0 is a continuous-time parameter.
Translating the definition as well as the results of Hairer and Mattingly to
the discrete-time setting is straightforward. Furthermore, the nondecreasing
sequence (dj)x>1 converging to J is allowed to consist of pseudometrics in [34],
i.e., the distances between distinct points need not be strictly positive.

Most of the material in Section 5.3 is taken from [34], sometimes with small
adaptations (in particular, Proposition 5.26, Theorem 5.30, and Theorem 5.32
along with their proofs, including Lemmas 5.37 and 5.39). As far as we know,
the statements in Proposition 5.42 have not been published elsewhere.

In the Kantorovich-Rubinstein Duality Theorem 5.35, the boundedness
assumption on the metric d can be relaxed, see [68]. If d* is unbounded, the
Wasserstein distance Wi defined in Remark 5.36 is still a metric on

P = {e PON) [ ) uta) < oo,

the so-called Wasserstein space of order 1. Notice that the choice of z in the
definition of Py (M) is arbitrary.



Chapter 6

Petite sets and Doeblin points

Often, the &-irreducibility property, as defined in Chapter 5, can be deduced
from the existence of an accessible point satistying a local Doeblin condition.
These conditions prove to be very useful tools when dealing with specific
models such as random dynamical systems, processes obtained by random
switching between deterministic differential equations, or stochastic differen-
tial equations. This chapter discusses and illustrates these notions.

6.1 Petite sets, small sets, Doeblin points

We call a measurable set C' a petite set if there exist a € (0,1) and some
nonzero Borel measure £ on M such that

Rq(z, A) = £(A)

for all z € C' and A € B(M). We call the set C' a small set if there is a
nonzero Borel measure £ on M such that

Pz, A) > £(A)
for all z € C' and A € B(M). Clearly, every small set is petite.

Remark 6.1 In the terminology of Meyn and Tweedie [49] (Chapter 5), a
Vo-petite set for a probability measure o on N is a set C' € B(M) such that

> a(n)P(z,A) > v,(A), VreC, AeB(M)
n=0

129
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where v, is some nonzero Borel measure on M. A v,,-small set for m € N*
is a set C' € B(M) such that

P™(z,A) > v,(A), VeeC, AecB(M),

where v, is a nonzero Borel measure on M. With these definitions, the class
of petite sets defined above is equal to the class of sets that are v, -petite for
some a € (0,1), where

A(k) :=d"(1 —a), ke N.
Our notion of a small set corresponds to the notion of a r4-small set.

We call a point 2* € M a weak Doeblin point (respectively a Doeblin point)
if * has a neighborhood that is a petite set (respectively a small set).

The importance and usefulness of these notions will be highlighted in
Chapters 7 and 8. Here we mainly focus on weak Doeblin points. The follow-
ing proposition extends Example 5.3. It provides a powerful tool to ensure
unique ergodicity.

Theorem 6.2 Assume that there exists an accessible weak Doeblin point for
P. Then P 1s &-irreducible. In particular, by Theorem 5.5, it has at most one
tnvariant probability measure.

Proof By assumption, there exists an open set C' and a nontrivial measure
¢ such that CNT # 0 and Ry(z,-) > &(+) for all z € C. Let py = Zfzo(l —
a)?a’a®" = (k + 1)(1 — a)?a®. Then, for all A measurable and z € M,

S P, 4) = B, 4) = [ Rulasdy) Baly. A) = Rl COL(A)

k>0

By accessibility, R,(z,C) > 0. QED

6.1.1 Continuous time: Doeblin points for Markov pro-
cesses

Let {P:}+>0 be a continuous-time Markov semigroup. Recall (see Section
5.2.1) that a point p € M is called accessible for {P;};>¢ provided that it is
accessible for the 1-resolvent G, or equivalently, G(z,U) > 0 for every x € M
and for every neighborhood U of p. The following proposition is a useful tool
whose proof is based on ideas borrowed from [6] and [10].
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Proposition 6.3 Let {P.};>0 be a continuous-time weak Feller semigroup.
Assume that there exists a point p € M which is accessible for {P;}i>o and
which is a Doeblin point for some Pr, with Ty > 0. Then the following state-
ments hold:

(1) There exist g € M (which can be chosen arbitrarily close to p) and Ty > Ty
such that for all T > Ty, q is an accessible Doeblin point for Pr;

(ii) If for some s > 0 there exists an invariant probability measure p for P,
then 1 1s the unique invariant probability measure of P, for all t > 0.

Remark 6.4 Proposition 6.3 is clearly false in discrete time. Let M = {0,1}

01
and P = ( 10
but is not accessible for P?.

The proposition also fails to hold if we replace the condition that p is a
Doeblin point for some P, by the weaker condition that it is a Doeblin point
for G. To see this, let {P;} be the semigroup induced by the rotation x —
(x +t) mod 1 on R/Z (see Example 4.55). Then every point p € M = R/Z
is accessible and a Doeblin point for GG, but not accessible for P, when « is
rational.

) . The point 0 is an accessible Doeblin point (take & = d;)

Proof of Proposition 6.3. By assumption there exists a neighborhood U
of p and a nontrivial measure £ such that for all z € U

Pry(,-) > €().

Lemma 6.5 There exist T) > Ty, € > 0, and a measure ¢ such that ((U) >0
and

Py(x,-) > ¢(-)
foralleUandTégth’—i—a

Proof By accessibility, ¢G(U fo e '¢P,(U) dt > 0. Thus, for some
to >0, P, (U) > 0. Set &' = fPtO Then{( ) > 0 and for all z € U

5$PTo+t0 = 5$PT0Pt0 Z £/-

By Fatou’s Lemma, weak Feller continuity and the Portmanteau Theorem 4.1,

lgiglﬁ’Ps(U) > /lirgglf Py(,U) §(dx) = /1U(93) §'(dx) =& U) > 0.
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Thus, for some § > 0 and € > 0,
§P(U) >0
for all 0 < s <e. Set T, = 2(1p + tp). Then, for all z € U and 0 < s < ¢,

6$PT6+8 = 5IEPTo+t0PTo+t0+S > £/PT0+to+s > / glps(dy)PTo-HO(ya ) > 58
U
This proves the lemma with ¢ = 6¢’. QED

We now prove the first part of Proposition 6.3. Set 71 = T(?/e. Let T > Tj.
Then T can be written as T = k(Tj) + s) with 0 < s < e and k € N*. Thus,
for all z € U,
Pr(z,-) = 6,Pr = 0, Pfy o > C(U)*'¢.

This proves that every point x € U is a Doeblin point for Pr. Choose now
q € UnNsupp(¢). Let z € M. By accessibility, there exists ¢, > 0 such that
P, (z,U) > 0. For k,m € N sufficiently large, there exists t € [T{, Tj)+ <] such
that t, + kt = mT. Then for every neighborhood V' of ¢,

Pgb<x7 V) = Ptz+kt<x7 V) > Ptz(xv U)C(V>k > 0.

This proves that ¢ is accessible for Pr.

The second assertion follows from Theorem 6.2. Suppose that p is invari-
ant for some P,. Then v = % fos P, du is invariant for {P;} by Proposition
4.56. Thus, v is the unique invariant probability measure of P, for ¢t > T7.
The same is true for 0 <t < T because, kt > T} for some k € N. QED

6.2 Random dynamical systems

Let © be a nonempty open subset of R? and m a probability measure on
(©,B(0)). Let M be a nonempty open subset of R¥ and F': © x M — M a
Cl-mapping. Recall from Chapter 3 that the pair (F,m) induces a random
dynamical system with associated Feller Markov kernel

P(z,G)=m({0 € ©: Fy(x) € G}), (z,G)e M x B(M).
Forn € N* and z € M, let
Oz O = M, (01,...,0,) — (Fy, o...0Fp)(z).

The following proposition is essentially Lemma 6.3 in [8].
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Proposition 6.6 Let z* € M, n € N*, and 60* = (07, ...,0") € O™ such that
the following conditions hold.

(a) The Jacobian matriz Dy, .+ (0)|g=e= has mazimal rank (i.e., rank k);

(b) There is a neighborhood V- C O™ of 6* such that m"(- N'V') is absolutely
continuous with respect to X" (-NV), where A is the Lebesque measure
on R™. The corresponding probability density function p is such that

= inf p(0 )
>0

Under these conditions, x* is a Doeblin point with respect to the Markov kernel
P", and in particular a weak Doeblin point with respect to P.

Remark 6.7 Condition (b) above holds true whenever m is absolutely con-
tinuous with respect to AY with a lower semicontinuous and positive density.

Proof Since Dy, .+(0)|o=¢- is a (k x nd)-matrix of rank k, we have either
k = ndor k < nd. To avoid repeating ourselves, we will only prove the slightly
more complicated case k < nd. The case k = nd can be easily derived by
making small modifications to the proof for £ < nd. Assume without loss of
generality that the first k& columns of D, ,«(0)|g—p« are linearly independent.
We will often write points § € ©" as § = (%), §("d=F))  where #F) ¢ RF
is the vector consisting of the first & components of #, and where A% g
the vector of the remaining (nd — k) components. For x € M, consider the
C'-mapping

Gy : 0" = M xR 9= (9" 9=k s (i, .(0),0F),
We also define the C'-mapping
H:0"x M — M xR™ ™ x M, (0,2) — (G.(0), ).
Since
det DH (0, x)|g—p* z—or = det DG+ (0)|g=p~
= det Dyoy pno+ (0P, (07) ") gy # 0,

the Inverse Function Theorem implies that there is an open neighborhood
W of (6%, z*) such that the restriction of H to W, denoted by Hy,, is a C'-
diffeomorphism. By intersecting W with an open subset of V' x M that con-
tains (0*,x*) and calling the resulting set W again, we may assume without
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loss of generality that 6 € V' for every (6,x) € W. The set H(W) is a neigh-
borhood of H(6*, 2*) = (¢n~(0%), (%)% %), so there are open neighbor-
hoods Zy of @y, 4+(0%), Ty of (6*)"4=) and Uy of o* such that Zy x Ty x Uy C
H(W). Let Wy := H;;} (Zy x Ty x Up). For x € Uy, set

Ve={0eO": (0,z) c Wy}.

It is straightforward to check that for every x € U, the restriction of G to
V, is a C'-diffeomorphism that satisfies G,(V,) = Zy x Ty.
Let z € Uy and A € B(M). We have

Pz, A) > P"(z, AN Zo) = / m"(d6).
P & (ANZo)
Since G ((AN Zy) x Ty) C go;i(A N Zy), the expression on the right-hand
side is bounded from below by

/ m"(d6) > / " (d6).
Gz ((ANZo) xTp) VeNGz 1 ((ANZo) X To)

As V, C V, the integral on the right-hand side equals

p(0) \"(dB) > ¢ / A"(dh).

/VzﬂGzl((AﬁZo)xTo) VeNGy L ((ANZo) xTp)

There is no loss of generality in assuming that V' and U, are each contained
in a compact set. Since the mapping (0, z) — det DG, () is continuous, we

have

¢:= sup |det DG.(0)| < 0.
0eV,xely

Hence,

Pz, A) > <

/ |det DG, ()] A™(df).
C JVonGz 1 ((ANZo)xTo)

Since the restriction of G, to V, is a diffeomorphism, the Change of Variables
Formula (see for instance Theorem 2.47 in [27]) implies that the expression
on the right-hand side equals

gA"d*’“(To)Ak(A N Z).

The measure {(A) := SN"F(To) N (AN Zy) on (M, B(M)) is nontrivial and
does not depend on x € Uy, so Uy is a small set with respect to the kernel P".
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As Uy is a neighborhood of z*, the point x* is a Doeblin point with respect
to P". QED

The next theorem, Theorem 6.9, summarizes the consequences of Proposition
6.6 in case z* is accessible. It is first useful to rephrase the accessibility
condition for the class of Markov chains considered here (i.e., induced by a
random dynamical system).

Proposition 6.8 A point y € M is accessible from © € M if and only if
for every neighborhood U of y there exists a finite sequence 64,...,0, with
0; € supp(m) for all i such that Fy, o...0 Fy (z) € U.

Proof This easily follows from the definitions and the continuity of 6 —
Fy(x). QED

Recall that a point y € M is called accessible provided that it is accessible
from every x € M. As usual, we let I' denote the accessible set, i.e., the set
of accessible points.

Theorem 6.9 Assume that there exists an accessible point x* € M for which
the assumptions of Proposition 6.6 hold. Then I has nonempty interior, P
has at most one invariant probability measure p, and supp(p) = I' provided
that i exists.

Assume in addition that for every 0 € ©, Fy is a diffeomorphism from M
onto Fp(M). Then I' = Int(I") and p, when it exists, is absolutely continuous
with respect to the Lebesque measure on RF.

Proof By Proposition 6.6 and Theorem 6.2, P is &-irreducible. Then
supp(¢) C I'. The proof of Proposition 6.6 shows that & is (up to a multi-
plicative factor) the Lebesgue measure on some open subset of R*. Therefore
its support has nonempty interior. Uniqueness of p, when it exists, follows
from Theorem 6.2 and the equality supp(u) = I follows from Proposition 5.8
(iii) (bearing in mind that P is Feller and {-irreducible, hence indecompos-
able).
If for all § € O, Fy is a diffeomorphism, the set

U U Fy o...0Fy (Int(T))

n>1 (61,...,00)Esupp(m)™

is open and dense (by Proposition 6.8) in I'.
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The proof of absolute continuity goes as follows. Let p be the invariant
probability measure and write its Lebesgue decomposition p = fiq.+jts, where
lac is absolutely continuous with respect to A\¥ (written ji,. < A¥) and g, is
singular. Since ¢ < A\ and ¢ < p, the absolutely continuous part f,. is
nonzero. For all A € B(M),

oo P(4) = /@ oo By (A)) m(db).

This shows that p,.P < \*, because whenever \*(A) = 0 then \*(F, '(A)) =
0. Thus, by uniqueness of the Lebesgue decomposition, the equality piq.P +
UsP = piae + ps implies that pe.P (1) < pige(+). Thus E% is an excessive
probability measure, hence invariant. By uniqueness of the invariant proba-

bility measure, @ = e 50 1<K A, QED

Example 6.10 (additive noise) Recall the setting of Exercise 3.2. We
have M = © = R¥, FF: M — M, Fy(z) := F(z) + 6 for (§,2) € © x M,
and m(df) = h(0) df, where h € L*(df). Assume in addition that F is C"',
which implies that (6, 2) — Fy(z) is C! as well. Finally, suppose that there
is a nonempty open set V' C © such that

inf h(6) > 0.

eV

For every x* € M and 6* € O,

D1 4+ (0)|o=p+ = Lixk,

where 1.y is the identity matrix of dimensions (k x k). Since 1yxx has rank
k, every pair (z*,0*) € M x V satisfies the conditions of Proposition 6.6.
Hence, every point z* € M is a Doeblin point with respect to the Markov
kernel P(z,G) =m({0 € © : Fy(x) € G}).

Exercise 6.11 |degenerate additive noise| Let m be a probability measure
on (R, B(R)) that is absolutely continuous with respect to Lebesgue measure
on R, with probability density function h. Assume further that there is a
nonempty open interval I C R such that

inf h(0) > 0.

oel

Show the following statements.
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(i) Let F: R? —» R F = (Fy, Fy) " be a C'-mapping and let (z*,07) € R2x [
such that
0, Fy(F(2*) + 0er) # 0,

where e; = (1,0)". Set
Fg(x) = F(ﬂ?) + (961, (x, 9) € R? x R.

Then z* is a weak Doeblin point for the Markov kernel associated with
(F,m).

(ii) Let k> 2 and let I : R* — R* be defined by
F(zy,...,x) = (xg, x1, 22, . .. ,xk_l)T.

Set
Fy(z) == F(2) +0ey, (r,0) € R¥ xR,

where e; = (1,0,...,0)" € R*. Then any point z* € R* is a weak
Doeblin point for the Markov kernel associated with (£, m).

6.3 Random switching between vector fields

Let F:={1,..., N} be a finite set called a set of environments, and for each
i € E, let G; be a C*®-vector field defined on R*. The choice of R* is made
here for simplicity, but we could also assume that the G;’s are defined on a
smooth k-dimensional Riemannian manifold.

By the Cauchy Lipschitz Theorem, for every z € R* the initial-value
problem

#(t) = Giz(1)),
z(0) = =z

has a unique (local) solution ¢ — ®;(t,z). We assume here that every G;
is complete, meaning that ¢t — ®,(¢,z) is defined for all ¢ € R. A classical
sufficient condition for completeness is that

IGi(@)|| < allz]| +0, VxR,

for some a,b > 0. The function ®; : R x R¥ — R* is called a flow function.
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Let now M C R* be a nonempty open set positively invariant under each
®;, meaning that ®;(t, M) C M for all £ > 0. Consider the non-autonomous

differential equation _
Y;f = Glt (Yl-f)a (61)

where t — I; € F is a right-continuous control, i.e.,
[t:ikaITk,1§t<Tk, kZl,

0:7'0<T1<...<Tk<7'k+1,

for some sequence (7)k>0 with limy_, 7, = 0o. Throughout this section, we
shall assume that the sequence

01 — (Tlai1>792 - (7—2 - 7—172.2)3 .. 'aek - (Tk - Tk‘—laik‘)7 ERCIS

forms a sequence of independent identically distributed random variables on
O := R, x E having distribution m, where

t
m((0.8) % (i) =i | (o) (6.2
0
p; > 0 for every ¢, and the densities p; are such that

L Pil3) 2 0
for some R > 0. We also always assume that the initial value Yj is a random
variable independent of the sequence (6)>1.

In words, the process Y = (Y;)i>0, with initial value Y; and solving the
differential equation in (6.1), can be described as follows: Pick an initial pair
(71,11) at random according to m and follow the trajectory starting at Yy and
induced by G, for the time 71. Then pick a new pair (As, i3) according to m,
independent of (71,141), and follow the trajectory starting at Y,, and induced
by G, for the time Ay = 75 — 7. Repeating this process defines (Y;)¢>o.

The key point here is that, letting X,, = Y, , (X,,) is a Markov chain
induced by the random dynamical system (F,m), where for every 0 = (¢,1) €
6;

Fy: M — M, x v ®(t, ).

Its kernel P is then given as
Pi@) =Y n [ f@t o)t (63)
ice 70

The following exercises give concrete examples of such a Markov chain.
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Exercise 6.12 Suppose £ = {1,2,3}, M =R, G1(z) = oy, Ga(x) = —a,
G3(z) = —azr, and pi(t) = e M1y, @ € E, where a;, \; are positive
numbers.

Prove that the Markov kernel P associated with (F,m) admits a unique
invariant probability measure. Hint: Use Theorem 4.31 on random contrac-
tions.

Exercise 6.13 Suppose £ = {1,2}, M = R, G1(z) = a1, Gs(z) = —ay, and
pi(t) = \ie Xi'l,5g, i € E, where a4, \; are positive numbers. Consider the
function

f(t, i) = (=) tayt, (t,i) €0,

and the Borel measure
a(A)=m{0cO:fl)ecA}), AecBR).
Show that the Markov kernel P associated with (F,m) satisfies
Pz,G)=a{{ eR: 2+ G}), zeR,GeBR).

Prove that if pyag /A1 # paaa/Ag, P does not admit any invariant probability
measures. Hint: See Example 4.19.

6.3.1 The weak bracket condition

The main result in this section (Theorem 6.16) is a sufficient condition for
the existence of a weak Doeblin point with respect to the Markov kernel P
induced by (F,m). This condition will be formulated in terms of the Lie
algebra generated by (G;)icg. The Lie bracket of two C'-vector fields G and
H on a nonempty open subset M of R is itself a vector field on M, defined
as

|G, H|(x) .= DH(x)G(z) — DG(x)H(x), =z € M.

Here, DG(x) and DH(x) denote the Jacobian matrices of G and H, respec-
tively, evaluated at the point z. The products DH (z)G(z) and DG(z)H (z)
are to be understood as matrix-vector products.

If ¢ and @y denote the respective flow functions of G and H, one has
the alternative characterization

G, H|(x) = %L(t,x)ho, x € M, (6.4)
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where

L(t,2) i= @y (~VE, 0 (—VEon (Vi 06 (Viir) )

for t > 0 and z € M (see, for example, Proposition 3.b in Chapter 2 of [41]).
Notice that for every fixed z € M, L(-,z) is defined in a neighborhood of 0
because G and H are C*.

Exercise 6.14 [Properties of Lie brackets|

(i) Show that the Lie bracket [, -] is bilinear and antisymmetric, i.e., for any
C'-vector fields A, B, C and for any A € R, one has

MNA,C] = \NA,C], [A+B,C]=[AC]+[B,C], [A B]=-[B,Al.
Why is this enough to deduce linearity for the second argument?

(ii) To a vector field A on M, one can associate the operator on C*°(M,R)
that maps f € C*°(M,R) to x — (A(x), V f(z)). Here, (-, -) denotes the
Euclidean inner product on R*¥ and V f denotes the gradient of f. This
operator is usually identified with A, so one writes Af for the image of
f under the operator. Let A and B be C?-vector fields on M. Show
that

[A,B] = AB — BA,

where AB and BA should be interpreted as compositions of the opera-
tors A and B.

(iii) Use the result from (i) to prove the Jacobi identity: For C®-vector fields
A, B,C, one has

A, [B,C)) + [B,[C, A]] + [C, [A, B]] = 0.

We inductively define a sequence of families of vector fields by Gy :=
{G}icp and G,41 := G, U{[G;,V] :i € E,V € G,} for n € N. Recall that
the linear span of a set S contained in some vector space is the set of all
(finite) linear combinations of elements in S. We say that the weak bracket
condition holds at a point x € M if the linear span of {V(z) : V € U,en G, }
is equal to the full space R*. As alluded to earlier, this condition admits
an alternative formulation in terms of the Lie algebra generated by (G;)ick-
The latter is defined as the smallest linear subspace £ of the vector space of
C>-vector fields on M that is closed under Lie brackets (|G, H] € L for all
G, H € £) and contains (G,)cp.
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Exercise 6.15 Let £ denote the Lie algebra generated by (G;)icp.
(i) Show that G,, C L for all n € N.

(ii) Deduce from (7) that the weak bracket condition at a point = implies
that {V(x): V € L} =Rk

(iii) Show that G, the linear span of | J, .y Gn, is closed under Lie brackets.
Hint: This will follow once it is shown that for every n € N, A € G,
and B € G, one has [A, B] € G. The Jacobi identity from Exercise 6.14
may be helpful.

(iv) Conclude that the weak bracket condition holds at a point x € M if and
only if {V(z): V € L} =RF.

We now state the main result of Subsection 6.3.1.

Theorem 6.16 If the weak bracket condition holds at a point x* € M, then
there ism € N such that x* is a Doeblin point with respect to P™. In particular,
r* is a weak Doeblin point with respect to P.

The proof of Theorem 6.16 relies on a slight generalization of Proposi-
tion 6.6. To state this generalization, let T' be a Borel subset of R? (d € N*)
with nonempty interior, and let E be a finite set. Let m be a probability
measure on © := T X E, equipped with the product o-field of B(T) and the
power set of E. As in Section 6.2, the n-fold product measure m ® ... @ m
will be denoted by m”. Let M be a nonempty open subset of R¥, k € N*,
with Borel o-field B(M). Let F': © x M — M be a map such that for every
i€ E, (t,x) = Fuy(x)is C'. Forn € N*, i= (iy,...,i,) € E", and x € M,
let

SO;L@ T — M, (Zfl, . ,tn) — (F(tn,in) 0...0 F(tl,il))(w)'

Proposition 6.17 Let z* € M, n € N*, and t* = (t],...,t}) € Int(T™) such
that the following conditions hold.

(i) There is i€ E™ such that the Jacobian matriz D), ,.(t*) has rank k;

(ii) There is a neighborhood V- C Int(T™) of t* such that m"((- N'V) x {i})
is absolutely continuous with respect to \"*(- N V). The corresponding
probability density function p can be chosen such that

c= t}g‘f/’p(t) > 0.
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Under these conditions, x* is a Doeblin point with respect to P", and in
particular a weak Doeblin point with respect to P.

Exercise 6.18 Prove Proposition 6.17. Hint: The proof of Proposition 6.6
can almost be repeated verbatim.

The setting of randomly switched vector fields introduced at the begin-
ning of Section 6.3 is clearly covered by the more general setting of Propo-
sition 6.17, with T" = R, and d = 1. The proof of Theorem 6.16 therefore
reduces to checking conditions 1 and 2 of Proposition 6.17. While condition 2
follows almost immediately from the definition of m, establishing condition 1
requires a link between the weak bracket condition and the full-rank condition
on the Jacobian matrix of <p;m This link is provided by the following result
from geometric control theory, which is implied by Theorem 1 of Chapter 3
in [41]. To help the reader understand this result, we give its proof.

Lemma 6.19 Under the assumptions of Theorem 6.16 and for 1 < 5 < k, the
following statement holds: For every € > 0 there are i € E? and t* € (0,¢)
such that Do} . (t*) has rank j.

Proof We prove Lemma 6.19 by induction. In the base case j = 1, the
weak bracket condition at z* implies that there is ¢ € E such that G;(x*) # 0.
Then, for every € > 0, there is t* € (0,¢) such that G;(®;(¢t*,2*)) # 0. Since

Qo (1) = Flp iy (2¥) = ®(t*, %),

one has
Dy .- (t7) = Gi(P4(17, 27)),
which has rank 1.

In the induction step, assume that the statement holds for some 1 < j < k,
and let € > 0. Since the weak bracket condition holds at x*, it also holds in an
open neighborhood M™* C M of x*. There is no loss of generality in assuming
that ¢ is so small that ¢} ..(t) € M* for every i € E/ and t € (0,¢)’. By
induction hypothesis, there are i € E/ and t* € (0,¢)’ such that Dy} . (t*)
has rank j. Since a full rank is preserved under small perturbations of the
matrix entries, there is an open neighborhood N of t* in (0,¢)’ such that
Dgo}w* has rank 7 on N. The mapping @;x is then a differentiable map
between the manifolds N and M, and Dyj . has constant rank j on N. By
the Constant-Rank Theorem (see, e.g., Theorem 2.b of Chapter 2 in [41]),
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there is an open neighborhood U of t* in N such that S := go}x(U) is an
embedded submanifold of M of dimension j.

We call a vector field V' tangent to S if for every y € S, V(y) is a vector
in 7,5, the tangent space with respect to S at the point y. We will now show
that there is at least one vector field G;, ¢ € F, that is not tangent to .S.

Assume this is not the case, i.e., G; is tangent to S for every i € E. The
set of vector fields tangent to S is clearly closed under linear combinations.
It is also closed under the Lie bracket operation because of the flow-based
characterization of the Lie bracket in (6.4) and the fact that the flow of a
vector field tangent to S stays in S for ¢ in a nonempty open interval around
0 (see Proposition 1 of Chapter 2 in [41|). This shows that every vector field
in L, the Lie algebra generated by (G;);cp, is tangent to S. Fix an arbitrary
point y € S. The submanifold S was defined in such a way that the weak
bracket condition holds at every point in S and in particular at y. Since
V(y) € T,,S for every V € L, the tangent space 7,5 has dimension k, which
is strictly larger than j. This contradicts the fact that S has dimension j.

Let y € S and 4,41 € E such that G;,,,(y) ¢ T,S. There is t € U such
that y = ¢} .. (t). Then

D@;fkjf;* (t’ O) :D(tl ----- tj+1)q)ij+1 (tHl» @;x (tl> s 7tj))|(t1 tj)=t,tj11=0

= (DQD;',x* ({-’)7 Gij+1 (90;,95* (E))) = (D(p},x* (f")’ Gij+1 (y)) :
Since t € N, the matrix Dy} (t) has rank j. As a result, the columns of
Dgo}w* (t) are j linearly independent elements of T, S. Since the (j + 1)st col-

umn of Dgo}_lﬂl*;(f:, 0) is not contained in T}, it follows that Dgo}_lﬁf;(f:, 0)
has rank (j+1). Again by virtue of the fact that having full rank is preserved
under small perturbations of the matrix entries, it follows that for ¢ € (0,¢)

sufficiently small, D> 2. (£, ¢) has rank (j +1). QED

We are now ready to prove Theorem 6.16.

Proof |of Theorem 6.16] Let 2* € M be a point where the weak bracket
condition holds. By Lemma 6.19, there are i € E* and t* € V := (0, R)*
such that Dy}, ..(t*) has rank k.

For Borel sets Ay,..., Ay C (0,R) and A := A; X ... X A, we have

m (H A i) = l]immz <fih) = [ olt) .
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where i
p(t) = Hpizpil (tl)
=1

and thus infiey p(t) > 0. The theorem then follows from Proposition 6.17.
QED

The following proposition is implied by Proposition 6.8 and the definition
of a right-continuous control at the beginning of Section 6.3.

Proposition 6.20 A point y € M is accessible from x € M for P (given by
6.3) if and only if for every neighborhood U of y there exists a right-continuous
control j : Ry — E such that the solution t — x(t) to the initial-value problem

(t) = Gju(z(t))
z(0) = =z

meets U. That is, x(t) € U for some t > 0.

In the proof of Theorem 6.16 it was shown that if the weak bracket con-
dition holds at a point x* € M, then the assumptions of Proposition 6.17 are
satisfied for n = k, T =R, and V = (0, R)*. Furthermore, by our assump-
tions on (G)icr, Fp is a C'-diffeomorphism (even a C°°-diffeomorphism) for
every 6 € ©. In analogy to Theorem 6.9, one obtains the following corollary.
As usual, we let I' denote the set of points that are accessible from every
point in M.

Corollary 6.21 If the weak bracket condition holds at an accessible point
x* € M, then T = Int(T") and P has at most one invariant probability measure
w. When it exists, ju is absolutely continuous with respect to \¥ and supp(p) =
I.

6.4 Piecewise deterministic Markov processes

In this section, we keep the notation of the preceding section 6.3 but restrict
our attention to the specific case where the densities p;,2 € E, appearing in
the definition of the measure m (see (6.2)) are exponential, i.e.,

pi(t) = hie M1,
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We shall consider certain properties of the joint continuous-time process
Zy = (Y4, I;). Such a process is sometimes called in the literature a piecewise

deterministic Markov process, in short a PDMP.
For all f: M x E — R bounded and measurable and for all ¢t > 0, we let

Puf (i) = E(f(Z)1 Z0 = (w.1)). (6.5)

Remark 6.22 Alternatively, one can define P, as follows. Given (z,i) €
MxE,let (Z'") = (Y{*", I!) denote the continuous-time process characterized
by - o

Y =Gr(Y) Yy =,
where (I}) is defined like (I;) with the exception that 6; has law p;(t)dt ®
instead of m. Then

Pof(x,1) = E(f(Z")).

Proposition 6.23 The semigroup {P;}i>o is weakly Feller and (Z;)i>o is a
Markov process with semigroup {P;}i>o.

Exercise 6.24 Prove Proposition 6.23. (Hint: Use the memoryless property
of the exponential distribution: P(7y > t + s|my > t) = P(m; > s).) Explain
why (24) fails to hold if the p;’s are not exponential.

Exercise 6.25 Let C!(M x E) denote the set of maps f : M x E —
R, (x,4) + f(x,i) that are C' in 2 and have compact support. For f €
CHM x E), we let Vf(z,i) denote the gradient of z — f(x,7). Let D, L :
CHM x E) — B(M x E) be the (unbounded) operators defined by

Df(x,i) = (V[(x,i),Gi(x)),

and
Lf(x,i) = Df(@,i) + X Y_pi(f(z.) = f(z.1)).
jEE
Prove that for all f € CL{(M x E),
P N 4
tf(xal)t f((I},Z) — L:f(l‘,l)
and that the convergence is uniform in z. In the language of continuous-

time Markov processes, L is called the infinitesimal generator of the Markov
semigroup {P;}.

lim
t—0
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6.4.1 Invariant measures

The following result relates invariant probability measures of the discrete
kernel P (given by (6.3)) to invariant probability measures of {F;}.

Theorem 6.26 Let Inv(P) (respectively Inv({P.})) be the set of invariant
probability measures for P (respectively {P;}). Let ¢ = m
jeEPi/Aj

(1) If p € Inv(P), then i € Inv({P.}), where [ is defined by
A (i) =epi [ p(@i(-t ) di
0

in this formula we think of i as a measure on R¥ that only charges M ;

(ii) If v € Inv({P;}), then v € Inv(P), where U is defined by

7(A) = %Z Aiv(A x {i});

S

(iii) The mappings Inv(P) — Inv({P}) : u — i and Inv({P;}) — Inv(P) :
v — U, are inverse to each other;
(iv) supp(ft) = supp(u) x E.

Proof (7). Let p be a Borel probability measure on M. Then, for all f €

B(M x E),

Eusp(fy f(Z5) ds)
Epsp(71)

where ;1 ® p stands for the product measure p ® p = >, p;u(de)d;. Indeed,

Buon ([ 502 85) = S [ €( [ 50z as) wias)

icE
- sz-/M/OOO/O f(®i(s,),1) ds Nie " dt p(dx)

<)

=ZP¢/M/OOOf<<I>@-<t,x>,i>eM dt p(dz) = ¢ (f).

el

a(f) = (6.6)
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where we used integration by parts. This equality applied with f = 1 gives
E,sp(11) = ¢!, so the formula in (6.6) follows. If now u € Inv(P) and Z,
has distribution p®p, then Z, has the same distribution. A continuous-time
version of Exercise 4.24 proves that i lies in Inv({P;}). More precisely, for
every t > 0 and f € B(M x E), Proposition 6.23 (ii) yields

Euep (/0 1 Pif(Zs) ds) =E,.zp (/0 Epep(f(Zstt) Locr, | Fs) ds)

Eyp( [ I )
=Eu®p( / " Kz ds) ~ Eye ( /O "1z ds)-

Here the last equality comes from the fact that

Euor ( / + rz)ds— [ (2 ds) 0

because (Z;)i>0 and (Z;, 11)i>0 have the same distribution. In light of (6.6),
we have thus shown that a(P,f) = a(f) for every f € B(M x E) and t > 0,
hence 1 € Inv({P;}).

(77). Let now v € Inv({F;}). We shall show that o € Inv(P).
Let Ky, K,A\,\"': B(M x E) — B(M x E) and Q : B(M x E) — B(M)
be the (bounded) operators respectively defined by

th<x7 7’) = f(q)z(tvx)? i),
Kf(x,i) = /OO Nie MUK f(x,4) dt,
0
M, i) = Nf(2,4), X (i) = A7 f(w,4),

and

Qf(x) = _pif(w, ).
jEE
Let D and £ be the unbounded operators on C}(M x E) as defined in Exercise

6.25.
Let f € C}(M x E). Then

Lf=(D—\Nf+\QF. (6.7)
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One has
dK:f

dt
where, for the second inequality, we used

— DK,f = K,Df, (6.8)

Furthermore,

/OO dK; f(z, Z')ef,\,.t dt = —f(z,i) + K f(z,1) (6.9)
. dl

with integration by parts. The relations in (6.8) and (6.9) together with

VK f(x,i)= / h Ne MV K, f(2,4) dt

0

justified by f € C}(M x FE) lead to the identity
KD —=M\f=(D—-NKf=-\
Thus, with (6.7),
LKf=(D-NKf+AKf=-\f+\QK}/. (6.10)

Let now f € C}(M). We can see f as an element of C!}(M x E) by setting
f(z,i) = f(z). For such f the identity in (6.10) reads

LK f(x,i) = Mi(=f(z) + Pf(z)).

Since v € Inv({P,}), vP(K f) = v(Kf) for all ¢, and consequently, by domi-
nated convergence, VLK f = 0 (see Exercise 6.25). Hence vf = vPf with

1
— Y (M < {5))

This proves that 7 € Inv(P) (use Remark 4.17 with C = C!(M)). Finally,
observe that the equation vLf = 0 applied to f(z,7) = f(i) leads to

v(dz)

Z \iv(dx x {i}).

v(M x {i}) = i— S (M x {k}) = ];\—Zc,

' keE
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where we used that ), v(M x {i}) = 1. Hence

H(dz) = %Z Nvda x {i}) = p(da).

(i57). For p € Inv(P) and f € B(M x E), i(f) = cu(Q:Kf). For v €
Inv({P,}) and f € B(M), o(f) = v(Af). Thus, for f € B(M),

a(f) = =a(\f) = QK f) = p(Pf) = u(f)

ol

by P-invariance. This proves that j = p. Conversely, for v € Inv({P,}) and
feC.(MxE),

v(f) = v(AL/AS) = OAQK(1/AS)) = er(QK1/Af) = cr( QLK f) = B(f).

where the second equality follows from vLK f = 0 and identity (6.10). Thus
v =r.
(iv). This last assertion immediately follows from the other three. QED

Remark 6.27 By Corollary 6.21 and Theorem 6.26, whenever there exists
an accessible point for P (see Proposition 6.20) at which the weak bracket
condition holds, {P;};>¢ has at most one invariant probability.

6.4.2 The strong bracket condition

We now define a strengthening of the weak bracket condition. Let Gj :=
{Gi—G,; ri,je E}and G, =G, U{[G,;,V]:i€ E,V € G} forn € N.
We say that the strong bracket condition holds at a point x € M if the linear
span of {V(z) : V € UnenG., } is equal to the full space R¥. Clearly the strong
bracket condition implies the weak one.

Exercise 6.28 Let G} := {[G;,G;] :4,j € E} and G, == Gl U{[G;,V] :
ie B,V e G} for n € N*.

(i) Show that every vector field in (|J,cy Gr,) \ Gi can be written as a linear

combination of vector fields in | J, oy G-
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(ii) Let V be a vector field in the linear span of | J, .y G,. Show that there
exist real numbers (a;)iep with >, pa; = 0 and a vector field W in
the linear span of (J,, .. GJ, such that
V=W+) oG

S

Exercise 6.29 Given a vector field V on M, define the vector fields 0 & V
and 1@V on R x M by

0 V)(r,x)=(0,V(z)) and (1@ V)(r,z)=(1,V(x)).

Let Ulll = [1@G1,1@G]] . Z,j S E} and U;;+1 = UZU{[].@GZ,V] 11 €
E)V € U"} for n € N*. Assume that V' is contained in the linear span of
Unens Grrs which was introduced in Exercise 6.28. Show that 0 @ V' lies in

the linear span of (J,,.- Up.

Theorem 6.30 If the strong bracket condition holds at a point x* € M, then
for every i € E and t > 0, (z*,4) is a Doeblin point with respect to P;.

Proof Let x* € M be a point where the strong bracket condition holds,
let £ > 0, and let ¢ € E. Continuity of the vector fields (G;),ecr and their Lie
brackets implies that 2* admits an open neighborhood U such that the strong
bracket condition holds at every point in U. Let €; € (0,t) be so small that
O, (tg, x*) € U for every ty € (0,e1). Fix t € (0,¢1) and set y* := D;(t5, x*),
where now the strong bracket condition holds as well. For d € N* and s > 0,
set

Ad,s = {(th...,td) € (0,00)d: 4.+t < 8}.

For i = (i1,...,iq41) € B9, define the functions

EY  Agyx M — M,
(F1s e ta)o @) = iy (5 — (b o 1), 05 (b, ),

and
U Ny = M, (. ta) = B2 ((t . ta), 2).

The proof of Theorem 6.30 is organized as follows: We first show that there
exists a sequence of indices i = (i1,...,ix41) € B and s* € AV

such that D@/)-k’t_ta(s*) has rank k. Then we show that z* is a Doeblin

Ly*
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point with respect to (), the Markov kernel associated with the random

dynamical system (F(IZT)U,Q), where ¢ is the normalized Lebesgue measure

q(-) = ML) /N (Agy1,). From this we deduce that (z*,i) is a Doeblin
point with respect to F;.

Let us begin by showing the existence of i and s* such that D@Di Z*_ ts(s*)
has rank k. On R x M, consider the vector fields (1 & G;)jcg defined as
in Exercise 6.29. We claim that the strong bracket condition at y* with
respect to (G;);ep implies the weak bracket condition at (r,y*) with respect
to (1 & G;)jep for every r € R.

To see this, let r € R, v = (v, v;) € RxR* and i* € E. Since the strong
bracket condition holds at y*, there exists a vector field V' in the linear span
of U,en Gy, such that

vi —0i1Gi(y") = V(y*).
By Exercise 6.28 (i7), there exist real numbers (;);er with » . pa; =0 and
a vector field W in the linear span of | J,», G}, (defined in Exercise 6.28) such
that
V=W+ Z CYjGj.
jeE

Then, by Exercise 6.29, 0@ W lies in the linear span of | J, .y Uy, (defined in
Exercise 6.29). Let Uy ={1®G;:j€ E}tand U,;; = U, U{1® G,;,V]:
j€ EVeU,}forn € N. It is easy to check that U’ C U, for every n € N*,

so 0 ® IV lies in the linear span of |J,.y Un. Now we can write

v = (v, vg) =(0, v — 001G (¥")) + v1(1 B G ) (r, )
=@ W)(r,y") + > a;(1eG)(ry") + ol e G)(r,y),

JEE

where we used that EjeE a;; = 0. This proves that v lies in the linear span of
Unen Un. Accordingly, the weak bracket condition with respect to (1®&G;) ek
holds at (r, y*).

Let (®;)jep denote the flow functions associated with the vector fields
(16 Gj)jer on M :=R x M. Define the maps

F:0x M- M, ((s,9),(r,x) = F(r,z) = (s, (r,2))
and

@;7(7“790) : Rﬁ_ — M, (tl, . ,tn) — (F(tn,in) 0...0 F(tm-l))(r, I)
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for n € N*, i = (iy,...,i,) € E", and (r,z) € M. Fier(Oél/\ 4

Since the weak bracket condition with respect to (1@ G;),;ecg holds at (r,y*),
Theorem 6.19 implies that there are i € E* and s™ = (¢},...,tf,,) €
(0,6)"*! such that D@}, . (s*) has rank (k + 1).

Set s* = (t],...,t;) and 7 =t5+ 1] + ... +t;, ;. Then s* € Ag; 4 and

)
y)

kt—t§ i *ok i *ok 1
Dy 0(8") = D®iy (t — T, 0 4+ (87)) Dipin o+ (S )<_1 M_ 1)‘

Since ®;,,, (t—7,-) is a diffeomorphism, the matrix D®;, ., (t —7, 0} - (s™))
is invertible. We now show that

i *ok 1
Dekone ) (L ) (6.11)

is invertible as well and thus that D¢kt to( *) has rank k. To obtain a
contradiction, suppose that the matrix in (6.11) is not invertible. Denoting
the columns of Dyj,.(s*) by ay,..., a1, the matrix in (6.11) becomes
(a1 — Gy, ..., a8 — Ggy1), SO there exists 7 € {1,...,k} and real numbers

aj — Ag4+1 = Z ﬁl(az - ak+1)-
le{1,...k\{5}

-5 A0S )

le{l,...k\{7} le{l,...k\{7}

o (11N [ 1.1
D@, (ry)(87) = (D(p}g+17y*(s**)) N (a1 ak+1> ’

this implies that D@}HL(W*)(S**) has rank strictly less than (k 4 1), a con-
tradiction.

Then

Since

Now we show that z* is a Doeblin point with respect to @), the Markov

kernel associated with (ka)l ‘.q). To do so, we will apply Proposition 6.17

with Arre, {1}, ¢, Flip)'™, and ¢ playing the roles of T, E, m, F, and
4,01@, respectively. Since the finite set {1} consists of a single element, we may

identify © from Proposition 6.17 with 7' = A1, ,;. The measure ¢ is clearly
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absolutely continuous with respect to A**' and has a constant probability
density function. To be able to invoke Proposition 6.17, it is then enough to
show that for t* := (¢§,s"), D¢k+1t (t*) has rank k. But this follows from

* k *
Dty sy me (6) = Dby 0 (s%)

and the fact that the matrix on the right-hand side has rank k, as established
in the second step of the proof.

To complete the proof of Theorem 6.30, we argue as follows. Since z* is
a Doeblin point with respect to @), there exist a neighborhood B C M of z*
and a nonzero Borel measure £ on M such that

Q(z,A) > &(A), VYxe B, AeB(M).
Define the event
C={Tkt1 <t < Ty, lo=1,1, =74, for 1 <1 <k+1}.
For every z € B, A€ B(M), and j € E,
Py((a,0), A x {j}) = P(Z[" € Ax {F}C)P(C) = 4,

Tk+1

(7)P(Y;"" € AIC)P(C).

Let (T, . .., Tk+1) be independent random variables living on some probability
space with probability measure P such that 7j has probability density function
p; and T; has probability density function p; for 1 <1 <k 4 1. Set

={To+..+Tpe <t<To+...+ T}
Then
One has

P(FE(To, ., Ti), @) € A|R)

k
1 / +1t
= Pi tl ]-A F ((t077tk>7x))
P(R) JAVAIE H l
/ pik-o—l (tk+1) dtk+1 dtg e dtk
t—(to+...+tx)

Zﬁ)‘kH(AkH,t)Q(:C, A) > L/\Hl(Akﬂvt)g(A)’

P(R)
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k k k
¢ = ( inf )\,L H )\il exp(—)\itg - Z )\iltl - )\ik+1 (t - tl)) > 0.
to
=1 =1 =0

~~~~~ te)EAK 1t

This proves that (z*,7) is a Doeblin point for P,. QED

Corollary 6.31 If the strong bracket condition holds at an accessible point
x* € M, then for all s >0

Inv(P,) = Inv({P,})
and Inv(Py) has at most cardinality one.

Proof This follows from Proposition 6.3 and Theorem 6.30. QED

6.5 Stochastic differential equations

This section, and the related Section 7.5.2, are not self-contained and require
some extra knowledge, namely a certain familiarity with stochastic differential
equations.

Let Go, G, ...,Gx denote smooth vector fields on M = R* (or on a k-
dimensional manifold). For simplicity, we shall assume here that the vector
fields G; are bounded with bounded first and second derivatives.

We consider the Stratonovich stochastic differential equation on M

N
dX, = Go(X,) dt + Y Gi(X,) 0 dB}, (6.12)
i=1
where B = (B;)i>0 = (B},...,BY)>0 is an N-dimensional {F;}-Brownian
motion, starting from 0, defined on a probability space {2, F,P} equipped
with a (complete) filtration {F;}i>o.
Equivalently, using the It6 formalism,

N
dX; = Go(Xy) dt + Y Gi(Xy) dBj, (6.13)

i=1
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where

Go() = Golz) + % 3" DGi(2)Gilo).

By classical results (see, e.g., [45, Chapter 8|), given © € M there exists

a unique solution, X* = (X7)i>0, to (6.12) with X7 = x. Furthermore,

X* € C(Ry, M) and the mapping = — X7 is continuous when C(R, M)

is equipped with the topology of uniform convergence on compact intervals.
Let { P }i>0 be the family of operators on B(M) defined by

P f(z) = E(f(X})).

Then it is also classical that (X;) is a continuous Feller Markov process with
semigroup {P; }i>o (see, e.g., [45] or [59]).

6.5.1 Accessibility

Associated to (6.5) is the deterministic control system
N
§=Goly) + Y u;(1)G;(y), (6.14)
j=1

where u : [0,00) — RY is a control function which can be chosen piecewise
continuous or piecewise constant.

We let t — y(t, z,u) denote the solution to (6.14) whose initial condition
is .

Proposition 6.32 Let p,x € M. The following statements are equivalent:

(1) For every neighborhood U of p, there exists a control u which can be
chosen piecewise continuous or piecewise constant, and t > 0 such that
y(t,z,u) € U;

(ii) The point p is accessible from x for {P;}1>o.

Proof This follows from the Stroock—Varadhan Support Theorem [65],
which asserts that the support of the law of X* equals the closure (in C(R;, M))
of the set {y(-, z,u) : u piecewise constant}. It is easy to show that the latter
also equals the closure of {y(-,z,u) : u piecewise continuous}. QED
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6.5.2 Hormander conditions

The existence of Doeblin points for the 1-resolvent G or for Pr can be deduced
from certain Hérmander conditions that are similar to the bracket conditions
introduced in Sections 6.3.1 and 6.4.2 for PDMPs.

Using the terminology introduced in these sections, we let L(Gy,...,Gy)
denote the Lie algebra generated by {Gy,...,Gn}, and for all z € R*

E(Go, .. ,GN)(ZL’) = {V(I) Ve E(Go, .. .,GN)}.

We define similarly £(Gy,...,Gy) and L(Gy,...,Gy)(z).

Given a point x € RF we shall say that x satisfies the weak Hérman-
der condition (respectively the Hormander condition, respectively the strong
Hérmander condition) if:

(a) [Weak Hérmander condition| £(Gy,...,Gy)(z) = R¥;
(b) [Hérmander condition| The family
L(Gy,...,Gn) (@) U{[X,Y](x) : X,Y € L(Gy,...,Gn)}
spans R¥;
(c) |Strong Hérmander condition| £(Gy, ..., Gy)(z) = R*.

Clearly (¢) = (b) = (a). Observe that in (a) all the vector fields, including
the drift Gy, play the same role. In (b) the drift can only appear in a bracket
with some "Brownian" vector field. In (¢) only the Brownian vector fields
appear.

A classical theorem in geometric control theory, originally due to W. L. Chow
[15], has the following useful consequence:

Proposition 6.33 Let U C R* be a connected open set. Suppose that the
strong Héormander condition holds at every point x € U. Then for all x,y € U
the point y is accessible for {Pi}i>o from the point x.

Proof For ¢ > 0 and u : [0,00) — RY a piecewise continuous function,
let t — y°(t,z,u) denote the solution to the ordinary differential equation
y = eGo(y) + Zjvzl u;(t)G,(y) with initial condition y*(0,z,u) = z. Chow’s
Theorem (see, e.g., [15] or [41, Chapter 2, Theorem 3|) asserts that for all
x,y € U there exist a piecewise constant control u with values in {—1,0,1}
and t > 0 such that y°(s,z,u) € U for all 0 < s < t and y°(t,z,u) = y. To
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shorten notation, set y°(s) = y°(s,z,u) and y°(s) = y°(s, z,u). Then, for all
0<s<t,

1 (8) — 8°()]| < £l Gollo £+ K / ) — ) | dr,

where K = sz\il ||DG;|so- Thus, by Gronwall’s Lemma,
ly(t) = y* ()]l < e"*el|Gollo t,

so that y°(t) — y as € — 0. To conclude observe that y°(s, z,u) = y(es, x, u)
with u®(s) = u(2)/e. The result then follows from Proposition 6.32. QED

The following results, Theorems 6.34 and 6.37, heavily rely on classical papers
on hypoelliptic diffusions by Bony [13] and by Ichihara and Kunita [39].

Theorem 6.34 The following statements hold:

(i) Suppose that the weak Hérmander condition holds at p € RX. Then p is
a Doeblin point for the 1-resolvent G;

(i) Suppose in addition that p is accessible. Then {P;}i>o has at most one
tnvariant probability measure . When it exists, p is absolutely contin-
uous with respect to \* (the Lebesque measure on R*) and supp(p) =
I' = Int(T"), where I' stands for the accessible set of {P;}.

Proof (7). Fix O aneighborhood of p, small enough so that L(Gy, ..., Gy)(x)
spans RF for all z € O.

We say that p is totally degenerate it S, [|Gi(p)|| = 0. We distinguish
between two cases.

Case 1: p is not totally degenerate.
In this case, there exists a connected open set D containing p, relatively
compact, with D C O such that:

(a) For every x € D, Zfil |Gi()]| # 0;

(b) For every z € 9D = D\ D, there exists a vector u normal to D at x
such that SN (Gi(z),u)? > 0.

Here, by a vector normal to D at x, we mean that there exists r > 0 such
that the open ball with center x 4+ ru and radius r||u|| has empty intersection
with D.
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The reason for which such a D exists is the following. We can assume,
without loss of generality, that G (p) # 0 and ”G (p [ = €1, the first vector in

the canonical basis of R¥. For £ > 0 small enough, let
D={zeR" : |z —pli <e},

where ||ul|; = Zle |u;|. For x € 0D let u, be the vector defined by u,,; =
|§1:§§| if z; # p; and u,; = 1 otherwise. The vector u, is normal to 9D and
(e1,u,)* = 1. Hence, for € small enough, (G1(z),u,)? > 0 for all z € D and
Gi(x) #0 for all z € D.

The "formal generator" of the diffusion process (6.12) is the operator L

acting on C? functions f : R¥ — R by the formula:

LI = Goll) +5 D GA) (6.15)

where G;(f)(z) = (Vf(x),Gi(x)) and GZ(f) = Gi(G;(f)). Under the condi-
tions (a) and (b) above, there exists, by a theorem of Bony ([13, Theorem
6.1]), a kernel Gp : D x D — R, smooth on D x D\ {(x,z) : x € D}, such
that the following holds:

For every f € Cy(D), there exists a unique solution g € Cy(D) to the
Dirichlet problem

{ Lg—g= —f on D( in the sense of distributions )
glop =0,

and g(x) = Gpf(x) == [ Gp(x,y)f(y) dy. Furthermore, if f is smooth on D
S0 is g.

Note that, by continuity of Gp off the diagonal, there exist disjoint open
sets U,V C D and § > 0 such that p € U and Gp(x,y) > 0 for every
(x,y) e U x V.

Let 7 =inf{t > 0 : X7 € D}. For f € Cy(D) smooth on D, 1t6’s formula

implies that
tAT
(ot [ erix as)
>0

is a local martingale. Being bounded, it is a uniformly integrable martingale.

Thus,
E(/0 “(XE) d ) Gof (@)
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It follows that for every o € U and every Borel set A C R¥,
G(z,A) > Gpla(z) > N (ANV),

proving that p is a Doeblin point for G.

Case 2: p is totally degenerate.

Let {®y(t,-)} be the flow induced by Gy. We first assume that k& > 2. We
claim that it is possible to choose ¢t > 0 small enough to ensure that ®q(¢,p)
lies in O and is not totally degenerate. By what precedes ®g(¢,p) is then a
Doeblin point for G, and - since it is accessible from p by {P; };>¢ -, this makes
p a Doeblin point for G' (the proof of this latter assertion is easy and left to
the reader). To prove the claim, assume to the contrary that G;(®o(t,p)) =0
forall0<t<eande=1,...,N. Then

0= DGi((I)O(t’p))%q)O(tap) - DGi((DO(tvp»GU((DO(tvp)) = [G()? Gi](cbﬂ(tvp>>'

Similarly Z(®o(t,p)) = 0 for all Z € L(Gy,...,Gn)\{Go}. This is in contra-
diction with the assumption that £(Go,...,Gy) has rank k£ > 2 on O.

Suppose now that k = 1. If forsome t > 0,and ¢ € {1,..., N} G;(Py(t,p)) #
0 the point ®q(¢, p) is not totally degenerate, and like previously, p is a Doe-
blin point. If for all ¢t > 0 and i € {1,..., N} G;(®o(t,p)) = 0, then for all
x € {Dy(t,p): t >0} and f >0,

o » 1 . ®o(1,2) f(u)
Gf(z) :/ e f(Do(t,z))dt > e / f(Do(t,x))dt = e / du.

0 0 x Go(u)
This easily implies that x, hence p, is Doeblin for G.

(7). Suppose that p is accessible. Then, by Theorem 6.2, G (and hence
{P;}+>0) has at most one invariant probability measure u. The minoration
G(x, A) > SN*(ANV) for all z € U shows that V' C I'. Thus, I" has nonempty
interior and consequently (see Proposition 6.2) supp(u) = I'. Also, for every
piecewise constant control u, the map x — y(t, x, u) is a diffecomorphism. The
set Up,y(t, V,u), with the union taken over all t > 0 and u piecewise constant,
is then an open set dense in . It remains to prove that u < A\*. Let C(R,, RY)
be the Wiener space equipped with its Borel o-field and the Wiener measure
W (dw) (i.e., the law of B = (B},..., BY);>0) and let © = R, x C(R,,RY)
be equipped with the product measure m(dtdw) = e *dtW (dw). Then, for all
f € B(M),

Gf(x) = / f(Fy(x)) m(db),
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where Fiy ) (x) = XJ(w). Now, for almost all w and all ¢ > 0, the map
r = XJ(w) = Fyu(z) is a diffeormorphism (see, e.g., [40, Chapter V]| or
Kunita [44]). We are then in the situation already considered in Theorem 6.9
and the proof of Theorem 6.9 applies verbatim. QED

Remark 6.35 Suppose that I' # () and that all the points in I' satisfy the
weak Hormander condition. Then the density of p (when u exists) is C'.
Indeed, let U be a neighborhood of I' such that all the points in U satisfy
the weak Hormander condition. By Hormander’s Theorem [38], L and L*
are hypoelliptic operators in U, meaning that for every distribution f on U,

LfeC®U)= feC>®U).1If f= %,L*f:Oso that f is smooth.

Remark 6.36 Suppose that all the points in M satisfy the strong Hérmander
condition (and, in case M is a manifold, M is connected). Then I' = M and
the density of 1 (when p exists) is positive everywhere. The first statement
follows from Proposition 6.33 and the second from Bony’s maximum principle
(|13, Corollaire 3.1|) applied to L*.

Theorem 6.37 Let p € R*. Suppose that the Hormander condition holds at
p. Then p is a Doeblin point for some Py, with t > 0. If furthermore p is
accessible, then for all s > 0

Inv(Ps) = Inv({P,})
and Inv(Py) has at most cardinality one.

Proof Let D be a neighborhood of p at which the Hérmander condition
holds. Then the law of (X}) killed at D (see Ichihara and Kunita [39]) has a
density ¢;(z,y) which is C* in t > 0,2,y € D. Thus, ¢;(p,q) > 0 for some
t > 0 and ¢ € D. This makes p a Doeblin point for P;. The second statement
follows from Proposition 6.3. QED

Notes

The material on random switching between vector fields in Section 6.3 is based
on [8] and [5]. The weak bracket condition is closely related to the classical
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Hoérmander hypoellipticity condition that yields smoothness of transition den-
sities for diffusions (see, e.g., [51]). More background on the weak and strong
bracket conditions with an emphasis on how they relate to controllability is
provided in [66]. Proposition 6.3 and the material in Section 6.5 are based on
[6] and [10]. The first proof that, under a weak Hérmander condition at an
accessible point, an SDE has at most one invariant probability measure goes
back to Arnold and Kliemann [2]. The proof given here (of Theorem 6.34) is
based on the notes [6] and differs from the proof in [2].
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Chapter 7

Harris and Positive Recurrence

7.1 Stability and positive recurrence

Let (X,,) denote a Markov chain (defined on (€2, A,FF,P)) on M with kernel
P. Recall that we let
1 n

denote its empirical occupation measure.
If there exists m € P(M) such that, for all z € M and every bounded
continuous (respectively measurable) function f: M — R,

P.(lim v, f =nf) =1,
n—oo

the kernel P (or the chain (X,,)) is called stable, respectively positively recur-
rent.

If P is stable, then it is clearly uniquely ergodic with invariant probability
{7} (where 7 is the probability appearing in the definition).

The following partial converse follows from Theorem 4.20.

Proposition 7.1 Suppose that P is Feller, uniquely ergodic and that for all
x €M, {v,} is P, almost surely tight. Then P is stable.

Remark 7.2 A Feller stable Markov chain is not necessarily positively re-
current. For instance, let X,, € [—2,2] be recursively defined as

1
Xn+1 - §Xn + §n+1

163
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where (&,) are independent uniformly distributed random variables taking
values in {—1,1}. Then, (X,,) is Feller and uniquely ergodic (see e.g Exer-
cise 7?7 or Theorem 4.31), hence stable. It is not hard to prove that =, its
stationary distribution, is the uniform distribution over [—2,2]. On the other
hand, for Xo =0, X,, € D = {31, 27%6, : 6, € {—1,1},m € N} so that
vn(D) =1 while 7(D) = 0.

Another example (borrowed from [22]) is the following. Let P be the Ker-
nel on [0, oo defined by P(0,0) =1 and for z > 0, P(z,0) =1— P(z,2/2) =
27", This kernel is do-irreducible, Feller and admits dy as (unique) invariant
probability. It is stable (since X,, < 22) but is not positively recurrent,

2"1,
because the probability that X,, never touches 0 is positive.

Exercise 7.3 Let (X,) be the deterministic system on S' = R/Z defined by
Xpi1 = (X, +a) mod 1 where o € R\ Q. Show that (X,,) is stable but not
positively recurrent.

Proposition 7.4 Suppose that P is strongly Feller and stable. Then P is
positively recurrent.

Proof If P is strongly Feller, then for every bounded measurable f, Pf is
continuous so that, v,(Pf) — m(Pf) — 0 P, almost surely. By invariance of
7, m(Pf) = 7 f and, as shown in the proof of Theorem 4.20 v,,(Pf)—v,f — 0
P, almost surely. QED

Remark 7.5 A Feller (even strongly Feller) uniquely ergodic Kernel on a non
compact space is not necessarily stable. For instance, let P be the Kernel on
N defined as P(0,0) =1 and forn >1 P(n,n—1)=1—p,P(n,n+1)=p
with 1 > p > 1/2. Then Jy is the unique invariant probability of this Markov
chain but the chain is not stable since P,(X,, — 0co) > 0 for all x > 0. Another
(similar) example on R? is given by the deterministic linear dynamical system,
Xn+1 = aX, with a > 1.



7.2. HARRIS RECURRENCE 165

7.2 Harris recurrence

The chain (X,,) is called Harris recurrent if there exists a non zero measure
¢ such that for every Borel set A C M and every z € M

E(A) > 0= P, (limsup1,(X,) =1} =1.
n—oo
Note that an Harris recurrent chain is &-irreducible. The converse is false as
shown by the following example.

Example 7.6 Let P be the Markov transition matrix on M = N defined
by P(i,i + 1) = p; and P(i,0) = 1 — p;; where py = 0,p; > 0 for i > 1
and [[,»;p; > 0. Then the associated chain is ¢ irreducible but not Harris
recurrent.

Recall that an harmonic function is a measurable function A : M — R such
that
Ph = h.

Theorem 7.7 Suppose that (X,,) is Harris recurrent. Then every bounded
harmonic function is constant.

Proof Let h be bounded and harmonic. Let (X?) denote the chain having
P as transition kernel and initial condition X§ = x. Then Y, = h(X?) is a
bounded (in particular uniformly integrable) martingale. Hence, by Doob’s
convergence theorem (Theorem A.7 in the appendix), lim,, o Y, = Y exists
almost surely and E(Y|F,) = Y,. Given a € R let {h > a} (respectively
{h < a},{h = a} be the set of u € M such that h(u) > a (respectively
<,=). T £({h > a}) > 0 then (X7?) enters {h > a} infinitely often. Thus
Yo > a so that Y,, = E(Y,|F,) > a. In particular, h(z) = Yy > a. Similarly
it £({h < a}) > 0 then h(z) < a. Let now a be such that {h = a} # 0. Then
E{h#a}) =E&Upen{a— (n+1)"' <h<a+ (n+1)"'}¢) = 0. This proves
that h =a. QED

Positive recurrence and Harris recurrence are intimately linked as shown
by the next important theorem.

Theorem 7.8 The following assertion are equivalent:

(a) P is Harris recurrent and Inv(P) # (;
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(b) P is positively recurrent;

(c) There exists m € Inv(P) such that for all f € L'(7w) and every initial
distribution pu,

P,(lim v,(f) =7(f)) = 1.

n—oo

Proof ¢ = b= aisimmediate. Conversely, if P is Harris recurrent with an
invariant probability 7 then P is uniquely ergodic. Let f € L!(7), A= {w €
MY limy oo = 00 f 0 0F(w) = 7f} and g(x) = P,(A). By the ergodic
theorem g(z) = 1 m almost surely. We now claim that ¢ is harmonic, which
with Theorem 7.7 proves the result. To prove the claim we use the invariance
of A under # and the Markov property:

QED

Theorem 7.9 Suppose P is strong Feller, uniquely ergodic with an invariant
probability m having full support. Then the equivalent conditions of Theorem
7.8 hold true.

Proof Let f € L!(7) and let g be defined like in the proof of Theorem
7.8. We have seen that g is harmonic. Since P is strong Feller g is con-
tinuous, and by the ergodic theorem g(x) = 1 for m almost all x. The set
{r € M : g(x) =1} is then a closed set containing the support of 7. Since ™
has full support, g = 1 and P is positively recurrent. QED

Corollary 7.10 Suppose P is strong Feller with an tnvariant probability m
having full support. If M 1is connected, then the equivalent conditions of The-
orem 7.8 hold true.

Proof follows from Theorem 7.9 and Proposition 5.18 QED
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7.2.1 Petite sets and Harris recurrence

A convenient and practical way to ensure that a chain is Harris recurrent is
to exhibit a recurrent petite set.

Given a Borel set C' C M we say that x € M leads almost surely to C' if
P,(7¢ < 00) = 1 where

7c =min{k > 1: X, € C}.

We say that C' is recurrent if every x € M leads almost surely to C.
For further reference, we define the successive return times in C' recursively

by
Tén—H) = min{k > Tén) : Xy € C}

with 7.0 = 0.

Proposition 7.11 Let C C M be a recurrent petite set. Then (X,,) is Harris
recurrent.

Proof It easily follows from the definition of a petite set (see Section ?7),
that for all z € C' and A Borel, P,(74 < 00) > £(A). Thus, using the strong
Markov property, for all x € M,

Pu(ta <o0) 2 Pu(Fk > 70 : Xi € A) = Eo(Px, (T4 < 00)) > £(A).
Therefore, by the Markov property, for all n € N
P(7a < 00| F,) = Px, (74 < 00) > &(A).

The first term of this inequality converges to 1., (see Theorem A.7 in the
appendix). Thus P,(74 < 0o) = 1 for all z, whenever £(A) > 0. By the strong
Markov property, this implies that X,, € A infinitely often. QED

7.3 Recurrence criteria and Lyapunov functions

We discuss here simple useful criteria, based on Lyapounov functions, ensur-
ing that a set is recurrent. It also provide moments estimates of the return
times. Conditions (a) and (b) of the next results are folklore (see the notes
at the end of the chapter). We learned condition (a’) from Philippe Robert
(see [60], Proposition 8 in Chapter 8).
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Proposition 7.12 Let V : M — [1,00[ be a measurable map and C C M a
Borel set. Assume that for all x € C' PV (xz) < oo and that one of the three
following conditions hold:

(a) PV -V <—1on M\C,

(a’) Condition (a) and sup,cy E.(|V(X1) — V(2)|P) < oo for some p > 1,
(b) PV -V < =XV on M\ C for some 1> X>0.

Then for all x € M

(i) E,(7¢) < PV (x) + 1 under condition (a);

(ii) E.(72) < (1 +VP(x)) for some constant ¢ > 0, under condition (a');
(iii) E,(e’0) < E,(e~ 80Ny < L PV (x) under condition (b).

In particular, C' is a recurrent set.

Proof Let V, = V(Xyar.) + (n ATc¢). Then (V,),>1 is a supermartingale.
Indeed, for all n > 1

E<Vn+1 - ‘/;L|-Fn) - E(Vn+1 - anfn)17—0>n - (PV<XTL) - V<Xn))17-c>n S 0.

Thus E,(n A 7¢) < E.(V,) < E. (Vi) = PV(x) + 1. This proves the first
assertion. The proof of assertion (ii7) is similar. Set V,, = % Then
(Vi)n>1 is a supermartingale. Thus

Ex(e—log(l—/\)n/wc) < Ez(vn) < Ez(‘/l) _ ]:V(x)\)

We now prove assertion (ii), following Robert (|60], Proposition 8, Chapter
8).
We claim that for all z > —1

(14+2)P <14 pr+ Cpr(x) (7.1)
where

p(p—1)
4

r(r) = 2*(1 + |z|)*~? and C, =

for p > 2; And
r(z) = |z|” and C, =1
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for 1 < p < 2. Indeed, by Taylor-Lagrange formula, for all z > —1,

(I+2)P=14pzr+ @ﬁR(w)
with R(z fo (1 —s)(1 + sz)P~2ds. Thus |R(z)| < (1 + ]x|) 2) for p > 2.
For 1 <p <2,and z > 0, |R(x)| < fo (1 — s)sP—22P~ 2 = o 1):151’ 2 while for
l<p<2and -1 <z <0|R(z)] <1 (because s € [0,1] — (1 —5)(1+ sz)P~2
is decreasing, hence bounded above by 1). This proves the claim.

Now set

Zy =1+ e(V(X,) + g)

where € > 0, and

Then

Zpl—Zp(l %p

n

so that by (7.1) and condition (a),

5An+1

pe
P < 7P[1 — —/—

— 7))

on the event 7¢ > n. Now, it is easy to check that r(‘EAZLn“) < ;—i(l—l— AL 41])P)

for p > 2, and T(EAZTi“) < P‘A}“‘ for 1 < p < 2. Thus, for € > 0 small
enough, condltlon (a) and (a’) make (Zhnre) & supermartingale. The end of
the proof is like the proof of (i). QED

Remark 7.13 if V is a Lyapounov function in the sense that PV < pV + &
with 0 < p < 1 and k > 0; the assumptions of the Proposition 7.12 (b) hold
true with 0 < A< l—pand C ={zx e M :V(z) < ”“ 5} Compare to
Proposition 4.23.

The next proposition extends assertion (iiz) of Proposition 7.12 and gives an
alternative condition (to conditions (a), (a’)) to control the moments of 7¢.
The proof is based on a beautiful argument used in section 4.1 of Hairer’s
notes |7].



170 CHAPTER 7. HARRIS AND POSITIVE RECURRENCE

Proposition 7.14 Let V : M — [1,00[ be a measurable map and C C M a
Borel set. Let ¢ : [0,00[— R% be a C' concave function and let h : [1,00[—

[0, 00[ be the map defined by
T ods
ha) = [
(@) 1 w(s)

Assume that for all v € C PV (x) < oo and that for allz € M\ C
PV(z) = V(z) < —p(V(z)).
Then, for all z € M\ C
E.(h™!(10)) < V(x)
and, for all x € C
E.(h ! (1¢)) < A H(h(PV(z)) +1).

Proof First observe that ¢/ > 0 (for otherwise by concavity ¢ could not be
> 0). For z > 1and t > 0 set H(t,x) = h™'(h(z) +t). It is readily seen that

that
oH oH

—5; (6 2) = w(H(t 7)) = pz) 5~ (t,2). (7.2)
Thus
9*H _ ((H( ) — ' (@) p(H(, x))
5z 0 0) = o(@)? =" i

In particular, H is convex in t and concave in x.
It follows that for allm > 0

Hn+1L,V(Xp1)) — Hn, V(X,)) =

Hn+1,V(Xp1)) — Hin+ 1, V(X)) + Hn + 1, V(X)) — H(n, V(X))
< %—Z(n F 1, V(X)) (V(Xng1) — V(X)) + %—i](n +1,V(X,)).

Therefore, on the event {X,, & C},
E(H(n+1,V(Xn11)) = H(n, V(X0))[Fn)

< (VXD D 041,V (X)) + DL 41,V (X,)) < 0.
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Here the first inequality follows from the hypotheses on V' and the second
from equation (7.2). This makes the process (H(n A 7¢, V(Xpare))n>1 a su-
permartingale. Thus

E,(h ' (nA1e)) < B (H(nATe, V (Xonre))) < EL(H(1, V(X)) < H(1, PV(x))

where the last inequality follows from concavity of H in x and Jensen inequal-
ity. In case x € M \ C, by monotony and concavity of h

h(PV(z)) < h(V(z)=p(V(2))) < bV (2)) = h'(V(2))p(V(z)) = h(V(z))—1.

Thus H(1, PV (x)) < V(x). This proves the result. QED

7.3.1 Subsets of recurrent sets

Let C' C M be a recurrent set for the chain (X,,) (for instance the sublevel
set {V < R} of a Lyapounov function as in ??) and U C C' a measurable
smaller subset (for instance the neighborhood of a Doeblin point). It is often
desirable to deduce recurrence properties of U from recurrence properties of
C'. This short section discusses two such results.

The induced chain on C' is the process (Y,,)n>1 defined as

Y,=X .
TC
Exercise 7.15 Verify that (Y},),>1 is a Markov chain on C.

Proposition 7.16 Let C' C M be a nonempty recurrent set and U C C a
measurable subset. Suppose that there exists k > 1 and 0 < € < 1 such that
for all x € C

P.(Jie{l,...,k}Y,eU)>c¢

where (Y,,) stands for the induced chain on C. Then
(i) U is recurrent;
(ii) If supyec EL(78) < oo for some p > 1, then

supE, (1)) < o0
zeC
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(iii) If sup,cc E.(e*7) < oo for some Ao > 0, then

supE,(e*) < 00
zeC

for some 0 < A < .
Proof For all x € M, P, almost surely
1 <00 = lim P(1y < 00| F ) = lim Py, (1 < 00) > €.
n—00 Tc n—00

Here the first equality follows from the Martingale convergence theorem A.7
and the second from the strong Markov property. This proves that U is
recurrent.

Let oy = min{n > 1 :Y, € U}. The proofs of assertions (i7) and (7i7)
now follow from the identity 7y = TéUU), exactly as in the proof of Proposi-
tion 2.19 (), (i7). The verification is an easy exercise left to the reader. QED

When P is Feller, the existence of a compact recurrent set C' makes every
accessible open set U recurrent. More precisely,

Proposition 7.17 Suppose that P is Feller. Let C C M be a nonempty
compact set, x* € M an accessible point from C (i.e z* € I'¢) and U a
neighborhood of x*.

(1) If C is recurrent, so is U;
(ii) If U C C and sup e E,(78) < 00 for some p > 1, then

supE, (1)) < o0
zeC

(iii) If U C C and sup,ec E.(e7¢) < 0o for some Ao > 0, then

supE,(e’) < 00
zeC

for some 0 < A < .

Proof For ¢ > 0 and i € N* let O(e,i) = {z € M : P'(z,U) > e}.
By Feller continuity and Portemanteau’s theorem 4.1, O(e, %) is an open set.
By accessibility of z* the family {O(e,i),e > 0,i € N*} covers C. Thus,
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by compactness, there exist € > 0 and a finite set I C N such that C' C
UierO(e, ). This shows that, for all z € C,

P,(ry < k) >e (7.4)

with £ = max I. Assertions (i7) and (i77) then follow from Proposition 7.16
because, for all z € C,

P,(Fic{l,....k} Y, € U)>Pu(ry < k) >e.

The proof of first assertion is similar to the proof of the first assertion in
Proposition 7.16. Namely, for all x € M, P, almost surely,

1,coo = lim P, (7y < 00| F ) = lim Py, (1 < o0) > ¢
n—00 TC n—00

Thus P, (77 < 00) = 1. QED

7.4 Petite sets and positive recurrence

We have seen (Proposition 7.11) that the existence of a recurrent petite set
for a Markov chain makes it Harris recurrent. If, in addition, the return times
to the set are bounded in L', then it is positively recurrent.

Theorem 7.18 Let C C M be a recurrent petite set such that

supE,(1¢) < 0.
zeC

Then the equivalent conditions of Theorem 7.8 hold true.

Before proving this theorem, we start with a proposition relating the recur-
rence properties of the chain (X,,) and the sampled chain Y,, := X1 , where

forn > 1, Ty := 0, and (A;);>1 is a sequence of i.i.d. random variables taking
on values in N.

Recall that in the particular case where A; has a geometric distribution
with parameter a, (i.e. P(A; =n) = a™(1 — a) for all n € N) then (Y,) has
kernel R,.
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The hazard rate of A; is the sequence

P(A;
P(A;

)
) Y

For a geometric distribution with parameter a, the hazard rate is constant
and equals 1 — a.

A(n) = P(A; = n|A; > n) = Z n €N,

v

Exercise 7.19 Suppose A; has a negative binomial distribution with pa-
rameters (a,m) (see Exercice 5.2 (ii)). Prove that A(n) is nondecreasing and
converges to 1 — a. In particular,

inf A(n) = A(0) = (1 —a)™.

neN
The next result is an easy consequence of the memoryless property when A;
has a geometric distribution (prove it as an exercise) and this is exactly what
we’ll need for the proof of Theorem 7.18. Tt is however interesting to point
out that it remains valid under the weaker assumption that the hazard rate

of A; is bounded below. Tom Mountford helped us with the proof of this
proposition and suggested the minorization condition on the hazard rate.

Proposition 7.20 Let (A,), (T,,) be as above, i.e. (A,) is an i.i.d. sequence
of N-valued random variables and T,, := A1 + ...+ A,. Assume that there is
a € (0,1) such that

inf A(n) >1—a >0.

neN
Let N ={n; <ny <...<ng<...} CN bean infinite set of integers and
v :=min{n >1: T, e N'}.
Then
(i) P(w <o0)=1;
(ii) P(Tr, > n;) < a' for all i > 1;
(iil) E(ADE(TN) < nat 3 (i — ma)a;

(iv) If M(n) =1 —« for all n € N (meaning that A; has a geometric distri-
bution with parameter «), inequalities (ii) and (iii) are equalities.
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Proof (i). Forn>1,1let F,, :=0(Ay,...,A,) and v(n) :=P(Fi >0: T; =
n). We claim that v(n) > 1 — « for all n > 1. One has

v(n) =E(P(Ji > 0: T; = n|F))
=v(n)P(A; =0) + E(v(n — A1)Lloca,<n) + P(A; = n).

Thus, v(1) = A(1) > 1—a. Suppose now that v(i) > 1—afori=1,...,n—1.
Then

v(n)P(A1>0)> (1 —a)P(0 <Ay <n)+P(Ay=n) > (1—-a)P(A; >0).

This proves the claim by induction. It follows from what precedes that
P(ray < oo|F,) > 1— (1 — )", so that P-almost surely

1rycoo = nh_}r{)lo P(my < ool Fp) = 1.
(7). For k > 1, let Sy :=min{i > 0: ni <T; < ngr1} € NU{oo}. Then
P(Tr > nit1) = P(Try > ngpr; Sp < 00) + P(T5,, > nyggr; Sk = 00).
Using the strong Markov property,
P(Tr\ > nky1; Sk < 00) = E(P(Try > nper1|Fs, ) 1(s;,<00})

= B((1 = v(nki1 = Ts)) Lz smiy Lsicooy) < aP(Try > mp; Sy < 00).

On the other hand,

P(TT/\[ > Np41; Sk = OO)
:Z P<{T07T17 e 7Tl} N {nla . 7nk} = (Z)sz < nk§Ti+1 > nk+1>7

i>0
and

P({TD7T17 cee 77—‘2} N {nb cee 7nk} = ®77—1L < nkQTi-i-l > nk’-i—ll‘F.i)

= 1{T0,T1 ..... Ti}ﬂ{nl ..... nk}1T1<nkP(Az+1 > nk‘-ﬁ-l - 1—;|‘F‘l)

S al{To,Tl ,,,,, T:}n{ni,..., nk}1T1<nkP(Az+1 Z Nk4+1 — E|‘E)
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by the assumption on the hazard rate of (4A;). Therefore,
P(Try > niy1; Sk = 00)

>0

=aP(T;,, > ny; Sk = 00).
Finally we have shown that
P(T., > nkt1) < oP(Ty,, > ny).

(1ii). Let M,, :=T,, — E(T},) = T,, — nm, where m := E(A;). Then (M,,) is
an (F,)-martingale with zero mean. Thus, by part (i7) of Theorem A.4,

E(Munry) =0 =E(Trynn) — mE(Tyr A ),

and, by monotone convergence,

mE(7y) = E(T anp = ) = Z(nk“ — )Ty > )

k>1 k>0

with the convention ng := 0.
(1v). This follows immediately from the proofs of (ii) and (iii). QED

Proof of Theorem 7.18 In view of Theorem 7.8 and Proposition 7.11 it
suffices to show that there exists an invariant probability measure for (X,,).
First observe that we can always assume that £(C) > 0, where £ is the
minorizing measure of R,. Indeed, let & (-) = a* [ £(dy) Pk(y, -). Then for all
rel
Ry(x,-) > a"R,P*(x,-) > &(")

so that & is another minorizing measure. Now, there exists k such that
&(C) > 0, for otherwise we would have P*(y,C') = 0 for all k and &-almost
all y, in contradiction with the assumption that C' is recurrent. Replacing &

by such a & proves our claim.
(2) (3)

Let 1o <7157 < 7 . be the successive times at which (X,,) enters C,
i.e. 7'((;‘;Jr ) = mln{n > T, (k) . X,, € C}. By assumption (iii) (of the theorem

to be proved) and the strong Markov property
E,(r) < kM
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for all z € C. Let (Y,,) be the chain with kernel R,, 7% = min{n >1:Y,, € C}
and Q(z,) the kernel on C' defined by Q(z, A) = P,(Y,y € A) for all Borel
sets A C C. By Proposition 7.20 (i), 75 < oo a.s. so that Q is a Markov
kernel (i.e., Q(z,C) = 1). Furthermore Q(z,A) > R,(x,A) > ey(A) with
e =¢(C) and Y(A) = @. In other words, @) is a Markov kernel whose full
state space (here C') is a small set. Then, by a theorem that will be proved
later (Theorem 8.7 in Chapter 8), @ has a (unique) invariant probability .
If Yy is distributed according to 7 so is Yoy and by Proposition 7.20 (141)
M
%

Er(me) < —
By Exercise 4.24 this implies that (Y,,) (or equivalently R,), hence (X,,), ad-
mits an invariant probability measure. QED

7.5 Positive recurrence for Feller chains

The next results give some (much more tractable) conditions ensuring that a
Feller chain is positive recurrent.

Theorem 7.21 Let P be Feller. Assume that there exist a compact recurrent
set C' such that sup,ec E.(7c) < 00, and an accessible weak Doeblin point
x* € Int(C) (the interior of C'). Then the equivalent conditions of Theorem
7.8 hold true.

Proof By assumption there exist a neighborhood U C C' of z* and a non-
trivial measure ¢ such that R,(x,-) > &(+) for all € U. By Proposition 7.17
U is recurrent and sup,.- E,(7y) < oo. We can then apply Theorem 7.18,
with U in place of C. This proves the result. QED

Corollary 7.22 Let P be Feller. Assume that there exist an accessible weak
Doeblin point, a proper map V : M — R, and a nonnegative constant R
such that PV <V —1 on {V > R} and subg,eps.v(m<ry PV () < 0o. Then
the equivalent conditions of Theorem 7.8 hold true.
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Proof Let z* be the accessible weak Doeblin point. Choose R large enough
so that V(z*) < R. Set C = {V < R} and apply Proposition 7.12 (a) and
Theorem 7.21. QED

Theorem 7.23 Let P be Feller. Assume that there exists an accessible weak
Doeblin point and that for all x € M the empirical occupation measure (vy,)
is Py-almost surely tight (this is true for instance under the assumptions of
Corollary 7.22). Then the equivalent conditions of Theorem 7.8 hold true.

Proof By assumption there exists an open accessible petite set C. By Theo-
rem 6.2 and Theorem 4.20, there exists a unique invariant probability measure
7 for P and v, = m, P,-almost surely, for all x € M. Since C' is open and
accessible, T(C') > 0 (see Proposition 5.8 (ii)) and, by the Portmanteau Theo-
rem, liminf v, (C") > 7(C). This proves that every point z leads almost surely
to C. The result then follows from Proposition 7.11 and Theorem 7.8. QED

7.5.1 Application to PDMPs

Let £ ={1,..., N} be a set of environments and {G, };cg a family of smooth
globally integrable vector fields on R”.

Consider the PDMP Z;, = (Y}, I;) € R*x E as defined in Section 6.4. Recall
that, starting from Zy, = (Yy, ly) = (z,i) € R*, Y, follows the flow induced
by the vector field GG; during a time 7; having an exponential distribution
with parameter \; and I; = i on [0,71). Then a new environment j € E is
chosen with probability p; > 0, Y; follows the flow induced by G; during a
time 75 — 7y having an exponential distribution with parameter \;, and I; = j
on [y, T), etc.

If now the initial environment Iy is randomly chosen with law _._ . pid;,
then X,, = Y, defines a Markov chain on R¥  as explained in Section 6.3,
whose kernel is given as (see formula (6.3))

Pf(z) = Zpi /OOO F(®;(t, ) Ne N dt. (7.5)

The following exercise shows that if there exists a common Lyapunov function
for some (not necessarily all) of the vector fields G; and if this function does
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not grow too fast along the flows of the other vector fields, then it can serve
as a Lyapunov function for P.

Exercise 7.24 |Lyapunov function for PDMPs]

i) Suppose that there exists a proper map V : — and numbers
i) S that th ists a C! V :RF - R, and b
aq,...,ay (non necessarily negative) such that for each i € E,

s (TV(@). Go(z)

§0¢1<)\Z
]l —>o0 V(z)

Show that, if
AEM&_% :

then
PV <pV +k

for some 0 < p < 1and k > 0.

(ii) Let «;(z) be the largest eigenvalue of the symmetric matrix DG;(x) +
DG,(x)" and let o; = sup, a;(x). Show that

Gz’ . 7Gi - Gz 0 i
lim sup M = limsup (z, Gi() 5 (0) < &
lel—oo 1] 2]l —00 |zl 2
Using (i), give conditions on ay, ..., ay ensuring that V(x) = ||z||* is a

Lyapunov function for P.

(iii) Suppose that there exists a C'! proper map W : R* — R, and numbers
ai,...,ay (not necessarily negative) such that for each i € E,

limsup (VW (z), Gi(z)) < a;.

[l[|—o00

Show that, if

sz‘% <0,

i€k
then for ¢ > 0 sufficiently small, the map V = eV and the numbers
a; = €a; satisfy the conditions given in (7).
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Theorem 7.25 Suppose that there exists V' as in Exercise 7.24 (i) and an
accessible point (in the sense of Proposition 6.20) at which the weak bracket
condition as defined in Section 6.3.1 holds. Then the chain (X,,) is positive
recurrent. Furthermore, the process (Z;) is also positive recurrent, in the
sense that, for all f: M x E — R measurable and bounded,

almost surely, where [i stands for the invariant probability measure of (Z;).

Proof Positive recurrence of (X,,) follows from Corollary 7.22 and Theorem
6.16. We now prove the second statement. Let f € B(R* x E) and A =
{limy oo 2 [ f(Z5) ds = ji(f)}. In order to show that P,;(A) = 1 for all
(z,1) € RE X E 1t suffices to show that >, . piPsi(A) = 1 for all z. This
means one needs to show that limy o } fo f(Z%) ds — p(f) almost surely,
where (Z7) stands for the PDMP Wlth initial Condltlon (z,Iy) and Iy has
distribution ), 5 pid;

Let G, = o{(lo, 1), (Iry;72—T1)s- - (Ir,_ys, Tn—Tn-1)}. Then fOT” f(Z7) ds
is G,-measurable, and

E( / F(22) ds

%):ﬂxm

where
sz/ / f(Pi(s,x) s s dt
i€EE
— Zpl/ f t x Nt gt
i€EE
Also,

Tn+1
Var(/ f(Z7) ds

Thus, by the strong law of large numbers for martingales (see Theorem A.8),

%)samm—nfwva<mw—wm2
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almost surely. On the other hand, by the strong law of large numbers,
lim,, oo ™ = ZjeE p;/Aj. Thus

1
= M

where p is the invariant probability measure of (X,,). This proves the positive
recurrence of (Z;) and also gives - in this special case - an alternative proof
of Theorem 6.26 (i). QED

N L X
i 7 [ (2) ds - (5

t—o00

7.5.2 Application to SDEs

Using the notation and assumptions of Section 6.5, consider the stochastic
differential equation (6.12). Recall from the proof of Theorem 6.34 that the
"formal" generator of (6.12) is the operator L defined on C? functions f :
R* — R by

LI@) = Go( (@) + 3 3 GH(@)

Lemma 7.26 Suppose there exists a C? proper function U : R¥ — R, and
positive number o, B such that

LU < —aU + .
Then, for allt >0,
PU <e U + é(l —e ).
Q

Proof Set W, = e (U(X]) — g) By Tt6’s Formula,
t
W, — Wy = / e [al(XT) — B+ LU(X,)] ds + M, < M,
0

where (M;);>0 is a local martingale with My = 0. Thus, for all n € N,
(M) = (Mpn))e>0 is a continuous local martingale which is bounded be-
low (by —geo‘" —(U(z) — g)) A local martingale that is bounded below may
not be a martingale but is always a supermartingale (see, e.g., [45, Propo-
sition 4.7]). Therefore E(W;n,) — U(x) +§ < E(M]") < E(My) = 0. Hence,
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E(U(Xinn)) < e @@ (U(x) —£)+ £ and the desired result follows by Fatou’s
Lemma. QED

Corollary 7.27 Suppose there exists a C? proper function as in Lemma 7.26
for (6.12) and an accessible point p at which the weak Hérmander condition
is satisfied. Then {P;}i>0 has a unique invariant probability measure (1 and
for every f € B(R¥) and x € R*

t—o00

lim / F(X2) ds = (),

Proof Let G be the 1-resolvent. Then, by Lemma 7.26, GU < HLQU + g

By Corollary 7.22 and Theorem 6.34, GG is a positive recurrent Markov kernel.
The final statement follows from Proposition 4.58 (ii). QED



Chapter 8

Harris Ergodic Theorem

8.1 Total variation distance

Recall that B(M) is the set of real-valued bounded measurable maps on M.
For f € B(M), | fl|lo is defined by (1.1). Given two probability measures «
and 8 on M the total variation distance between « and (3 is defined by

v = B = sup{la(f) = B(N)] = f € BM), [[fllo <1} (8.1)

See also Remark 5.21 in Section 5.3. It is easy to verify that the total variation
distance defines a metric on P(M).
Note that if K is a Markov kernel on M,

K = K| < |or = f (8.2)
because K maps {f € B(M), ||flle < 1} into itself.

Proposition 8.1 Let o, 3 € P(M).

(i)
o =Bl =2 sup a(A)—B(A).

AeB(M)

(ii) Assume o and B are absolutely continuous with respect to v € P(M)
with respective densities p and q. Then

o — B =/|P—Q|d7-

183
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(iii) The space P(M) equipped with the total variation distance is complete.

Proof We begin by assertion (ii). For all f € B(M) with ||f|le < 1,
la(f) = B(N) < [Ip— gldy so that |a — ] < [ |p — g|dvy. Conversely, set
f=1psg = Lpeq. Then a(f) = B(f) = [ |p — qldr.

We now pass to the proof of (7). We can always assume that for some
v € P(M), a and (3 are absolutely continuous with respect to . It suffices
for instance to choose v = O‘TJFB Then,

o — B = /G (b — )y + /M o=t =2(a(@) ~ B(C)

with G = {p > ¢}. Also, for all A € B(M), a(A) — B(A) < a(ANG) —
BANG) < a(G) — B(G). Our last job is to prove completeness. Let (i)
be a Cauchy sequence for the total variation distance. Then, in view of (i),
for every Borel set A, (un(A)) is a Cauchy sequence in R, hence converges to
some number p(A). By the Cauchy property, the convergence is uniform in
A. That is sup 4ep(ary [1n(A) — p(A)| — 0. From this it is easy to verify that
1 is a probability measure over M. QED

Exercise 8.2 For f: M — R, let A(f) = sup{L;f(y)‘ cx,y € M}. Show
that

la — B| = sup{|a(f) — B(f)| : f measurable, A(f) < 1}.

Remark 8.3 Although the total variation distance (8.1) and the Fortet-
Mourier distance (4.2) look very similar, they induce quite different topologies
on P(M). Clearly,

ple, B) < la =g

so that convergence in total variation implies weak convergence; but the con-
verse is false. Let, for example, X be a random variable on R whose law
Px is absolutely continuous with respect to the Lebesgue measure dz (e.g. a
Gaussian random variable) and X,, = % Then X,, — 0 almost surely, hence
Px, = 0o, while |Px, — do| = 2 by Proposition 8.1, ().

Remark 8.4 (Total variation of signed measures) A finite signed mea-
sureon M isamap g : B(M) — R such that (0) = 0 and which is o-additive.

That is
M(U An) = Z N(An)
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for any family {A,,}, A,, € B(M), having disjoint elements. The Hahn-Jordan
decomposition theorem (see [21], Theorem 5.6.1) asserts that such a measure
can be written as

p=pt—p,
where ©™ and 1~ are nonnegative measures that are mutually singular: There
exists D € B(M) such that for all A € B(M), ut(A) = u(A N D) and
p~(A) = —u(A N D). The total variation measure of u is the nonnegative
measure ut + = and its total variation norm is

|l = (M) + = (M) = sup{|p(f)] = f€BM), [Iflle <1}

When M is a compact metric space, the topological dual C*(M) of C(M)
can be identified with the space of bounded signed measures equipped with
the total variation norm, so that convergence in total variation coincides with
(strong) convergence in C*(M). We refer the reader to [21], Chapter 7, for
more details and a proof of this latter point.

Exercise 8.5 Use the Hahn-Jordan decomposition to show assertion (i) of
Proposition 8.1.

8.1.1 Coupling

Given «, € P(M), a coupling of o and f3 is a random vector (X,Y) defined
on some probability space (€2, .4, P) taking values in M x M such that X has
distribution o and Y has distribution [.

Proposition 8.6 Let o, 8 € P(M). Then
(i) (Coupling Inequality) For every coupling (X,Y) of (o, B),

v = B] < 2P(X #Y);

(ii) (Mazimal coupling) There ezists a coupling (X,Y) of (a, B) such that

o — B = 2P(X £ Y).

Proof (i). For all A € B(M),

PXeA)-PYecA)=PXecAX#Y)-PY e A X#Y)<PX#Y).
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This inequality, combined with Proposition 8.1 (i), proves (i).
(77). Assume (without loss of generality) that do = pdy and df = qd~y for
some 7 € P(M) (e.g. v = (a+ §)/2). Then, by Proposition 8.1 (i),

|a—5\:/|p—qrdv=2<1—e>

where ¢ = [(p A ¢)dy. If ¢ = 0, @ and 3 are mutually singular and any
coupling satisfies the equality |o — ] = 2P(X # Y) = 2. If ¢ # 0, let
Ue M,V eMWeMO e {0,1} be independent random variables having
distributions (pAq)dy, 7= (p—(pAq))dy, = (¢—(pAq))dy and (1—e)do+edy,
respectively. Set X = OU + (1 — ©)V and Y = OU + (1 — ©)W. Then
PIX#Y)=P©O©=0)=(1-¢),and (X,Y) is a coupling of (a, 3). QED

8.2 Harris convergence theorems

Throughout all this section P is a Markov kernel on M. Recall (see Chapter
6) that a set C' € B(M) is called a small set for P if there exists a nontrivial
measure £ on M (called the minorizing measure of C') such that

P(,) > €() (8.3)

for all z € C. Recall also that a point is called a Doeblin point if it has a
neighborhood which is a small set.

8.2.1 Geometric convergence

The importance of small sets is emphasized by the following simple version
of Harris’s theorem (sometimes called Doeblin’s Theorem).

Theorem 8.7 Let m € Nym > 1. Suppose M 1is a small set for P™ with
minorizing measure . Then for all o, 5 € P(M),

P — P < (1 =) ™o — 3],

where 0 < € = £(M) < 1. Furthermore P has a unique invariant probability
measure ™ and
laP" — 7| < (1 —¢e)™|a — x|
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Proof First suppose m = 1. Set ¢ = %,5 =¢(M), and

Plx,-) —ey()

if e < 1.
1—¢ he

K(x, ) =

Then, K is a Markov kernel and aP = ey + (1 — ¢)aK so that
P — BP| = (1 - £)[aK — BK| < (1 - &)|a - A,

where the last inequality follows from (8.2). Hence, a — P is a strict
contraction for the total variation distance. Then

P = P < (1 —¢)"o = f|

and o — aP has a unique fixed point, by application of the Banach fixed
point theorem, because the space of probability measures endowed with the
total variation distance is complete.

If now m > 1, set Q@ = P™. Write n = km +r for r € {0,...,m — 1} and

aP" = BP"| = |aP"Q" — BPTQ"| < (1 —¢)*|aP” — BP"| < (1 —&)"|a — f].

To conclude, recall that if 7 is invariant for P™, then % 22:01 7 P* is invari-

ant for P. QED

Remark 8.8 Theorem 8.7 is purely measure-theoretic and does not require
that M is a metric space.

Aperiodic small sets

A measurable set C' C M is said to be aperiodic if the set

R(C)={k>1 :inf P*(z,C) > 0}

zeC

is nonempty and aperiodic as defined in Section 2.2.1.

Exercise 8.9 (a) Let P be Feller and let U C M be an open, accessible
(i.e. Ry(x,U) > O forall z € M) small set. Show that R(U) is nonempty.
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(b) Construct a Feller Markov chain having an open recurrent set U for
which R(U) = 0. Hint. Let {®;} be the flow on S' = R/27Z induced
by the ode § = sin?(6/2). Consider the (deterministic) chain defined as
X¥ = &, (x). One can show that every proper neighborhood U of 0 is
recurrent, but R(U) = ().

Let z* € M be an accessible Doeblin point for P Feller. We say that z* is
aperiodic if it has a neighboring small set U which is aperiodic. Observe that
if U is a neighboring small set of z* such that {(U) > 0 (where £ stands for
the minorizing measure of U) then z* is aperiodic.

Proposition 8.10 Assume P is Feller. Let x* € M be an accessible and
aperiodic Doeblin point and let C' C M be a compact set. Then there exists
m > 1 such that C is a small set for P™.

Proof Let U be an open neighboring small set of z* with R(U) aperiodic.
Then, by aperiodicity, there exists ng € N such that k € R(U) for all k£ > ny
(see Proposition 2.22).

For § > 0 and k € N* let O(§,k) = {x € M : P*(z,U) > ¢}. By Feller
continuity and the Portemanteau theorem (Theorem 4.1), O(6, k) is an open
set. Since z* is accessible, the family {O(d,k),0 > 0,k € N*} covers M.
Thus, by compactness, there exist 6 > 0 and integers ki, ..., k&, such that
C C U ,0(6,k;). For x € O(6, k;) and k > ny,

Pritk (g, ) > /Upki@dy)P’“(y, )

yelU

> [ Poady P o 0060 2 6 1nf P 0 UIE).
U

Here £ stands for the minorizing measure of U. Thus, for m = max{ky, ..., k,}+
ng + 1 and some ¢’ > 0,

inf P™(x,.) > 0"¢(.).

zeC
QED

Theorem 8.7 and Proposition 8.10 imply the following useful result for Feller
chains on compact sets.
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Corollary 8.11 Assume P is Feller on M compact and that there exists an
accessible and aperiodic Doeblin point. Then the conclusion of Theorem 8.7
holds.

When M is not compact, the assumption (made in Theorem 8.7 or used in
Corollary 8.11) that the whole space is a small set is usually not satisfied.
A sufficient condition ensuring geometric convergence is the existence of a
small set and a Lyapunov function forcing the system to enter this small set.
A classical proof relying on coupling and renewal properties will be given in
the next section. Hairer and Mattingly in [36] gave an alternative beautiful
proof based on the construction of a suitable semi-norm making P a strict
contraction. This proof is given below.

Theorem 8.12 (Harris, Hairer & Mattingly) Assume that there exist:

(a) A measurable map V : M — R, ,0 < p <1 and k > 0 such that

PV < pV +k;

(b) A probability measure v» on M and 0 < ¢ <1 such that
P(z,) = ey()
forallx e Vg :={x e M :V(x) <R} and R > 2x/(1 — p).
Then, there exist a unique invariant probability measure m for P and constants

0 <~ < 1,C > 0 such that for all f : M — R measurable with ||f||yv =

SUPye 1|J{\(/I()a|¢) < %,

[P f(z) = m(f)] < Cy* (L + V(@) f]lv

for all x € M and n € N*.

Proof For >0 and f: M — R measurable, possibly unbounded, let

@) - fwl
2+ B(V(x)+V(y)

We claim that for some 1 > > 0and 0 <y <1,

1flls = sup{ y € M}.

Iflls <T=1Pflls < (8-4)
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Assume the claim is proved. Observe that ||f|l; < ||f]|z < %||f||1 < %Hva
Then

IP"flle < NP flls < A" flls < 2"B7 I v
Equivalently
[P f(x) = P f(y)l < "B I flv 2+ V(2) + V(y), w.y€ M.
Thus,

|P"f(x) —mf| < / [P f(xz) = P f(y)lm(dy) < "B | flIv(2+ V(2) +7V),

where 7 is some (hence unique) invariant probability measure (see Exercise
8.13). This proves the result.

We now prove the claim. Let f be such that ||f||s <1 and let x,y € M.
Suppose first that V(z) + V(y) > R. Then

Pf(z) — Pfy)| = / )8, P(du)b, P(dv)|

/\f )]0, P(du)d, P(dv) <2+ PV (z)+ PV (y)

<24 2864 pB(V(2)+V(¥) <2+ BV (z)+V(y)),

where
B2k + pR) +2

BR +2
The last inequality follows from the fact that for all p,r > 0 and a > 2p,

€]0, 1].

M=

t>r=a+pt <71(2+41),

where v, is the solution to a + pr = (2 + 7). It suffices to set a = 2 + 20k
and r = SR.

Suppose now that V(z) + V(y) < R. In particular, x,y € V. As in the
proof of Theorem 8.7, write Pf = (1 — e)K f + e (f), where for all z € V,
K(x,-) is a Markov operator. Thus

[Pf(x)=Pfy)l = A=e)|[Kf(x) - Kf(y)| < 1—e)2+BKV(z)+ KV (y)).
Also, (1 —e)KV(x) = PV(x) — eV < pV(x) + k. Thus
) -

[Pf(z)=Pfy)l <2(1—e)+2Br+pB(V(2)+V(y)) < 12(2+8(V(z)+V(y))
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with 79 = max(p,1 — e + Bk). Finally it suffices to choose Sk < € and to set
v =max(71,72). QED

Exercise 8.13 (i) Suppose that is M is a Polish space, P is Feller and
that there exists a proper and continuous map V' : M — R, satisfying
assumption (a) of Theorem 8.12. Show that the set Inv(P) is nonempty.
Hint: Use Corollary 4.23.

(ii) Suppose only that M is a measurable space. Show that Py (M) = {u €
P(M): V e L'(u)} is complete for the distance

|\ — v|g = sup{|uf —vf| : f: M — R measurable, ||f]|s < 1}.

Deduce that, under the assumptions of Theorem 8.12, there exists a
unique invariant probability measure for P. Hint: Use Inequality (8.4)
to show that

[P —vPlg < 7lp—vls (8.5)

for some 0 <~y < 1and > 0.

Corollary 8.14 Suppose P is Feller and that there exists a proper map V :
M — R, satisfying assumption (a) of Theorem 8.12. Suppose furthermore
that there exists an accessible aperiodic Doeblin point. Then the conclusion
of Theorem 8.12 holds true.

Proof Choose R > (13—’;)2. The set C = {V < R} is a compact set
(because V' is proper) and small for some P™ by Proposition 8.10. Since
PV < pm™V + £ Theorem 8.12 applies to P™ and the result follows.

1-p’
QED

8.2.2 Continuous time: geometric convergence

For a weak Feller continuous-time Markov process { P, };>o, aperiodicity is not
an issue. Indeed, if a point p € M is accessible for {P;};>¢ and is a Doeblin
point for some Pr,, then p is necessarily aperiodic for Pp,. This is a direct
consequence of Lemma 6.5. Thus, the continuous-time version of Corollary
8.14 reads as follows:
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Theorem 8.15 Let {P,}i>o be a continuous-time weak Feller semigroup. As-
sume in addition the following:

(1) There exists a point p € M which is accessible for {P,}t>0 and which is a
Doeblin point for some Pr, with Ty > 0;

(ii) There ezist a proper map V. : M — Ry, 0<p <1, k>0, and Ty >0
such that
PrV < pV + k.

Then there exist a unique invariant probability measure 7 for {P,};>0 and
constants a > 0,C > 0 such that for all f: M — R measurable,

|Pif(x) = 7(f)] < Ce™™(1+ V()| fllv
for allx € M and t > 0.

Proof Relying on Proposition 6.3, one can find a point ¢ and a time 7' =
mTy (with m € N* sufficiently large) such that ¢ is an accessible Doeblin
point for Pr. By Lemma 6.5, it is also aperiodic for Pr. By assumption (i),
PrV < pf + %p. Thus, by Corollary 8.14, there exist constants 0 < v < 1
and C' > 0 such that foralln e Nand 0 <r < T,

| Porsr f(2) = 7(f)] = [Pr B f(x) — 7(Bf)] < Cy* (1 + V()| fllv.
Thus o
[P f(z) —7(f)] < ;el‘)g”)m(l + V(@) fllv

forallz € M and t > 0. QED

Example 8.16 (Piecewise deterministic Markov processes) Consider
the piecewise deterministic Markov process defined in Section 6.4. Suppose
that there exist an accessible point at which the strong bracket condition

holds and a Lyapunov function as in Exercise 7.24. Then the conclusions of
Theorem 8.15 hold.

Example 8.17 (Stochastic differential equations) Consider the stochas
tic differential equation introduced in Section 6.5. Suppose that that there
exist an accessible point at which the Hérmander condition holds and a Lya-
punov function as in Lemma 7.26. Then the conclusions of Theorem 8.15
hold.
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8.2.3 Coupling, splitting, and polynomial convergence

This section is the natural counterpart of Section 2.4 on countable chains. Tt
revisits the convergence theorems of the previous section and relates the rate
of convergence to the moments of the return time to a recurrent small set.

Theorem 8.18 Let C C M be an aperiodic, recurrent small set for P.

(1) If sup,ec Ex(7¢) < 00, then P is positive recurrent and, letting m denote
its invariant probability measure,

lim [uP" — 7| =0
n—oo
for every u € P(M).

(i) If supyec Eo(78) < oo for some p > 2, then there exists ¢ > 0 such thal
for every u € P(M) and for every n € N*,

1 .
—e(1+Eu(r27).

pP" =l < —

(iii) If sup,cc E.(e*7C) < 0o for some Ao > 0, then there exist 0 < A < A
and ¢ > 0 such that for every u € P(M) and for every n € N*,

|uP™ — 7| < e (1 + E,(e7€)).

Proof Positive recurrence follows from Theorem 7.18. The rest of the proof
relies on a coupling argument that goes back to Harris [37] and Nummelin
[52]. Let C' be an aperiodic recurrent set for P. We proceed in two steps.
Step 1. We first assume that C' is an atom, meaning that there exists a
probability measure & on M such that for all z € C, P(x,-) = £(+). In this
situation the proof is very much like the proof given for a countable Markov
chain (Theorem 2.36). Let (X,,) and (Y,,) be two independent chains (induced
by P), P, the law of ((X,,Y}))n>0 when (Xo,Y)) has law p ® v, and let

Toxe =min{n >1: X, € C|Y, € C}.
Since C'is an atom, for all u,v € P(M) and n € N*,

]P)p@u(Xn € S Toxe < TL) = ]Pu@u(yn € S Toxe < TL)
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Hence
|uP" — | = |pP" — mP"| < P.er(Tcxc > n), (8.6)

where 7 is the unique invariant probability measure of P. Let now (T((;L) )

(respectively (%((]”) )) denote the successive hitting times of C' by (X,,) (respec-
tively (Y,,)). The assumption that C' is an aperiodic atom makes the processes
T = (r0") 50 and T := (75,0 two aperiodic independent renewal pro-
cesses (see Section 2.3) and 7exc¢ is their first common renewal time. The
additional assumption that sup,. E.(7¢) < oo makes these processes L' (as
defined in Section 2.3) so that 7cxc < 0o almost surely (see Equation (2.5)
and the discussion preceding it). Together with (8.6), this proves the first
assertion. To prove the second assertion, observe that by (8.6), Markov’s
inequality, and Theorem 2.34, one has for all 0 < ¢ < p that

" 1 1
HP" = 7] < —Byn(rc) < (el + By (78) + Ba(78).
The problem then reduces to estimate E.(7/). Here again, the assumption
that C' is an atom will prove to be very useful. Like for countable Markov

chains, ™ can be explicitly written as

w() = B D) o (700) 4+ (X))
Em(Tc)
for any z € C and all f > 0 measurable. The proof is similar to the proof
of assertion (7i¢) in Theorem 2.7 (compare to Exercise 4.24) and left to the
reader. Applying this formula to the map y — E,(¢/(7¢)) for some nonnega-
tive function v leads to

ro—1
Er(1(10)) = m(C)E.( Y ¢(k)),
k=0
for all x € C| exactly as in Proposition 2.15. In particular
E(78) < m(C)E, (787
for all z € C. With ¢ = p — 1, this estimate yields

Eﬂ(Tgfl) < 7(C) Slelg E,(t8) < oo,

which concludes the proof of the second assertion.
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The proof of the third assertion is similar. By Markov’s inequality and
Theorem 2.35 there exists 0 < A < A\g such that

|uP™ — 71| < e ME eq(e70%C) < e (14 E,(eM70) + E (7).

And for all z € C,

elore — 1

B (eX7) = W(C)Em(m

).
Step 2. We suppose now that C'is a small set with minorizing measure €. Let
e=¢M) < 1L,Y() = %, and let K be the kernel on C' defined by

P(:L‘, ) — €¢()

K(z,) = 1% :

The idea of the splitting method consists in constructing a Markov chain
(X,,) with kernel P with the help of an auxiliary sequence (1,,), I, € {0,1}. If
X, € C, then I, is set to 0. If X, € C, I, is randomly chosen according to a
Bernoulli distribution with parameter . At the next step, X, .1 is distributed
according to

P(Xn, Nx,emncy + (1= L) K(Xn, o) + L ()] x,ec-
More formally, consider the Markov kernel ) defined on
M=A{(z,i) e M x{0,1} ;2 ¢ C =1i=0}
as follows: For all x € M\ C,

Q(r,0;dy x {0}) = P(x,dy)(1 —ele(y)),
Q(z,0;dy x {1}) = P(x,dy)elec(y),

and for all z € C,

Qz,0;dy x {0}) = K(z,dy)(1—elc(y)),
Qz,0;dy x {1}) = K(z,dy)elc(y),
Qz, L;dy x {0}) = ¥(dy)(1 —<ele(y)),
Qz,1;dy x {1}) = (dy)elc(y).
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We let (X,,,I,) denote the canonical process on (2, F) = (MY, B(M)®N),
Fn = 0((Xi, L;)i<n), and for each v € P(M),P, the Markov measure on (2
making (X, [,) a Markov chain with kernel @) (with respect to (F,)) and
initial law v. As usual we write P, ; for Pé@,i)' We shall also use the following
convenient notation:
P, =P, ifzeM\C,
P, = (1 —&)Pyo+cP,, ifz € C.

Let G, = o((Xi)i<n)- It is not hard to verify (but still a good and recom-
mended exercise) that

Py (Xnt1 € -Gn) = P(Xa,-)
for all n > 1 and v € P(M); and that
P.(X; €)= P(x,-).

This shows that (X,),>0 is a Markov chain with kernel P and initial value
Xo =z on (Q,F,(Gn),Ps).
We claim that:

(a) C x {1} is a recurrent aperiodic atom for Q;

(b) If for some p > 1, sup,cc E,(75) < oo, then there exist a,b > 0 such
that for all (z,i) € M

Eei(16x1) < aBe(7g) + b;
(c) If for some Ny > 0, sup,cc E.(e7) < oo, then there exist a > 0 and
0 < A < Ao such that for all (z,i) € M,

E,; (e)‘TCXU} ) < aE, (e’\TC ).

Assume the claims are proved. Then, by step 1, (X, I,,) is positive recurrent,
and so is (X,,). As n — oo, the sequence of probability measures P"(x,-) =
P.(X, € -) converges in total variation toward , the invariant probability
measure of P. If sup,c E,(7&) < oo for some p > 2, then, by (b) in the claim,
SUD, o ]E$71(Tgx{1}) < 00. Thus, by step 1,

[P (2, A) = m(A)] =[Po (X € A) — m(A)]

_ 1 _
c(1+ E:C(Tgx%{l})) < ——c(1 4 aB, (757" +b)

<
—2pp-l — 2np—1



8.2. HARRIS CONVERGENCE THEOREMS 197

for every x € M and A € B(M). Thus, for every u € P(M),

juP" =7 =2 sup |pP"(A)—7(A)] <

< c(1+ aE, (7271 +b).
AeBOM) np—1 ( N( C ) )

This proves the second assertion. The proof of the third one is similar.

We now prove the claims. Clearly C' x {1} is an atom for Q. Identify
C' with the subset of M consisting of points (x,) such that x € C. Under
this identification, C' x {1} C C and we rely on Proposition 7.16 to prove the
claim. By the assumption that C' is recurrent for P, for all z € M,

1=P,(rc < 00) = (1 —e)Puo(rc < o0) + Py 1 (10 < 00) ?f zeC,
}P’@o(TC < OO) ifxe M \ C.
Thus, for all (z,i) € M, P, ;(7¢ < 00) = 1, showing that C is recurrent for
Q. Also,
P,i((Xpo, I;.) €C x {1}) = ¢

because P, ;((X,., I;.) € C x {1}|G,.) = ¢. Thus, by Proposition 7.16 (i),
C' x {1} is recurrent for (). We now prove that it is aperiodic. For x € C, j, k >
1

Y

]P)z,l(Xj-i-k’ € C, [j-i-k - 1) - EPx,l(Xj—I—k € C) 2 €Ex,l(1Tc:ij(X C))

TO
> eP, (10 = j);gg P*(x,0).

Since C' x {1} is an atom, P, ;(7c = j) does not depend on z € C and is > 0
for some j = jo > 1. By aperiodicity of C' for P, there exists ng € N such that
for all £ > ng

inf P*(z,C) > 0.

zeC

Therefore inf,ecPy1(Xx € C, I, = 1) > 0 for all £ > ng + jo. This proves
aperiodicity and concludes the proof of claim (a).

If sup,cc E.(78) < oo for some p > 1, then sup,cq E,i(78) < oo for
i € {0,1}, and by Proposition 7.16 (ii), sup,ec Evi(75y (1) < 00. Now

Tox{1y < To + Toxq1y © Or,
so that

E%i(Tgx{l}) S 2p_1(EI7Z‘(T£v) + xe?jggo ) Em,i(TgX{l})) = a'Ea:,i(Tg> + b.
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Claim (c) is proved similarly. QED

Remark 8.19 It is interesting to compare Theorems 8.12 and 8.18 (ii).
Under the assumptions of Theorem 8.12, the set C' = {V < R} with R > 127”[)

satisfies condition (iéi) of Theorem 8.18 (with Ao = 15£). This follows from
Proposition 7.12 (i7i) or Proposition 7.14 (choose ¢(s) = Ags). Then, by
Theorem 8.18, |P"f(z) — n(f)| < e *e(1 + V()| flleo for all f € B(M).
Observe however that the conclusion of Theorem 8.12 is stronger, in the sense
that it allows to deal with functions that are unbounded but majorized by
14V times a constant.

8.3 Convergence in Wasserstein distance

Let H be a separable real Hilbert space with norm || - || and let P be a Markov
kernel on (H,B(H)). Let F'(H) be the space of bounded functions f : H — R
with bounded and continuous Fréchet derivative, as defined in Section 5.3.2.
Recall from Section 5.3 that for a bounded metric d on H, Lip,(d) denotes the
set of Borel measurable functions ¢ : H — R such that |¢(z) —¢(y)| < d(zx,y)
for every x,y € H. Also recall that

H:u_de ‘= Sup (M¢_V¢)7 /,L7V€'P(H).
$€Lip, (d)

If (H,d) is Polish, then

= vlla=Wiev) = int [ d(e.g) Ddn,dy
reC(uwv) J g2
and the metric Wy on P(H) is called the Wasserstein distance of order 1 (or
simply Wasserstein distance) corresponding to d, see Remark 5.36.

The following theorem provides conditions under which the mapping p —
1P is a strong contraction in a certain Wasserstein distance. It is a discrete-
time version of Theorem 2.5 in [35], which was formulated for a continuous-
time Markov semigroup.

Theorem 8.20 (Hairer, Mattingly) Assume that there exist constants o €
(0,1) and C > 0 such that for every f € F(H), one has Pf € F(H) and

IVPflloo < Cliflloc + allV fllso- (8.7)
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Define )
—
vi= o5 Bi={lwy) e B llw -yl <v/2},
and assume that
a:= inefH sup{I'(B) : " € C(4,P,6,P)} > 0. (8.8)
T,y

Then there exists B € (0,1) such that
lpnP = vPlla < Bllp = via, Vp,veP(H)

for the bounded metric d(x,y) = 1 A (v ||l — y|)). One can choose B =
max{ (1l +a)/2,1—5}.

Notice that the condition in (8.7) implies that P is asymptotic strong
Feller (see Theorem 5.30). The condition in (8.8) is relatively strong but, as
we shall see, allows for a short and transparent proof. In [35], Hairer and
Mattingly also formulate a set of Lyapunov-type conditions which imply that
1 — uP is a strong contraction in the Wasserstein distance corresponding to
the metric

dlay) = int [ VEE)IE)] s

where V' is a suitable Lyapunov function and the infimum is taken over abso-
lutely continuous paths « : [0, 1] — H such that v(0) = x and (1) = y. The
latter result is more broadly applicable, in particular to the two-dimensional
stochastic Navier—Stokes equation.
Proof |[of Theorem 8.20] We first show that there exists § € (0,1) such
that
10, P — 6, P|lq < Bd(x,y), Yr,ye€ H. (8.9)

Let ¢ € Lip,(d). By Remark 5.30, there exists a sequence (¢,,)n,>1 in F(H) N
Lip, (d) such that

nh—I>I<>lo on(z) = ¢(x), VreH.
Define ¢ and (ng)nzl as in the proof of Theorem 5.29. Then ¢, € F(H) N
Lip,(d) and [|[V,|le < 77! for every n € N*. By assumption, for every
n € N*, one has P¢, € F(H) and

20C

HVP&LHOO < CH&HHOO + O‘HVQBVLHOO <C+ —o




200 CHAPTER 8. HARRIS ERGODIC THEOREM

As shown in the proof of Theorem 5.29, for n € N* and x,y € H,

C’(1+a)‘

Let z,y € H such that ||z — y|| < ~. Then d(z,y) =~ |z — y|, so

C(l+a)

11—«

Pon(v) — Pon(y) < d(z,y)y = d(z,y)(1 + a)/2.

By bounded convergence,

Po(x) — Po(y) < d(z,y)(1 + a)/2.
As this estimate holds for all ¢ € Lip,(d),

|0.P — 0, Plla < d(z,y)(1+ «)/2.

Now let z,y € H such that ||z —y|| > ~. Then there exists I' € C(J, P, d,P)
such that

[(B) > a/2.

The space H with the norm-induced metric is Polish, and d is a bounded
continuous metric on H. By Kantorovich-Rubinstein duality (Theorem 5.34),

102 P — 0, Plla = Fec((gl}géyp) /H2 d(a,b) T'(da, db)

< / d(a,b) T'(da, db)

= / d(a,b) T(da,db) + / d(a,b) T'(da, db).

H?\B
For (a,b) € B, one has
d(a,b) <~y Hla—b| < 1/2.

Hence 1
/ d(a,b) T(da,db) < §f(B).
B

And since the metric d is bounded by 1,

/ d(a,b) T'(da, db) < T(H?\ B) = 1 — T'(B).
H2\B
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As a result,

1~
6.7 = 6,Plla <1~ J0(B) <1- g

Our assumption that ||z — y|| > ~ implies that d(z,y) = 1. Hence

a
10.P = 8,Plla < d(w,y) (1-5)

This proves (8.9) for 8 = max{(1 + a)/2;1 — §}. To complete the proof of
Theorem 8.20, let p, v € P(H). By Theorem 5.34, there exists I'* € C(u, v)
such that

= vl = / d(z,y) T*(dz, dy).
H2

Let ¢ € Lip,(d). Then, by Exercise 5.38,

(nwP)¢ — (vP)p = H2((5a:P)¢ = (0,P)¢) I'(dz, dy). (8.10)
For x,y € H,
(0:P)p — (0,P)¢ < [|6:F — 6, P|la < Bd(z,y).

Hence, the right-hand side of (8.10) is dominated by

5 ] dw) T (dr.dy) = Bl — vl

Taking the supremum for the left-hand side of (8.10) over all ¢ € Lip,(d)
yields the desired contraction estimate. QED

Corollary 8.21 Under the assumptions of Theorem 8.20, the Markov kernel
P admits a unique invariant probability measure w and there exists f € (0, 1)
such that for every u € P(H),

P = mlla < 6| = wlla; ¥n € N™.

Proof Clearly, d induces the same topology on H as the metric induced
by ||]|- Then (H,d) is a Polish space with a bounded metric. By Remark 5.36,
P(H) endowed with the metric (u,v) — ||u — v||q is Polish. Since py — pP
is a strong contraction on this complete metric space, the Banach fixed point
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theorem yields existence and uniqueness of the invariant probability measure
7. For p € P(H) and n € N* one has

|uP" = mlla = [|nP™ =7 P"[la < 5"l — 7lla,

where (3 is the constant from Theorem 8.20. QED
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Appendix A

Monotone class and Martingales

A.1 Monotone class theorem

A set H C B(M) is said to be stable by bounded monotone convergence if
fn€ Hand 0 < f, < for1 < 1implies that f =lim, f, € H.

Theorem A.1 (Monotone class theorem) Let H C B(M) be a vector
space of bounded functions containing the constant functions and stable by
bounded monotone convergence. Let C C B(M) be a set stable by multiplica-
tion and let o(C) denote the sigma algebra generated by C' (i-e the smallest
sigma algebra making the elements of C' measurables). If C C H, then H
contains every bounded o(C')-measurable function.

A.2 Conditional expectation

We recall here the definition of conditional expectation and give some of its
basic properties. More details and proofs can be found in standard textbooks
such as [7].

Let (2, F,P) be a probability space, and let B be a o-field contained in
F. Let X be a real-valued random variable such that E(|X|) < co. Then
there exists a real-valued random variable Z with E(|Z]) < oo such that

(i) Z is B—measurable;
(ii) For all A € B, we have

E(Z14) = E(X1.).

205
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The random variable Z is unique in the following sense: If Z’ is any other ran-
dom variable satisfying E(|Z’|) < oo and the conditions in (i) and (ii), then
P(Z' = Z) = 1. In other words, the space of equivalence classes L'($, B, P)
has a unique element Z satisfying the condition in (ii). This element of
LY(2, B, P) is called the conditional expectation of X given B, and is denoted
by E(X|B). If we write Y = E(X|B) for some B-measurable random variable
Y, we mean that Y is a representative of the equivalence class E(X|B).

One can also define conditional expectation for nonnegative random vari-
ables: Let X : Q — [0, 00| be measurable, i.e. {w € Q: X(w) € A} € F for
every set A C [0, 00] such that A\ {oco} is a Borel subset of [0,00). For every
n €N, let X,, := X An and let Z, be a B-measurable random variable such
that E(|Z,|) < oo and E(Z,14) = E(X,,14) for every A € B. By changing
the values of (Z,) on a set of measure 0 if necessary, one can assume that
(Zy(w))nen is nondecreasing for every w € . The function

Z(w) = lim Z,(w)
n—oo
then maps from  to [0,00] and satisfies the conditions in (i) and (ii). If
7"+ Q@ — [0,00] is any other random variable satisfying (i) and (ii), then
P(Z = Z') = 1. On the set of B-measurable functions from 2 to [0, o],
consider the equivalence relation given by equality P-almost surely. The con-
ditional expectation of X given B, denoted by E(X|B), is defined as the unique
equivalence class that satisfies (ii).

Theorem A.2 (Properties of conditional expectation) Let X be a ran-
dom variable, with E(|X|) < oo or X € [0, 00|, and let B be a o-field contained
win F. Then,

(i) E(E(X]|B)) = E(X);

(i) If E(JX]) < oo (resp. X € [0,00]), we have for every B-measurable
random variable Y with E(|XY]) < oo (resp. Y € [0,00])

E(XY|B) = YE(X|B),
with the convention that 0 - 0o = 0;
(iii) For every o-field A contained in B, we have
E(E(X|B)|A) = E(X]A).

This is often called tower property.
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A.3 Martingales

Here, we recall the few results from martingale theory that are used in this
course. As for conditional expectation, there are many introductory texts on
probability theory that provide more details and proofs, e.g. [69] or [7].

Let (2, F,F,P) be a filtered probability space. We let F., denote the o
field generated by U,>oF,. A sequence (M,,) of adapted (i.e M, is F,, measur-
able) and L' real valued random variables is called a martingale (respectively,
a submartingale, respectively a supermartingale) if

E(Mn+1|]:n> = Mn resp. >, resp. <

for all n > 0.
A simple, but useful consequence of Jensen inequality is the following.

Proposition A.3 Let (M,) be a martingale (resp. a submartingale) and ¢ a
conver function (resp. a conver non decreasing function) such that ¢(M,) €
L'; then (¢(M,)) is a submartingale .

It is often useful to extends the martingale (sub, super) property to stopping
times. Doob’s optional stopping theorem shows that this is the case for
bounded stopping times.

Theorem A.4 (Optional stopping) Let M = (M,) be a martingale (resp.
submartingale, supermartingale).

(1) If T is a stopping time, then (M,sr)n>0 18 @ martingale (resp. submartin-
gale, supermartingale);

(i) If S < T are stopping times bounded by some constant N, then
E(Mry|Fs) = Mg resp. >, resp. <.
Proof (i) Foralln € N

Mn+1AT — Mpar = (Mn+1 - Mn)]-{T>n}

Taking the conditional expectation with respect to JF,, proves the result.
(1) Assume (M,,) is a martingale. Proving that F(My|Fs) = Mg amounts
to prove that forall A € Fgand 0 < k < N, E(Mplanis=k}) = E(MiLangs=r}))-

N

E(Mrlangs—r}) = E(Milir—iylangs=r}) ZE (Mn|Fi)Lir=iy L angs=r}))
i—k
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N
= Z E(E(Mn1ir—iylants=i|Fi)) = E(Mn1an{s=r})
i—h

= E(E(Mn1angs=k}|Fr)) = E(IMp1 an{s=r})-

The proof for sub and supermartingales is similar. QED

Corollary A.5 (Doob’s inequality) Let (X,,) be a non negative sub mar-
tingale. Then for all o > 0

E(X
P(sup X;>a)< ( N>.

0<i<N «

Proof Let 7' = min{i > 0 : X; > a}. Then T'A N is a stopping time
bounded by NN, so that by the optional stopping theorem

E(Xn) > E(Xnar) = E(XN1rsn) + E(X71r<n) > aP(T < N).
QED

The two following theorems are classical convergence results due to Doob.

Theorem A.6 Let (M,) be a submartingale. Assume that sup, E(M ) < oc.
Then there ezists My, € L' such that M,, — M., almost surely.

Theorem A.7 Let (M,) be a martingale. Then the following assertions are
equivalent:

(a) (M,) is uniformly integrable;

(b) (M,) converges almost surely and in L' to some random variable M;
(c) M, =E(M|F,) for some M € L.

Furthermore, in case (¢) limy, oo M, = My = E(M|FL).

Let (M,) be an L? martingale (i.e M, € L?), the predictable quadratic
variation of (M,) is the process ((M),) recursively defined as

<M>0 =0, <M>n+1 - <M>n = E(<Mn+1 - Mn)2|]:n) = E(Mn2+1|fn) - Mv%

Note that ((M),) is nondecreasing, predictable (i.e M, is F,_1 measur-
able) and that (M? — (M),), is a zero mean martingale. We let (M), =
lim,, oo (M),,.
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Theorem A.8 (Strong law of large numbers) Let (M,,) be a L? martin-
gale. Then,

(1) If E(M)o) = Ym0 E((Miga — My)?) < o0, then (My) converges almost
surely and in L? to some random variable M;

(ii) On (Mw) < oo (M,) converges almost surely to some finite random
variable My;
(iii) On (M) = 00 lim, o

M, __
m =0 a.s.

(iv) If sup, E(242) < oo, then lim, o Mo =0 as.

n

Proof We only prove the last statement, which is sufficient in this book and
whose proof is short.By Doob’s inequality, for all n € N

M 1 1
P( sup [V >¢e) <P(sup |Mi|* >e%2*") < ——E((M)y) <C 2
g n

2n§k§2n+1 k k§2n+1 - 8222n

and the result follows from Borel-Cantelli lemma QED
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