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Abstract LetM be a compact connected oriented Riemannian manifold. The purpose
of this paper is to investigate the long time behavior of a degenerate stochastic differ-
ential equation on the state space M × R

n ; which is obtained via a natural change of
variable from a self-repelling diffusion taking the form

dXt = σdBt (Xt ) −
∫ t

0
∇VXs (Xt )dsdt, X0 = x

where {Bt } is a Brownian vector field on M , σ > 0 and Vx (y) = V (x, y) is a
diagonal Mercer kernel. We prove that the induced semi-group enjoys the strong
Feller property and has a unique invariant probability μ given as the product of the
normalized Riemannian measure on M and a Gaussian measure on R

n . We then prove
an exponential decay to this invariant probability in L2(μ) and in total variation.
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1 Introduction

Let M be a smooth (i.e C∞) Riemannian manifold, V : M × M → R a smooth
function and w : [0,∞[→ [0,∞[ a continuous function. Adopting the terminology
now coined in the literature we define a Self Interacting Diffusion with potential V
and weight function w to be a continuous time stochastic process (Xt )t≥0 living on M
defined by the stochastic differential equation

dXt = σdBt (Xt ) − ∇Vt (Xt )dt, (1)

where σ > 0, {Bt } is a Brownian vector field on M and

Vt (x) = wt

∫ t

0
V (Xs, x)ds, (2)

The case M compact andwt = t−1 has been thoroughly analyzed in a series of papers
by the first named author in collaboration with Raimond [4–6] and Ledoux [4]. In par-
ticular, it was shown that long term behavior of the normalized occupation measure
μt = 1

t

∫ t
0 δXs ds can be precisely related to the long term behavior of a deterministic

semi-flow defined on the space of probability measures over M. Pemantle’s survey
paper [26] contains a comprehensive discussion of these results among others and
further references. Some extensions to noncompact spaces have been considered by
Kurtzmann in [23,24] and other weight functions decreasing to zero by Raimond in
[30].

When w doesn’t converge to zero, say wt = 1, the literature on the subject mainly
consists of case studies under the assumption that M = R (or R

d ) and V (x, y) =
v(y − x). Self attracting processes, that is xv′(x) ≥ 0 (or 〈x, v′(x)〉 ≥ 0 in R

d ),
have been considered by Cranston and Le Jan [7], Raimond [29], Herrmann and
Roynette [17], Herrmann and Scheutzow [18] and typically converge almost surely.
For self repelling processes, that is xv′(x) ≤ 0, the process tends to be ”transient”
and strong law of large numbers and rate of escapes have been obtained under various
assumptions by Cranston and Mountford [8], Durrett and Rogers [13], Mountford
and Tarrès [25]. In [32], Tarrès, Tóth and Valkó consider the situation when v is
a sufficiently smooth function having a nonnegative Fourier transform. Under this
condition and other technical assumptions, they show that the environment seen from
Xt , that is the mapping x 
→ ∫ t

0 v′(x + Xt − Xs)ds, admits an ergodic invariant
Gaussian measure.

In this paper we will pursue this line of research and investigate the long term
behavior of (1) under the assumptions that:
(i) (Strong interaction) wt = 1.
(ii) (Compactness) M is smooth, finite dimensional, compact, oriented, connected

and without boundary.
(iii) (Self repulsion) V is aMercer kernel. That is, V (x, y) = V (y, x) and∫

M

∫
M
V (x, y) f (x) f (y)dxdy � 0

for all f ∈ L2(dx), where dx stands for the Riemannian measure.
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Self-repelling diffusions on a Riemannian manifold

By Mercer Theorem, V can be written as

V (x, y) =
∑
i

ai ei (x)ei (y) (3)

where ai ≥ 0 and {ei } is an orthonormal (in L2(dx)) family of eigenfunctions of the
operator f 
→ V f, where V f (x) = ∫

V (x, y) f (y)dy.
Thus, if one interpret the sequence

�(x) = (
√
ai ei (x))i

as a feature vector representing x in l2,

V (x, y) = 〈�(x),�(y)〉l2

can be thought of as a similarity between the feature vectors �(x) and �(y). The
process is therefore self-repelling in the sense that the drift term−∇Vt (Xt ) in equation
(1) tends to minimize the similarity between the current feature vector �(Xt ) and the
cumulative feature

∫ t
0 �(Xs)ds.

Here we will focus on the particular situation where

(iii’) (Diagonal decomposition) The sum in (3) is finite and the {ei } are eigenfunctions
of the Laplace operator.

Our motivation for such a restriction is twofold. First, for a suitable choice of n and
(ai ), the feature map

� : M 
→ R
n,

x 
→ (
√
a1e1(x), . . . ,

√
anen(x))

is a quasi-isometric embedding of M in R
n . We refer the reader to the recent paper

(Portegies [28]) for a precise statement (Theorem 5.1), and further interesting discus-
sions and references on embedding by eigenfunctions. In particular, for some ε > 0

−V (x, y) ≤ 1

2
‖�(x) − �(y)‖2 ≤ (1 + ε)

d(x, y)2

2
,

where d stands for the Riemannian distance on M. Hence, with this choice of (ai ),
the smaller is Vt (Xt ) the larger is the cumulative quadratic distance

∫ t
0 d

2(Xt , Xs)ds.
Secondly, under hypothesis (iii)′, an invariant probability measure of the process

(Xt , Vt (x)) can be explicitly computed. It turns out that this will be of fundamental
importance for our analysis.

A motivating example: the periodic case

Let M = S
1 = R/2πZ denote the unit circle and let V : M × M → R be the map

defined by
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V (x, y) = cos(y − x) = 1 − 1

2
d2(y, x),

where d(y, x) = |eiy − eix |.
Noting that ∇Vx (y) = − sin(y − x), (1) can be rewritten as

dXt = σdBt +
∫ t

0
sin(Xt ) cos(Xs) − cos(Xt ) sin(Xs)dsdt. (4)

Setting Ut = ∫ t
0 cos(Xs)ds and Vt = ∫ t

0 sin(Xs)ds we get the following SDE on
S
1 × R

2: ⎧⎨
⎩
dXt = σdBt + (sin(Xt )Ut − cos(Xt )Vt )dt
dUt = cos(Xt )dt.
dVt = sin(Xt )dt

(5)

Some motions are shown in (Figs. 1, 2). This system enjoys the following properties,
summarized by the next Theorem, which proof follows from Theorems 5, 6, 7 and
Proposition 1. Given y = (x, u, v) ∈ S

1 × R
2, we let (Y y

t )t≥0 = ((X y
t ,U

y
t , V y

t ))t≥0
denote the solution to (5) with initial condition Y y

0 = y. Here S
1 is identified with

R/2πZ.

Theorem 1 The Markov process induced by (5) is a positive Harris process and
admits a unique invariant probability given as

μ(dxdudv) = dx

2π
⊗ exp(−u2/2)√

2π
du ⊗ exp(−v2/2)√

2π
dv.

Furthermore, the law of Y y
t converges exponentially fast to μ in L2(μ) and in total

variation.
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Fig. 1 Evolution of the coordinate (Ut , Vt ) after time T = 750, where σ is respectively 0.1, 1 and 4

Fig. 2 Evolution of the angle Xt after time T = 100, where σ is respectively 0.1, 1 and 4
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Self-repelling diffusions on a Riemannian manifold

Remark 1 A similar result holds for the decoupled SDE when V (x, y) = ∑n
j=1 a j

cos( j (y − x)) and a j > 0 for all j = 1, . . . , n, by setting Uj (t) = ∫ t
0 cos( j Xs)ds

and Vj (t) = ∫ t
0 sin( j Xs)ds.

Theorem 2 Almost surely, the solution of (4) with initial condition (X0,U0, V0) =
(0, 0, 0) does not converge on S

1 and a fortiori on R. However, on R,

Xt

t
→ 0 a.s. as t → ∞.

Proof Let ε > 0 and set Rε
j = ⋃

k∈Z((2k + j)π − ε, (2k + j)π + ε) × R
2, j = 0, 1.

Then by positive Harris recurrence of (Xt ,Ut , Vt )t , we have that

Xt ∈
⋃
k∈Z

((2k + j)π − ε, (2k + j)π + ε),

infinitely often for j = 0, 1. This proves the first assertion.
Applying nowCorollary 1 in Sect. 3 to the function f (x, u, v) = sin(x)u−cos(x)v

gives us

lim
t→∞

1

t

∫ t

0
f (Xs,Us, Vs)ds =

∫
S1×R2

f (x, u, v)μ(dx, du, dv) = 0 P(0,0,0)a.s.

Consequently,
Xt

t
= σ

Bt

t
+ 1

t

∫ t

0
f (Xs,Us, Vs)ds

converges P(0,0,0) almost surely to 0. ��
The zero noise limit

We point out that (5) is -for σ � 1- a random perturbation of the following ordinary
differential equation (ODE)

⎧⎨
⎩

Ẋt = sin(Xt )Ut − cos(Xt )Vt
U̇t = cos(Xt )

V̇t = sin(Xt )

(6)

Below (Fig. 3) is a typicalmotion for (6). The dynamics of (6) can be fully described
as follows:

Let R : S
1 × R

2 
→ S
1 × R

2 be the map defined by R(x, z) = (x,Rx z) where
Rx is the rotation of angle x . Let H : R

2 
→ [1,∞] be the map defined by

H(u, v) =
{

1
2 (u

2 + v2 − log(v2)), if v �= 0,

∞, if v = 0.

Some level sets are shown in (Fig. 4). Set Hc = H−1(c). Then H∞ is the line v = 0,
while for c < ∞, Hc has two components H+

c and H−
c obtained from each other by
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Fig. 3 Evolution of (Ut , Vt ) after time T = 1000 (left) and evolution of Xt until time T = 70 (right).
Both simulations started with initial condition (x, u, v) = (0, 0, 2)
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Fig. 4 The left picture shows level sets of the function H whereas the right picture shows the full twisted
strip (in black) and two torus T+

c , with c = √
2 (in green) and c = 2 (in blue) (color figure online)

reflection along the line v = 0. For c > 1/2, H+
c is a closed curve around (0, 1), and

H+
1/2 = {(0, 1)}.
Given α ∈ {−,+} and c ∈ [1,∞[ set Tα

c = R(S1×Hα
c ) and T∞ = R(S1×H∞).

Then T
α
1/2 is a closed curve, T

α
c is, for c > 1, a torus and T∞ is a full twisted strip.

Furthermore
S
1 × R

2 =
⋃

c≥1,α∈{−,+}
T

α
c ∪ T∞ (7)

Theorem 3 The foliation (7) is invariant under the dynamics (6). More precisely,

(i) T
α
1/2 consists of a periodic orbit having period 2π;

(ii) For c > 1/2 the orbits on T
α
c are either all periodic or all dense in T

α
c . Fur-

thermore, the set of c such that the orbits on T
α
c are periodic is a countable and

dense subset of ]1/2,∞[;
(iii) On T∞ the solution to (6) with initial condition (x0, u0, v0) is given by

(Xt ,Ut , Vt ) = (x0, u0 + t cos(x0), v0 + t sin(x0)).
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The proof is the purpose of the appendix.

Remark 2 To determine whether or not the orbits on T
α
c are periodic, we introduce

(see appendix) some function T.,2 :]1/2,∞[→]2√2,
√
2π [ which is continuous and

decreasing and prove that the orbits on T
α
c are periodic if and only if Tc,2

2π ∈ Q. Details
are given in the appendix.

2 Description of the model

Let us start by fixing some notation. Throughout all the paper, we let ∇ denote the
gradient on M , �M the Laplacian on M and for some vector field X on a manifold
N , we denote byX ( f ) the Lie derivative of f alongX ; f being a smooth function.

For a smooth function V : M × M → R and for a Borel measure μ, we let
Vμ : M → R denotes the function defined by

Vμ(x) =
∫
M
V (u, x)μ(du).

We then consider the model

dXt = σ

N∑
j=1

Fj (Xt ) ◦ dB( j)
t − ∇Vμt (Xt )dt, X0 = x, (8)

where σ > 0, (B(1), . . . , B(N )) is a standard Brownian motion on R
N , ◦ denotes the

Stratonovitch integral, {Fi } is a family of smooth vectors fields on M such that

N∑
i=1

Fi (Fi f ) = �M f, f ∈ C∞

and μt is the random occupation measure defined by

μt =
∫ t

0
δXs ds.

Note that there exists at least one such family {Fi } since by Nash’s embedding Theo-
rem, there exists N ∈ N large enough such that M is isometrically embedded in R

N

with the standard metric (see Theorem 3.1.4 in [20] or Proposition 2.5 in [4]).
In this paper, we suppose that the function V has the following form

V (x, y) =
n∑
j=1

a j e j (x)e j (y), (9)
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where (e j ) j=1,...,n are eigenfunctions for the Laplacian associated to non zero eigen-
values λ1, . . . , λn < 0 such that

∫
M
e j (x)ek(x)dx = δk, j ,

where δk, j is the Kronecker symbol and dx stands for the Riemannian measure on M .
We also assume that a j > 0 for all j = 1, . . . , n.

Due to the particular form for V , we can obtain a “true” stochastic differential
equation by introducing the new variables Uk,t = ∫ t

0 ek(Xs)ds. Therefore we get the
following system on M := M × R

n

{
dXt = σ

∑N
j=1 Fj (Xt ) ◦ dB( j)

t −∑n
j=1 a j∇e j (Xt )Uj,t dt

dUk,t = ek(Xt )dt, k = 1, . . . , n
(10)

with initial condition (x, 0, . . . , 0).
In the rest of the paper, we will work with the system (10) and prove that:

1. There exists a unique global strong solution for the system (10);
2. Strong Feller property holds;
3. The system admits a unique invariant measure which is given explicitly as the

product of the uniform probability on M and a Gaussian probability on R
n ;

4. The law of the solution converges to μ exponentially fast.

The paper is organized as follows. In the next section, we present the main results and
the proof of point 1.

In Sect. 4, we provide the proofs of points 2 and 3. To this end, we introduce a
property, called condition (E ′) and prove that it implies the Strong Feller property.

In Sect. 5 is given the proof of an exponential decay in L2(M, μ), where μ is the
unique invariant probability whereas a proof for an exponential decay in the Total
Variation norm is presented in Sect. 6.

3 Presentation of the results

Recall that M = M × R
n . Throughout, we denote by C0(M) the set of function

f : M → R : (x, u) 
→ f (x, u) which are continuous and such that f (x, u) → 0
when ‖u‖ → ∞, and by C k

c (M) the set of function which are k times continuously
differentiable with compact support.

We equip C0(M) with the supremum norm

‖ f ‖∞ := supy∈M| f (y)|.
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Let G0, G1, . . . , GN be the vector fields on M defined by

G0(x, u) =

⎡
⎢⎢⎢⎣

−∑n
j=1 a j∇e j (x)u j

e1(x)
...

en(x)

⎤
⎥⎥⎥⎦ ,

and for j = 1, . . . , N ,

G j (x, u) =

⎡
⎢⎢⎢⎣

σ Fj (x)
0
...

0

⎤
⎥⎥⎥⎦ ,

with x ∈ M and u ∈ R
n . So (10) can be rewritten as:

dYt =
N∑
j=1

G j (Yt ) ◦ dB j
t + G0(Yt )dt. (11)

Proposition 1 For all y = (x, u) ∈ M there exists a unique global strong solution
(Y y

t )t�0 to (11) with initial condition Y y
0 = y = (x, u). Moreover, we have

Y y
t = (X y

t ,U
y
t ) ∈ M × B̄(u, Kt), (12)

where K = (maxy∈M
∑n

j=1 e j (y)
2)1/2 and B̄(u, R) = {v ∈ R

n : ‖v − u‖ � R}.
Proof Existence and uniqueness is standard since G0 is locally Lipschitz and sub-
linear (see for example [31, page 383]). Concerning (12), note that we have

n∑
j=1

(Uj,t − u j )
2 � t

∫ t

0

n∑
j=1

e j (Xs)
2ds

� t2 max
y∈M

n∑
j=1

e j (y)
2 < ∞;

which proves (12). ��
Throughout, we let (Pt )t�0 denote the semi-group induced by (11). Recall that for
any bounded or nonnegative measurable function f : M → R, Pt f is the function
defined by

Pt f (y) = E( f (Y y
t )) for all y ∈ M. (13)

Lemma 1 The semi-group (Pt )t�0 is Feller, meaning that

1. For all t � 0, Pt (C0(M)) ⊂ C0(M).
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2. For all f ∈ C0(M), limt→0 ‖Pt f − f ‖∞ = 0.

Proof By Proposition 1, for all T > 0, (Y y
t )t∈[0,T ] lies on a deterministic compact set

depending only y and T . Hence, by standard results (see eg Theorem IX.2.4 in [31]) ,
y 
→ Y y

t is continuous. Thus, by dominated convergence, y 
→ Pt f (y) lies in C0(M)

for all f ∈ C0(M).
In order to prove the second point, it suffices to show that limt↓0 Pt f (y) = f (y)

(see Proposition III.2.4 in [31]). This follows again from continuity of t 
→ Y y
t and

dominated convergence. ��
The next result gives further informations on the semi-group.

Proposition 2 The set C 2
c (M) is stable for Pt , t � 0, ie for all t � 0, Pt (C 2

c (M)) ⊂
C 2
c (M).

Proof Let f ∈ C 2
c (M). The fact that Pt f has a compact support is a consequence of

Eq. (12). Let us now prove that Pt f is twice continuously differentiable.
Let y = (x0, u) ∈ M and R > 0. For ỹ ∈ M × B(u, R), we have, by Proposition 1,

(Y ỹ
s )0�s�t ⊂ M × B̄(u, Kt + R). (14)

Pick a smooth function ψ : R
n → R+ which is 1 on the ball B(u, Kt + R), 0 outside

the ball B̄(u, Kt + R + 1) and ψ(v) � 1 for all v.
Consider now the SDE defined by

dỸt =
N∑
j=1

G j (Ỹt ) ◦ dB j
t + G̃0(Ỹt )dt, (15)

where G̃0(x, v) = G0(x, u + ψ(v)(v − u)). Let us denote by P̃t its associated semi-
group. The fact that G0 is smooth and locally Lipschitz implies that G̃0 is smooth
and Lipschitz. By Nash’s embedding Theorem and proceeding in the same way as in
Proposition 2.5 in [4], we can extend (15) to a SDE on R

N × R
n and f to a function

in C 2(RN × R
n). Therefore, in view of subsection 3.2.1 in [9] and of Proposition 2.5

in [10], it follows that P̃s f is a function of class C 2 for all s � 0. Since

Ps f (ỹ) = P̃s f (ỹ) for all 0 � s � t and all ỹ ∈ M × B(u, R), (16)

it follows that Pt f is of class C 2 on M × B(u, R).
Consequently, Pt f ∈ C 2

c (M). ��
The infinitesimal generator of (Pt )t�0 is the operator

L : D(L ) → C0(M) : f 
→ lim
t↓0

Pt f − f

t
, (17)

where D(L ) := { f ∈ C0(M) : Pt f − f
t converges in C0(E) when t ↓ 0}. Then (see

for example Theorem 17.6 in [22]) for all f ∈ D(L ),

Pt f − f =
∫ t

0
L (Ps f )ds =

∫ t

0
Ps(L f )ds (18)
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We briefly recall the following result which characterize the elements of D(L ):

Theorem 4 (Propositions VII.1.6 and VII.1.7 in [31]) For g, h ∈ C0(M), the follow-
ing assertions are equivalent:

1. h ∈ D(L ) and L h = g.
2. For all y ∈ E, the process

h(Y y
t ) −

∫ t

0
g(Y y

s )ds

is a martingale with respect to the filtrationFt = σ(Y y
s : 0 � s � t).

Since the definition of the infinitesimal generator is implicit, it is convenient to intro-
duce a more tractable operator: the Kolmogorov operator.

Definition 1 The Kolmogorov operator associated to (10) is the operator defined on
C 2 bounded functions having first and second bounded derivatives by

L = σ 2

2
�M −

n∑
k=1

akuk(∇ek(x),∇x .)T M +
n∑

k=1

ek(x)∂uk ,

with the convention (�M f )(x, u) = (�M f (., u))(x) and (., .)T M stands for the inner
product on the tangent bundle of M .

The link between the infinitesimal and the Kolmogorov operator is given by the
next proposition.

Proposition 3 Let f be a C 2 bounded function having first and second bounded
derivatives, then f ∈ D(L ) and

L f = L f.

Proof It follows from Itô’s formula and Theorem 4. ��
Definition 2 Let � : R

n → R : u = (u1, . . . , un) 
→ ln(C(�)) + 1
2

∑n
k=1 ak |λk |u2k

with

C(�) =
∫
Rn

exp

(
−1

2

n∑
k=1

ak |λk |u2k
)
du =

n∏
i=1

√
2π

|λi |ai < ∞.

Recall that λi < 0 is the eigenvalue associated to the eigenfunction ei of �M . On M,
we define the probability measure

μ(dx ⊗ du) = ν(dx) ⊗ e−�(u)du =: ϕ(y)dy, (19)

with y = (x, u) and ν(dx) = dx∫
M dz

is the uniform probability measure on M .
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Remark 3 Note that μ(dy) does not depend on the noise term σ .

We can now state our first main result.

Theorem 5 Let (Pt )t�0 be the semi-group associated to the system (10) and
Pt (y0, dy) its transition probability. Then

(1) The semi-group (Pt )t�0 is strongly Feller (meaning that Pt f is a bounded con-
tinuous function for whatever bounded measurable function f ) and there exists
aC∞((0,∞), M, M) function pt (y0, y) such that Pt (y0, dy) = pt (y0, y)dy for
all y0 ∈ M and (L∗

z − ∂t )pt (y, z) = 0,
(2) The probability μ(dy) = ϕ(y)dy, where ϕ is given in Definition 2, is the unique

invariant probability. Moreover for all y ∈ M and for all bounded measurable
function f , we have

lim
t→∞ Pt f (y) =

∫
M

f (z)μ(dz).

Furthermore, the process (Yt )t is positive Harris recurrent, ie for all Borelian
set R such that μ(R) > 0, then

∫ ∞

0
1R(Y y

t )dt = ∞ a.s

for all y ∈ M.
(3) limt→∞

∫
M

|pt (z, y) − ϕ(y)|dy = 0 for all z ∈ M.

Remark 4 The fact that μ is independent of the parameter σ implies that it is also an
invariant probability of the deterministic system obtainedwith σ = 0. However, in that
case it is not necessarily unique (compare with Theorem 3, where there exists infinitely
many compact disjoint invariant sets, thus infinitely many ergodic probabilities.)

As an immediate consequence of the Harris positive recurrence property, we have

Corollary 1 For all f ∈ L1(μ),

1

t

∫ t

0
f (Y y

s )ds →
∫
M

f (y)μ(dy)

almost surely for any y ∈ M.

Proof Apply Theorem 3.1 in [3] to the positive and negative part of f . ��
The next results establish exponential rate of convergence of (Pt )t�0 to μ.

Theorem 6 For every η > 0 and g ∈ L2(μ)

∥∥∥∥Pt g −
∫
M

g(y)μ(dy)

∥∥∥∥
L2(μ)

�
√
1 + 2η‖g −

∫
M

g(y)μ(dy)‖L2(μ)e
−λt ,
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where

λ = η

1 + η

K1σ
2

1 + K2σ 2 + K3σ 4 ,

with

K1 = 1

4(2 + (1 + N2)2)

(
�

1 + �

)2

,

K2 = (1 + N2)
∑n

j=1 |λ j |
2 + (1 + N2)2

,

K3 = (
∑n

j=1 |λ j |)2
4(2 + (1 + N2)2)

,

� = min
i=1,...,n

|λi |ai

and

N2 = 2
n

min{|λ j |, j = 1, . . . , n} sup
i=1,...,n

‖∇ei‖2∞
√√√√4 +

n∑
i=1

|λi |ai + 4‖
∑
i

e2i ‖∞.

Remark 5 Note that if g ∈ L2(μ), then it is not clear at first glance that Pt g is
meaningful. However it is. In order to prove it, set ht (y, z) = pt (y, z)/ϕ(z). Due to
the properties of pt (y, .) and ϕ for all t > 0 and x ∈ M (see Theorem 5, Proposition
1 and Definition 2), then ht (y, .) has compact support. Thus, by the Cauchy–Schwarz
inequality, we obtain

E(|g|(Y y
t )) =

∫
M

|g|(z)pt (y, z)dz =
∫
M

|g|(z)ht (y, z)μ(dz) � ‖g‖L2(μ)‖ht (y, .)‖L2(μ).

(20)
Furthermore, we have Pt g ∈ L2(μ). Indeed by Jensen inequality and invariance of μ,
we have

∫
M

(Pt g)2(y)μ(dy) �
∫
M

Pt (g2)(y)μ(dy) = ∫
M
g2(y)μ(dy) < ∞.

Since bothμ(dy) and Pt (y0, dy)have smooth densitieswith respect to theLebesgue
measure for all y0 ∈ M and in view of the third point of Theorem 5, we would hope to
get a convergence speed for the total variation norm. Once again the answer is positive
as shown by the following theorem.

Theorem 7 For all z0 ∈ M and t � 1,

‖Pt (z0, dz) − μ(dz)‖T V �
√
1 + 2η‖h(1, z0, z) − 1‖L2(μ)e

−λ(t−1),
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where h(1, z0, z) = p1(z0,z)
ϕ(z) and

λ = η

1 + η

K1σ
2

1 + K2σ 2 + K3σ 4 ,

μ is the probability given in Theorem 5 and the constants K j < ∞, j = 1, 2, 3, are
the same as in Theorem 6.

The proofs of Theorem 6 and 7 are postponed to Sects. 5 and 6.

4 Proof of Theorem 5

We emphasize, from Eq. (11), that the Kolmogorov operator L can be expressed in
Hörmander’s form (as a sum of squares):

L = 1

2

N∑
j=1

G2
j + G0, (21)

where G2
j ( f ) = G j (G j f ). The proof mainly relies on classical results by Kanji

Ichihara and Hiroshi Kunita in [21] dealing with this type of operator.

Proof of assertion (1): the Strong Feller Property

Throughout, we use the following notation. IfN is a smooth manifold (such as M, M

or R
m),W : C∞(N ) → C∞(N ) a linear map (typically a differential operator) and

f : N → R
n : x 
→ ( f1(x), . . . , fn(x)) a smooth map, we let W ( f ) : N → R

n

denote the map defined by

W ( f )(x) = (W ( f1)(x), . . . ,W ( fn)(x)).

Given two smooth vector fields A and B onN recall that the Lie-bracket of A and B
is the vector field on N characterized by

[A, B]( f ) = A(B( f )) − B(A( f ))

for all f ∈ C∞(N ). In case N = R
m then for all x ∈ R

m

[A, B](x) = DB(x)A(x) − DA(x)B(x)

where DA(x) (resp. DB(x) ) stands for the derivative of A (resp. B) at x .
Let G0 = {G1, . . . ,GN }. Define then recursively Gk, k � 1, by

Gk = Gk−1 ∪ {[B,G j ], B ∈ Gk−1 and j = 0, . . . , N .}

Let then G∞ = ⋃
k�0 Gk and for all (x, u) ∈ M

G∞(x, u) = {V (x, u) : V ∈ G∞}.
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Using the terminology of [21], we say that

Definition 3 The dynamics (11) satisfies the ellipticity condition (E) if for all (x, u) ∈
M,G∞(x, u) spans T(x,u)M = TxM × R

n .

The next result rephrases Lemma 5.1 (ii) and Theorem 3 (i) and (iii) of [21].

Lemma 2 If (10) satisfies (E) then the induced semi-group (Pt ) is strongly Feller
and there exists a C∞((0,∞), M, M) function pt (y0, y) such that Pt (y0, dy) =
pt (y0, y)dy for all y0 ∈ M and (L∗

z − ∂t )pt (y, z) = 0.

Remark 6 Note that when σ = 0, the condition (E) is never satisfied since G0 is
reduced to {0}; hence G∞ = {0}.
Let A0 = {F1, . . . , FN } and for all k ≥ 1

Ak = Ak−1 ∪ {Fj B, B ∈ Ak−1 and j = 1, . . . , N }, (22)

where Fj B is the operator on C∞(M) defined by (Fj B)( f ) = Fj (B( f )).
Let then A∞ = ⋃

k�0 Ak and for all x ∈ M

A∞(x) = {W (e)(x) : W ∈ A∞}

where e : M → R
n is the map defined by e(x) = (e1(x), . . . , en(x)). Note that while

G∞ is a set of vector fields on M, A∞ is a set of differential operators of all orders on
C∞(M).

Definition 4 We say that the condition (E ′) is fulfilled if and only if for all x ∈ M ,
A∞(x) spans R

n .

Lemma 3 Suppose σ > 0. Then, condition (E ′) implies condition (E).

The proof relies on the following lemma.

Lemma 4 Let e : R
m → R

n be a smooth function and let F(x, u) =
[
A(x)
0

]
and

G(x, u) =
[
B(x, u)

e(x)

]
be two vector fields on R

m+n, where A : R
m → R

m and

B : R
m+n → R

m are smooth functions. Then

[F,G](x, u) =
[[A, B(., u)](x)

A(e)(x)

]
,

with B(., u) : R
m → R

m : x 
→ B(x, u)

Proof Let (x, u) ∈ R
m × R

n . We then get that

DF(x, u) =
[
DA 0
0 0

]
(x, u)
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and

DG(x, u) =
[
Dx B DuB
De 0

]
(x, u).

Hence

[F,G](x, u) = DG(x, u)F(x, u) − DF(x, u)G(x, u)

=
[
Dx B(x, u)A(x) − DA(x)B(x, u)

De(x)A(x)

]

=
[[A, B(., u)](x)

A(e)(x)

]
(23)

as stated. ��
Proof of Lemma 3 Let

W =
l∏

j=1

Fi j , (i1, . . . , il) ∈ {1, . . . , N }l . (24)

By definition of G0, and Lemma 4 (used in a local chart) it follows that

GW (x, u) := [Gi1, [. . . , [Gil ,G0] . . .]] = σ l
[

�

W (e)(x)

]
(25)

Thus, by hypothesis and the definition of G j for j = 1, . . . , N ,

{G1(x, u), . . . ,GN (x, u)} ∪ {GW (x, u) : W ∈ A∞}

spans T(x,u)M. This set being a subset of G∞(x, u), this proves the lemma. ��
Lemma 5 Suppose that {e1, . . . , en} are eigenfunctions associated to the same
nonzero eigenvalue of �M . Then condition (E ′) holds true.

Proof Let (U, (x1, . . . , xm)) be a local chart withU an open set inM.Let D1, . . . , Dm

be the vector fields defined onU by Di ( f ) = ∂
∂xi

f. DefineA D∞ likeA∞ by replacing

F1, . . . , FN by D1, . . . , Dm, and setA D∞ (x) = {W (e)(x) : W ∈ A D∞} for all x ∈ U.

We claim thatA D∞ (x) spansR
n . Suppose to the contrary that there exists some x∗ ∈ U

and some vector t ∈ R
n\{0} such that A D∞ (x∗) ⊂ t⊥. Let f (x) = ∑

i ti ei (x). Then
f is an eigenfunction of �M and for all W ∈ A D∞

W ( f )(x∗) = W

(
n∑

i=1

ti ei

)
(x∗) = 〈W (e)(x∗), t〉 = 0.
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In other words, f vanishes to infinite order at x∗. But by a result of Aronzajn (see
[2]), every nonzero eigenfunction of the Laplacian on aC∞ manifold withC∞ metric,
never vanishes to infinite order. This proves the claim.

It remains to show that A∞(x) spans R
n . Since F1(x), . . . , FN (x) span TxM for

all x, there exist smooth real valued maps αi j , 1 ≤ i ≤ m, 1 ≤ j ≤ N , defined on U
such that for all x ∈ U and 1 ≤ j ≤ N

Dj (x) =
N∑

k=1

α j,k(x)Fk(x).

Thus

Dj (e)(x) =
N∑
i=1

α j,i (x)Fi (e)(x) ∈ span(A∞(x)).

Now, for all ψ, ξ ∈ C∞(M) and all H ∈ A∞, we have

H(ψξ)(x) = ψ(x)H(ξ)(x) + ξ(x)H(ψ)(x).

Thus,

Di D j (e)(x) =
N∑

k=1

Di (α j,k)(x)Fk(e)(x) +
N∑

k=1

α j,k(x)Di Fk(e)(x)

=
N∑

k=1

Di (α j,k)(x)Fk(e)(x) +
N∑

k,l=1

α j,k(x)αi,l (x)Fl Fk(e)(x) ∈ span(A∞(x))

By recursion, it comes that A D∞ (x) ⊂ span(A∞(x)) and since A D∞ (x) spans R
n , so

does A∞(x). ��
Lemma 6 Condition (E ′) holds.

Proof Let � be the set of distinct eigenvalues of {e1, . . . , en}. For λ ∈ � let
{eλ

1 , . . . , e
λ
n(λ)} ⊂ {e1, . . . , en} be the set of eigenfunctions having eigenvalue λ and

let eλ = (eλ
1 , . . . , e

λ
n(λ)).

Let x ∈ M . By Lemma 5 there exist W λ
1 , . . . ,W λ

n(λ) ∈ A∞ such that the matrix

Rλ = (W λ
i (eλ

j )(x))1�i, j�n(λ) (26)

has rank n(λ).
Given a polynomial P(x) = ∑k

j=0 α j x j , we let

P(�M ) =
k∑
j=0

α j�
j
M , (27)

123



M. Benaïm, C.-E. Gauthier

where�
j
M is the operator defined recursively by�0

M f = f and�
j+1
M f = �

j
M (�M f )

with f ∈ C 2(M). Note that for all 1 ≤ i ≤ n(λ)

P(�M )(eλ
i ) = P(λ)eλ

i . (28)

Now let Pλ(x) = ∏
α∈�;α �=λ(x − α). For λ ∈ � and i = 1, . . . , n(λ), set

Hλ
i = W λ

i P
λ(�M ). (29)

Then one has that Hλ
i (eα

j )(x) = 0 for α �= λ and Hλ
i (eλ

j )(x) = Pλ(λ)W λ
i (eλ

j )(x).
Thus, the matrix

H = (Hλ
i (eα

j )(x))λ∈�, i=1,...,n(λ)

can, after a reordering if necessary, be written as a diagonal block matrix
(Pλ(λ)Rλ(x))λ∈�.

It is then easy to see that H has rank n. ��

This later lemma combined with Lemmas 2 and 3 proves assertion (1).

Proof of assertions (2) and (3). Invariant probability measure and Harris
Recurrence

Recall that a probability measure μ is invariant for the semi-group (Pt )t�0 if

∫
M

Pt f (y)μ(dy) =
∫
M

f (y)μ(dy)

for all f ∈ C0(M).

Existenceof an invariant probabilitymeasureWewill switchbetween the twonotations
y ∈ M and (x, u) ∈ M × R

n which represent the same point. Setting

L∗ = σ 2

2
�M +

n∑
k=1

akukdivx (∇ek(x).) −
n∑

k=1

ek(x)∂uk . (30)

we then observe that

L∗ϕ(y) =
n∑

k=1

akukdivx (∇ek(x)ϕ(y)) −
n∑

k=1

ek(x)∂ukϕ(y)

=
n∑

k=1

akukλkek(x)ϕ(y) +
n∑

k=1

ek(x)ak |λk |ukϕ(y)

= 0.
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By Propositions 2 and 3 together with Theorem 4, we get for f ∈ C 2
c (M)

∫
M

(Pt f (y) − f (y))μ(dy) =
∫ t

0

∫
M

L Ps f (y)μ(dy)ds

=
∫ t

0

∫
M

LPs f (y)ϕ(dy)ds

Noting that for all g, h ∈ C 2
c (M)

∫
M

Lg(y)h(y)dy =
∫
M

g(y)L∗h(y)dy,

we obtain

∫
M

(Pt f (y) − f (y))μ(dy) =
∫ t

0

∫
M

Ps f (y)L
∗ϕ(dy)ds = 0

Since C 2
c (M) is dense in C0(M) for ‖.‖∞, it follows that μ(dy) = ϕ(y)dy is an

invariant probability as stated.

Uniqueness of the invariant probability In order to do this, we begin by showing that
μ is an ergodic probability; that is, if a subset A ⊂ M satisfies Pt1A = 1A μ − a.s
for all t � 0, then μ(A) is either 0 or 1.

Let us denote by f the function Pt1A. Then f (y) ∈ {0, 1} for μ-almost y ∈ M and
f is continuous by point 1 of Theorem 5. Since M is a connected space and μ has full
support, it follows that f is either equal to 0 or 1; and therefore μ is ergodic.

Since two distinct ergodic probabilities are mutual singular, the strong Feller prop-
erty imply that they must have disjoint support. Since μ has the whole space, which is
connected, as support, the uniqueness of μ follows. The second part of the statement
is Theorem 4.(i) in [21].

The proof that the process is Harris recurrent follows from the proof’s lines of
Proposition 5.1 in [21]; which also proves the third point.

5 Exponential decay in L2(µ)

The goal of this section is to prove the exponential decay in the L2(μ) norm. The
proof heavily relies on the hypocoercitivity method analyzed by M.Grothaus and
P.Stilgenbauer in [16] whose roots lie in the series of paper [11], [12] and [15] initiated
by Dolbeault, Mouhot and Schmeiser.

We emphasize that in the particular case where M = S
d , n = d + 1 and

(e j ) j=1,...,d+1 are the eigenfunctions associated to the first non-zero eigenvalue, our
model coincides with the one studied in section 3 in [16].

For an operator T on some Hilbert space H , we denote by D(T ) its domain and
T ∗ its adjoint.
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We begin to recall the Data (D) and Hypotheses (H1)–(H4) introduced in [16].
For convenience we have chosen to replace certain hypotheses from [16] by slightly
stronger ones (see the Remark 8 below) which are sufficient for our purpose.

Definition 5 (The Data (D)) Let H be a real Hilbert space and let (Pt ) be a strongly
continuous semigroup on H with generator (L , D(L )) and core D ⊂ D(L ). We
suppose that

(i) There exist a closed symmetric operator (S, D(S)) and a closed antisymmetric
operator (A, D(A)) such that D ⊂ D(S) ∩ D(A), A(D) ⊂ D and L|D =
S|D − A|D.

(iii) There exists a closed subspace F ⊂ D(S) such that S|F = 0 and P(D) ⊂ D
where P is the orthogonal projection P : F ⊕ F⊥ → F : f + g 
→ f for all
( f, g) ∈ F × F⊥.

By density of D ⊂ D(A), closedness of A and the fact that P(D) ⊂ D ⊂ D(A),

AP is closed and densely defined. Hence, by Von Neumann’s Theorem, (AP)∗AP is
self-adjoint, closed and densely defined. Thus (I +(AP)∗AP) : D((AP)∗AP) → H
is invertible with bounded inverse. Set

B0 = (I + (AP)∗AP)−1(AP)∗ on D((AP)∗AP). (31)

In the following we let (, )H denote the inner product on H and ‖ · ‖H the associated
norm.

Definition 6 (Hypotheses (H1)–(H4))

(H1) PAP|D = 0
(H2) (Microscopic coercivity). There exists �1 > 0 such that for all f ∈ D ∩ F⊥,

(−S f, f )H � �1‖ f ‖2H .

(H3) (Macroscopic coercivity). There exists �2 > 0 such that for all f ∈
D((AP)∗(AP)) ∩ F ,

‖A f ‖2H � �2‖ f ‖2H . (32)

(H4) (Boundedness of auxiliary operators). The operators (B0S, D) and
(B0A(I − P), D) are bounded and there exists constants N1 and N2 such
that for all f ∈ F⊥ ∩ D

(H4, a)
‖B0S f ‖H � N1‖ f ‖H (33)

and
(H4, b)

‖B0A f ‖H � N2‖ f ‖H (34)

.

If furthermore (I − PA2P)(D) is dense in H , then conditions (H3) and (H4, b) are
implied by the following conditions, as shown by Corollary 2.13 and Proposition 2.15
in [16].
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(H3’) Equation (32) holds for all f ∈ D ∩ F.

(H4’) (b) For all f ∈ D ∩ F
‖A2 f ‖H � N2‖g‖H (35)

where g = (I − PA2P) f.

Theorem 8 (Theorem2 in [12], Theorem1 in [11], Theorem2.18 in [16])Assume that
the assumptions of Definitions 5 and 6 hold. Then there exist constants κ1, κ2 ∈ (0,∞)

explicitly computable such that for all g ∈ H and t � 0,

‖Pt g‖H � κ1e
−κ2t‖g‖H (36)

Remark 7 Following the proof’s line of section 3.4 in [11] and the beginning of the
proof of Theorem 2.18 in [16], one obtains

κ1 =
√
1 + εη

1 − εη

�
√
1 + 2η and κ2 = εη

�2

4(1 + �2)
, (37)

with
εη = η

1 + η

ε0

max(1, ε0)
, η > 0 (38)

and

ε0 = 2�2�1

(1 + �2)(2 + (1 + N1 + N2)2)
. (39)

Remark 8 In case (Pt ) is a Markov semigroup with invariant probability μ, inducing
a strongly continuous semigroup on L2(μ), a natural choice for H is

L2
0(μ) =

{
f ∈ L2(μ) :

∫
f dμ = 0

}
.

This choice will be adopted later. In this case, conditions (D6) and (D7) from [16]
are automatically satisfied and Theorem 8 implies that for all f ∈ L2(μ)

∥∥∥∥Pt f −
∫

f dμ

∥∥∥∥
L2(μ)

� κ1e
−κ2t‖ f −

∫
f dμ‖L2(μ).

5.1 Application to the proof of Theorem 6

Throughout we let

H = L2
0(μ) :=

{
f ∈ L2(M, μ) :

∫
M

f (y)μ(dy) = 0

}

and

L2
0(e

−�) =
{
f ∈ L2(Rn, e−�) :

∫
Rn

f (u)e−�(u)du = 0

}
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where μ and � are like in Definition 2. Both H and L2
0(e

−�) are equipped with the
associated L2 inner product and norm.

The map ı : L2
0(e

−�) ↪→ H defined by ı(g)(x, u) = g(u) injects isometrically
L2
0(e

−�) into H. We let

F = ı(L2
0(e

−�))

and P : F ⊕ F⊥ → F denote the orthogonal projection onto F. Alternatively P can
be defined as

(P f )(x, u) =
∫
M

f (x, u)ν(dx). (40)

Using the notation introduced in Sect. 3 we let (Pt ) denote the semigroup defined by

Pt f (y) = E( f (Y y
t ))

for every bounded Borel map f : M → R; where (Y y
t ) stands for the solution to (11)

with initial condition Y y
0 = y.

Lemma 7 (Pt ) induces a strongly continuous contraction semigroup on H.

Proof By invariance of μ and Jensen inequality Pt defines a bounded operator on H
with norm less than 1 (as already proved in Remark 5).

Let ε > 0 and f ∈ L2(μ). By density of C0(M) in L2(μ), there exists g ∈ C0(M)

such that ‖ f − g‖L2(μ) < ε. Thus, by the contraction property

‖Pt f − f ‖L2(μ) � ‖Pt f − Pt g‖L2(μ) + ‖Pt g − g‖L2(μ) + ‖g − f ‖L2(μ)

� 2ε + ‖Pt g − g‖∞.

Hence, by Feller continuity of (Pt ) (see Lemma 1)

lim sup
t→0

‖Pt f − f ‖L2(μ) � 2ε.

��
Remark 9 Note that the conclusion of Lemma 7 hold true for any Feller Markov
semigroup having μ as invariant measure. This will be used later.

Let (L , D(L )) denote the infinitesimal generator of (Pt ) (now seen as a strongly
continuous semigroup on H ) and let

D = C∞
c (M) ∩ H.

Proposition 4 There exist a closed symmetric operator (S, D(S)) and a closed anti-
symmetric operator (A, D(A)) such that

(i) D is a core for S, A and L invariant under S, A,L and P.

(ii) F ⊂ D(S) and S|F = 0.
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(iii) For all f ∈ D

S( f ) = σ 2

2
�M f, (41)

A( f ) = −G0( f ) =
n∑

i=1

a ju j (∇e j (x),∇x f )T M − e j (x)∂u j f (42)

and
L f = L f = S f − A f. (43)

This later proposition shows that conditions of Definition 5 are fulfilled.
Let η1(M) = η1 denote the spectral gap of M. That is

η1(M) := inf

{∫
M

|∇h|2ν(dx) : h ∈ H1(M),

∫
M
h2ν(dx) = 1,

∫
M
hν(dx) = 0

}

(44)
where ‖h‖2 = (h, h)T M and (., .)T M is the scalar product on the tangent bundle. By
a classical result in spectral geometry, compactness of M ensures that η1 > 0 and
equals the smallest non zero eigenvalue of −�M .

Proposition 5 Hypotheses (H1)–(H4) in Definition 6 hold with

�1 = η1σ
2

2
, �2 = min

i=1,...,n
|λi |ai ,

N1 = σ 2

2

n∑
j=1

|λ j |,

and

N2 = 2
n

min{|λ j |, j = 1, . . . , n} sup
i=1,...,n

‖∇ei‖2∞
√√√√4 +

n∑
i=1

|λi |ai + 4‖
∑
i

e2i ‖∞

Remark 10 Since N1 � nσ 2

2 η1, then 2�1 < 2 + (1 + N1 + N2)
2. Hence ε0 < 1,

where ε0 is defined by (39).

5.2 Proof of Propositions 4 and 5

Proof ofProposition4Wefirst recall someclassical results thatwill be used throughout.

Proposition 6 (See e.g Corollary 1.6, Proposition 2.1, Proposition 3.1, Proposition
3.3 in [14]) Let K be the generator of a strongly continuous contracting semi-group
(Tt )t on some Banach space H . Then

1. K is closed and densely defined.
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2. The resolvent set of K contains (0,∞) and (λI − K )−1g = ∫∞
0 e−λt Tt gdt, for

all g ∈ H and λ > 0.
3. A subspace D of D(K ) is a core for K if and only if it is dense in H and

(λI − K )(D) is dense inH for some λ > 0.
4. Let D be a dense subset ofH such that D ⊂ D(K ). If Tt (D) ⊂ D for all t � 0,

then D is a core for K .

Similarly to (Pt ), let (PS
t ) and (PA

t ) be the semigroups respectively induced by the
following stochastic and ordinary differential equation on M:

dY S
t =

N∑
j=1

G j (Y
S
t ) ◦ dB j

t ,

and
dY A

t

dt
= −G0(Y

A
t ). (45)

Note that (PA
t ) is not merely a semigroup but a group of transformation defined as

PA
t f (y) = ( f ◦ ψt )(y) (46)

where {ψt } is the flow induced by (45). The proofs given in Lemma 1, Proposition 2
and Remark 9 show that, not only (Pt ) but also (PS

t ) and (PA
t ) are Feller, leaveC 2

c (M)

invariant and admit μ as invariant probability. Thus, by Remark 9 and Proposition 6
they induce strongly continuous semigroups on H whose generators, denoted S and
A are closed, densely defined and admit C 2

c (M) ∩ H as a core.
Since for all f ∈ F, PS

t f = f, assertion (ii) of Proposition 4 is satisfied. Further-
more, the definition of L , A and S easily imply assertion (iii) as well as invariance
of D under the generators and under P. The end of the proof is given by the two
following lemmas.

Lemma 8 D is a core forL , S and A.

Proof Let G be one of the operators L , S or A. It is easily checked that for all
f ∈ C2

c (M)

‖A f ‖L2(μ) ≤ C‖∇ f ‖∞

and

‖S f ‖L2(μ) ≤ σ 2

2
‖�M f ‖∞

for some C > 0 independent of f. Thus G maps continuously the space C 2
c (M) ∩ H

equipped with the C 2 strong topology, into H . By standards approximation results
C∞
c (M) is dense into C 2

c (M) for the C 2 strong topology (see e.g. [19, Chapter 2]).
SinceC 2

c (M)∩H is a core forG, (I −G)(C 2
c (M)∩H) is dense in H (see Proposition

6). Thus (I − G)(D) is dense in H and D is a core. ��
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Lemma 9 S is symmetric and A∗ = −A.

Proof Let f, g ∈ D. Then

(S f, g)H = σ 2

2

∫ ∫
M

(�M f )gν(dx)e−�dξ = −σ 2

2

∫ ∫
M

(∇ f, ∇g)T Mν(dx)e−�dξ

= σ 2

2

∫ ∫
M

(�Mg) f ν(dx)e−�dξ = ( f, Sg)H

Since D is a core for S, this proves the symmetry of S.

For f, g ∈ H , we obtain from invariance of μ,

(PA
t f, g)H =

∫
M

( f ◦ ψt )(y)g(y)μ(dy) =
∫
M

f (ψt (y))g(ψ−t ◦ ψt (y))μ(dy)

(47)

=
∫
M

f (y)(g ◦ ψ−t )(y)μ(dy). (48)

Hence (PA
t )∗ = PA−t . In particular, ((PA

t )∗) is strongly continuous and admits −A
as infinitesimal generator. Now, when a semigroup and its adjoint are both strongly
continuous, the generator of the adjoint equals the adjoint of the generator. This follows
for instance fromTheorem 1.5 in [27] combinedwith Proposition 6 2. Thus A∗ = −A.

��
Proof of Proposition 5 For all f ∈ D let

A j ( f )(x, u) = a ju j (∇e j (x),∇x f )T M − e j (x)∂u j f. (49)

so that A f = ∑n
j=1 A j f. Similarly to A, A j enjoys the same properties as A. In

particular, it leaves D invariant and is antisymmetric:

(A j f, g)L2(μ) = −( f, A j g)L2(μ)

for all f, g ∈ D.

Finally, we introduce the following operators

T = (I + (AP)∗(AP))−1 on H (50)

Bj = −T (PA j ) on D (51)

where I denotes the identity operator. Recall that B0 was introduced to be the operator

B0 = T (AP)∗ on D((AP)∗AP).

Hypothesis (H1) is immediate because for all f ∈ D, A j P f = −e j (x)∂u j (P f ) and∫
M e j (x)ν(dx) = 0, thus PA j P f = 0.
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Hypothesis (H2) follows directly from the variational definition of the spectral gap
(44). Indeed for all f ∈ D ∩ F⊥

−(S f, f )L2(μ) = −1

2
σ 2

∫
Rn

∫
M

(�M f ) f ν(dx)e−�(u)du

= 1

2
σ 2

∫
Rn

∫
M

|∇x f |2ν(dx)e−�(u)du ≥ η1

2
σ 2‖ f ‖2L2(μ)

.

For k = 1, . . . , n let

αk = |λk |ak,

so that

�(u) = 1

2

n∑
k=1

αku
2
k + ln(C(�)).

Let (POU
t ) denote the Ornstein–Uhlenbeck semi-group on L2

0(e
−�) defined as

POU
t f (u) =

∫
f
(
e−diag(αi )t u + diag(

√
1 − e−2αi t )ξ

)
e−�(ξ)dξ (52)

or, equivalently, POU
t f (u) = E( f (Uu

t ))whereUu
t is the solution to the linear equation

on R
n

dUi
t = −αiU

i
t dt + √

2dBi
t , i = 1 . . . n,

with initial condition Uu
0 = u and independent Brownian motions B1, . . . , Bn .

Let LOU denote the generator of (POU
t ) on L2

0(e
−�). The set

D̃ = C∞
c (Rn) ∩ L2

0(e
−�)

is a core1 LOU and for all f ∈ D̃

LOU f = −〈∇�,∇ f 〉 + � f.

The next Lemma is similar to Corollary 2.13 and Proposition 3.13 in [16],

Lemma 10 (i) For all f ∈ F

PA2 f = ı ◦ LOU ◦ ı−1( f )

1 This is a classical result and can easily be verified as follows. Formula (52) shows that the set C∞
b (Rn)

of bounded C∞ functions with bounded derivatives is stable under (POU
t ); hence a Core by Proposition

6. Furthermore for each f ∈ C∞
b (Rn) it is easy to construct a sequence fn ∈ C∞

c (Rn) such that fn → f

and LOU fn → LOU f in L2(e−�).
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(ii) (I − PA2P)(D) is dense in H.

(iii) (H3) holds with �2 = min{αk : k = 1 . . . n}
Proof (i) Let f ∈ F ∩ D. Then

A2 f =
n∑

k=1

Ak(A f ) =
n∑

k=1

Ak

⎛
⎝ n∑

j=1

A j f

⎞
⎠ =

n∑
k=1

Ak(

n∑
j=1

e j∂u j f )

=
n∑

k=1

⎡
⎣
⎛
⎝∇ek,

n∑
j=1

∇x (e j∂u j f )

⎞
⎠

T M

akuk − ∂uk

⎛
⎝ n∑

j=1

e j∂u j f

⎞
⎠ ek

⎤
⎦

=
n∑

k, j=1

∂u j f akuk(∇ek,∇e j )T M −
n∑

k, j=1

(∂2u j uk f )e j ek (53)

Therefore

PA2 f =
n∑

k, j=1

∂u j f akuk

∫
M

(∇ek,∇e j )T Mdν −
n∑

k, j=1

(∂2u j uk f )
∫
M
e j ekdν

=
n∑
j=1

∂u j f a j u j |λ j | −
n∑
j=1

(∂u j u j f ) =
n∑
j=1

∂u j f α j u j −
n∑
j=1

(∂2u j u j
f ).

(54)

This proves the first assertion.
(ii) (I−PA2P)(D∩F⊥) = D∩F⊥ is dense in F⊥ because F⊥ = (I−P)(H), (I−

P)(D) ⊂ D∩F⊥ and D is dense.Also, (I−PA2P)(D∩F) = ı(I−LOU )(D̃) is
dense in F because, D̃ being a core for LOU , (I−LOU )(D̃) is dense in L2

0(e
−�).

This proves (ii).
(iii) Using antisymmetry of A, assertion (i) and the Poincaré inequality for the

Gaussianmeasure e−�(u)du (see e.g [1, chapter 1])we get that for all f ∈ F∩D,

‖A f ‖2H = ‖AP f ‖2H = (−PA2P f, f )H = (ı( f ), LOU ı( f ))L2
0(e

−�)

≥ min(αi )‖ı( f )‖L2
0(e

−�) = min(αi )‖ f ‖2H .

This proves (H3′), hence (H3). ��
Lemma 11 For f ∈ D∩F, we have ‖A f ‖2

L2(μ)
= ∑n

k=1 ‖Ak f ‖2L2(μ)
= ‖∇ f ‖2

L2(μ)
.

Proof Let f ∈ D ∩ F . Since f does not depend on the x-variable, A j f = −e j∂u j f .
The result follows from the fact that the eigenfunctions (e j ) j=1,...,n are orthonormal
in L2(M, dx).

The next Lemma is inspired from Lemma 2.4 in [16]

123



M. Benaïm, C.-E. Gauthier

Lemma 12 For j = 1, . . . , n and f ∈ D,

‖Bj f ‖H � 1

2
‖(I − P) f ‖H .

Proof The proof is quite similar to the proof of Lemma 2.4 in [16]. Let f ∈ D and
define g = Bj f . Thus g ∈ D((AP)∗AP) and

− PA j f = g + ((AP)∗AP)g. (55)

Because (I − PA2P)(D) is dense in H (see Lemma 10(ii)), there exists a sequence
(gn) ⊂ D such that

lim
n→∞ gn − PA2Pgn = g + (AP)∗(AP)g. (56)

Since P(D), A(D) ⊂ D, it follows from Lemma 2.2 in [16] that

− PA2Pgn = ((AP)∗(AP))gn . (57)

Thus, by continuity of T ,
lim
n→∞ gn = g (58)

and from (57)
lim
n→∞(AP)∗(AP)gn = (AP)∗(AP)g. (59)

Thus, taking the scalar product of (55) with respect to gn on both side provides

lim
n→∞ −(PA j f, gn)H − ‖gn‖2H − ‖APgn‖2H = 0.

Now, using successively antisymmetry of A j , Cauchy Schwarz (and Young) inequal-
ities and Lemma 12,

− (PA j f, gn)H = ((I − P) f, A j Pgn)H ≤ ‖(I − P) f ‖H‖A j Pgn‖H (60)

≤ 1

4
‖(I − P) f ‖2H + ‖A j Pgn‖2H ≤ 1

4
‖(I − P) f ‖2H + ‖APgn‖2H (61)

Thus, letting n tends to ∞, leads to

‖g‖2H � 1

4
‖(I − P) f ‖2H . (62)

��
Lemma 13 (H4 a) holds with N1 = σ 2

2

∑n
j=1 |λ j |.
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Proof Let f ∈ D ∩ F⊥. Since
∫
M

A j f (y)μ(dy) = 0, one has

−PA f =
n∑
j=1

−PA j f =
n∑
j=1

P(a ju j (∇e j ,∇x f )T M − e j∂u j f )

=
n∑
j=1

[∫
M

(∇e j ,∇x f )T Ma ju j dν −
∫
M
e j∂u j f dν

]
.

Since S(D) ⊂ D), then

−PAS f = −σ 2

2

n∑
j=1

[∫
M

(∇e j ,∇x�M f )T Ma ju j dν −
∫
M
e j∂u j �M f dν

]
.

Because

∫
M

(∇e j ,∇x�M f )T Mdν = −
∫
M

�Me j�M f dν = −λ j

∫
M
e j�M f dν

= λ j

∫
M

(∇e j ,∇x f )T Mdν

and

∫
M
e j∂u j �M f dν =

∫
M
e j�M∂u j f dν =

∫
M

�Me j∂u j f dν = λ j

∫
M
e j∂u j f dν

for all j = 1, . . . , n, it follows that

PAS f = σ 2

2

n∑
j=1

λ j (PA j ) f.

By antisymmetry of A (resp. A j ) and Lemma 2.2 in [16], for all g in D, (AP)∗g =
−PAg (resp. (A j P)∗ f = −PA j f ). Hence

B0S f = T (AP)∗S f = −T P AS f = σ 2

2

n∑
j=1

λ j B j f.

Applying the triangle inequality, one has

‖B0S f ‖L2(μ) � σ 2

2

n∑
j=1

|λ j |‖Bj f ‖L2(μ)

and the result follows from Lemma 12. ��
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The following estimate can be compared with the a priori estimates obtained in [12]
and discussed in Appendix A1 of [16] (lemmas A3, A4, A5, A7 and Proposition A6)
for amore general elliptic equation. Note, however, that herewe provide an elementary
proof allowing precise estimates by making use of the � and �2 operators combined
with the specific form of LOU .

Lemma 14 Let f ∈ D̃ and
g = (I − LOU ) f. (63)

Then

1. ‖|Hess( f )|2‖L2(e−�) � 4‖g‖L2(e−�)

2. ‖|∇�|2.|∇ f |2‖L2(e−�) � 2
√
4 +∑n

i=1 αi‖g‖L2(e−�),

where |.|2 stands for the usual Euclidean norm and |Hess( f )|22 = ∑
i j |∂ui u j f |2.

Proof From (63), we have f = R1g, where R1 is the resolvent operator of LOU .
Thus

‖ f ‖L2(e−�) � ‖g‖L2(e−�)

and

‖LOU f ‖L2(e−�) � 2‖g‖L2(e−�).

Let � be the “carré du champs” operator defined by

�(ψ1, ψ2) = 1

2
[LOU (ψ1ψ2) − ψ2LOUψ1 − ψ1LOUψ2] (64)

and

�2(ψ) = 1

2
�(ψ,ψ) − ψLOUψ). (65)

It is known (see for instance Subsection 5.3.1 in [1]) that

(i) �( f, f ) = |∇ f |22 and
(ii) �2( f ) = |Hess( f )|22 + 〈∇ f, Hess(�)∇ f 〉 � |Hess( f )|22
by positive definiteness of Hess(�). Therefore, by invariance and reversibility of
e−�(u)du,

‖|∇ f |2‖2L2(e−�)
=
∫

�( f, f )e−�(u)du

=
∫

− f LOU f e−�(u)du

� ‖ f ‖L2(e−�)‖LOU f ‖L2(e−�) (by the Cauchy-Schwarz inequality)

� 2‖g‖2L2(e−�)
(66)
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and ∫
�2( f )e

−�(u)du = ‖LOU f ‖2L2(e−�)
� 4‖g‖2L2(e−�)

. (67)

This last inequality implies (i). Set h = |∇ f |2 so that ∂u j h = ∂u j f ∂
2
u j

f

|∇ f |2 . Following the

line of the proof of Lemma A.18 in [33] and noting that �� = ∑n
i=1 αi , one obtains

∫
|∇�|22h2e−�du �

n∑
i=1

αi

∫
h2e−�du + 2

√
(

∫
|∇�|22h2e−�du)(

∫
|∇h|22e−�du).

(68)
Using the Young’s inequality 2ab � δ2a2 + b2

δ2
with δ2 = 1/2, one has

∫
|∇�|22h2e−�du � 2

n∑
i=1

αi

∫
h2e−�du + 4

∫
|∇h|22e−�du. (69)

Since

|∇h|22 =
n∑
j=1

(
∂u j f

|∇ f |2
)2

(∂2u j
f )2

�
n∑
j=1

(∂2u j
f )2

� |Hess( f )|22, (70)

we obtain

‖|∇�|2.|∇ f |2‖2L2(e−�)
� 2

(
n∑

i=1

αi

)∫
|∇ f |22e−�du + 4

∫
|Hess( f )|22e−�du

� 4

(
n∑

i=1

αi + 4

)
‖g‖2L2(e−�)

. (71)

��

Corollary 2 Hypothesis (H4′) (b) holds with

N2 = 2
n

min{|λ j |, j = 1, . . . , n} sup
i=1,...,n

‖∇ei‖2∞
√√√√4 +

n∑
i=1

αi + 4‖
∑
i

e2i ‖∞

Proof Let f ∈ F ∩ D. To shorten notation we identify f and ı−1( f ) ∈ D̃. Then
equation (53) and Cauchy–Schwarz inequality implies
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|A2 f | �
n∑

j,k=1

|∂u j f ||∇e j |M αk

|λk |uk |∇ek |M + |
n∑

k, j=1

(∂u j uk f )e j ek |

�

⎛
⎝ n∑

j=1

∂u j f ||∇e j |M
⎞
⎠
(

n∑
k=1

(αkuk)|∇ek |M
)

λ∗ + |
n∑

k, j=1

(∂u j uk f )e j ek |

� nλ∗

√√√√ n∑
i=1

(∂ui f |∇ei |M )2

√√√√ n∑
i=1

(αi ui )2|∇ei |2M + |Hess( f )|2
(∑

i

e2i

)

� nλ∗ sup
i

‖∇ei‖2∞|∇ f |2|∇�|2 + |Hess( f )|2‖
∑
i

e2i ‖∞,

where λ∗ = 1
min{|λ j |, j=1,...,n} . The result then follows from the preceding lemma. ��

6 Exponential decay in the total variation norm

The idea for proving the exponential decay in total variation consists on translating
our problem to a setting for which the arguments used for the exponential decay in
L2(μ) remain valid.

Let z0 ∈ M. Since for all t > 0, Pt (z0, dz) = pt (z0, z)dz where pt (z0, .) is a
smooth function and that the invariant probability μ has a smooth density ϕ, one has

‖Pt (z0, dz) − μ(dz)‖T V =
∫
M

|pt (z0, z) − ϕ(z)|dz.

Because ϕ > 0, we can define a function h(t, z0, .) by

h(t, z0, z) = pt (z0, z)

ϕ(z)

By Proposition 1, Pt (z0, dz) has a compact support, ie pt (z0, .) has a compact support.
Hence so does h(t, z0, .). Moreover the smoothness of ϕ and pt (z0, .) implies the
smoothness of h(t, z0, .). Consequently, h(t, z0, .) ∈ L2(M, μ) and

∫
|pt (z0, z) − ϕ(z)|dz =

∫
|h(t, z0, z) − 1|μ(dz)

�
(∫

(h(t, z0, z) − 1)2μ(dz)

) 1
2

= ‖h(t, z0, .) − 1‖L2(μ). (72)

Since
∫
M
h(t, z0, y)μ(dy) = 1 for all t and z0, we have a similar formulation to the

one of Theorem 5.
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So, in order to give the exponential rate of convergence, wewill show that h(t, z0, .)
is solution to the abstract Cauchy problem ∂t u(t) = L2u(t) in L2(μ) whereL2 is an
operator for which the arguments used for L remain valid.

In the following, we denote by ht (resp. pt ) the function ht (z0, .) (resp. pt (z0, .))
Since ∂t pt (z0, .) = L∗(pt (z0, .)) byTheorem3.(iii) in [21] (recall that L∗ is defined

by (30)), then

∂t ht = ∂t pt
ϕ

= L∗(pt )
ϕ

= σ 2

2
�Mht +

n∑
k=1

akuk
divx (∇ek(x)pt )

ϕ
−

n∑
k=1

∂uk pt
ϕ

ek(x) (73)

Because ∂ukϕ = −akuk |λk |ϕ,

−∂uk pt
ϕ

= −∂uk ht + akuk |λk |ht .

Moreover,

divx (∇ek(x)pt )

ϕ
= �M (ek)ht + (∇ek(x),∇xht )T M .

Hence,

∂t ht = σ 2

2
�Mht +

n∑
k=1

akuk(∇ek(x),∇xht )T M −
n∑

k=1

∂uk ht ek(x)

=: L2ht .

Thus, ht = T (t − 1)h1, where T (t) is the semi-group whose infinitesimal generator
restricted to C∞

c (M) is L2. Because

L2 = S +
n∑

k=1

Ak,

whereas

L = S −
n∑

k=1

Ak,

L2 is the adjoint operator of L in L2(μ). So all the arguments used for provingTheorem
6 for L work for L2. Applying Theorem 6 to L2 with gt = ht+1 gives the result.
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Appendix: A deterministic study

In this Appendix, we study on S
1 × R

2 the ODE

⎧⎨
⎩

Ẋt = (sin(Xt )Ut − cos(Xt )Vt )
U̇t = cos(Xt )

V̇t = sin(Xt )

(74)

in order to prove Theorem 3. Since the vectorial field F defined by

F(X,U, V ) =
⎛
⎝(sin(X)U − cos(X)V )

cos(X)

sin(X)

⎞
⎠ (75)

is smooth and sub-linear,it induces a smooth flow ψ : R × (S1 × R
2) → S

1 × R
2. A

first and important observation is

Proposition 7 If the initial condition for the ODE (74) is

(X0,U0, V0) = (X0, cos(X0), sin(X0)),

then

ψt (X0,U0, V0) = (X0, cos(X0)(t + 1), sin(X0)(t + 1)) ∀t ∈ R.

In particular, the line

{(X,Y, Z) ∈ S
1 × R

2 : X = X0, ∃t ∈ R such that (Y, Z) = (cos(X0)t, sin(X0)t)}

is invariant under ψ .

Proof By the hypothesis, we have Ẋ(0) = 0. Hence X (t) = X0 for all t ∈ R.
Therefore, U (t) = cos(X0)(t + 1) and V (t) = sin(X0)(t + 1)

An immediate consequence is

Corollary 3 If Ẋ(0) > 0 (respectively Ẋ(0) < 0), then Ẋ(t) > 0 (respectively
Ẋ(t) < 0) for all t .

Proof We proceed by contradiction. Hence, by continuity of Ẋ , there exists t0 such
that Ẋ(t0) = 0. Then the two last Propositions imply that Ẋ(t) = 0 for all t . In
particular Ẋ(0) = 0, which is a contradiction.

Let ⎛
⎝x
u
v

⎞
⎠ = �

⎛
⎝
⎛
⎝X
U
V

⎞
⎠
⎞
⎠ =

⎛
⎝ X

cos(X)U + sin(X)V
− sin(X)U + cos(X)V

⎞
⎠ . (76)
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Note that (u, v) is obtained from (U, V ) by a rotation of angle −X . Then, in the new
variable, the ODE (74) becomes the ODE

ẋ(t) = −v(t) (77)

{
u̇(t) = 1 − v(t)2

v̇(t) = u(t)v(t)
(78)

Let

H(u, v) =
{ 1

2 (u
2 + v2 − log(v2)), if v �= 0,

∞, if v = 0.
(79)

Proposition 8 The function H is a first integral for the ODE (78).

Proof Let v0 �= 0. Deriving H with respect to t and applying the chain rule, we obtain

d

dt
H(u, v) = (uu̇ + vv̇) − v̇

v

= (u − uv2 − vuv) − u

= 0

��
Note that H is convex, reaches its global minimum in (0,±1) and takes the value

1/2 at these points.
For c ∈ [1/2,∞[, let

H+
c = H−1(c) ∩ {v > 0}, H−

c = H−1(c) ∩ {v < 0}

and set H∞ = {v = 0}. Then, we define T
α
c = S

1 × Hα
c for α ∈ {+,−} and

T∞ = S
1 × H∞.

Since the function H is strictly convex on {v > 0} and {v < 0}, we observe that
T α
1/2 is a closed curve, T α

c a torus and T∞ a cylinder.
A first result is

Proposition 9 Let (x(t), u(t), v(t)) be a solution of the ODE defined by (77) and
(78).

(i) T
α
1/2 is a periodic orbit with period 2π , α ∈ {+,−}

(ii) On T∞, the dynamic takes the form (x(t), u(t), v(t)) = (x(0), u(0) + t, 0).

For c > 1/2, let Tc be the period of (78) on Hα
c

(iii) If x(Tc)
2π ∈ Q, then every trajectory on T α

c is periodic with period qTc if the

irreducible fraction of x(Tc)
2π writes p

q .

(iv) If x(Tc)
2π /∈ Q, then every trajectory on S

1 × H−1(c) is dense either on T+
c or T−

c .
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Proof Points (i) and (ii) follow immediately from (77), (78) and the function H .
Without loss of generality, we assume that x(0) = 0. Let c > 1/2. Because for

m ∈ N
∗, we have

x(mTc) =
∫ mTc

0
ẋ(t)dt = −

∫ mTc

0
v(t)dt

= −m
∫ Tc

0
v(t)dt

= m
∫ Tc

0
ẋ(t)dt,

= mx(Tc) (80)

we obtain that when (u(t), v(t)) is back to its initial condition, then x(t) does a rotation
of angle x(Tc). Hence if

x(Tc)
2π = p

q , with q ∈ N
∗, p ∈ Z and such that the fraction is

irreducible, then

2pπ = qx(Tc)

= x(qTc).

This proves (iii).
If x(Tc)

2π /∈ Q, then (x(qTc))q∈N is dense on S
1. Now, assume without lost of gen-

erality that v(0) < 0 and let T be the first time such that x(T ) = 2π . We claim that
(u(nT ), v(nT ))n∈N is dense on H−

c . Indeed, if it is not the case, then it is periodic
since H−

c is a closed simple curve. This implies that (x(t), u(t), v(t)) is periodic with
period n0T . Thus, there exists q ∈ N such that n0T = qTc. Therefore, by (80), we
have 2n0π = x(qTc) = qx(Tc); so that

x(Tc)
2π = n0

q . This is a contradiction.

The density of (x(qTc))q∈N onS
1 and the one of (u(nT ), v(nT ))n∈N on H−

c implies
the density of ((x(t), u(t), v(t)))t�0 on T−

c . This proves (iv). ��
Fromnow,we assumewithout lost of generality that v(0) < 0 (the case v(0) > 0 being
symmetric). In order to derive properties of c 
→ Tc (see Proposition (9)), we change
the time scale by use of t 
→ x(t). This is possible because it is strictly increasing.
We denote by y the inverse function of x . Since we have assumed that x(0) = 0, it
follows that y(0) = 0.

Set u2(t) = u(y(t)) and v2(t) = v(y(t)). Therefore (u2, v2) is solution to the ODE

{
u̇2(t) =

(
v2(t) − 1

v2(t)

)
v̇2(t) = −u2(t)

(81)

with initial condition (u(0), v(0)). Observe that H is still a first integral for this system.

Proposition 10 Let (x(t), u(t), v(t)) be a solution to the ODE defined by equation
(77) with initial condition (0, u0, v0) and let (t, u2(t), v2(t)) where (u2(t), v2(t)) is
the solution to the ODE defined by Eq. (81) with initial condition (u0, v0).
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Then (x(t), u(t), v(t)) is periodic in S
1 × R

2 iff (t, u2(t), v2(t)) is periodic in
S
1 × R

2.
Further, if T is the period of (x(t), u(t), v(t)), then x(T ) is the period of

(t, u2(t), v2(t)).

Proof Straightforward. ��
Denote by Tc,2 the period of (u2(t), v2(t)), where c = H(u2(0), v2(0)) > 1/2. Then

Tc,2 = x(Tc). (82)

An immediate consequence of Propositions 9 and 10 is that (t, u2(t), v2(t)) is
periodic if and only if

Tc,2
2π

∈ Q. (83)

In the rest of this Appendix, we study the “period-function”

f : (1/2,+∞) → R+ : c 
→ Tc,2. (84)

First notice that (0, 1) and (0,−1) are stationary points for the ODE (81).
Let (u0, v0) ∈ R × (0,∞). By symmetry of H along the line v2 = 0, what follow

remains true for v0 < 0.
Set c = H(u0, v0). Since H is a first integral, then H(u2(t), v2(t)) = c for all t .
Using the fact that v̇2 = −u2, we have that

1

2
v̇22 +

(
v22

2
− log(v2)

)
= c. (85)

Set φ(v) = ( v2

2 − log(v)). Below (Fig. 5) is given its graph.

0

2

4

6

8

10

12

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Fig. 5 Graph of the function φ
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Since the curve H−1(c) is symmetric along the line u2 = 0, we have that

Tc,2
2

=
∫ c2

c1

dv√
2(c − φ(v))

, (86)

i.e.

Tc,2 = √
2
∫ c2

c1

dv√
(c − φ(v))

, (87)

where 0 < c1 < 1 < c2 < ∞ are the roots of the function v 
→ φ(v) − c.
Denote by h the inverse function of φ restricted to [1,∞) and by g the inverse

function of φ restricted to (0, 1). By a change of variable, we then obtain

∫ c2

1

dv√
(c − φ(v))

=
∫ c

1
2

h′(v)dv√
(c − v)

(88)

and ∫ 1

c1

dv√
(c − φ(v))

= −
∫ c

1
2

g′(v)dv√
(c − v)

. (89)

Therefore

f (c) = Tc,2 = √
2
∫ c

1
2

(h′ − g′)(v)√
(c − v)

dv =
∫
R

�(v)A(c − v)dv = (� ∗ A)(c), (90)

where ∗ stands for the convolution product, �(v) = √
2(h′ − g′)(v)1v>1/2 and

A(v) = 1√
v

1v>0.
Hence

f ′(c) = (� ∗ A′)(c). (91)

Since g(v) ∈ (0, 1) and h(v) > 1 for v ∈ (1/2, c), then g′(v) = 1
φ′(g(v))

< 0 and

h′(v) = 1
φ′(h(v))

> 0. Using the fact that A′(v) = − 1
21v>0

1√
v3
, we have

f ′(c) < 0 for all 1/2 < c < ∞. (92)

Our next goal is now to study the limiting behaviour c → 1/2 and c → ∞
Lemma 15 Let c > 1/2 and let c1 and c2 the two roots of the function v 
→ φ(v)−c.
Then

Tc,2 � 2
√
2[
√

c1
1 + c1

+
√

c2
1 + c2

].

Proof By convexity of φ, we have φ(v)−φ(c1)
v−c1

� φ′(c1). Hence

√
c − φ(v) �

√−φ′(c1)
√

v − c1.

123



Self-repelling diffusions on a Riemannian manifold

Therefore

∫ 1

c1

dv√
c − φ(v)

� 1√−φ′(c1)

∫ 1

c1

dv√
v − c1

= 2

√
1 − c1√−φ′(c1)

.

Since −φ′(v) = 1
v

− v, −φ′(c1) = (1 − c21)/c1 and thus

∫ 1

c1

dv√
c − φ(v)

� 2
√

c1
(1 + c1)

.

Once again convexity ofφ implies φ(c2)−φ(v)
c2−v

� φ′(c2), so that c−φ(v) � φ′(c2)(c2−
v). By proceeding as above, we obtain

∫ c2

1

dv√
c − φ(v)

� 2
√

c2
(1 + c2)

.

Hence

f (c) = Tc,2 = √
2[
∫ 1

c1

dv√
c − φ(v)

+
∫ c2

1

dv√
c − φ(v)

] � 2
√
2[
√

c1
1 + c1

+
√

c2
1 + c2

].

��
Lemma 16 limc→1/2 f (c) = √

2π.

Proof We have c1, c2 → 1 as c → 1/2. Thus, it implies that log(v) ≈ (v − 1) −
1
2 (v − 1)2 for v ∈ (c1, c2) and therefore

φ(v) = 1

2
(v − 1 + 1)2 − log(v) ≈ 1

2
+ (v − 1)2.

But

∫ c2

c1

dv√
c − 1

2 − (v − 1)2
= 1√

c − 1
2

∫ c2−1

c1−1

dv√
1 − (v/

√
c − 1

2 )
2

=
∫ c2−1√

c−1/2

c1−1√
c−1/2

du√
1 − u2

= arcsin

(
c2 − 1√
c − 1/2

)
+ arcsin

(
1 − c2√
c − 1/2

)

Since for c sufficiently close to 1/2, c = φ(1 + c j − 1) ≈ 1
2 + (c j − 1)2, then

limc→1/2
|c j−1|√
c− 1

2

= 1, j = 1, 2.
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Thus, limc→1/2
∫ c2
c1

dv√
c−(v−1)2

= π and therefore

lim
c→1/2

f (c) = lim
c→1/2

Tc,2 = lim
c→1/2

√
2
∫ c2

c1

dv√
c − 1

2 − (v − 1)2
= √

2π. (93)

��

Remark 11 One can prove that
√
2π is the period of the orbits from the linear ODE

{
u̇(t) = 2v(t)
v̇(t) = −u(t).

(94)

But this is nothing else than the linearized system at (0, 1) from the ODE (81).

Summarizing all these information concerning Tc,2, we obtain

Proposition 11 The “period-function” f : (1/2,∞) → R+ : c 
→ Tc,2 is continu-
ous, decreasing, bounded from below by 2

√
2 and converge to

√
2π when c tends to

1/2.

Proof The decreasing property comes from (92) whereas the continuity follows from
(90).While c1 converges to 0 and

c2
1+c2

converges to 1 when c tends to∞, then Lemma

15 combined with the decreasing property implies that f (c) � 2
√
2 for all c > 1/2.

Since f is decreasing, then supc>1/2 f (c) = limc→1/2 f (c) = √
2π . Below (Fig. 6)

is the graph of the period-function. ��
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Fig. 6 Graph of the function c 
→ Tc,2
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