Markov Chains on Metric Spaces
Course

Michel Benaim & Tobias Hurth
Institut de Mathématiques,
Neuchéatel University

version 11/04,/2021

. A short



In the memory of Marie Duflo



Contents

Preface

1 Markov Chains
1.1 Markov kernels and chains . . . . . . ... ... ... ... ..
1.1.1 Markov kernel . . . . . . . ...
1.1.2 Markov chain . . . . . .. . ... ...
1.2 Markov and strong Markov properties . . . . . . .. ... ...
1.2.1 The law of a Markov chain . . . . . .. ... ... ...
1.2.2  The Markov properties . . . . . . .. ... ... ....

2 Countable Markov Chains
2.1 Recurrence and transience . . . . .. .. .. ... ... ...
2.1.1 Positive recurrence . . . . . . . . .. ...
2.1.2 Null recurrence . . . . . . ... ... ... ... ...
2.1.3 Recurrence and Lyapunov functions . . . . . . . .. ..
2.2 Convergence in distribution . . . . .. ... ...
2.2.1 Aperiodicity . . . ...
2.2.2 The convergence theorem . . . .. ... ... .. ...
2.3 Application to renewal theory . . . . .. ... ... .. .. ..
2.3.1 Coupling of renewal processes . . . . .. ... .. ...
2.4 Convergence rates for positive recurrent chains . . . . . . . ..

3 Random Dynamical Systems
3.1 Representation of Markov chains by RDS . . . . .. .. .. ..

4 Invariant and Ergodic Probability Measures
4.1  Weak convergence of probability measures . . . . .. ... ..
4.1.1 Tightness and Prohorov Theorem . . . . .. ... ...
4.2 Invariant probability measures . . . . . . . ... ..o

3

13
13
13
15
16
16
18

21
21
25
29
30
36
36
38
41
43
45



4 CONTENTS

4.2.1 [Excessive measures . . . . . . . . ... 71
4.2.2 FErgodic probability measures . . . . . ... ... ... 72

4.3 Unique ergodicity . . . . . . . ..o 75
4.3.1 Unique ergodicity of random contractions . . . . . . . . 75

4.4 Ergodic theorems . . . . . . . ... ... L. 79
4.4.1 Classical results from ergodic theory . . .. ... ... 79
4.4.2 Application to Markov chains . . . . .. .. ... ... 86

5 Irreducibility 93
5.1 Resolvent and &-irreducibility . . . . ..o 0oL 93
5.2 The accessibleset . . . . . .. ... 0oL 94
5.3 The asymptotic strong Feller property . . .. ... ... ... 99
5.3.1 Strong Feller implies asymptotic strong Feller . . . . . 101
5.3.2 Uniqueness of the invariant probability measure . . . . 105

5.4 Petite sets, small sets and Doeblin points . . . . . . . ... .. 110
5.4.1 Doeblin points for random dynamical systems . . . . . 112

5.4.2 Random switching between deterministic vector fields . 115

6 Harris and Positive Recurrence 123
6.1 Stability and positive recurrence . . . . . ... ... L. 123
6.2 Harris recurrence . . . . . . . .. ..o 125

6.2.1 Petite sets and Harris recurrence . . . . . . ... . .. 126
6.3 Recurrence criteria and Lyapunov functions . . . . .. .. .. 127
6.3.1 Subsets of recurrent sets . . . .. .. ... 131
6.4 Petite sets and positive recurrence . . . . . . . ... ... ... 133
6.4.1 Positive recurrence for Feller chains . . . . . . ... .. 136
7 Harris and Orey Ergodic Theorems 139
7.1 Total variation distance . . . . . . . .. .. ... ... 139
7.1.1 Coupling . . . . . . .. 141
7.2 Harris convergence theorems . . . . . . . .. ... ... ... 142
7.2.1 Geometric convergence . . . . . . ... ... 142
7.2.2  Coupling, splitting and polynomial convergence . . . . 147
7.3 Orey’stheorem . . . . ... ... ... . ... ......... 152

Appendices 153



CONTENTS 5

A Monotone class and Martingales 155
A.1 Monotone class theorem . . . . ... ... ... ........ 155
A.2 Conditional expectation . . . . ... ... ... .. ...... 155

A3 Martingales . . . . . ... 157



CONTENTS



Preface

This book is based on a series of lectures given over the recent years in Mas-
ter’s courses in probability. It provides a short, self-contained introduction
to the ergodic theory of Markov chains in metric spaces.

Although primarily intended for graduate and postgraduate students, cer-
tain chapters (e.g. one and two) can be taught at the undergraduate level.
Others (e.g. four and five) can be used as complements to courses in measure
or ergodic theory. Basic knowledge in probability, measure theory, and calcu-
lus is recommended. A certain familiarity with discrete-time martingales is
also useful, but the few results from martingale theory used in this book are
all recalled in the appendix. Each chapter contains several exercises ranging
from simple applications of the theory to more advanced developments and
examples.

Whether in physics, engineering, biology, ecology, economics or elsewhere,
Markov chains are frequently used to describe the random evolution of com-
plex systems. The understanding and analysis of these systems requires, first
of all, a good command of the mathematical techniques that allow to explain
the long-term behavior of a general Markov chain living on a (reasonable)
metric space. Presenting these techniques is, briefly put, our main objective.
Questions that are central to this book and that will be recurrently visited
are: under which conditions does such a chain have an invariant probability
measure? If such a measure exists, is it unique? Does the empirical occupa-
tion measure of the chain converge? Does the law of the chain converge, and
if so, in which sense and at which rate?

There are a variety of tools to address these questions. Some rely on
purely measure-theoretic concepts that are natural generalizations of the ones
developed for countable chains (i.e. chains living on countable state spaces).
This includes notions of irreducibility, recurrence (in the sense of Harris),
petite and small sets, etc. Other tools assume topological properties of the
chain such as the strong Feller or asymptotically strong Feller property (in
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the sense of Hairer and Mattingly). However, when dealing with a specific
model, measure-theoretic conditions - such as irreducibility - might be dif-
ficult to verify, and strong topological properties - such as the strong Feller
condition - are seldom satisfied. A powerful approach is then to combine
much weaker topological conditions - such as the (weak) Feller condition -
with controllability properties of the system to prove that certain measure-
theoretic conditions (e.g. irreducibility, existence of petite or small sets) are
satisfied. This approach is largely developed here and is a key feature of this
book.

The book is organized in seven chapters and a short appendix. Chapter 1
briefly defines Markov chains and kernels and gives their very first properties,
the Markov and strong Markov properties.

Chapter 2 is a self-contained mini course on countable Markov chains.
Classical notions of recurrence (positive and null) and transience are intro-
duced. These are powerful notions, but when students meet them for the
first time and have to verify that a specific chain is either recurrent or tran-
sient, they are often disoriented. Thus, we have chosen to spend some time
here to show how theses properties can be verified "in practice” with the help
of suitable Lyapunov functions. We also explain how Lyapunov functions can
be used to provide estimates on the moments (polynomial and exponential)
of hitting times for a point or a finite set.

Certainly one of the most important results in the theory of countable
chains is the ergodic theorem, which asserts that - for positive recurrent ape-
riodic chains - the law of the chain converges to a unique distribution. The
final three sections of Chapter 2 are organized around this result. We first
prove it quickly - by standard coupling - without any estimate on the rate
of convergence. Then, the Lyapunov method is applied to investigate the
behavior of renewal processes and provide short proofs of coupling theorems
for these processes. Finally, relying on these coupling results, we revisit the
ergodic theorem, this time with some convergence rates.

On uncountable state spaces, the simplest (and also the most natural) ex-
amples of Markov chains are given by random dynamical systems (also called
random iterative systems). These are systems such that the state variable at
time n+1 is a deterministic function of the state variable at time n and a "ran-
dom" input sampled from a sequence of i.i.d. random variables. Chapter 3 is
devoted to this type of chains and explains how any given "abstract" Markov
chain can be represented by a random dynamical system. Some interesting
examples (Bernoulli convolutions, Propp-Wilson algorithm) are presented in
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exercises.

Chapter 4 starts with a detailed section on weak convergence, tightness
and Prohorov’s theorem. Then, invariant probability measures are defined and
it is shown that, for a Feller chain, weak limit points for the family of empiri-
cal occupation measures are almost surely invariant probability measures. We
discuss some practical tightness criteria (for the empirical occupation mea-
sures) based on Lyapunov functions. At this stage of the book, the reader
understands that, under a reasonable control of the chain at infinity (obtained
for instance by a Lyapunov function), uniqueness of the invariant probability
measure equates stability: the empirical occupation measures converge almost
surely to some (unique) distribution, regardless of the initial distribution. So
we found it was a good place to discuss simple examples of uniquely ergodic
chains (i.e. chains having a unique invariant probability measure). This is
done in the third section of Chapter 4, where we analyze random dynamical
systems obtained by random composition of contractions (or mappings that
contract on average). The last section of the chapter is devoted to ergodic
theorems. We first prove several classical results (Poincaré recurrence theo-
rem, Birkhoff ergodic theorem, and the ergodic decomposition theorem) and
then show how they can be applied to Markov chains.

Chapter 5 is devoted to various notions of irreducibility which ensure
unique ergodicity. We start with the measure-theoretic notion of irreducibility
(also called 1 irreducibility) and then move on to more topological conditions.
The accessible set of a Feller chain is introduced and its relations with the
support of invariant probability measures are investigated. We then consider
strong Feller chains and prove that for such chains ergodic probability mea-
sures have disjoint support. We also prove the Hairer-Mattingly theorem,
which says that the same property holds under the weaker assumption that
the chain is asymptotically strong Feller. These results have the useful conse-
quence that, on a connected set, if there is an invariant probability measure
having full support, the chain is uniquely ergodic. We then discuss the no-
tions of petite sets, small sets and (weak) Doeblin points and show that the
existence of an accessible weak Doeblin point implies irreducibility for (weak)
Feller chains. This latter result is then applied to random dynamical systems
in general and to random dynamical systems obtained by random switching
between deterministic flows in particular. For the latter, the accessibility
condition can easily be defined as a control problem and weak Doeblin points
are points at which a certain Lie algebra has full rank.

Chapter 6 introduces Harris recurrence. For uniquely ergodic chains, Har-
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ris recurrence equates to positive recurrence, meaning that for every bounded
Borel (and not merely for every continuous) function, the Birkhoff averages
of the function converge almost surely. We prove the important result that
Harris recurrence (respectively positive recurrence) is implied by the existence
of a recurrent petite set (respectively a petite set whose first return time is
bounded in L'). We also discuss simple useful criteria (relying on Lyapunov
functions) ensuring that a set is recurrent and provide moment estimates on
the return times.

Chapter 7 revolves around the celebrated Harris ergodic theorem. After
revisiting the notions of total variation distance and coupling for two prob-
ability measures, we state a simple version of the Harris ergodic theorem
where the entire state space is a petite set. Under this strong hypothesis, one
has exponential convergence in total variation distance to the unique invari-
ant probability measure. The same conclusion holds under the existence of
a Lyapunov function that forces the Markov chain to enter a certain small
set - a condition that is better adapted to noncompact state spaces, which
are usually not petite. We give two different proofs for this latter version
of Harris’s ergodic theorem: first the recent proof by Hairer and Mattingly
based on the ingenious construction of a semi-norm for which the Markov
operator is a contraction. And second, a more classical proof using coupling
arguments and ideas from renewal theory. More precisely, under uniform esti-
mates on polynomial (respectively exponential) moments for the return times
to an aperiodic and recurrent small set, we obtain polynomial (respectively
exponential) convergence in total variation distance to the unique invariant
probability measure.

The appendix recalls the monotone class theorem and the few results from
discrete time martingales that are used in the book.

More advanced textbooks include the excellent classical books by Meyn
and Tweedy [33] and Duflo [13]. The lecture notes by Hairer[21] contain some
similar material and are also highly recommended.

Acknowledgments We first thank the Swiss National Science Founda-
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while we were working on the projects 200021-175728 and 200020-196999.
We are grateful to Yuri Bakhtin, Jonathan Mattingly, and Tom Mountford
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merous discussions we have had during its preparation with our colleagues,
students, and post-docs: Jean Baptiste Bardet, Antoine Bourquin, Charles-



CONTENTS 11

Edouard Brehier, Nicolas Champagnat, Bertrand Cloez, Carl-Eric Gauthier,
Eva Locherbach, Florent Malrieu, Laurent Miclo, Pierre Monmarché, Fabien
Panloup, William Ocafrain, Edouard Strickler, Sebastian Schreiber, Denis
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Chapter 1

Markov Chains

The general setting is the following. Throughout we let M denote a sep-
arable (there exists a countable dense subset) metric space with metric d
(e.g. R, R™) equipped with its Borel o-field B(M). We let B(M) (respec-
tively Cy(M)) denote the set of real-valued bounded measurable (respectively
bounded continuous) functions on M equipped with the norm

[flloc == sup | f(2)]. (1.1)
zeM

If i is a (non-negative) measure on M and f € L*(u) (or f > 0 measurable),
we let

pf = y f (@) p(d)

denote the integral of f with respect to u.

1.1 Markov kernels and chains

1.1.1 Markov kernel

A Markov kernel on M is a family of measures
P ={P(z,)}een
such that
(i) For all z € M, P(x,-) : B(M) — [0, 1] is a probability measure;
(ii) For all G € B(M), the mapping x € M — P(z,G) € R is measurable.

13



14 CHAPTER 1. MARKOV CHAINS

The Markov kernel P acts on functions g € B(M) and measures (respectively
probability measures) according to the formulae:

Py() := /M P, dy)g(y), (1.2)

uP(G) ::/M,u(dx)P(x,G). (1.3)

Remark 1.1 For all g € B(M), we have Pg € B(M) and [|Pglcc < ||9]lco-
Boundedness is immediate and measurability easily follows from the condition
(ii) defining a Markov kernel (use for example the monotone class theorem

from the appendix).

Remark 1.2 The term Pg(x) can also be defined by (1.2) for measurable
functions g : M — R that are nonnegative, but not necessarily bounded. For
such g, Pg(x) is an element of [0,00]. This will play a role in the study of
Lyapunov functions starting in Section 2.1.3.

We let P" denote the operator recursively defined by P’g := ¢ and
P tlg .= P(P"g) for n € N. Or, equivalently,

P%(xz,.) := 6, and P""(z,G) := / P"(xz,dy)P(y,G)
M
for all n € N and for all G € B(M). Here and throughout these notes, N
is the set of nonnegative integers (including 0). The set of positive integers
(excluding 0) will be denoted by N*.

Example 1.3 (countable space) Suppose M is countable. We can turn M
into a separable (and complete) metric space by endowing it with the discrete
metric d(z,y) = 1,4,. The corresponding Borel o-field is the collection of all
subsets of M. A Markov transition matriz on M is amap P : M x M — [0, 1]

such that
> Plx,y) =1

yeM
for all z € M. This gives rise to a Markov kernel @) defined by
Qx.G) =3 Pla.y)
yeG

for all G C M. Since there is a one-to-one correspondence between transition
matrices and kernels on M, we shall identify P with ) and refer to it at times
as a transition matrix and at times as a kernel.
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1.1.2 Markov chain

Let (2, F,P) be a probability space. A filtration F = (F,,),>0 is an increasing
sequence of o-fields: F,, C F,41 C F for all n € N. The data (2, F,F,P) is
called a filtered probability space. An M —valued adapted stochastic process
on (2, F,F,P) is a family (X,,),>0 of random variables defined on (2, F,P),
taking values in M and such that X, is F,—measurable for all n € N.

Given a filtered probability space (€2, F,F,P) and a Markov kernel P on
M, a Markov chain with kernel P on (Q, F,F,P) is an M —valued adapted
stochastic process (X,,) on (2, F,F,P) such that

P(X,1 € G|F,) = P(X,,,G)
for all n € N and for all G € B(M). Equivalently,
E(g(Xns1)[Fn) = Pg(Xn)

for all n € N and for all g € B(M) (or all functions g : M — R that are
measurable and nonnegative). Here, E(-|F,,) denotes conditional expectation
with respect to F,,, and P(X,, 41 € G|F,) := E(1x,.,e¢|Fn). In the appendix,
we recall the definition of conditional expectation and list some of its basic
properties, which will be used without further comment throughout the text.

If (2, F,F, P) is unambiguous, we simply say that (X,,) is a Markov chain
with kernel P. If only one of the data F, P or (I, P) is ambiguous, we may say
that (X,) is a Markov chain with respect to F (P, (F,P)).

Given a Markov kernel P and a probability measure v on M, there always
exists a Markov chain (X,,) with kernel P and such that X, has law v. As
outlined in Remark 1.6, this follows from the Ionescu-Tulcea theorem.

Proposition 1.4 (Chapman-Kolmogorov Equation) Let (X,,) be a Markov
chain with kernel P. Let u,, denote the law of X,,. Then, for everyn € N,

Pny1 = pn P = MOPn+1~
Proof For every g € B(M),

fnt19 = E(9(Xnt1)) = E(E(9(Xns1)|Fn)) = E(Pg(Xn)) = pnPg.

QED
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Example 1.5 (countable space) Let (X,,) be a Markov chain on a count-
able state space M, with transition matrix P and initial distribution pg. The
law g, of the random variable X, then satisfies

ma({ed) =Y mo{yh) P (y.2), Vre M,

yeM

where P" is the nth power of the matrix P. In matrix-vector notation, this
identity can be written as

Mn = MOPn7
where pu, and pg are row vectors. In particular, if y is the Dirac measure at
a point y € M, then the law of X,, assigns mass P"(y,x) to every singleton

{z}.

Feller and strong Feller chains

The Markov kernel P (or the associated Markov chain (X)) is said to be
Feller if it takes bounded continuous functions into bounded continuous func-
tions. It is said to be strong Feller if it takes bounded Borel functions into
bounded continuous functions. If M is countable and equipped with the dis-
crete metric, then every function on M is continuous. In particular, every
Markov kernel on a countable set is strong Feller.

1.2 Markov and strong Markov properties

1.2.1 The law of a Markov chain

Let X = (X,)n>0 be a Markov chain with kernel P. Then X can be seen as
a random variable on (9, F, P) taking values in the space of trajectories

MY = {x = (zi)ien : @i € M}

equipped with the product o-field B(M)®N (see Exercise 1.7).

If Xy has law v, we let P, denote the law of X (i.e. the image measure
of P by X) and E, the corresponding expectation. If v is the Dirac measure
at x, we use the standard notation P, := P;_and E, := E;,_.

Given k € N and hy, ..., hy € B(M), we let hg® ... ® hy denote the map
on MY defined as



1.2. MARKOV AND STRONG MARKOV PROPERTIES 17

For further reference such a map will be called a product map of length k+ 1.
Then

E(ho(Xo) ... hi(Xy) = Eu(ho®...® hy)

The first equality is by definition of E,. The last one follows from the second
one by induction on k. For the second equality, write

E(ho(Xo) ... hi(Xk)) = E(E(ho(Xo) ... he(Xk)|Fr-1))
= E(ho(Xo) e hk—l(Xk—l)Phk(Xk—l))-

In particular, for all Borel sets Ag,..., Ax C M,

P(Xo€Ay,....,Xp €A) = Pixec MY : (zg,...,21) € Ag X ... X Ay}
= / V(dmo)/ P(mo,dxl).../ P(xy_1,dzy).
AO Ay Ak

Remark 1.6 (The canonical chain) The formula above can be used to
show that for every Markov kernel P and for every probability measure v
on M, there exists a Markov chain (X,,) with kernel P and X, distributed
according to v.

Indeed, let Q = MY, and let F = B(M)®N. For n € N, set X,,(w) := wy,
and let F,, := o(Xo, ..., X,), i.e. F, is the smallest o-field over Q with respect
to which Xy, ..., X,, are measurable. The pair (2, F) is called the canonical
space, (X,,) the canonical process and F = (F,,)nen the natural filtration with
respect to (X,).

Now, v is a probability measure on (M, B(M)), and for every n € N and
(Wo, - -+, wy) € M™FL,

P(wo, .- ywp; ) = P(wn, )
defines a probability measure on (M, B(M)). Moreover,
(Woy -y wn) = P(wo, - .., wn; A)

is B(M""!)—measurable for every A € B(M). By the Tonescu-Tulcea theorem
(see, e.g., Theorem 2 in Chapter I1.9 of [43]), there exists a unique probability
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measure P, on (2, F) such that for every n € N and Ay, ..., A, € B(M),

]P)V(WO € AOa coes W € An)

= v(dwy) [ Plwo;dwr) ... P(wo, - -y wWn—1; dwy,)
[ ], J.
= /AO v(dwy) /A1 P(wo, dwy) . .. /An P(wp—1,dw,). (1.5)

Using the result from Exercise 1.7, it is not hard to check that the canonical
process (X,,) is a Markov chain on the filtered probability space (Q, F,F,P,),
with initial distribution v and kernel P. The chain (X,,) is called the canonical
chain with initial distribution v and kernel P. A probability measure of the
form in (1.5) is called a Markov measure.

Exercise 1.7 Let B(M") (respectively B(MY)) denote the Borel o-field over
M™ (respectively MY, endowed with the product topology). Let F, be the
o-field over MY generated by the canonical projection m, : MY — M"™!

-----

the union of F,, n > 0. Show that F,, = m,'(B(M"™*1)) for all n € N, and
B(M)®N = B(MY),

1.2.2 The Markov properties
For n € N, we let O™ : MY — MY denote the shift operator defined by

O"(x) := (Tnik)k>0-

The following proposition known as the Markov property easily follows
from the definitions.

Proposition 1.8 (Markov Property) Let H : MY — R be a nonnegative
or bounded measurable function and X a Markov chain with kernel P. Then

E(HO" o X)|F,) =Ex, (H).

Proof Assume without loss of generality that H is bounded. Indeed, if H
is non-negative and unbounded, there is an increasing sequence of bounded
non-negative functions that converges pointwise to H, and one can apply the
monotone convergence theorem. The set of bounded H satisfying the required
property is a vector space, containing the constant functions and closed under
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bounded monotone convergence. Therefore, by the monotone class theorem
(given in the appendix) and by Exercise 1.7, it suffices to check the property
when H = hg® ... ® hy is a product map. We proceed by induction on k. If
k = 0, this is immediate. If the property holds for all product maps of length
k+ 1, then

E(ho(Xn) - hie( X)) Py 1 (X 1) | F)

= E(ho(Xn) - - e (X ) E (Pt (X 1) | Fn) [ Fn)
E(ho(Xn) - - (X)) Phioe1 (Xnsr) | Fo) = Ex, (ho @ . .. @ hy Physr).
By (1.4), this last term equals Ex (ho ® ... ® hiy1). QED

A stopping time on a filtered probability space (€2, F,F,P) is a random
variable T': © — N U {oo} such that for all n € N, the event {T" = n} =
T-1({n}) lies in F,. The o-field generated by T, denoted Fr, is the o-field
consisting of all events A € F such that

AN{T =n} € F,, VYneN.
Exercise 1.9 (i) Show that if Fr is indeed a o-field.

.. ) :

(ii) Let (7,)nen be a sequence of stopping times on a filtered probability
space (€2, F,F,P) such that T,, < T, for every n € N. Show that
A, = Fr,, n € N, defines a filtration on (92, F,P).

The following proposition generalizes Proposition 1.8.

Proposition 1.10 (Strong Markov Property) Let H : MY — R be a
nonnegative or bounded measurable function, X a Markov chain, and T a
stopping time living on the same filtered probability space as X. Then

E(H(O" o X)|Fr)1lrco = Ex, (H) 1o
Proof It suffices to show that for all n € N,
E(H(©" 0 X)1r—|Fr) = Ex, (H)17=n.
The right-hand side is Fr—measurable, and for all A € Fr,
E(H(O©" o X)17-,14) = E(Ex, (H)17=,14)

by the Markov property (because 17—,14 is F,—measurable). This proves
the result. QED
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Chapter 2

Countable Markov Chains

This chapter presents the basic theory of countable Markov chains. The as-
sumption that M is countable makes the proofs easier and permits to intro-
duce, in a simple setting, some of the key notions (such as invariant probability
measures, irreducibility, positive recurrence, etc.) that will be revisited in the
subsequent chapters. Furthermore, some of the results given here, in partic-
ular in Section 2.3, will be used later to prove the main results in Chapter
6. We assume here that M is a countable set equipped with the o-field S of
all subsets of M, and (X,,) is a Markov chain on M with Markov kernel (or
matrix) P = P(2,y).yem. In most of this chapter, we assume without loss
of generality that O = MY, F = S®N X, (w) = w,, and F,, = o(Xy, ..., X,),
i.e. (X,,) is the canonical chain introduced in Remark 1.6.

2.1 Recurrence and transience

For x € M, we let
T, =1inf{k >1: X} = x}

denote the first time > 1 at which the chain hits x,

7™ = inf{k > 7"V X, =},

T

the n'" time of hitting z (with 7" := 0), and

N, = Z lix,=2) € NU {oc}

k>1

21
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the number of visits of x at or after time 1. We adopt the convention that
inf () = +00. A point z is said to be recurrent if

P.(7, < o0) =1

and transient otherwise.

Given x,y € M and k € N*, we say that x leads to y in k steps, written
x ~F g if PR(z,y) > 0. We say that x leads to y, written x ~» vy, if x ~F y
for some k € N*. The chain is called irreducible if x ~» y for all x,y € M. To
any Markov chain on a countable set M with transition matrix P, one can
associate a weighted directed graph as follows: Let M be the set of vertices.
For any x,y € M, not necessarily distinct, there is a directed edge of weight
P(z,y) going from z to y if and only if P(z,y) > 0. The chain is then
irreducible if and only if the associated directed graph is connected, i.e. for
any x,y € M there is a path from vertex z to vertex y that moves along
directed edges. Note that a general notion of irreducibility will be defined
in Chapter 5 and that every countable irreducible chain (as defined here)
satisfies this general definition.

Exercise 2.1 Let (X,),>0 be a Markov chain on Z \ {0} whose transition
matrix P is given by

Pliyi4+1) = P(i,—i)=1/2, i >1
P(-1,1) = P(i,i+1) =1, i < —2.

Draw the weighted directed graph associated with (X,,) and determine whether
the chain is irreducible.

Proposition 2.2 (i) If x is transient, then N, < oo a.s. and for all k > 0,
P,(N, = k) = a"(1 — a),

where a = Py (1, < 00). In particular,

E,(N,) =Y P'a,z)=

k>1

< O0.
1—a

(ii) If x is recurrent, then P, (N, = c0) = 1,

E.(N,) = > P*a,z) = oo,

k>1
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and

1 & 1
lim =) 1y, =
nH&n; K=t T (1)
P,—a.s.

(iii) If the chain is irreducible, then either all points are recurrent or all
points are transient. In the recurrent case, for all x,y € M,

P,(m, < 00) =1 and E,(N,) = oc.
In the transient case, for all x,y € M,
E,(N,) < .
Proof (i). Using the strong Markov property,

P, (N, = k) = Py (1) < 00 7{) = 00) = (1 = @) P, (r{?) < o0)

T T

and

(ii). If = is recurrent, then, using again the strong Markov property,

P, (7™ < 00) = P (7" Y < 00) =... = 1.

xT

Hence P, (N, = c0) = 1 and thus E,(N,) = cc.

For all n > 1, there exists k(n) > 0 such that Té’“(”” <n< ngk(n)ﬂ).
Furthermore, the random variables (ngn—’—l) - ngn))nzo are, under P,, i.i.d.

Thus, by the strong law of large numbers for nonnegative i.i.d. random
variables,

. 1 <& . k(n) 1

(iii). If the chain is irreducible, for all x,y € M there exist ¢,7 > 1 and
e > 0 such that Pi(z,y) > ¢, P/(y,x) > e. Thus P*Hi(z,2) > 2P*(y,vy)
for all £ > 1. Therefore, we have the implication

ZPk(y,y) =00 = ZPk(x,x) = 00,

k>1 k>1

proving that x is recurrent whenever y is recurrent and y is transient whenever
x is transient.
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Suppose the chain is recurrent. Fix x,y € M such that x # y (for z =y
the statement holds trivially true). By irreducibility, recurrence, and the
strong Markov property,

e =P,k <7 : Xp=y9y)>0.
Thus, again using the strong Markov property,
Py(ry > T:EHH)) =K, (Px(7, > Ténﬂ),]_-#)))
=E,(1-P,(Fk <7, : Xy = y))lTy>T£n))
=(1—e)Pu(r, >7") = ... = (1 —e)""".

Thus P, (1, > TQE”“)) — 0 as n — oo, showing that P, (7, < co) = 1. The two
statements about E,(NN,) follow from the identity

E.(Ny) = Py(1y < 00)(1+E,(N,)),

which itself follows from the strong Markov property, and is valid for both
recurrent and transient chains. QED

Remark 2.3 Transience doesn’t imply that P,(7, < oco) < 1 for all z,y.
Consider the chain on N whose transition matrix is given by

P(z,x+1)=pe (3,1),P(z+1,2) =1—pfor all z € N and P(0,0) = 1—p.

By the strong law of large numbers, P,(7, < oo) = 1 for all # < y and the
chain is transient.

Example 2.4 (Pélya walks) The Polya walk on Z? is the Markov chain
with transition matrix

1
P(I7y) - Zil{xwy]w
where © ~ y < 27:1 |z; — y;| = 1. In 1921, Polya proved that the associated

chain is recurrent for d < 2 and transient for d > 3.
The proof for d =1 goes as follows. Clearly

1
P#H0,0) = 0 and P*(0,0) = ( Zkk ) :
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Stirling’s formula ( In(n!) = n(In(n) — 1) + 3(In(n) + In(27)) + O(%) ) then
yields
1

2k .

This proves that Y, P¥(0,0) = oo, hence the recurrence.

For d = 2, recurrence can be deduced from Exercise 2.5 below. The proof
of transience for d > 3 is slightly more involved and can be found in classical
textbooks (see e.g [3] or Woess’s book [48] for a more advanced textbook on
Markov chains on graphs and groups).

P?(0,0) ~

Exercise 2.5 [Polya walks| Let X, = (X},..., X%), where the (X!),i =
1,...,d are independent Poélya walks on Z. Show that (X,,) is recurrent if

and only if d < 2. Deduce from this result the recurrence of the Polya walk
on Z2.

2.1.1 Positive recurrence

A recurrent point x is called positive recurrent if E,(7,) < oo and null recur-
rent otherwise.

A probability measure m on M is called invariant for a transition matrix
P if TP = P, or equivalently,

m(x) =Y _ 7(y)P(y. )

yeM

for all z € M. Here, we write m(z) instead of w({z}) to highlight the link with
matrix-vector notation. Precisely, if M = {1,...,N} or M = N* and if = €
M, then 7(z) is the xth entry of the row vector 7 = (w({1}), 7({2}), ..., 7({N}))
orm = (w({1}),m({2}),...). Iif misinvariant for P and if Xy ~ 7, then X,, ~ 7
for all n > 1 (see Example 1.5).

The next result shows that for an irreducible recurrent kernel, either all
points are positive recurrent or all points are null recurrent. Moreover, posi-
tive recurrence equates the existence of an invariant probability measure.

Theorem 2.6 Suppose P is irreducible. Then the following assertions are
equivalent:

(a) There exists an invariant probability measure m for P

(b) There exists a positive recurrent point.
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Under these equivalent conditions:
(1) All the points are positive recurrent;

(ii) For every initial probability distribution v on M, and x € M,

o 1g
nh_rfolo ﬁ ; l{inw} = W(I) = Ez(Tz)

P,—a.s. (in particular 7 is unique);

(iii) For allx € M and f: M — R bounded or f : M — [0, 0],

N>y 00))
E. (1) ’

(iv) For all z,y € M, E,(7,) < o0.

Proof Forallz e M, Y )  1ix,—o} = Lir,<o0} 2_p—r. 1{x,=c}- Then, using
irreducibility and Proposition 2.2, one has for every probability measure v on
" 2

. 11 Xp=z} 1{7’ <oo}

1 L St R 2.1

P,—a.s., with the convention that the right-hand term is zero if x is transient.
Suppose now that 7 is an invariant probability measure. By irreducibility and
the relation w(z) = >_ 7(y)P(y,z), one sees that m(x) > 0 for all z € M.
Taking E,-expectation on both sides of (2.1) and using dominated conver-
gence gives
P, (7, < 00)

E. ()

This implies E,(7,) < oo so that z is positive recurrent. By Proposition 2.2
(iii), recurrence implies P, (7, < oo) = 1. Thus 7(z) = m. Suppose now
that there exists a positive recurrent point z. Let 7 be the probability measure
defined as in Assertion (iii) of Theorem 2.6. We claim that 7 is an invariant

probability measure (compare with Exercise 4.24). For all f € B(M),

0<7(z)=

k>0 k>0
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because f(X,,) = f(x). Thus, using the Markov property and Fubini’s theo-
rem,

o) Tf = ZE J(Xbr1) Liary | F))

k>0

k>0

This shows that 7P f = 7 f, hence 7P = 7.
It remains to prove Assertion (iv). Let  # y € M. By irreducibility one
can choose k > 1 such that P*(z,y) > 0. Let 7, := inf{n > k : X,, = z}.

Then 74, < Tg(;k) and, consequently,
k
w(w)’

Here the last equality follows from Assertion (ii) and the strong Markov
property. By the Markov property,

Ew(Tk,cU) =k+ E:r(]EXk (Tzl{Xk?fw})) > k+ Pk(% y)Ey(TI)'

This shows that

Eo(7ha) < Ey () =

QED

An irreducible kernel (or chain) satisfying one of the equivalent conditions
(a) or (b) of Theorem 2.6 is called a positive recurrent kernel (chain).

Corollary 2.7 If M is finite and P is irreducible, then P s positive recur-
rent.

Proof The set P(M) of probability measures on M is nothing but the unit
simplex in R? with d the cardinality of M. By Brouwer’s fixed point theo-
rem (see, e.g., Corollary XVI.2.2 in [14]), the map P(M) > 7 +— 7P € P(M)
has a fixed point, which is then an invariant probability measure for P. QED

Remark 2.8 The proof of Corollary 2.7 shows that every Markov chain on
a finite set, possibly non-irreducible, always admits (at least) one invariant
probability measure.
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Exercise 2.9 Give a direct proof of this latter fact. (Hint: consider the
sequence () defined by p, = %22:1 pP* where i is some probability).

Exercise 2.10 [Polya walks, continued| Show that the Polya walks on Z
and Z?* are null recurrent. (Hint: Show that they don’t have any invariant
probability measure).

Exercise 2.11 |Harmonic functions| A function h : M +— R is called har-
monic for the Markov kernel P if Ph = h. Suppose P is irreducible and
recurrent. Show that every nonnegative or bounded harmonic function is
constant. (Hint: show that h(X,) is a nonnegative (or bounded) martin-
gale, hence convergent by Theorem A.6). Give an example of a nonconstant
unbounded harmonic function for the Pélya walks on Z.

Exercise 2.12 [Reversibility| Let 7 be a probability measure on M. A Markov
kernel P is said to be reversible with respect to 7 if 7(x)P(z,y) = 7(y)P(y, x)
for all z,y € M.

(i) Show that if P is reversible with respect to m, then 7 is invariant for P.

(ii) Show that if P is reversible with respect to 7 and if 7(z) > 0 for all
x € M, then Pf(x) := ZyeM P(z,y) f(y) defines a self-adjoint operator
on the Hilbert space I*(m) :== {f : M = R: Y, 7(@)]f(2)]* < oo}

with inner product (f, g) := > .\, 7(x)f(x)g(x), i.e. (Pf,g) = (f, Pg)
for all f,g € I*(m).

(iii) Give an example of a Markov kernel P and a probability measure 7 such
that 7 is invariant for P, but P is not reversible with respect to 7.

An interesting consequence of Theorem 2.6 (iii) is the next proposition,
which relates moments of the first return time to z to m-mean moments of
the hitting time of x.

Proposition 2.13 Suppose P is positive recurrent with invariant probability
measure 7. Then for every nonnegative function v : N — R, and every

xe M,
Er(¢(72)) = m(2)Ea () (k).
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In particular, for every A > 0,

e/\

er —1

E(e'™) = m(z) [Ea(eX™) — 1];

And for every p > 0,

E.[(m. + 1Pt -1
p+1 ’

Er(77) < m(x)

Proof Fix ¢ : N - R, and z € M. By Theorem 2.6 (iii) applied to
f(y) == Ey(¢¥(7,)), one has

Er(¢(7)) = 7T($)Ex(z L skEx, (U(72))) = 7 (2) ZEI<1Tz>kEXk (U(72)))-

k>0 k>0

But, by the Markov property,

E.(1: 5kEx, (¥(72))) = Eo(Ex (¥ (72 — k) 1r 5k Fi)) = Ex(V(70 — k)17, 50)-

This proves the result. QED

2.1.2 Null recurrence

Although an irreducible null recurrent chain has no invariant probability mea-
sure (for otherwise it would be positive recurrent) it always has an unbounded
invariant measure.

Theorem 2.14 Suppose P is irreducible and null recurrent. Given x € M,
let ™ be the measure on M defined by

Te—1

nf =E.() | f(Xk)

k=0

for f: M — R nonnegative. Then m is o-finite (w(y) < oo for ally € M),
positive (m(y) > 0 for all y € M), unbounded (m(M) = o0), and invariant
under P (m = nP). Every other o-finite invariant measure is proportional to
TT.
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Proof Fory # z, set Ny, = ZZ’;_Ol 1(x,-,- By the strong Markov prop-
erty, for all £ > 0,

Py(Ny<w > k+1) = ]P’I(Tékﬂ) < Ty) = IP’:,;(TZSIC) < Ty T;Hl) < Ty)

=P, (1" < 7,)Py(1, < 7)) = a*'!

where a = P, (7, < 7,,) < 1 (by irreducibility). This proves that

0 < m(y) = —

< OQ.
1—a

Invariance of 7 is proved exactly as in Theorem 2.6, (iii). Clearly 7(M) = oo

for otherwise 7r(7]r\/[) would be an invariant probability, in contradiction with

the assumption that the chain is null recurrent.
It remains to show that every other o-finite invariant measure is pro-
portional to pu. Let Q(z,y) = WPW2) Then () is a Markov kernel and

p(z)
"(z,y) = W. It follows that @ is also irreducible and null recurrent
by application of Proposition 2.2. Let now v be another o-finite invariant
measure. Then h(z) = % is harmonic for @), hence constant (see Exercice

2.11). This concludes the proof. QED

2.1.3 Recurrence and Lyapunov functions

By Proposition 2.2, the divergence (respectively convergence) of the series
> us; PH(x,x) is a criterion for the recurrence (transience) of the point z,
but such a criterion may be difficult to verify in practice. We discuss here
other criteria based on Lyapounov functions, a tool that will play a key role
in the next chapters.

Given C' C M, we let

7‘0 = Tél) = lnf{n Z 1 : Xn G C}’

and
(k+1) .

T = inf{n > T((;k) : X, € C}
for all £ > 1. We also set Téo) := 0. The next proposition shows that,
whenever P is irreducible, recurrence (respectively positive recurrence) of the
chain equates recurrence (positive recurrence) of any finite subset.
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Proposition 2.15 Suppose P is irreducible and let C' C M be a nonempty
finite set such that for allx € C, P, (17c < 00) =1 (respectively E,(1¢) < 00).
Then P is recurrent (respectively positive recurrent).

Proof Let x € C. Then, since Py(1¢ < oo) = 1 for all y € C, the
strong Markov property implies that (X,,) visits C' infinitely often P,-almost
surely. Since C' is finite, it follows that P,-almost surely, there is y € C such
that N, = oo. If P was transient, we would have by Proposition 2.2 that
P.(Uyec{Ny = o0}) = 0, a contradiction. Hence P is recurrent.

Suppose now that K := max,cc E,.(7¢) < 0o. Let @ be the Markov kernel
on C defined by Q(z,y) := P.(X,, = y) for 2,y € C. Since C is finite, Q
admits an invariant probability measure 7 (see Remark 2.8). Thus, if X has
law 7, then X, has also law 7. It follows (by a proof similar to the proof of
Theorem 2.6 (iii), or by Exercise 4.24) that the measure u defined by

_E( (X))
Er(7c)

wf

is invariant for P. Note here that E (7¢) < K < oo. This proves positive
recurrence. QED

Exercise 2.16 Suppose P is irreducible, C' C M is finite and for all = €
M\ C, P,(1¢ < oo) = 1. Show that P is recurrent. (Hint: It M \ C # 0,
prove that for all z € C, Py(7anc < 00) = 1 and then use Proposition 2.15).

The next result extends and generalizes Proposition 2.15.
Proposition 2.17 Suppose P is irreducible and let C' C M be a finite set.

(i) Assume that for some g > 0 and all v € C, E,(e*7) < oco. Then there
exists A € (0, Xo] such that for all x,y € C,

E.(e*) < oo.

(ii) Let p > 1 and suppose that for all x € C, E,(78) < oco. Then for all
z,y € C,
E, (7)) < o0.
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Proof (i). First assume that M = C. In this case there exists, by ir-
reducibility, some ¢ > 0 such that for all z,y € M and k := card(M),
P,(r, > k) < 1 — e. Therefore, by the Markov property and induction on
n>1,

P(my > nk) = Eo (1> (n1%)Px, ) (7y > k) < (1 =)™
Thus, for all n > 0,

n -1

Po(ry > n) < Polry > k[ ]) = (1 —e)* 7,

>3

where [2] is the largest integer less than or equal to % Hence, for a > 0 so

small that (1 —¢) < 1,
E.(e*™) < Zeaan(Ty >n) < 0.
n=1

We now turn to the proof of the first statement in full generality. Let
Y,=X w.
Tc
Such a definition makes sense because, by recurrence, Tén) < oo almost surely.
For all y € C, set o, :=inf{n > 1: Y, =y}. For x € C,(Y,,) is a C-valued
Markov chain on the probability space (MY, B(MY),P,), with respect to the
filtration {F () }n, and with Markov kernel Q(a, b) := P, (X, = b) introduced
C
in the proof of Proposition 2.15. Thus, by what precedes,

E,(e*") < 2.2
max [£,(e%) < oo (2.2)
for some a > 0.

By assumption, max,ec E,(e07¢) < e for some oy > 0. By Jensen’s
inequality, for all ¢ € [0,1],E,(e"07¢) < E,(e*@)! < ef*. Choose A € (0, 22]
so small that 2 ag < A\gar. Then

max E,(e*7¢) < e,

(n) . . . . .
Set M, := e?*c ~"®) The previous inequality combined with the strong
Markov property shows that (M,) is a supermartingale under P, with respect
to the filtration {F () },. Therefore, using Theorem A.4 on optional stopping,
C
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(M0, ) is again a supermartingale, and in particular Eqy(Mpyne,) < Eu(My) =
1. Together with Hélder’s inequality, this yields for all z,y € C
(nAoy)
EI(G)\TC ) < Ea}(Mn/\ay)l/QEa‘(ea(n/\ay))1/2 < Ex(eaay)l/Q < 0.
Thus,
(Uy)
E,(e’™) = E,(e’c ) < 00
for all x,y € C.

(ii). By the assumption and the strong Markov property, there exists
K > 0 such that for every n > 0,

B, (178t = 78V IF ) = By, (78) < K”.
Therefore, with || - ||, = E,(| - |P)'/?,

o 1+1 7 7+1 7
Il = 1750 = 11D = 7)o, Iy < STNEET = 78 Lico, Il
>0 >0

Now
E, (7™ = 76 "lica,) = Ba(Ballre ™ = 78 PIF 0 Lico,) < K'Paloy > i)

Thus
I7yllp < KZPw(Uy > i)l/p < 0,
i>0
because, as seen in the beginning of the proof, the law of o, has a geometric
tail. QED

A consequence of Proposition 2.17 is a short proof of the following classical
result due to Chung [8].

Corollary 2.18 (Chung’s theorem on moments of return times) Suppose
P is irreducible and for some w € M and p > 1, E,(7P) < oo. Then for all
r,y € M, E,(7)) < oc0.

Proof Slightly modifying the proof of Theorem 2.6 (iv), one has for all
x,y € M the implication E,(7?) < co = E,(7?) < c0. Fix y € M and choose
C = {u,y}. Then E,(77) < oo, and by Proposition 2.17 (ii), E,(7}) < ooc.
Since 7, < 7, + 7, © 0,,, we obtain by the strong Markov property Ey(TéJ) <

2771 (E, (79) 4+ Ey(7F)) < oo. Thus, for any z € M, E,(77) < co. QED
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Lyapunov functions

In brief, a Lyapunov function is amap V : M — [1, 00) such that PV -V <0
outside a certain subset C' C M. Lyapunov functions are practical tools to
ensure that the assumptions of Propositions 2.15 and 2.17 are satisfied.

A map V: M — Ry is called proper if for every R > 0, the set {x € M :
V(z) < R} is finite. If M is finite, every map V : M — R, is proper. If M
is countably infinite and (x,),>1 is any enumeration of the elements of M,
Vi M — R, is proper if and only if lim,, ., V (z,) = co.

Apart from the first assertion, the following result is a consequence of a
more general result (Proposition 6.11) that will be proved later.

Theorem 2.19 Let P be a Markov kernel, let V : M — [1,00) be a map,
and let C C M be nonempty. Consider the following conditions:

(a) P is irreducible, PV —V <0 on M\ C and V is proper;
(b) PV—-V <—1o0onM\C and PV < o0 on C,
(b’) Condition (b) and in addition

sup E,(|V(Xy) = V(2)]P) < 00

weM
for some p > 1;
(c) PV -V < =XV on M\ C for some A € (0,1) and PV < oo on C.
Then, for all x € M,

(i) Under Condition (a),
P.(17c < o0) = 1;

(ii) Under Condition (b),

E.(tc) < PV(z) + 1;
(iii) Under Condition (b'),

E.(1¢) < e(1+V(2)")

for some constant ¢ > 0 that depends on p but doesn’t depend on x;
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(iv) Under Condition (c),

1
E,(e}0) < E, (e s~V < TPV ().
In particular, if P is irreducible and if C' is finite, Conditions (a), (b), (b'), (c)
respectively ensure recurrence of P, positive recurrence of P, p-th moments
for the hitting times 1, under P, for everyy € C and x € M, and exponential
moments for T, under P, for every x,y € C.

Proof We only prove the first assertion. The other three follow from Propo-
sition 6.11 to be proved later. When P is irreducible and when C' is finite,
recurrence, positive recurrence, p-th moments, and exponential moments of
hitting times are direct consequences of Propositions 2.15 and 2.17. (To ob-
tain [E,(77) < oo for x € M\ C, consider the finite set C := CU{z} and note
that 75 < 7¢.)

By irreducibility, the chain is either recurrent or transient. If it is recur-
rent, P, (7¢ < 00) = 1 for every & € M by Proposition 2.2. Suppose the chain
is transient. For « € M \ C, the sequence V,, := V(Xurr.) is under P, a
supermartingale because E, (V11 — V,,|F,) = (PV(X,) — V(X)) 1,5, < 0.
Thus, being nonnegative, (V;,) converges P -almost surely to some random
variable V,, taking values in [0, c0) (apply Theorem A.6 to the submartingale
(—=V4)). This shows that V' (X,,) converges P,-almost surely on {7¢ = oco}. On
the other hand, by transience (Proposition 2.2 (iii)) and by the assumption
that V' is proper, limsup, .. V(X,) = oo P,-almost surely, and therefore
P.(tc < o0) = 1. And for z € C, we have by the Markov property

P, (10 < 00) = Pu(X; € C) + E;(1x,eancPx, (7¢ < 00)) = 1.
QED

Exercise 2.20 Suppose V : M — [1,00) is a proper map. Show that Con-
dition (c) in Theorem 2.19 for a nonempty finite set C' is equivalent to the
existence of constants 0 < p < 1 and xk > 0 such that

PV < pV + k.

Show that under such a condition, every invariant probability measure 7
satisfies p
TV < —— < 0.
L=p
See Corollary 4.23 for a proof of the second assertion.
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2.2 Convergence in distribution

2.2.1 Aperiodicity

We start with a general definition of aperiodicity. Let R C N* be a (nonempty)
set closed under addition. That is

,j€E R=147€R.

The period of R is defined as its greatest common divisor. If this period is 1,
R is said to be aperiodic. Aperiodic sets enjoy the following useful property,
that will be used repeatedly throughout the book.

Proposition 2.21 Let R be aperiodic. Then there exists ng € N such that
ngo+N={neN: n>ng} CR.

Proof There exist, by aperiodicity, aq,...,a; € R whose greatest common
divisor is 1. (To see this, take any element of R and call it a;; then a; has a
finite number of divisors strictly greater than 1, which we denote by ds, ..., d;;
for 2 <4 <[, pick a; from R(y) such that d; does not divide a;; such a; exists
because the greatest common divisor of R is 1). By Bézout’s identity, there
exist q1,...q € Z such that ), ga; = —1. Set a := Zi:qi>0 gia;. The set R(y)

being closed under addition, both ¢ and a +1 = > —qia; lie in R(y).
2

1:q; <0
Every n > a® can be written as n = ka+r = (k —r)a + r(a + 1) for some
r€{0,...,a—1} and k > a. Thus, every n > a? is an element of R. QED

We now turn to the definition of aperiodicity for a countable Markov chain.
Given a kernel P on M and x € M, let R(z) := {k > 1: x ~* 2} be the set
of possible return times to z. The period of x, per(x), is defined as the period
of R(x) and x is called aperiodic whenever R(z) is. The kernel (or the chain)
is said to be aperiodic if all points x € M are aperiodic.

Proposition 2.22 Suppose P is irreducible. Then
(1) All points x € M have the same period;

(ii) P is aperiodic if and only if for all x,y € M there exists n(x,y) € N
such that x ~"y for all n > n(x,y).

Proof (i). Let z,y € M. By irreducibility, there exist 7,7 € N* such that
r~'yand y~»7 x. Thusi+j € R(z) and for all k € R(y),i+j+k € R(x).
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Therefore, per(z) divides i + j and i + j + k, hence k, for all k € R(y). Thus
per(z) < per(y) and by symmetry per(z) = per(y).

(ii). The “if” part is obvious. We prove the “only if” part. Given y € M,
there exists, by Proposition 2.21, ng € N such that n € R(y) for all n > ny.
If now x is another point in M, z ~% y for some ¢ by irreducibility, hence
x~"yforalln>ng+1:. QED

An immediate useful consequence of Proposition 2.22 is the next result. Given
two Markov kernels P and P respectively defined on the countable state space
M and M, we let P ® P denote the Markov kernel on M x M corresponding
to two independent chains with kernels P, P. That is

(P& P)((w,4): (y,y)) := Pl,y) P(«',3/).

Corollary 2.23 If P and P are both irreducible and aperiodic, so is P ® P.
If in addition P and P are positive recurrent, so is P ® P.

Proof Note that (P®I3)” — P"® P" for every n € N*. Thus, irreducibility
(and aperiodicity) of P ® P follows from Proposition 2.22 (ii), applied to P
and Pc. Also, if m and 7 are invariant probability measures for P and P, so
is 7@ 7 (defined as (7 @ 7)(z,2’) := w(z)7(2')) for P® P. By Theorem 2.6,
this proves positive recurrence. QED

Exercise 2.24 Give an example of an irreducible and positive recurrent ker-
nel P such that P ® P is not irreducible, and an example of an irreducible
recurrent kernel P such that P ® P is irreducible and transient.

Exercise 2.25 Show that if P ® ]5~ is irreducible, then both P and P are
irreducible. Also show that if P ® P is irreducible and recurrent, then both
P and P are recurrent.

Exercise 2.26 Consider the Markov chain (X,,),>0 from Exercise 2.1.
(i) Find the period of the chain.

(ii) Find a Lyapunov function V' and a finite set C' C Z \ {0} such that P,
V and C satisfy Condition (b) of Theorem 2.19.

(ii) Show that (X,,),>0 is positive recurrent and find its unique invariant
probability measure.
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2.2.2 The convergence theorem

We now state and prove the main result of this section, the convergence
theorem for irreducible aperiodic Markov chains.

Theorem 2.27 Suppose P is irreducible and aperiodic. Let p be a probability
measure on M.

(1) If P is positive recurrent with invariant probability measure 7, then

lim sup |uP"(2) — w(z)| = 0.

n—oo zeM

(ii) If P is not positive recurrent, then for all z € M,

lim pP"(z) = 0.

n—oo

Proof Let (X,,,Y,).en be the canonical chain on (M x M)N (i.e. (X,,Y,)(w,®) ==
(Wn,@y)), and let
A :=inf{n >1 : (X,,Y,) € A},

where A := {(z,z) : © € M} is the diagonal of M. Throughout the proof,
we write P, (respectively P, ,) for the Markov measure on (M x M)N with
kernel P ® P and initial distribution « (respectively ¢, ,). By Corollary 2.23,
P ® P is irreducible, hence either recurrent or transient.

Case 1: P ® P is recurrent. For all x,y,z € M,

IP>967y(*Xn =z) = Px,y(Xn =2;7A >n) + Px,y(Xn =z
= Pz,y<Xn =Z;TA > n) + ]P):r,y(Yn = Z;TA
< Puy(ta >n) + P, (Y, = 2),

where the second equality follows from the strong Markov property and the
fact that X;, = Y;,. Interchanging the roles of X,, and Y,,, one also has

Py, (Y, =2) <P, (1A >n) + P, (X, = 2).
Hence
[P (, 2) = P™(y, 2)| = [Poy(Xn = 2) = Puy (Yo = 2)[ < Pay(7a > 1),
and by integration

[uP"(2) = vP"(2)] < Pugy (T2 > n) (2.3)
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for every probability measure v on M and every z € M. By recurrence of
P ® P (and Proposition 2.2 (iii)), one has for every =,y € M that P, , (7o >
n) — 0 as n — oo. Thus

lim sup |uP"(z) —vP"(2)| =0 (2.4)

n—oo zeM
by dominated convergence. In light of Exercise 2.25, there are two subcases:
P is either positive recurrent or null recurrent. If P is positive recurrent,
(2.4) applied to v = m, the invariant probability measure of P, proves part
(i) of the theorem. If P is null recurrent, let 7 be an unbounded invariant
measure of P (see Theorem 2.14). For any nonempty finite set A C M, set
ma(z) = %. Then, 74 < {5, whence

o wPh(E) (e)
mal"=) < Sy T Ay

Therefore, by (2.4) applied to v = 74,

i " im "(2) —maP"(z m(2) = m(z)
lim sup n"(2) < lim |uP"(2) — maP"(2)] + TA) " wA)

Letting A 1 M proves (ii) in this case because (M)

= 0.
Case 2: P ® P is transient. By Proposition 2.2 (i),

[P"(z,2)]" = (P ® P)"((2,2); (2,2)) = 0

as n — oo, for all z € M. By irreducibility of P, this implies that P"(x,z) — 0

for all z,z € M. Thus pP"(z) — 0 by dominated convergence. This proves
(ii) in Case 2. QED

As shown below, the convergence in Theorem 2.27 is exponential if there exists
a proper map that satisfies Condition (c) of Theorem 2.19 for a nonempty
finite set C' (see also Exercise 2.20).

Theorem 2.28 Suppose P is irreducible and aperiodic, and that there exists
a proper map V : M — [1,00) and constant 0 < p < 1,k > 0 such that

PV < pV + k.

Then P s positive recurrent and, denoting by m its invariant probability mea-
sure:
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(i) One has TV < 1% < o0;

(ii) There exist constants 0 < v < 1 and ¢ > 0 such that for every probability
measure [ on M,

sup |uP"(z) = 7(2)| < A" (uV + 1), VneN.
zeM

Corollary 2.29 Suppose M s finite and P irreducible and aperiodic, with
wnwvariant probability measure m. Then there exist constants 0 < v < 1 and
¢ > 0 such that for every probability measure p on M,

sup |[uP"(z) — m(2)] < ey", YneN.
zeM

Proof Take V' =1 in Theorem 2.28. QED

Proof [of Theorem 2.28|. We use the same notation, P @ P, (X,,Y,), A,
etc., as in the proof of Theorem 2.27.

Positive recurrence follows from Exercise 2.20 and Theorem 2.19. Asser-
tion (i) follows from Exercise 2.20. By Inequality (2.3) from the proof of The-
orem 2.27, it suffices to derive an exponential upper bound on P,g.(7a > n)
in order to prove Assertion (ii). Pick * € M and choose € > 0 small enough
so that V(z*) < £ and p+¢ < 1. Set W(z,y) := V(z) + V(y), z,y € M.
Then

(P ® P)YW(z,y) = PV(x) + PV(y) < pW(z,y) + 25,

so that (P ® P)W < (p+ )W on the complement of the set
2K

By Theorem 2.19 (iv) and Assertion (i), we then obtain, for some positive
constant ¢ depending on &, p and ¢,

pm)(P®P)W < p(uV +7V) + 2k
p+e N pt+e

Eu®ﬂ(e(1_p_a)m) < ( < c(1+pV).

Since V' is proper, the set C' is finite, and Proposition 2.17 (i) together with
(x*,2*) € C yield the existence of A > 0 such that

)\T ¥ ¥
e Egy)(e7) < oo,
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Thus

P/J,®7r<7-A > TL) SPH@JW(T@*@*) > n>
SPN@W(TC > TL/Q) + Eu@ﬂ(P(XTC,YTc)(T(:E*,m*) > n/2))
<ce M2(1 4+ pV)

for some other constant c. Inequality (2.3) concludes the proof. QED

2.3 Application to renewal theory

Let (A;);>1 be a sequence of i.i.d. random variables living on some probability
space (€2, F,P) and taking values in N. Let Ay be another N-valued random
variable on (€, F,P), independent of (A;);>1 but having a possibly different
distribution. Set

T, =No+ A1+ ...+ A,.

The sequence T := (T},)qen is called a renewal process; Ty = Ag is the delay
of the process, and {7,,,n > 0} is the set of renewal times. Observe that T
is a Markov chain with respect to the filtration F,, := (A, ..., 4,), whose
transition matrix has entries A(7, j) := P(A; = j — ).
Let
pr = P(A; = k)
for k € N. We say that T is aperiodic if pg # 1 and {k > 1: p; > 0} is an
aperiodic set as defined in Section 2.2.1. We say that T is L? if Ay is in LP,

e, D pen KPpr < 0o.
To fix ideas, one can imagine that a certain device breaks down and is

replaced by a generic device at times Ty, 77, .... The lifespan of the initial
device is distributed as Ay and the lifespan of the replacement devices are
distributed as A;.

From now on we shall assume that 7" is aperiodic. For all n € N, let

G :=min{k >0 : T}, > n}.
Then ¢, < oo P-almost surely so that
X, =1, —n

is well-defined. A key observation is the following:
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The set of renewal times for T equals the zero set of (X,,).

That is
{T, :neN}={neN:X,=0}

It is easily checked that with respect to the filtration {F,,}, (X,) is a Markov
chain on N whose transition matrix is given by

P(k,k—1)=1for k> 1,

P(0, k) = 11”“—“ for k € N,
— Do

and

P(k,l)=0for k>1,1#k— 1.
Let K :=sup{k >1: pp >0} € N*U{oo} and M :={0,..., K — 1} (with
the convention that M = N if K = oc0). Then X,, € M for n large enough
(precisely n > (Xo— K +1)"). On M, the chain (X,,) is irreducible, recurrent,
and aperiodic (by aperiodicity of T).

Exercise 2.30 Verify the claims made about (X,,). In particular, show that
(X,,) is a Markov chain with the transition matrix given above, and that (X,)
restricted to M is irreducible, recurrent, and aperiodic.

On NN, let Py be the Markov measure with initial distribution &, and
kernel P. The corresponding expectation is denoted by Eg. On NY, we define

T0(x) :=inf{n >1: x, = 0}.

Then

Eo(mo) = Y (1+k)P(0, k) = 1E<A1)

k>0 — Do

= E(Al‘Al > O) € (0, 00]7

where the expectation of a random variable X conditional on an event A of
positive probability is defined as E(X|A) := E(X14)/P(A). The equation
Eo(70) = E(A1)/(1 — po) implies that (X,,) is positive recurrent if and only if
T is L.

Exercise 2.31 Assume that (X,,), restricted to M, is positive recurrent. FEx-
press the unique invariant probability measure for the transition matrix P in
terms of the pg’s.
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As a consequence of Theorem 2.27, we obtain the following classical re-
newal theorem.

Theorem 2.32 Assume that T is aperiodic. Then

= 1
;}E&; P =k =gy

with the convention that the right-hand side is zero if E(A1) = 0.

Proof Let N, := ano 1¢7,-1}- Then

Ni = Lixe=op(1+ ) Lizi—op),

i>1
where
T/ = Agir 4.+ Ay

Thus E(Ny) = E(E(Ng|F,,)) = P(Xi = O)ﬁ, and by Theorems 2.27 and
2.6,

1
lim P(X, =0) = }
kggo ( K ) Eo(To)

This proves the result. QED

2.3.1 Coupling of renewal processes

Suppose that T is L', and let T be another aperiodic L' renewal process
independent of 1" with

T,=Ao+A +...+A,,.

The distribution of (4;);>o may be different from the one of (A;);i>o. We are
interested in the first time 7 > 0 that is a renewal time for both T" and T'.
Equivalently, with X,, defined in analogy to X,,

ri=inf{n>1: X, =X, =0}.

We know that (X,,) is absorbed by M in finite time and that it is aperiodic
and positive recurrent on M. Hence, (X, X,,) is absorbed by M x M in finite
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time (M defined in analogy to M) and, by Corollary 2.23, it is positive
recurrent on M x M. In particular,

P(T < 00) = Pagal(m00 < 00) = 1, (2.5)
where o (respectively @) denotes the law of Aq (respectively Ay), and where
T00(X,y) i=inf{n >1: 2, =y, =0}, x,y €NV

In turns out that whenever Ag, Ag and A;, A are in L? for some p > 1, the
same is true for 7. A proof of this fact can be found for instance in Lindvall’s
book [31] and goes back to Pitman’s seminal paper [38]. We provide here a
short proof (different from Lindvall’s) based on Proposition 2.17 and Theorem
2.19.

Theorem 2.33 Suppose T and T are aperiodic and in LP for some p > 1.
Then there exists a constant ¢ > 0, independent of the distributions of Ay and

Ay, such that E(m7) < ¢(1 + E(AR) + E(AD)).

Proof Let Q := P® P denote the kernel of (X, Xn). Let V be the function
defined on N x N by V(4,j) = 2max(7,j) + 1. One has

QV(i,j) = V(i,j)=—2fori#0,j #0,
and (by integrability of A; and dominated convergence)

lim QV(0,5) — V(0,7) = lim E(max(2A; — 25 — 2, —-2)|A; > 0) = —2.
j—o0 j—oo
Similarly, lim; o, QV/(4,0) — V(i,0) = —2. Condition (b) of Theorem 2.19 is
then satisfied for the Markov process (X, X,,) on N x N, with C' = {(4,j) €
N xN: V < R} and R large enough. Condition (b’) is easily seen to be

satisfied as well because A; and Ay are in LP. Therefore, there is ¢ > 0 such
that for all (7,7) € N x N|

Eij(180) < 207 (Eiy(18) + (mfﬂgEm(Tgo)) < ¢(1+max(i,7)").  (2.6)

) Z,] c )
Here, the first inequality follows from the strong Markov property and in-
equality 700 < 7¢ + 70,0 © ©+.. The last inequality follows from Theogem 2.19
(iii) and from the proof of Proposition 2.17. Note that while (X, X) is not
necessarily irreducible on N xN and thus a key assumption of Proposition 2.17
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is not satisfied, the proof still goes through because any point (i,7) € N x N
leads to (0,0). Integrating the inequality in (2.6) with respect to a ® &, the
law of (Ao, Ag) = (Xo, Xo), gives the result. QED

Theorem 2.34 Suppose T' and T are aperiodic and
E(e221) + E(eM?1) < oo
for some A\g > 0. Then there exist 0 < X\ < \g and ¢ > 0 such that
E(e’) < c(1 + E(eX0) + E(eM020)).

Proof The proof is similar to the proof of Theorem 2.33. Set V (i, j) :=
e?i 4 2 Then QV (i,5) < e ™V (i,5) + k with

k= E(eM21A; > 0) + E(6A0A1|Al > 0).

Condition (c) of Theorem 2.19 is then satisfied for any 0 < A < 1 — e and
C={(i,7) e Nx N: V(i,j) < R} with R sufficiently large given the choice
of X (see also Exercise 2.20). Then, relying on 799 < 7¢ 479000, the strong
Markov property, Theorem 2.19 (iv), and the proof of Proposition 2.17, we
obtain

E;;j(e*™) < (14 V(i,5)), V(i,j) € NxN

for some ¢ > 0 and some A € (0,1 — e *°). Integrating this inequality with
respect to the law of (A, Ag) gives the desired result. QED

2.4 Convergence rates for positive recurrent chains

We revisit here the ergodic theorems from Subsection 2.2, Theorems 2.27 and
2.28, with the help of Theorems 2.33 and 2.34.

Let M be countable and let (X,,,Y,,)n,en be the canonical chain on (M X
M)N. Let P be an irreducible, aperiodic, and positive recurrent kernel on
M. If m denotes the invariant probability measure of P, we have seen in the
proofs of Theorems 2.27 and 2.28 that for every probability measure @ on M
and every z* € M,

sup [uP"(z) — 7(x)| < Pugr (T av) > 1),
xeM
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where P, is the Markov measure with kernel P ® P and initial distribution
p @ m, and where Tz« o«) = inf{n > 1: X,, =Y, = a*}.

Let (1) (respectively (7)) denote the successive hitting times of z*
by (X,) (respectively (Y,)). Then, for any probability measures «, 3 on M,
the processes T := (T£?+l)>n20 and T := (%;?H))nzo living on the probability
space ((M x M)N, B((M x M)N),P,gs) are two independent renewal processes
and 7(y« ,+) is nothing but the first common renewal time for 7" and T.

The Markov inequality, Theorems 2.33, 2.34, and Proposition 2.13 lead to

the following result.

Theorem 2.35 Let P be irreducible, aperiodic, and positive recurrent, with
invariant probability measure w. Let x* € M.

(1) If E,«(12.) < oo for some p > 2, then there exists ¢ > 0 such that for
every probability measure p on M and for every n € N*,

sup |uP"(z) — m(x)| <
xeM

L+ B ().

(ii) If Ex- (™) < oo for some Ng > 0, then there erist 0 < A\ < X\ and
¢ > 0 such that for every probability measure p on M and for every
n €N,
sup [11P"(2) — ()] < ee(1+ B, (e27)).
xeM
Combined with Theorem 2.19, Proposition 2.17, and the strong Markov prop-
erty, we recover and extend Theorem 2.28.

Corollary 2.36 Let P be irreducible, aperiodic, and positive recurrent, with
invariant probability measure w. Let V : M — [1,00) and let C C M be as in
Theorem 2.19 ((b') or (c)) with C' finite. Then

(1) Under Condition (b") of Theorem 2.19 for p > 2, there is ¢ > 0 such that
for every probability measure p on M and for every n € N*,

1
sup [1P" () — 7(2)] < ——se(1 + V7).
zEM np

(ii) Under Condition (c) of Theorem 2.19, there are ¢, A > 0 such that for
every probability measure p on M and for every n € N,

sup |uP"(x) — m(x)] < e Me(1 4 pV).
zeM
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Notes

The book by Aldous and Fill [1] contains numerous interesting identities for
the mean hitting times (E,(7,)), the occupation times (E,(N,)) and their re-
lation to the rate of convergence. Convergence rates for finite Markov chains,
in term of the geometry of the chain, are thoroughly investigated in the mono-
graph by Saloff-Coste [42] and the book by Levin, Peres and Wilmer [30]. A
nice extension of Chung’s theorem (Proposition 2.18) can be found in the re-
cent paper [2]. The coupling method leading to the convergence rate theorem
2.35 goes back to Pitman|38] (see also Lindvall’s book [31]).
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Chapter 3

Random Dynamical Systems

Numerous examples of Markov chains in the applied literature are given by
random dynamical systems (also called random iterative systems). These are
defined as follows.

Let (©,.A,m) be a probability space,

F:OxM— M
(0, 2) = Fy(),

a measurable map, and (6,),>1 a sequence of independent identically dis-
tributed (i.i.d.) ©-—valued random variables having law m. Consider an
M —valued process recursively defined by

Xn+1 = F9n+1 (Xn) (31)
for some given random variable X|.

Proposition 3.1 Assume that X, is a random variable independent of (6,,).
Then (X,,) is a Markov chain on M whose Markov kernel is given by

P(z,G) =m(0 € © : Fy(z) € G). (3.2)
If furthermore Fy is continuous for m-almost every 0, then P is Feller.

Proof The proof follows (almost) directly from the definitions. Measura-
bility of z — P(x,G) is a by-product of Fubini’s theorem since P(z,G) =
Jo 1 © Fy(z)m(df). The Feller property follows by continuity under the in-
tegral. QED

49
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Exercise 3.2 [additive noise| Suppose M = R™ (or an abelian locally com-
pact group), © = M, F: M — M,

and m(df) = h(0)dd with h € L'(df). Here df stands for the Lebesgue
measure (or the Haar measure) on M. Let P denote the corresponding Markov
kernel given by (3.2).

Given © € M, let U, : L'(dx) — L'(dz) be the translation operator
defined as U,(g)(y ) = g(y — ). Show that for all f € B(M),

[Pf(x) = PFY)l < [[flloolUpe) (R) = Urg)(A)]ls-

Deduce that P is strong Feller whenever F is continuous. One can use (or
better, prove) that for all g € L'(dz),z € M + U,(g) € L*(dz) is continuous.

The kernel P defined by (3.2) is called the Markov kernel induced by (F,m).
The sequence of random maps (F"™) defined by
F":=Fy okFy ,o...0kFy

n—1

is called the random dynamical system induced by (F,m).

Note that, by Chapman-Kolmogorov, the law of F™(z) is determined by
P (F™(x) has law P"(z,-)) but, as shown by the next example, P is not
sufficient to characterize the law of F™.

Example 3.3 This example is due to Kifer [28]. Let M = S = {z € C :
|z| = 1} be the unit circle, © = [0, 1], and m(df) = df the uniform Lebesgue
measure. Let f : ST — ST be any, say continuous, map and Fy(z) = €% f(z).
Then P(z,-) is the uniform measure on S* for every 2z € S', but the random
dynamical system (RDS) induced by (F,m) clearly depends on the choice of
f. For instance, if f(z) = z, F™ preserves the distance between points, while
for f(z) = 2%, F™ locally increases the distance exponentially.

Example 3.4 This example is due to Diaconis and Freedman [11]. Let M =
[0, 1] be the closed unit interval, and

1

2(1-x)

Here we adopt the convenient convention that 10;(y)dy = 0p(dy) for z = 0

and [’” ” dy = 1(dy) for x = 1. In words, if the chain is at = it moves to a
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point y randomly chosen in the right interval [x, 1] (respectively left interval
[0, x]) with probability 1/2.
Let F:(0,1) x [0,1] — [0, 1] be defined by

Fop(x) = 20x1gcq/0 + [x + (20 — 1)(1 — 2)]1p>1 /2.

Then P is induced by (F,dz).

3.1 Representation of Markov chains by RDS

Proposition 3.1 shows that every RDS defines a Markov chain. Here we
briefly discuss the converse problem and consider the question of representing
a Markov chain by a suitable RDS.

A transformation space is a set of maps f : M — M closed under compo-
sition. Let T be a transformation space and P a Markov kernel on M.

We say that P can be represented by T if there exists a probability space
(0, A,m) and a measurable map F : © x M — M such that

(i) Fy € T for all 6 € ©;
(ii) P is induced by (F,m).

Recall that a separable metric space M is called Polish if it is complete.
The following result is folklore.

Theorem 3.5 If M is a Borel subset of a Polish space, then any Markov ker-
nel on M can be represented by a space T of measurable maps with (0, A, m) =

((0,1),B((0,1)), ) and X the Lebesgue measure on (0,1).

Proof When M is a Borel subset of R, the proof is constructive and
makes I’ explicit. Indeed, let G, be the cumulative distribution function of
P(z,.), i.e.

G.(t) = P(x,(—00,t]).

For all § € (0,1) and x € M, set

where G ! : (0,1) — R, the generalized inverse of G, is defined as

G, Hu) :=1inf{t € R: G,(t) > u}.

T
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Then
MO € (0,1): Fy(x) <t)=A0€(0,1): 0 <G(1) = Gal(t).

The proof in the general case follows from the following abstract result of
measure theory: Every Borel subset M of a Polish space is isomorphic to a
Borel subset of [0,1]. That is, there exists a Borel set M C [0,1] and a bi-
measurable bijection ¥ : M — M (meaning that both ¥ and its inverse are
Borel measurable). Chapter 13 of Dudley’s book [12]| contains a detailed proof
of this result. Exercise 4.9 treats the particular case where M is compact or
locally compact.

Given such a U and a Markov kernel P on M, let P be the Markov kernel
on M defined as P(z, A) := P(U~'(z), U~(A)). Then P is induced by (F,\)
for some measurable F:(0,1) x M — M so that P is induced by (F, \) with
Fylw) = U (Fy(W(x))). QED

Blumenthal and Corson [7| prove the following result (see also Kifer [28§],
Theorem 1.2).

Theorem 3.6 (Blumenthal and Corson, 1972). Let M be a connected and
locally connected compact metric space. Let P be a Feller Markov kernel such
that P(x,-) has full support for all x € M, i.e. for all x € M and for every
closed set F strictly contained in M, we have P(x,F) < 1. Then P may be
represented by T = CO(M, M) (the space of continuous maps f: M — M).

The question of representation by smooth maps has been considered by
Quas [40]. Before stating Quas’ theorem, we state a result due to Jiirgen
Moser from which it will be deduced.

Let M be a smooth (C*) compact orientable Riemannian manifold with-
out boundary, with normalized Riemannian probability measure A. If p :
M — R, is a C* density on M and ® : M — M a C! diffeomorphism, we let
®*p denote the image of p by ®. That is

. p(@)
(@) (@) =
where J®(x) is the Jacobian of ®, i.e. the determinant of the derivative
D®(x) : T,M — Ty M. In other words, if X is a random variable with
density p, then ®(X) is a random variable with density ®*p.
In 1965, Moser [34], using the “homotopy trick” argument, proved part
(i) of the following result in the C™ case. For every positive integer k and
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0 <a<1,welet C*T(M) denote the space of C** (C* with a-Holder kth
derivatives if @ > 0) functions h : M — R endowed with the C*™* topology,

EFe = [h e CFO (M) ; /M h(z)\(dz) = t},

and DFe = {p € E¥t™ . p(z) > 0 Vo € M} the space of positive CF+e
densities. Plainly, E¥™ is a closed subset of C*+%(M) which can be identified
with the Banach space E§+°‘, and D*+% is an open subset of BT

Theorem 3.7 (Moser, 1965). Let po be a positive C* density for some k > 1.
Then

(i) For any positive C* density p, there exists a C* diffeomorphism ®, on M
with the property that

700 = p;
(ii) The C* diffeomorphisms ®, from part (i) can be chosen in such a way

that the mapping
D¥ x M — M,

(p;x) = ®p(x)
is CF.

Proof Tet p, = po+ t(p — po) for 0 < t < 1. We look for a family of
diffeomorphisms (®;):cp,1) such that ®;py = p; for all ¢ € [0,1]. That is

3t ) pi(@1(x)) = po(), (3:3)

where j(¢,z) is the Jacobian of ®;, evaluated at z. More precisely, we look
for a family of vector fields {X;},c01) on M such that ®(z) is the solution
to the non-autonomous Cauchy problem

dy
—_— =
i Xt(?/)

with initial condition y(0) = x. Using Jacobi’s formula for the derivative of
the determinant of a matrix-valued function, one obtains that j(¢, z) solves
dj

= div(Xy) [P (2)]4 (1)
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= 1. Thus, taking the time derivative of (3.3)
po — p gives
) —

n(y)+ < Vpi(y), Xi(y) >,= 0.

with initial condition j(0, -)
and setting y := ®4(x), n =

div(Xy) () pe(y
That is
div(peXe)(y) = n(y).

If one sets X; = VU/p; the problem reduces to finding a function U : M — R
such that
AU = div(VU) =, (3.4)

where one should recall that n = pg — p.

Since
A ()N (d) =0,

(3.4) admits a solution, and we may define A~1n as the particular solution

T 2/00O Qm(z)dt

where Qin(x) := E(n(W;)|Wy = z) and W; a Brownian motion on M. Fur-
thermore, by Schauder’s estimates (see e.g. Chapter 6 in [20]) A™! maps
continuously Ei~'T(M) into C*+'*(M) for every positive integer k and
0 < o < 1. This makes the vector field

ti = VU/pt
a OF vector field. It also implies that the continuous mapping
[0,1] x D* x M — TM,

(£, p, x) = X7 (x)
is C*.

Let t — ®;(p, ) denote the solution to the Cauchy problem 2 Y =X (y)
with initial condition ®¢(p,z) = . It then follows, from standard results
on differential equations that = +— ®;(p,z) is a C* diffeormorphism for all
(t,p) € [0,1] x D*, and that (z,p) — ®i(p,z) is C* for all t € [0,1]. To
conclude the proof, set ®,(z) := ®1(p,z). QED

From Moser’s theorem we deduce the following result proved by Quas [40]
in the C*° case.



3.1. REPRESENTATION OF MARKOV CHAINS BY RDS 55

Corollary 3.8 (Quas, 1991). Let P be a Markov kernel on M, a smooth
compact orientable connected Riemannian manifold without boundary. As-
sume that for each x € M, P, has a C*. k > 1, positive density p, with

respect to the Riemannian measure, and that x € M+ p, € DF is C",r > 0.
Then P may be represented by T = C"(M, M).

Proof Let py = pg, for some o € M and let ¥, = &, denote the Ck
diffeormorphism produced by Moser’s Theorem (Theorem 3.7). Then

P(z,G) = P(z, ¥, (G)).
Let T = C"(M, M) and f, € T be defined by f,(z) := ¥,(y). Then
P(z,G)=m(f €T: f(x) € G),

where m is the image of P, by the mappingy € M — f, € T. QED

Exercise 3.9 [Bernoulli convolutions| Bernoulli convolutions are very sim-
ple, still fascinating, examples of random dynamical systems.
Let 0 < a < 1 and let (X,,) be the sequence of real valued random variable
recursively defined by
Xps1 = aX, + 0h41;
where (6,,) is a sequence of i.i.d variables taking values in {—1, 1} independent
of Xo, and having uniform distribution m = So1to

2
Set Y, = Z?;ol a‘6;,1 and let

Y = lim Yn = Z ai9i+1.

n—o0
i>0
Throughout, we let u, denote the law of Y and F, its repartition function
defined as F,(t) = pq(] — 00, t]).

(i) Show that X,, — a" X, and Y, have the same law and deduce that (X,,)
converges in law to .. That is

lim E(f(X0)) = paf

n—oo

for all f € Cy(R). Convergence in law will be further discussed in Section
4.1 of Chapter 4.
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(ii) Show that Fj, is the unique repartition function solution to the functional

equation
1 t—1 t+1
F(t)==|F F
(1) =5 [F(—=)+ F(=

)

(iii) Show that Fj, is continuous.

(iv) (Law of pure types) Recall that p, is said to be absolutely continuous
(with respect to Lebesgue) if every Borel set having zero Lebesgue mea-
sure has zero p, measure. By Radon-Nikodym theorem, this amounts
to say

Rl = [ oo

for some nonnegative function f, € L'(R). Tt is said to be singular
if o (N) = 1 for some Borel set N having zero Lebesgue measure.
Show that p, is either absolutely continuous or singular (compare with
Lemma 4.26 in Chapter 4).

(v) (Devil’s staircase) The topological support of p, is the set of t € R such
that pe(l) > 0 for every open interval containing t. Equivalently, this
is the set of ¢ € R at which F, strictly increases.

Suppose a < % Show that the support of 1, is a Cantor set having zero
Lebesgue measure. In this case F, is a Dewil’s staircase: a continuous
function increasing from 0 to 1 but almost everywhere nonincreasing.

(vi) Show that fi1/9 is the uniform distribution over [—2,2].

(vii) Show that for a > 3, the support of 1, equates the interval [— 1, 7]

Remark 3.10 The study of Bernoulli convolutions has a long history. It
started around 1930 with the work of Wintner and his collaborators Jessen,
and Kershner (see e.g [36] for a comprehensive bibliography). As seen in
the previous exercise, when a > %, F, is continuous and strictly increasing
on [—1, -L]. Wintner proved that it is C¥~! for « = 27V* and k > 2,
but Erdos [16] in 1939 proved that whenever % is a Pisot number, then p,
is singular ! A Pisot number is a real algebraic integer (i.e the root of a
unitary polynomial having integer coefficients) whose conjugates (i.e the
other roots of the polynomial) have modulus < 1. For instance, the golden

1+v5

5 is a Pisot number as the root of the polynomial X2-X-1

number g =
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After Erdos, the question of describing the set of a > % for which g, is
absolutely continuous, has challenged the community. In 1995 Solomyak [44]
(see also the beautiful short proof by Solomyak and Peres [37]) proved the
remarkable result that for almost all a > % lha is absolutely continuous.

Exercise 3.11 |[The Propp and Wilson algorithm| The representation of a
Markov chain by a RDS can obviously be used to simulate trajectories of
a given finite Markov chain. More surprisingly it can also serve to sample
exactly and in finite time the invariant probability of a positive recurrent
finite chain. This is the Propp and Wilson algorithm introduced by J. Propp
and D Wilson [39] in 1996 .

Let M be a finite set, and let (F™) be a RDS on M. Recall that this means
that

Fn:FQ"O...OFgl,

where (6;) a sequence of i.i.d random variables on some probability space
(©,A,m) and © x M > (0,x) — Fy(z) is a (measurable) map.
Associated to F™ is the right product

Rn:FQIO...Oan.

A map f: M~ M is called constant if f(xz) = f(y) for all z,y € M. We let
Cst denote the set of such maps, and

T. =min{n >0: R" € Cst}.
(i) Show that R™ and F™ have the same distribution.

(ii) Suppose that T, is almost surely finite. Let Z = R™¢(x) (which is inde-
pendent of ). Show that for all n > T. and y € M, R"(y) = Z. Deduce

that the law of Z is the unique invariant probability of the chain induced
by (F™).

(iii) Suppose that for some a > 0 m{f# € © : Fy € Cst} > . Show that T.
has a geometric tail, and is therefore almost surely finite.

(iv) Suppose, more generally, that for some a > 0 and every subset A C M
having cardinal |A| > 2

m{0 € O |Fy(A)| < |A|) > a.

Show that 7. has a geometric tail, and is therefore almost surely finite.
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(v) Suppose now that P is a Markov transition matrix on M having positive
entries. Show that it is always possible to represent it by a RDS such
that the condition assumed in question (7i7) is satisfied. Explain how
this can be used to produce an algorithm which sample the invariant
distribution of P in finite time.

(vi) Let M = {0, 1} and let P be the Markov matrix defined by P(z,y) = 1.
Let © = {0,1},m = (6 + 01) and Fy(z) = 6z + (1 — 0)(1 — z). Show
that the Markov kernel P is represented by (F,m) but that 7. = oo
almost surely.

Notes

The proof of Erdés’ s theorem on Bernoulli convolutions (see Remark 3.10)
as well as numerous illustrating simulations can be found if the first chapter
of [3]. For (much) more on Bernoulli convolution one recommend the survey
papers [36] and [45]. The book [30] contains a full chapter on Propp and
Wilson algorithm including many examples of application.



Chapter 4

Invariant and Ergodic Probability
Measures

4.1 Weak convergence of probability measures

Let P(M) denote the set of probability measures on (M, B(M)). A sequence
{pn} C P(M) is said to converge weakly to p € P(M), written
fin = 11,
provided
lim i f = pf

for all f € Cy(M). The following theorem, known as Portmanteau theorem,
gives equivalent conditions to weak convergence. Note that this theorem is
true in any metric space (without assumption of separability or completeness).

Let Uy(M) C Cy(M) (resp. Ly(M) C Uy(M)) denote the set of bounded
and uniformly continuous (resp. bounded and Lipschitz) mappings f : M —
R.

Theorem 4.1 (Portmanteau theorem) Let {u,} C P(M) and pn € P(M).
The following conditions are equivalent:

(@) pn = 15
(b) jinf — uf for all f € Up(M);

() nf = pf for all f € Ly(M);

29
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(d) limsup,,_, pin(F) < u(F) for all closed sets F C M;
(e) liminf, o 1, (O) > p(O) for all open sets O C M;

(f) lim, o0 ptn(A) = p(A) for all A € B(M) such that 1(0A) = 0, where
0A := A\ int(A) denotes the boundary of A.

Proof (a) = (b) = (c) is clear and (d) < (e) holds by set complementa-
tion. Assume (c¢). Let F be a closed set, ¢ > 0, and f.(x) := (1 — @)*,
where d(z, F') = inf epd(z,y). Then 1 > f. > 1p and f. € Ly(M). Thus,
lim sup p,(F') < limsup p, f: = pfe and, by dominated convergence, puf. —
w(F) as € — 0. This proves that (¢) = (d). Assume (d). Let A € B(M) be
such that u(0A) = 0. Let F' be the closure of A and O its interior. Then
w(F) = u(0) and, by (d) and (e), liminf p,(A) > liminf 4, (O) > p(O) and
lim sup g, (A) < limsup p,(F) < p(F). This proves that (d), (e) = (f). It
remains to show that (f) = (a). Assume (f) and let f € Cy(M). Replac-
ing f by f + c for some ¢ > 0 if necessary, we can assume that f > 0.
For all @ > 0, the set {f > a} is open and its boundary is contained in
{f = a}. Furthermore, the set of a > 0 such that pu({f = a}) > 0 is at most
countable (as the set of discontinuity points of the cumulative distribution
function @ — p({f < a})). Thus, by Fubini’s theorem, (f), and dominated

convergence, fi,f = foHm wn(f > a)da — f”me (f > a)da = uf.
QED

The following corollary is often useful.

Corollary 4.2 Let f € B(M) and let Dy denote the set of discontinuities of
[ 1 ftn = g and (Dy) = 0, then o f — pif.

Proof Let p/ := p,(f7!(-)) be the image measure of u, by f. It suf-
fices to show that pf = p/. Indeed, let g(t) = t for |t| < ||f]loo, and
g(t) = sign(t)|| flleo for [t > [[flloc. Then plg = pnf and p/g = pf. To
prove that uf = p/, we rely on assertion (d) of the Portmanteau Theorem.
Let F be a closed subset of R. Then limsup uf (F) < limsup u,(f~1(F)) <

wu(f~1(F)) because p, = u. Now, f~1(F) C D;Uf1(F) so that u(f~'(F)) =
p(fH(F)) = p/(F). QED

Exercise 4.3 For £,0 > 0 let A.; be the set of x € M such that |f(y) —
f(2)| > € for some y, z € B(x,d). Show that Dy = Upens Mimen+ Ai/n,1/m and
that Dy is measurable (even if f is not).
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Exercise 4.4 Let P be a Markov kernel on a metric space M. Show that P
is Feller if and only if the map ¢ : M — P(M), = +— P(x,-) is continuous
(where P(M) is equipped with the topology of weak convergence).

The space P(M) equipped with the topology of weak convergence is ac-
tually a metric space, as shown by the next proposition.

Proposition 4.5 There exists a countable family { f,, }n>0 C Cy(M) such that

Duv) = 3 oo min(luf, — vfl 1)

n>0

is a distance on P(M) whose induced topology is the topology of weak conver-
gence. That is
fin = ft < D(p, pt) — 0.

Remark 4.6 Unless when M is compact, the family {f,},.>0 is not dense in
Cy(M) (see Exercise 4.8).

Proof If M is compact, Cy(M) is separable (see Exercise 4.7) and it suffices
to choose a dense sequence {f,} C Cy(M). If M is not compact, Cy(M) is
no longer separable (see Exercise 4.8), but we shall prove that there exists a
metric d on M, topologically equivalent to d, making M homeomorphic to a
subset of a compact metric space. It will then follow that U, (M, ci), the space
of bounded uniformly continuous functions on (M, d), is separable. (Here one
should recall that two topologically equivalent metrics may yield distinct sets
of uniformly continuous functions.)

Replacing d by #‘ld (which remains a distance on M inducing the same
topology as d), we can assume that d < 1. Let {a,},>0 C M be countable
and dense, and let H : M — [0, 1]Y be the map defined by

H(z) = (d(x,ay))n>0-

By Tychonoff’s Theorem (see, e.g., Theorem 2.2.8 in [12]), [0, 1]V is a compact,
metric space. A metric for [0, 1]Y is given by

|k — Yrl
€(X, y) = Z Ta
k>0

where X = (21)k>0,¥Y = (Yk)r>0- Set

d(x,y) := e(H(z), H(y)).
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It is not hard to check that d is a metric on M inducing the same topology
as d. The spaces (M,d) and (H(M),e) are thus isometric. Let K := H(M).
Then K is compact (as a closed subset of a compact space) and thus, there
exists a countable and dense family {g,} C Cy(K). Let f € Uy(M,d). Since
H is an isometry, the map f o H~! H (M) — R is uniformly continuous. It

then extends to a continuous map f : H(M) — R. By density of {g,}, there
exists, for all € > 0, some n such that

If =gnoHlw= sup |foH'(x)=gu(x)| < sup|f(x) = ga(x)| <.
x€H (M) xeK

This proves that the sequence {f,}, with f, := g, o H, is dense in U,(M, d).
Now, by Theorem 4.1 (b) and density of {fi}, 1, = p if and only if u, fr —
wfx for all k € N. This is equivalent to D(p,, ) — 0. QED

Exercise 4.7 Let K be a compact metric space (and thus also a Polish
space). Using the proof of Proposition 4.5, show that K is homeomorphic
to a compact subset of [0, 1]N, equipped with the metric e. We now identify
K with a subset of [0, 1]". Let P be the set of real-valued functions on [0, 1]
of the form p(x) = q(zo,...,z,), where ¢ : [0,1]""' — R is a polynomial in
(n+1) variables with rational coefficients. Use the Stone-Weierstrass theorem
to show that P|x = {p|x : p € P} is dense in C(K). This shows that C(K)
is separable. Since Cy(K) is a subset of the separable metric space C(K), it
15 itself separable.

Exercise 4.8 Let X be a topological space. Suppose that there exists an
uncountable family {O,} of open sets such that O, NOg = 0 for a # 5. Show
that X is not separable. Show that C,(R), the set of continuous bounded
functions on R, is not separable. Hint: Let f € Cp(R) be such that f(n) =0
and f = 1lon [n+1/(n+1),n+1-1/(n+1)] for alln € N*. Set f,(t) :== f(z+t)
and consider the family {O,},c(0,1), where Oy := {g € Cy(R) : || fo — gl <

1/2}.

Exercise 4.9 |Borel Isomorphism| We say that two measurable spaces X
and Y are isomorphic if there exists a bi-measurable bijection ¥ : X — Y|
meaning that both ¥ and ¥~! are measurable. It turns out that every Borel
subset M of a Polish space is isomorphic to a Borel subset of [0, 1] (see Remark
4.10). The purpose of this exercise is to prove this result when M is compact
or locally compact and separable.
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(i) Let {0,1}"" be equipped with the product topology and Borel o-field.
Show that {0, 1} is a metric space with the metric d defined as

jwi — ol
d(w, ) := Z -

i>1

(ii) Show that the map
{0, 13 —[0,1],
Wi
W E

i>1

is 1-Lipschitz continuous.

(iii) Let I € {0,1}Y" be the set of w such that w; = 0 for infinitely many i and
w; = 1 for infinitely many j. Show that I is a Borel subset of {0, 1}
and that W|; (U restricted to I) is a homeomorphism onto W(I), i.e. a
continuous bijection with continuous inverse.

(iv) Show that [0,1] and {0, 1} are isomorphic. Hint: Use (iii) and the
fact that the complement of I in {0, 1}!" is countably infinite.

(v) Show that there is a homeomorphism between {0, 1} and {0, 1}N">N"
equipped with the metric

d((A;;)i>1, (Bij)ix1
By = Y Az (B)er)
Jj=1

Then show that [0,1] and [0, 1] are isomorphic. Relying on the proof
of Proposition 4.5, deduce that every compact (or locally compact sep-
arable) metric space is isomorphic to a Borel subset of [0, 1]. Hint: Any
locally compact separable metric space can be written as a countable
union of compact sets, see, e.g., Theorem XI.6.3 in [14].

Remark 4.10 Theorem 13.1.1 in [12] implies the following: If M is a Borel
subset of a Polish space, and if B is a Borel subset of [0, 1] whose cardinality
equals the cardinality of M, then M and B are isomorphic. Since the cardi-
nality of a Borel subset of a Polish space is either finite, countably infinite,
or the cardinality of the continuum, every such set is in fact isomorphic to a
large class of Borel subsets of [0, 1].
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One of the main advantages of the distance defined in Proposition 4.5 is that
it allows to verify weak convergence by testing the condition u,f — puf over
a countable set of functions.

Two other classical distances over P(M) are the following:

Prohorov metric For any A C M and € > 0, let
A ={ye M: d(y,A) <e}.

For all u,v € P(M) the Prohorov distance (also called the Lévy-Prohorov
distance) between p and v is defined as

m(u,v) :=inf{e >0 : u(A) <v(A®)+eforall Aec B(M)}. (4.1)

Fortet-Mourier metric Let Ly(M) C C,(M) be the space of bounded
Lipschitz maps equipped with the norm

I fllet = I flloe + Lip(f),

where

Lip(f) i= suP{W

For all u,v € P(M) the Fortet-Mourier distance between p and v is defined
as

(x,y) € M x #£ y).

p(p,v) :=sup{|uf —vf| : f € Ly(M), [ fllu < 1}. (4.2)

A proof of the following result can be found in Dudley [12].

Theorem 4.11 The maps 7 and p are distances on P(M). Let {u,} C P(M)
and p € P(M). The following conditions are equivalent:

(@) pin = p;
(b) p(pin, 1) = 0;

(¢) m(ptn, p1) — 0.

Proof We only prove that (a) < (b). For more details and the proof of
(b) & (c), see Dudley [12]. The implication (b) = (a) follows from assertion
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(c) of Theorem 4.1. Conversely assume (a). We first assume that M is com-
plete. Fix ¢ > 0. By Ulam’s theorem (or Prohorov’s theorem, Theorem 4.13
below), one can choose K C M compact such that

WK)>1—c¢ (4.3)
Let K. ={x € M :d(z,K) < ¢}. By assertion (e) of Theorem 4.1,
(K >1—¢ (4.4)

for n sufficiently large. By the Ascoli theorem, the unit ball Ly, := {f €
Ly ||fllu < 1} restricted to K is a compact subset of Cy(K'). There exists
then a finite set {f1,..., fn} C Ly1 such that for all f € Ly, there is some
i €{1,..., N} such that |f(z) — fi(x)| < e for all x € K. Since f and f; have
a Lipschitz constant < 1, we also get that

F(@) — filx)] < 3¢ (4.5)
for all x € K.. Now

|t f = puf | < (= 1) fil +1Gm = ) ((F = F)Lac) [+ | (o = 1) ((f = fi) Lan )|
Thus, using inequalities (4.3), (4.4) and (4.5), we get

< _ )
Ppin; 1) < max [(pn — ) fil + 8e.

This proves (b). If M is not complete, we can replace it by its completion
M. Any map f € L; extends to a bounded Lipschitz map on M and the

measures (u,) and p can be seen as measures on M so that the proof goes
through. QED

Remark 4.12 Theorem 4.1 is true in any (not necessarily separable) met-
ric space. The equivalences in Theorem 4.11 require separability (but not
completeness).

4.1.1 Tightness and Prohorov Theorem

A set P C P(M) is said to be tight (sometimes called uniformly tight) if for
every € > 0 there exists a compact set K C M such that

pwK)=1-¢
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for all © € P. Observe in particular that if M is compact, every subset
of P(M) is tight. A set P C P(M) is said to be relatively compact if it
has compact closure in P(M) (equipped with one of the distances 7, p or
any other distance characterizing weak convergence). Finally, it is said to be
totally bounded if for every € > 0, there is a finite set A C P such that for every
p € P there is v € A with d(u,v) < e. Here, d can be the Prohorov metric,
the Fortet-Mourier metric, or any other metric on P(M) characterizing weak
convergence.

The following theorem usually referred to as Prohorov’s theorem asserts
that tightness and relative compactness are equivalent in a Polish space (com-
plete and separable). Here the assumption that M is a Polish space is crucial.
For otherwise the implication (b) = (a) might be false (see e.g. Billingsley
[6] or Dudley [12, Chapter 11.5] for a proof).

Theorem 4.13 (Prohorov theorem) Assume M is a Polish space (i.e a
complete separable metric space). Then the following assertions are equiva-
lent:

(a) P is tight;
(b) P is relatively compact;

(c) Bvery sequence {p,} C P has a convergent subsequence p,, = j €
P(M);

(d) P is totally bounded for  or p.

Remark 4.14 The latter property shows that P(M) is complete for p or 7w
since every Cauchy sequence is totally bounded.

Tightness Criteria

We conclude this subsection with a simple practical Lyapunov-type condition
ensuring tightness of a sequence of probabilities.
A measurable map V : M — R is called proper if for all R € R the set

{V<LR}={xe M: V(z) <R}

has compact closure.
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Proposition 4.15 Let V : M — R" be a proper map and let {u,} be a
sequence in P(M) such that

limsup p,,V < K < o0.

n—0o0

Then {p,} is tight. Assume furthermore that V is continuous. Then
(1) For every limit point p of {u,}, pV < K;

(ii) Let H : M — R be a continuous function such that G = 1+‘|/H| is proper.
If p, = p then p,H — pH.

Proof Fix e > 0 and let R > 0 be large enough so that limsup,,_, . n

£R. By the Markov inequality, limsup,, ,., p{V > R} < limsup,,_,, *&

e. Let now g = lim y1,,, be a limit point of {y,,}. Then for all R > 0 u(VAA)
limy o0 fin, (V A A) < K. Thus V' < K by monotone convergence. We pass
to the proof of the last statement. Let G = %IHI For all R € R\ D¢ with
D¢ at most countable, u{G = R} = 0 and, therefore,

<<
[l IAIA

Jim g, (H1lg<r) = p(H1g<r).

On the other hand 11, (|H|1g>r) < pin(Elasr) < gn(V). Thus

im limsup p,(|H|1gsr) =0

1
R—o0 pseo

and, similarly,
lim p(|H|1lesr) = 0.
R—o0

This proves the result. QED

4.2 Invariant probability measures

Given a Markov kernel P, a measure (respectively a probability measure) p
is called P-invariant or simply invariant if

pPf = puf (4.6)
for all f € B(M), where Pf is defined by (1.2). Equivalently,
pwP = p,
where pP is defined by (1.3).
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Exercise 4.16 Let R/Z denote the set of equivalence classes with respect
to the equivalence relation © ~ y < = —y € Z on R. The set R/Z can be
thought of as the unit interval [0, 1], where 0 and 1 are identified with each
other. Let (6,),>1 be an i.i.d. sequence of random variables with distribution
m, where m is a Borel probability measure on R/Z. For every 6 € R, let

Fy:R/Z —-R/Z, v — x+6 mod 1.

Show that the Lebesgue measure on R/Z is an invariant probability measure
for the Markov kernel induced by (F,m).

Remark 4.17 Let C denote a space of bounded, measurable mappings f :
M — R, closed under multiplication and such that B(M) = o(C) (the smallest
o-field making elements of C measurable). By a monotone class argument
(see the appendix, Theorem A.1), it suffices to check (4.6) on C to prove P—
invariance of © € P(M).

For instance, one can choose C to be the set of bounded, continuous func-
tions; or, if Cy(M) is separable, a countable set of continuous functions dense
in the set of bounded continuous functions and closed under multiplication.

We let Inv(P) denote the set of P-invariant probability measures. The set
Inv(P) might be empty as shown by the following two examples.

Example 4.18 Tet M = [0,1] and f : M — M be the map defined by
f(z) = x/2 for x # 0 and f(0) = 1. Then, the (deterministic) chain X, ; =
f(X,) has no invariant probability measure. For otherwise the Poincaré re-
currence theorem (see Theorem 4.41 below) would imply that such a measure

is dg, but f(0) = 1.

Example 4.19 Consider the pair (F,m) introduced in Exercise 4.16. Let us
assume in addition that [,|0] m(df) < co and set a := [, 0 m(df). While
the corresponding Markov kernel P has the Lebesgue measure as an invariant
measure, P does not admit any invariant probability measures if o #£ 0.

To see this, let p be a probability measure on (R, B(R)). Then there is
K > 0 such that u([—K, K]) > 0. If u was invariant for P, the Markov chain
(Xn)nen induced by (F,m) and with X, ~ u would satisfy

O<M([_K7K]>:Mpn([_K7K]):P(|Xn| SK)> Vn € N*.

But if @ > 0 (o < 0), one has lim, ,o X,, = oo (lim,, 0 X,, = —00) P-
almost surely by the law of large numbers. Hence lim,, ., P(|X,| < K) =0,
a contradiction.
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Given a Markov chain (X,) on M, the associated family of empirical
occupation measures is defined as

n—1

1
= — Ox,, N*. 4.
v, RZZ_; X; n c ( 7)

Notice that each v, is a random element of P(M).
A sufficient condition ensuring existence of invariant probability measures
is given by the following classical theorem (see e.g. [13]).

Theorem 4.20 Let (X,,) denote a Markov chain (defined on (2, A, F,P)) on
M with kernel P that s Feller. Then the following statements hold.

(1) P-almost surely, every limit point of the family of empirical occupation
measures (Vp)n>1 18 P-invariant;

(i1) If (Vn)n>1 is tight with positive P-probability, then Inv(P) is nonempty.

Proof (i). Let f € B(M). Set U,41 = f(Xny1) — Pf(X,), My := 0 and
M,y := M, + U,yq, for n > 0. Then (M,) is an L? martingale, whose
quadratic variation (see the section on martingale theory in the appendix)
verifies

(M)ns1 = (M), = E(Up 1 |Fn) = PfA(Xn) = (Pf)*(Xa) <2/ f]]%.
Hence by the strong law of large numbers for martingales (see Theorem A.8
in the appendix),

M,
0= lim — = lim v,f — v,(Pf) (4.8)
n—oo

n—oo n

almost surely. Let {fi} C C,(M) be as in Proposition 4.5. Then, by the
Feller property, P fy is in Cy(M) for all k and, consequently, with probability
one
Ve — I/(Pfk) =0

for every limit point v of {v,,} and every k € N. Thus, v = vP.

(ii). Let w € € such that (v,(w)),>1 is tight and all of its limit points
are P-invariant. By Prohorov’s theorem, (v,(w)),>1 admits at least one limit
point, so Inv(P) is nonempty. QED

Corollary 4.21 If M is compact and P is Feller, Inv(P) is a nonempty com-
pact convex subset of P(M). Convezity of Inv(P) holds for arbitrary metric
spaces and Markov kernels.
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Tightness Criteria for Empirical Occupation Measures

When M is noncompact, the tightness of the empirical occupation measures
(v,,) can be ensured by the existence of a convenient Lyapunov function. This
is a proper map V : M — R, such that PV — V is "sufficiently" negative.

Corollary 4.22 Let V : M — R, be a proper map. Assume that PV <V
and that E(V (X)) < 0o. Then the family of empirical occupation measures
(V) is almost surely tight.

Proof The sequence {V,, = V(X,,)} being a nonnegative supermartingale
with E(Vp) < oo, it converges almost surely to some finite random variable
Vs (see Theorem A.6 in the appendix). This implies that v,V — V, almost
surely and the result follows from Proposition 4.15. QED

Another result, in the same spirit, is
Corollary 4.23 Let V : M — R, be a proper map. Assume that
PV < pV + &,

with £k > 0,0 < p <1, and E(V(Xy)) < co. Then

lim sup v VYV < VE

almost surely. In particular, (v,) is tight. The set Inv(P) is a nonempty
compact convex subset of P(M) and for all u € Inv(P), uV < £

1—-p-°

Proof Set W = v/V. Then by Jensen’s inequality, PW < VPV < \/pV + & <
VAW + /K. Set LW (x) = PW(z) — W(x), My = 0 and

M, = W(X,) — W(Xo) — nz_l LW (Xy)

for all n > 1. Then (M,) is an L? martingale whose quadratic variation
process is given as (M)o = 0 and

<M>n+1_ <M>n = E((Mn+1_Mn)2|}_n)) = PV<Xn)_(PW)2(Xn) < PV(Xn)
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for n > 0. Thus E((M),) < > E(P™V(X,)) < ny+ 15 E(V(Xo)) where
the last inequality easily follows from the the assumption on V. Then by the
second strong law of large number for L? martingale (Theorem A.8 (iv) in the

appendix) % — 0 almost surely. Now, because —LW > (1 — \/p)W — /k,

u—¢@%wgv%+%ﬁ+y%@.

This, combined with Proposition 4.15 proves the first statement.
By Theorem 4.20, Inv(P) is nonempty. Let p € Inv(P). For all n € N*

Y2

1
P”VSp”V+/-€1 Sp”V—l—/ﬁl

Thus, by invariance and Jensen’s inequality,
u(V A M) = pP"(V A M) < p(P"V A M) < pu((p"V + =) A M),
P

Letting n — oo in the right-hand term and using dominated convergence
shows that u(V A M) < % Then, pV' < % by monotone convergence.
Compactness follows from Proposition 4.15 and Prohorov’s theorem. QED

Exercise 4.24 [Invariant measures and mean-occupation] Let (Xj) be a
Markov chain, 7" a finite stopping time (i.e. 7" < oo a.s) and let v be the
"mean occupation measure up to time 7" defined for all f € B(M), f > 0,
as

S

-1

vi=E(Y f(Xk)).

0

(i) Show that v(Pf) — vf = E(f(X1)) — B(f(X0)).

e
Il

(ii) Show that if X, and X7 have the same distribution, and E(T) < oo,
then ﬁ is an invariant probability measure for the chain.

4.2.1 Excessive measures

A measure p is called ezcessive provided

pP < p.
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Lemma 4.25 FEvery finite excessive measure is invariant.

Proof If p is a finite excessive measure, then pP(A) < p(A) and p(M) —
pP(A) = pP(A%) < p(A®) = p(M) — p(A). QED

Given two measures o and 5 on M, one calls a absolutely continuous with
respect to [ and writes a < § if for every A € B(M), (A) = 0 implies that
a(A) = 0. One says that « and (3 are mutually singular and writes o L ( if
there is A € B(M) such that a(A) = B(A°) = 0. Let p and v be measures
on M. By Lebesgue’s decomposition theorem (see, e.g., Theorem 3.8 in [17]),
V = Vg + Vs, Where v, < pand vy L p. Equivalently,

v(dx) = h(z)u(dx) + La(x)v(dx),
where h € L'(p) and pu(A) = 0.

Lemma 4.26 Let p,v € Inv(P). Then the absolutely continuous and the sin-
gular parts of v with respect to p are invariant measures.

Proof Write v(dz) = h(z)u(dz)+14(z)v(dz) with h € L' (i) and p(A) = 0.
By invariance, pu(A) = [ P(z, A)p(dz) = 0, so that P(x, A) = 0 for p—almost
every x € M. Thus, for any Borel set B,

/P(z,B)h(x),u(dx) = /P(:mB NAYh(x)u(dr) <v(BNAS) = (hu)(B).

This proves that h(z)u(dz) is finite and excessive, hence invariant. Since
14(x)v(dzr) = v(dz)—h(z)p(dz) and since v € Inv(P), the measure 1 4(z)v(dx)
is invariant as well. QED

4.2.2 Ergodic probability measures

Let u € Inv(P). A bounded, measurable function g is called (P, u)—invariant
provided Pg = g p—almost surely. A set A € B(M) is called (P, u)—invariant
if 14 is (P, )—invariant.

An invariant probability measure p is called ergodic (for P) if every (P, p)-
invariant function is p-almost surely constant. (A function f : M — R is
called p-almost surely constant if there is ¢ € R such that f(z) = ¢ for
p-almost every x € M.)
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Lemma 4.27 A probability measure p € Inv(P) is ergodic if and only if every
(P, p)-invariant set has p-measure 0 or 1.

Proof Suppose first that p € Inv(P) is not ergodic. Then there exists
a bounded, measurable function h such that Ph = h p-almost surely and for
every ¢ € R,
p({zx e M: h(zr)=c}) <1

It follows that for some ¢ € R, A := {x € M : h(x) > ¢} has py-measure
different from 0 and 1.

Claim: A is (P, p)-invariant.

Proof of the claim: By Jensen’s inequality, |Ph| < P|h|. Since u(P|h| —
|h]) = 0 by P-invariance of u, and since Ph = h p-almost surely, this
proves that |h| is (P, p)-invariant as well. Hence, max(0,h) = 3(h + |h|)
is (P, u)—invariant. Similarly,

h,, := min(n max(0,h — ¢), 1)

is (P, p)-invariant for every n > 1. Since lim, oo hy, = 1a, 14 is (P, p)-
invariant as the pointwise limit of a uniformly bounded sequence of (P, u)-
invariant functions. This proves the claim and one direction of the lemma.

For the converse direction, let p be ergodic and let A be a (P, pi)-invariant
set. Then 1, is a (P, u)-invariant function, and ergodicity of p implies that
there is ¢ € R such that 1, is p-almost surely equal to c. Necessarily, ¢ €
{0,1}, whence it follows that u(A) € {0,1}. QED

Remark 4.28 One usually defines a harmonic map as a measurable map
(bounded or nonnegative) such that Pf = f. Note that a harmonic map is
(P, u)—invariant for every p € Inv(P).

A probability measure p € Inv(P) is called extremal if it cannot be written as
p=(1—1t)po + tuy with pg, g € Inv(P),0 <t <1 and po # p1. Notice that
an extremal invariant probability measure cannot be written as the sum of
two nontrivial invariant measures that are mutually singular. This fact will
be used below in the proof of Proposition 4.29, part (ii).

Proposition 4.29 (i) An invariant probability measure p is ergodic if and
only if it is extremal.
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(ii) Two distinct ergodic probability measures are mutually singular.

Proof (i). Suppose that p is nonergodic. By Lemma 4.27, there exists a
(P, u)—invariant set A such that 0 < p(A) < 1. Let pa(.) = p(AN.)/u(A).
We claim that for every g € B(M),

P(gl4) = (Pg)1a
p—almost surely. Indeed, by the Cauchy-Schwarz inequality,
[P(g1a)l* < P(g*)P(14) = P(g")14

pu—almost surely. Thus P(gls)14c = 0 p—almost surely and, interchanging
the roles of A and A°, P(g1lc)14 = 0 p—almost surely. On the other hand,

P(g14) = (Pg)1a = [P(g14) — Pg]la + P(g1a)Laec
== —P(glAc)lA + P(g].A)lAc =0.

This proves the claim. Therefore,

1a(Pg) = ﬁu((Pg)lA) - @u(P(glA»

= ﬁu(glfx) = pa(g).

This proves that p4 is an invariant probability measure. Similarly, - is an
invariant probability measure, and since p = pu(A)pa + (1 — p(A))pac, the
probability measure p is nonextremal.

Suppose now that u is ergodic, and that p = (1 — ) + tpg with pg, g €
Inv(P) and ¢t € [0,1]. If t # 0, u; < p. Hence, there exists h € L'(u) such
that pq(dx) = h(z)p(dx). Then, by Jensen’s inequality,

0 < u((Ph — h)?) = u((Ph)* — 2hPh + h*) < pu(Ph* — 2hPh + h?)
= 2uh?® — 2uy Ph = 2uh?* — 2u,h = 0,

from which it follows that Ph = h p—almost surely, and -by ergodicity and
the fact that ¢ and p; are probability measures- h = 1. As a result, ¢ = 1 and
1 is extremal.

(ii). Let p and v be ergodic. Write v(dx) = h(z)u(dx) + ps(dx) with pug
singular with respect to g and h € L'(u). By Lemma 4.26, h(z)u(dr) and pu,
are invariant, and by extremality either h = 0 or us = 0. If u, = 0, the proof
just above shows that h must be 1. QED
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4.3 Unique ergodicity

We say that (X,,) or P is uniquely ergodic if the set of P-invariant probability
measures has cardinality one. An immediate consequence of the preceding
section is

Proposition 4.30 If P is uniquely ergodic, then its invariant probability
measure s ergodic.

While a deterministic dynamical system is rarely uniquely ergodic (see Section
4.4 for a definition of ergodic probability measures for deterministic dynamical
systems), this property is much more often satisfied by random dynamical
systems and Markov chains. We start with a simple situation, which can be
seen as a random version of the Banach fixed point theorem.

4.3.1 Unique ergodicity of random contractions

Throughout this subsection, let M be a complete, separable metric space.
Recall that a map f: M — M is a contraction if its Lipschitz constant

d(f(x), f(y))
dwy) " 7 y}

is < 1. By the Banach fized point theorem, a contraction f has a unique
fixed point z*, and for all x € M, f"(xz) — x* at an exponential rate. Here,
using the notation of Section 77, we shall consider a Markov chain recursively
defined by

Lip(f) = sup {

Xn+1 = F9n+1 (Xn)

under the assumption that the maps Fy are contracting on average.

More precisely, we assume that for each 8 € O, the map Fy is Lipschitz
continuous, and we let ly := Lip(Fy). Note that, by separability, the supre-
mum in the definition of the Lipschitz constant can be chosen over a countable
set, so that [y is measurable in 6.

We say that the family {Fy} is contracting on average if [log(lg)Tm(df) <
oo and

/log(lg)m(de) = —a < 0.

Here, we allow for a to be +00. The next result is classical and has been proved
in several places. Here we follow the approach of Diaconis and Freedman [11].
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Theorem 4.31 Assume that {Fy} is contracting on average and that

/log(d(Fg(xo),xo))+m(d0) < 0 (4.9)

for some xy € M. Then the induced Markov chain has a unique invariant
probability measure *, and X,, converges in distribution to p*. In other words,
for every probability measure p on M,

wP" = u*.
If we furthermore assume that o < 00,
A= s%p | log(lg) + o |< o0
and
B / d(Fy(x0), 20)m(d8) < oo,
then, for every x € M there is C(x) > 0 such that
p(0,P",p*) < C(x)e™, WneN,

where p stands for the Fortet-Mourier distance (see (4.2)), and
B :=min{a/4,a?/(324%)}.

Proof Forallz € M, set X* := Fp o...0Fp, (z)and Y,* := Fy, 0...0Fy (z).
The idea of the proof is to show that (Y,7) converges almost surely (and thus
in law) to some random variable Y, independent of x. Since X7 and Y’ have
the same law, this implies that (X7?) converges in law to Ya.

To shorten notation, set I, :=lg,, L, := Hi:l l;, and Y, := Y for zy as
in (4.9). By the strong law of large numbers, P—almost surely,

log(L,
lim 28En) _ e Loo,0). (4.10)
n—o0 n
Thus, P-almost surely,
log(d(Y*,Y,
n—oo n

because d(Y,*, YY) < L,d(x,y). We shall now show that (Y;,) is almost surely

n»n

Cauchy, by completeness of M hence convergent.
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For all n,p € N,

-1

Yoip, Y, Z Yotit1, Yogi) < ZLan Fo, . i (o), T0). (4.11)

i=0 >0

Let 0 < ¢ < a/2. Then

> P(logd(Fy, (o), 70) > en) < > P(log(d(Fy, (x0), x0))" > en)

n>1 n>1

< ~E(log(d(Fy, (x0), 70))") < o0

(Here, we used that > -, P(§ > n) < E({) for every nonnegative random
variable &, as well as the integrability condition in (4.9).) Thus, by Borel-

Cantelli, lim sup w < ¢ almost surely. Combined with (4.11) and
(4.10), it follows that, almost surely, for n large enough,

Yner,Y Ze (n+i)(a— 26

>0

This concludes the proof of the first statement, with p* the law of the limiting
random variable Y, (see also Exercise 4.32).

We now pass to the second statement. For every bounded Lipschitz func-
tion f with || f]|z < 1 and for every 6 > 0,

0" — " 1 = [BE(f (YY) = F(Yoo))| <6+ 2P(d(Y,], Vo) 20). (4.12)
First observe that by (4.11),

d(Y;!, Vao) < d(Y,,Yy) +d(Yn, Yoo) < Lud(x,20) + Y Lusid(wo, Fy, .., (z0))-

>0
By Markov’s inequality,

P(d(xo, Fy,(z)) > ") < Be ™"
and by a standard Chernoff inequality (see Exercise 4.33 below),

P(Ln > e(—a+6)n) < e—n(gg/QAE)‘
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Thus | |
P(d(Ynm, YOO) > @(—oz+a)nd(x7 CL’O) + Z e(—a-i—a)(n—‘rz)ea(n-m))
>0
< efn(EQ/QAQ) + Z <e*(n+i)(€2/2A2) + B€*€(n+i)> )

>0

Choose € = a/4. Then

1
T —na/2
PA(Y? Ye) > e (d(x,zo) + P 6_0‘/2))
‘ 1
—na?/(32A2) —no/4
se (1+ 1 e—a2/(32A2)) + De 1 — e—a/d’

and we obtain the desired estimate with the help of (4.12). QED

Exercise 4.32 Let P be a Markov kernel on a separable metric space M,
and let u* be a Borel probability measure on M such that for every z € M,
0, P™ converges weakly to u* as n — oo. Show that if P is Feller, then p* is
the unique invariant probability measure for P.

Exercise 4.33 [Chernoff bounds| Let X be an L' random variable with zero
mean. Assume that E(e*) < oo for some Ay > 0. Let g()\) := In(E(e*¥)).

(i) Show that for all ¢ > 0 and 0 < A < A,
P(X >¢) < et

and
P(X >e)<e9®

Y

where

g°(e) == sup (Ae —g(X)).

0<A< o

(i) Assume |X| < A < co. Show that g(\) < % and g*(g) > %. Hint:

For the first inequality, it may help to use convexity of g.

(iii) Let (X,) be a sequence of i.i.d. random variables with the same distri-
bution as X. Show that

PXi+...+4X,>ne) < e 9" (e,
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4.4 Ergodic theorems

4.4.1 Classical results from ergodic theory

We first recall some basic definitions from ergodic theory. There are numerous
textbooks on the subject including Cornfeld, Fomin, Sinai [9], Mage [32],
Katok and Haselblatt [27].

Let (X, F) be a measurable space and T : X — X a measurable map-
ping. A probability measure P over X is said to be T'—invariant (or simply
invariant) if

P(T™1(A)) =P(4)

for all A € F. Given such a P, a measurable function g : X — R is said
to be (T,P)—invariant if g o T = g P—almost surely, and a measurable set
A € F is said to be (T,P)—invariant if 14 is (7, P)—invariant. One also
defines a T'—invariant set (or simply invariant set) as a set A € F such that
T~1(A) = A. Note that this definition of invariance makes no reference to the
measure P and that a T —invariant set is clearly (7', P)—invariant.

A T—invariant probability measure PP is said to be T—ergodic (or simply
ergodic) provided that every (7',P)—invariant function is P—almost surely
constant.

Example 4.34 A periodic point of period d > 1 for T, is a point z € X such

that T4(x) = x and T%(x) # x for i = 1,...,d — 1. Given such a point, the
measure

1
E<5w —+ (ST(x) + ...+ 6Td71($))

is T'—ergodic.

Remark 4.35 One sometimes says that T is ergodic with respect to P to
mean that P is T'—ergodic.

Proposition 4.36 The following assertions are equivalent:
(a) The probability P is T—ergodic;
(b) Every (T,P)—invariant set has P—measure 0 or 1;

(c) FEvery T—invariant set has P—measure 0 or 1.
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Proof (a) = (b) = (c) are obvious. To show that (c) = (b), let A be a
(T, P)—invariant set. The set

A:={z e X: TF(z) € A for infinitely many k € N}

is invariant. Hence, by (c), P(4) € {0, 1}. Ifr e A\ A there exists k > 1
such that x € A\ T %(A), and if z € A\ A there exists k > 1 such that
x € T7F(A) \ A. Tt then follows that

ANA C | JAATH(A).

k>1
Thus ~
P(AAA) <) P(AAT*(A)).
E>1
Now

N
—_

P(AAT*(A)) <Y P(TH(A)AT- D (A)) = kP(AAT 1 (A)) = 0.

i

Il
o

[t remains to prove that (b) = (a). Let h be (T,P)—invariant. Then, for
each ¢ € R, the set {x € X : h(z) > ¢} is (T,P)—invariant and the result
follows. QED

Exercise 4.37 [Rotations| Let S' = R/Z,a € S*, and T, : S* — S! be the
rotation x — x + a. Describe the invariant and ergodic probabilities of Ti,.
Show that when « is érrational (ie o = £+ 7Z with £ € (0,1) \ Q) Ty is
uniquely ergodic, and more precisely, that the normalized Lebesgue measure
A on St is the unique invariant probability for T,,.

Exercise 4.38 Let k > 2 be an integer and Z* : S* — S',z — kz. Show
that \ is ergodic for Z*¥. Show that Z* has infinitely many periodic points,
hence infinitely many ergodic measures.

Exercise 4.39 [Shift] Let M = {0, 1} and © the shift map on M defined
as O(w); = wiy1. Show that:

(a) For all n > 1, © has 2" periodic orbits of period n, and that the set of
periodic points is dense in M;
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(b) There is point x € M whose orbit is dense in M;
(c) The probability (1 (6 + 1)) is ergodic for ©;
(d) There exists a continuous surjective map ¥ : M > S! such that
VoO=70V
where Z* is like in Exercise 4.38. Hint: one can use exercise 4.9.

Using (d), prove that Z? posseses a dense orbit and give an alternative proof
of the results of Exercise 4.38 when k = 2.

Exercise 4.40 Let T : S' x S' — S' x St (z,y) = (z + a,y + ) with «
irrational. Show that A ® A is ergodic. Hint : one can use the fact that every
f € L*(A® ) writes as a Fourier series f(x,y) = >, ez crer(w)ei(y) where
ex(z) = ™ and 37, |oul® < oo

The first important result from ergodic theory is the Poincaré recurrence
theorem. Notice that there is no assumption here that P is ergodic.

Theorem 4.41 (Poincaré recurrence theorem) Let P be a T—invariant
probability measure. For every measurable set A C X,

P(A) =P{z e A: T"(x) € A for infinitely many n}).
Proof For N € N, let
BN = {iL' € A: {Tn(l’)}nzj\[ C X\A}

Then T-"(B;1) N By = 0 for all n > 1. Hence T-"(B;) N T~ (By) = ( for all
m,n € N and n # m. Thus

1> P(I(By) =Y P(B)

neN neN
and P(B;) = 0. Replacing T with T proves that P(By) = 0. QED

Let Z denote the set of all invariant sets. Then Z is a o-field. The next result
is the celebrated pointwise Birkhoff ergodic theorem. The proof given here
follows [27] and goes back to Neveu.
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Theorem 4.42 (Birkhoff ergodic theorem) Let P be a T'—invariant prob-
ability measure. Let f € L'(P). Then f := E(f|I) is (T, P)—invariant and

n—1
1 ) "
lim — T =
Ji 3 foT =
P—almost surely. In particular, if P is T—ergodic, then

n—1

1 )
lim — T'=E
fim 52 ST =E(f)

P—almost surely.

Proof For f € LY(P), set S,(f)(z) :== 31~} foT%(x) and f := E(f|T). We
claim that

R Sn(f)

f <0, P—almost surely = limsup
n—00 n

<0, P — almost surely.

Let us first derive the theorem from the claim. For € > 0, set f. := f — f —¢.
Then f. = —¢ < 0, and since f is (T, P)—invariant (the proof is easy and left
to the reader),

)

n A Sn £
lim sup — f—e=limsup (£e)

n—00 n n—00 n

<0.

Sn(f)

n

n

< f . Similarly, liminf, .

Thus, € being arbitrary, limsup,,

7.

We now move on to the proof of the claim. For n € N* and x € X, let
Fo(z) == max{S,(f)(z) :k=1,...,n},
Foo(x) :=lim, . F,(z) € RU{o0}, and A := {F, = oco}. Clearly
S0

lim sup —

n—oo n
on X \ A and it suffices to prove that P(A) = 0. Now observe that F,, ;1 —
F,oT = f—min(0,F, o T). Consequently, A € Z and (F,,;1 — F, oT)
decreases to f — min(0, Fix, o T'). In particular, by monotone convergence,
limy, oo E((Fjpi1 — F, 0 T)14) = E(f1,4) = E(f14). By T—invariance of P,
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the left-hand side is nonnegative. Hence, if f < 0 P—almost surely, then
necessarily P(A) = 0. QED

The next theorem, known as the ergodic decomposition theorem, shows that
every invariant measure on a Borel subset of a Polish space equipped with
the Borel o—field can be written as a “sum” of ergodic measures.

Theorem 4.43 (Ergodic decomposition theorem) Let M be a Borel sub-
set of a Polish space, with Borel o-field B(M). Let T : M — M be a measur-
able transformation. FEvery T-invariant probability measure P can be decom-
posed as

P() = / Pla,) P(da),

where P is a Markov kernel on (M,B(M)) such that P(x,-) is ergodic for
P-almost every x.

Before proving the ergodic decomposition theorem, we state without proof
a lemma that can be deduced from Theorem 10.2.2 in [12] and the monotone
class theorem in the appendix.

Lemma 4.44 Let M be a Borel subset of a Polish space, with Borel o-field
B(M). Let P be a probability measure on (M,B(M)), and let A be a sub-
o-field of B(M). Then there exists a Markov kernel P on (M,B(M)) such
that for every f € B(M), Pf is a representative of E(f|A), i.e. Pf is A-
measurable and B(14Pf) =E(14f) for every A € A.

Proof [Theorem 4.43] Recall that Z denotes the o-field of T-invariant
sets in B(M). By Lemma 4.44, there is a Markov kernel P on (M, B(M)) such
that for every f € B(M), Pf is a representative of E(f|Z). This yields

P(A) = E(E(14|T)) = /M P(z, A) P(dz), VA e B(M).

As a subset of a separable metric space, M is separable (see part (i) of Exercise
4.45). Proposition 4.5 implies the existence of a countable family {f,}nen C
Cy(M) such that for every p,v € P(M), p = v if and only if uf, = vf,
for all n € N. For every n € N, Pf, is a representative of E(f,|Z), and
x> Pz, T7'())fn = P(fnoT)(x) is a representative of E(f, o T'|Z). Since
P is T-invariant, we have E(f,|Z) = E(f, o T|Z) for every n € N, hence
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P(x,-) is T-invariant for P-almost every z. To show that P(z,-) is ergodic
for P—almost every x, we follow the proof of Theorem 6.2 in [15]. Since M is
a separable metric space, the o-field B(M) is countably generated, i.e. there
is a countable family of sets {4, },en such that B(M) = (A, : n € N) (see
part (ii) of Exercise 4.45). As a result, L*(M, B(M),P) is separable (see parts
(i) and (ii) of Exercise 4.46). Since the set {14 : A € Z} is contained in
LY(M,B(M),P), it is also separable in the L'-topology, so there is a countable
family {A, },en C Z such that for every A € Z and for every € > 0, there is
n € N with P(AAA,) < e. Let Zy := o(A, : n € N). By definition, Z is a
countably generated sub-o-field of Z. Moreover, Z, and Z are P-equivalent,
i.e. for every A € Z, there is B € Z, such that P(AAB) = 0 (see part (iii) of
Exercise 4.46). As Z need not be countably generated (see Exercise 4.48), we
will work with Z; in the remainder of the proof. Applying Lemma 4.44 to Z,
we obtain a Markov kernel @ on (M, B(M)) such that for every f € B(M),
Qf is a representative of E(f|Zy). Let {f,}nen C Co(M) be as above. For
n € N, consider the function h, := @Qf,. Since Z and Z, are P-equivalent,
E(f.|Z) = E(f4]Zo). As a result, there is M' € B(M) such that P(M*') =1
and for every x € M', P(x,-) is T—invariant and

hn(x) = P(x,") fn, ¥n é€N.

Hence, Q(z,-) = P(z,-) is T-invariant for every z € M. By Birkhoff’s ergodic
theorem (Theorem 4.42), there is M? C M*' such that P(M?) = 1 and for
every x € M?,

oo .
Jim ,; foTH(2)) = ha(z), ¥n €N
And as both Q(+, A,,) and 1,4, are representatives of E(14, |Zy), there is M3 C
M? such that P(M?) = 1 and Q(z, A,,) = 14, () for every x € M? and n € N.
Finally, as Q(-, M?) is a representative of E(1,3|Zy) and as P(M3) = 1, there
is M* C M3 such that P(M*) = 1 and Q(x, M3) = 1 for every x € M*. Let us
show that Q(z,-) is ergodic for every x € M*, which will complete the proof
of the ergodic decomposition theorem. Fix z € M* and A € Z. In light of
Proposition 4.36, it is enough to show that Q(z, A) € {0,1}. If Q(z, A) = 0,
we are done. If Q(z, A) > 0, consider the probability measure

Q(z, AN B)

v(B) = Q. A)

B e B(M).
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Since v(A) = 1, it suffices to show that Q(z,-) = v, which will follow from

ho(z) =vf,, VneN. (4.13)

[x] := ﬂ A.

A€Ip:x€eA

Set

By part (i) of Exercise 4.47, one has
2l= ) 4.0 [) 4 (4.14)
n:x€An n:x¢ An

and [z] € Zy. Fix n € N. Since h,, is Zp—measurable, it is constant on the set
[z] by part (ii) of Exercise 4.47. Therefore, we have for every y € [z] N M?

N-1

h(@) = ha(y) = Tim > fu(T*(y)).
k=0

Since x € M3, the representation of [z] in (4.14) implies Q(z,[z]) = 1 and
thus Q(z, [x] N M3) = 1. Since Q(z,-) is T-invariant, another application of
Birkhoff’s ergodic theorem then yields that the constant h,(x) is a repre-
sentative of Eq,.y(fn|Z), where Eg(,,) denotes expectation with respect to
Q(x,-). Consequently,

ha(2)Q(2, A) = EQa,) (Lahn(2)) = Eq,)(1afn) = /M 1a(2) fa(2) Q(z, d2).

Dividing both sides by Q(z, A) gives (4.13). QED

Exercise 4.45 |Properties of separable metric spaces| Let (M, d) be a sep-
arable metric space.

(i) Let A be any subset of M. Show that A with the metric induced from
M is itself a separable metric space.

(ii) Show that the Borel o-field B(M) is countably generated.

Exercise 4.46 For an arbitrary probability space (€2, F,[P), prove the fol-
lowing statements:
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(i) If F is countably generated, then (2, F,P) is separable, i.e. there is a
countable family D C F such that for every A € F and € > 0 there is
B € D with P(AAB) < e.

(ii) If (2, F,P) is separable, then L'(Q2, F,P) is a separable metric space.

(iii) If (Q, F,P) is separable, then for every A € F there is B € (D) such
that P(AAB) = 0.

Exercise 4.47 Let (€, F) be a measurable space, let {A,},en C F be a
countable family of sets, and let A := o(A, : n € N). For x € (), set

(2] 4 = ﬂ A.
AcA:zcA
(i) Show that for every z € €,

[CB]A: ﬂ An N ﬂ Afr:u

n:r€An n:x¢An
and deduce that [z]4 € A.

(ii) Let f: Q — R be A-measurable and let = € Q. Show that f is constant
on [z] 4.

The next exercise shows that Z, the o-field of T-invariant sets, need not
be countably generated.

Exercise 4.48 Consider the irrational rotation 7T, of exercise 4.37 with «
irrational. Let Z be the o-field of T, -invariant sets. Use the formula from

part (i) of Exercise 4.47 to show that Z is not countably generated, even
though B(S1) is.

4.4.2 Application to Markov chains

Consider now the canonical chain introduced in Remark 1.6 in Section 1.2.1.
Let © : MY — MY be the shift operator defined by ©(w),, 1= wy,y1 and let
P, be the law of the canonical chain with initial distribution v and kernel P.
Recall that P, is a probability measure over M" characterized by (1.5).

Proposition 4.49 (i) P, is ©—invariant if and only if v € Inv(P).
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(ii) Let v € Inv(P) and let h € L'(P,) be (©,P,)—invariant. For x € M
such that h € L*(P,), let

Then

(a) h(w) = h(wy) P, — almost surely;
(b) h is (P,v)—invariant.

(iii) P, is ©—ergodic if and only if v is P—ergodic.

Proof (i) follows easily from the definitions.

(ii). Let h € L'(P,) be (©,P,)—invariant. For n € N, set h,, := E,(h|F,).
By Doob’s martingale convergence theorem (Theorem A.7 in the appendix),
h, converges P, —almost surely, hence in probability, to h. In particular, for
all € > 0, limy, 00 P, (|Any1 — hn| > €) = 0. By (0, P,)—invariance of h and
by the Markov property from Proposition 1.8,

hn = E,(ho ©"F,) = E,, (h) = h(w,).

Thus, B B
P, (|hns1 — hn| > €) = Po(|h(wny1) — h(wy)] > €). (4.15)

Since v € Inv(P), (i) implies that P, is ©—invariant. The expression on the
right-hand side of (4.15) thus equals P, (|h(w;) — h(wg)| > €), which proves
that h, = hg = h. Also, by the Markov property, Ph(z) = E,(Ex,(h)) =
E.(E.(ho®|F)) = E.(ho®©). And as h is (©,P,)—invariant, we have for
v—almost every € M that E,(h o ©) = h(z).

(iii). Let v be P—ergodic. We will show that every (O,P,)—invariant
function h € L'(P,) is P,—almost surely constant. In particular, every
(0, P,)—invariant set has P,—measure 0 or 1, so P, is ©—ergodic by Proposi-
tion 4.36. If h € L'(P,) is (©,P,)—invariant, then h is v—almost surely con-
stant by (ii) and P—ergodicity of v. By (ii), this proves that h is P, —almost
surely constant. Conversely, assume that P, is ©—ergodic. Let A be a
(P, V)—invariant set. Set A= {w e MY :wy € A}. Then P,(ANO~1(A)) =
[,v(dz)P(z,A) = v(A) = P,(A). This shows that A is (6,P,)—invariant.
Hence V(A) =P,(A ) € {0,1}. QED
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Theorem 4.50 Let P be a Markouv kernel, pu € Inv(P), and h € L'(P,,). Then
there exist a set N € B(M) and a function h € L'(u) such that u(N) = 1
and, for all x € N,

n—1
N
T}gxgoﬁ;ho@ (w) = h(x)

P,—almost surely. If uu is ergodic, then h(z) = E,(h).

Proof By Birkhoff’s ergodic theorem, ZZ;& ho©*(w) converges P, —almost
surely to a (©,P,)—invariant function he LY(P,). According to (ii) of Propo-
sition 4.49, h(w) = h(wo) P, —almost surely, where h(wp) := E,,(h). To con-
clude the proof, we use the fact that P,(-) = [, P.(-)u(dz). QED

Exercise 4.51 |Skew product chains| Let M, N be two metric spaces and
T:MxN— N,

(z,y) = T(y)

a measurable map. Let (X,,) be a M-valued Markov chain defined on some
filtered probability space (£2, F,FF,P) and Yy € N be a Fy measurable random
variable. Consider the stochastic process (Y,,) defined by

Yoo =Tx, (Yy).
(i) Show that (X,,Y;,) is a Markov chain on (9, F,F, P).

(ii) Suppose p € P(M) is an invariant probability for (X,,) and v € P(M)
is T, invariant for all x € M. Show that u ® v is invariant for (X,,Y,).

(iii) (inspired by Lemma 2.1 in [19]) We suppose in addition that p is the
unique invariant probability of (X,) and that for all x € M T, is
1-Lipchitz. That is

d(T:(y), To(2)) < d(y, 2)
for all x € M,y,z € N. Show that:
(a) For all f € Ly(M x N),u almost all z € M and all y € supp(v)
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(b) If supp(r) = N, then (X,,Y,) is uniquely ergodic.

(iv) Using (éi7) show that the map defined in Exercise 4.40 is uniquely er-
godic. Deduce that for all S irrational, the sequence (n?8) is equidis-
tributed on S* (choose 8 = 2a. See [18], corollaries 1.12 and 1.13).

Exercise 4.52 [Markov rotations| With the notation of the preceding exer-
cise 4.51, we assume here that M = {1,...,n}, N = S', (X,,) is a Markov
chain on M whose transition matrix K is irreducible, and that for all ¢ €
M, T;(y) =y + «; for some a; € S*.

A circuit for K is a sequence (iy, .. .,iq) of d > 1 distinct points such that
K (ig,igs1) > 0for k=1,...,d and i4.1 = ;. The purpose of this exercise is
to show that the chain (X,,,Y,,) is uniquely ergodic if and only if there exists
a circuit (iy,...,4q4) such that oy, + ...+ «, is irrational.

(i) (preliminary) Let D be a diagonal matrix whose entries 6y,...,6, are
complex numbers having modulus 1. Consider the linear equation

Ku = Du (4.16)
with u € C". Assume that u € C" is a nonzero solution to (4.16). Show
that:

(a) |ui| = |uq| fori=1,...,m;

(b) Kij >0= U; = QZUZ,

(c) For every circuit (iy,...,14) i, ...0;, = 1.

Prove that there exists a nonzero solution to (4.16) if and only if for
every circuit (iy,...,4q) 0 ...0;, = 1.

(ii) Let p be the invariant measure of (X,,) and f = (f1,..., fn) € L2(u®\)
Set fj(z) = > pcp ui(k)e* ™ with Y, , |u;(k)[* < co. Show that Pf =
[ if and only if Ku(k) = D*u(k) for all k € Z; where D is the diagonal
matrix with entries e*™1 ... €™ and u(k) = (u;(k));j=1, n. Here P
stands for the kernel of (X,,,Y,).

(iii) Prove the desired result.

The next theorem is the ergocic decomposition theorem for a Markov kernel.



90CHAPTER 4. INVARIANT AND ERGODIC PROBABILITY MEASURES

Theorem 4.53 Let M be a Borel subset of a Polish space and let P be a
Markov kernel on (M,B(M)). Every P-invariant probability measure p can
be decomposed as

,u() = Q(l’, ) M(d$)7 (4'17)

M

where Q is a Markov kernel on (M, B(M)) such that Q(x,-) is P-ergodic for
u-almost every x.

Proof The proof we give here is taken from unpublished lecture notes by
Yuri Bakhtin. Let Z(P, ) be the collection of (P, u)-invariant sets in B(M).
In Exercise 4.54, it is shown that Z(P, ) is a o-field. By Lemma 4.44, there
is a Markov kernel @ on (M,B(M)) such that for every f € B(M), Qf is
a representative of E,(f|Z(P, it)), where E, denotes expectation with respect
to p. In complete analogy to the proof of Theorem 4.43, this yields the rep-
resentation in (4.17).

It remains to show that Q(x,-) is P-ergodic for u-almost every x € M.
Let (M, d) be a Polish space such that M is a Borel subset of M. The space
MY equipped with the metric

22_1 %7062)
1+ d(w;, ;)

is Polish as well; the corresponding Borel o-field equals the product o-field
B(M)®N. Thus, MN is a Borel subset of the Polish space MY. By part (i) of
Proposition 4.49, the Markov measure P, on (MY, B(M)®Y) is O-invariant.
Hence, by the ergodic decomposition theorem (Theorem 4.43), there is a
Markov kernel P on (MM, B(M)®N) such that

P = [ Pl Pulde),

and P(w,-) is O-ergodic for P,-almost every w € M". Moreover, as seen
in the proof of Theorem 4.43, Pf is a representative of E,(f|Z) for every
f € B(MY), where T is the o-field of ©-invariant sets in B(M)®N. We will
now relate the Markov kernels () and P by showing that PP, —almost surely,

P(w, ) = Pgup,)(+)-

Let {F,}phen C Co(MY) such that for every P,Q € P(MY), P = Q if and
only if PF,, = QF,, for all n € N. In Exercise 1.7, we introduced the canonical
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projections m, : MY — M™ w s (w;)i=0.. .. We use my to define the
o-field
T o= {m'(4): AcT(Pp).

Claim: The o-fields J and Z are P,-equivalent.
Proof of the claim: Let S € Z and define ¢(z) := P,(S) and

A={zeM: px)=1}

By Proposition 4.49, part (ii)(b), ¢ is (P, u)-invariant. Since every z € A
such that p(z) = Py(x) satisfies P(z, A) = 1, it follows with part (i) of
Exercise 4.54 that A € Z(P, i), and hence 7, '(A) € J. By part (ii)(a) of
Proposition 4.49,

15(w) = (o)

for P,-almost every w. In particular, ¢(wy) € {0, 1} P,-almost surely, so
]_S: 1’71'0_1(14)7 ]P)M—CL.S.

Hence,
Pu(SAwal(A)) = 0.

Let us now fix a set S € J. Then there is A € Z(P, 1) such that S = m; ' (A).
Set S := AN = (), oy T H(A"1). A simple induction argument using A €
Z(P, u) implies that P, (m, (A"™)) = u(A) for all n € N. Continuity of P,
from above yields

PM(S) = p(A) = Pu(9).

Since S C S, it follows that P,(SAS) = 0. And in the proof of Proposi-
tion 4.36, it was shown that for any S € Z(P, i) there is S € Z such that
P,(SAS) = 0. This completes the proof of the claim.

We now complete the proof of Theorem 4.53. Since Z and J are P,-
equivalent, we have for every n € N that the representatives of E,(F},|Z) and
the representatives of E,(F,|J) are representatives of E,(F,|0(Z,J)). The
function PF), is a representative of E,(F),|Z) and thus also of E,(F,|0(Z,J)).
Let

Fo:={my'(A): Ae B(M)}.

For n € N, consider the functions

F,: M =R, 2 E.(F,)
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and o
Gn: MY = R, w Fy(w).

By the Markov property from Proposition 1.8, G, is a representative of
E,(F,|Fo). As a result,

Eu(FolT) = Eu(Bu(FnlFo)|T) = Eu(GnlT).

Next, observe that w — QF,(w) is a representative of E,(G,|J), and thus
also of E,(F,,|J) and E,(F,|0(Z,J)). This shows that

1=P, ({w € M": PF,(w) = QFy(w)})
=P, ({w € M": P(w,")F, = Popuny Fr})

and hence
P, ({we M":Pw,) =Pou}) =1

Let S € B(M)®N such that P,(S) =1 and for every w € S, P(w, ) = P,
and P(w,-) is ©-ergodic. By part (iii) of Proposition 4.49, Q(wy,-) is P-
ergodic for every w € S. Since S € B(M)®N and since m, is continuous, the
set mo(S) is analytic (see Theorem 13.2.1 in [12]). Theorem 13.2.6 in [12]
implies that there are A, N € B(M) and B C N such that u(N) = 0 and
m0(S) = AU B. It follows that

1="P,(5) <Pu(my (AUN)) = w(AUN) < p(A) + p(N) = u(A),

which completes the proof. QED

Exercise 4.54 Let
Z(Pp):={AeB(M): 1,=P(,A) p—a.s.}
be the collection of (P, 1)-invariant sets in B(M ).
(i) Show that
Z(Pp)={AeB(M): p{zeA: P(x,A°) >0}) =0}.

(ii) With the help of the representation in part (i), show that Z(P, u) is a
o-field.



Chapter 5

Irreducibility

5.1 Resolvent and &-irreducibility

Given a (nonzero) measure £ on M, P is called &-irreducible if for every Borel
set A C M and every x € M

£(A)>0=3k>0,Px, A)>0.

Equivalently,
E(A) > 0= R,(z,A) >0

where R,(.,.) is the Resolvent Kernel defined as

R.(z,A) = (1—a) ZakPk(x, A)

£>0
for some 0 < a < 1.

Remarks 5.1

(i) Let (X,) be a Markov chain with kernel P and (A,) a sequence of i.i.d
random variables independent from (X,,) having a geometric distribu-
tion with parameter a, that is

P(A; =k)=d"(1 —a), k €eN;

Then R, is the Kernel of the sampled chain Y, = X with
i=1

93
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(ii) P and R, have the same invariant probabilities;

(iii) If P is &-irreducible, then for all n € N,z € M and A € B(M) such
that £(A) > 0 there exists k > n such that P*(z, A) > 0.

Exercise 5.2 (i) Check the assertions of the preceding remark

(ii) Using the notation of Remark 5.1, show that for all m € N* T, has a
negative bimomial distribution with parameters (a,m). That is

P(ka)( m— 1 )a (1—a)
for all k € N. Let Y, = Xr,,,. Show that (Y,"),, is a Markov chain with
kernel R".

Example 5.3 (Doeblin condition) Suppose that R,(x, A) > £(A) for some
non zero measure £. Then P is £— irreducible.

Example 5.4 (Countable chains) If M is countable and P is irreducible
in the usual sense (see Chapter 2) then it is {-irreducible for £ =) 6, .

Theorem 5.5 Suppose that P is &-irreducible. Then P admits at most one
wnwvariant probability.

Proof The assumption implies that & is absolutely continuous with respect
to every invariant probability, but since distinct ergodic probabilities are
mutually singular (Proposition 4.29), there is at most one such probability.
QED

5.2 The accessible set

With the exception of a few particular cases (like Examples 5.3 and 5.4) it is
in general not an easy task to verify that a Markov chain is {— irreducible.
A purely topological notion of irreducibility is defined below. Combined with
the existence of certain points satisfying a local Doeblin condition (see section
5.4), this will ensure {— irreducibility.

Recall that the (topological) support of a measure p is the closed set
supp(p) defined as the intersection of all closed sets F' C M such that pu(M \
F) = 0. It enjoys the following properties:
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(a) p(M \ supp(p)) = 0;

(b) z € supp(u) if and only if ;(O) > 0 for every open set O containing .

Exercise 5.6 Prove that assertions a),b) above hold in any separable metric
space. Use (or prove) the fact that such a space has a countable basis of open
sets.

We define the set of points that are accessible from x € M as
I, = supp(Ru(z,-)).

Equivalently, y is accessible from x if for every neighborhood U of y there
exists k > 0 such that P*(z,U) > 0.

For C' C M, we let I'c = Nyecl', denote the set of points that are accessi-
ble from C' and I' := I'); the set of accessible points. Note that I'c is a closed
(but possibly empty) set. We say that P is (topologically) indecomposable if
T ()

Remark 5.7 If P is &-irreducible, then it is indecomposable and

supp(§) C T

The converse implication is false in general (see Theorem 5.5 and Remark
5.10) but true for strong Feller chains (see Proposition 5.17).

Proposition 5.8 Assume P is Feller and topologically indecomposable. Then
(i) P(z,I')=1 forall z €T}

(i) T C supp(u) for all p € Inv(P);

(iii) If T’ has nonempty interior, supp(p) =T for all pu € Inv(P);

(iv) If T is compact, there exists pu € Inv(P) such that supp(p) = T';

(v) If T is compact and g : I' — R is a continuous and harmonic function
on I (i.e Pg(x) = g(x) for all x € '), then g is constant.
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Proof (i) amounts to proving that supp(P(z,.)) C I'. Let 2* € supp(P(z,.))
and O an open set containing x*. Then § = P(x,0) > 0. By Feller continuity
and the Portmanteau theorem 4.1V ={y € M : P(y,0) > 6/2} is an open
set containing . Let 2 € M and k € N be such that P*(z,V) > 0 (recall that
x €T). Then

P*(z,0) > / P*(z,dy)P(y,0) > ng(z,V) > 0.
v

This proves that z* € I'.

(17) Let € T',U a neighborhood of = and p an invariant probability.
Then pu(U) = [ p(dy)R(y,U) > 0.

(#44) By invariance pu(T') = [, p(dz)R(x,T) 4+ [p. p(dz)R(x,T') and since
- by (i)- R(z,T') = 1 for all € I' it follows that [.. p(dz)R(z,I') = 0. If
furthermore I has nonempty interior, then R(z,I') > 0 for all x, so that
w1(I¢) = 0. This proves that supp(p) C I

(1v) By (i), Feller continuity and Theorem 4.20, there exists an invariant
probability p with (I") = 1. Hence the result.

(v) By (i) we can assume without loss of generality that I' = M. By com-
pactness, accessibility and Feller continuity, for every open set O C M there
exists a finite covering of M by open sets Uy, ..., Uy, integers nq,...,n; and
d > 0 such that P"(x,0) > 0 for all z € U;. Thus P,(70 > n) < (1 —9) for
n = max(ni,...,ny), hence P,(70 > kn) < (1 — ) by the Markov property.
Thus P,(7o < 00) = 1. The assumption that ¢ is harmonic makes (g(X,)) a
bounded martingale. It then converges P, almost surely. If g is nonconstant
there exist a < b such that {g < a} and {g > b} are nonempty open sets,

and, by what precedes, (X,,) visits infinitely often these sets P, almost surely.
A Contradiction. QED

Remark 5.9 The inclusion I' C supp(i) doesn’t require Feller continuity.

Remark 5.10 The inclusion I' C supp(u) may be strict when I' has empty
interior as shown by following exercise 5.11.

Exercise 5.11 Let F': {0,1} x [0,1] — [0, 1] be the map defined by

F(0,2) = ax, F(1,2) = bz (1l — x),
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where 0 < a < 1 and 1 < b < 4. Let (X,,) be the Markov chain on [0, 1]
defined by X, 11 = F(0,41,X,), Xo = > 0 where (6,,) is an i.i.d Bernoulli
sequence with distribution (1 — p)dg + pd; for some 0 < p < 1. Show that
I' = {0} and that when (1 — p)loga + plogb > 0 there exists an invariant
probability p such that p({0}) = 0, hence supp(u) #C T

Other examples where the inclusion I' C supp(p) is strict can be found in
[4] and [5].

In case P is uniquely ergodic on a compact set, it is topologically indecom-
posable.

Proposition 5.12 Suppose M is compact, P Feller and uniquely ergodic.
Then P is indecomposable and I" = supp(p).

Proof By Proposition 5.8 it suffices to prove that I" is nonempty. By Theo-
rem 4.20, = >°" | P¥(x,-) = p for all # € M. Hence for any open set O such
that £(0) > 0 liminf, o £ 3¢, P*(x,0) > 0. Thus R(z,0) > 0. QED

A partial converse to Proposition 5.12 is the following result.
Recall that Ly(M) is the set of bounded Lipschitz real valued functions
on M.

Proposition 5.13 Assume that M is compact, P is Feller, I' has nonempty
interior and that for all f € Ly(M) the sequence (P" f)n>1 is equicontinuous.
Then P is uniquely ergodic.

Proof By equicontinuity of (P"f),>1, the sequence (f,),>1 defined by
S P

n

fa

is also equicontinuous, hence relatively compact in Cy(M) by ArzelAs-Ascoli
theorem. Let g be a limit point of (f,),>1. Then g is continuous and Pg = g.
By Proposition 5.8 (v), g|r is a constant Cy. Let now p and v be two in-
variant probabilities. Then uPf = pf implies that u(f,) = u(f). Therefore
w(f) = w(g) = plglr) = Cp Similarly v(f) = Cy This proves that p = v.

QED

Exercise 5.14 Deduce from Proposition 5.13 that the irrational rotation T,
(see Exercise 4.37) is uniquely ergodic.
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Exercise 5.15 Let M be a compact space. Using the notation of Chapter
3 and Section 4.3.1, consider the the Markov chain on M recursively defined
by

Xn+1 = F0 Xn)

n+1(

Assume that © is a metric space, (0,2) — Fy(x) is continuous and that for
each 0 € © Fy is Lipschitz with Lipchitz constant ly. Assume furthermore
that

(i) [lem(df) <1 (compare with the condition of Theorem 4.31);

(ii) For every x € M and every open set O C M, there exists a sequence
61,...,0, with 0; € supp(m) such that fy, o... fo,(x) € O.

Show that (X,,) is uniquely ergodic

Remark 5.16 It is important to emphasize here that the condition that I'
has non empty interior is not sufficient to ensure uniqueness of the invariant
probability. For instance, Furstenberg in a remarkable work [19] (see also
[32]) has shown that for a convenient choice of & € R\ Q and S a smooth
map on S! := R/Z, the diffeomorphism

T:S'x S' s St x SL,

(z,y) =z + o,y + B(z)

is minimal (all the orbits are dense) but non uniquely ergodic.

Another example is given by the Ising Model on Z2. This is a Feller Markov
process on a compact set M = {—1, 1}22 which all points are accessible (i.e
[' = M) and which admits (at low temperature) several invariant probabilities
(See |23] Example 2.3 for a discussion and further references).

Proposition 5.17 Suppose that P s topologically indecomposable and that
for some x* € I and all A € B(M) x +— P(x, A) is lower semi-continuous at
x*. Then P is & irreducible for € = P(x*,.), In particular P admits at most
one invariant probability.

Proof Let A be such that P(z*, A) > 0. Then for all z € M there exists O
neighborhood of z* and n > 0 such that P"(z,0) > 0 and P(y, A) > 0 for all
y € O (by lower semi continuity of z — P(z, A) at *.) Thus P"*'14(x) >
Jo P*(z,dy)P(y, A) > 0. QED
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Note that the assumption that z — P(x, A) is lower semi-continuous at x* is
automatically satisfied if P is strong Feller. Hence Proposition 5.17 gives a
practical tool to ensure that a strong Feller chain is uniquely ergodic. Another
result is the following

Proposition 5.18 Suppose that P is strong Feller. Then
(1) Two distinct ergodic probabilities have disjoint support;
(ii) The support of an invariant non-ergodic probability is disconnected;

(iii) If M is connected and P has an invariant probability having full support,
P is uniquely ergodic.

Proof (i) Let p, v be two distinct ergodic probabilities. By Proposition 4.29
they are mutually singular. Hence there exists a Borel set A C M such that
pn(A) =1 and v(A) = 0. The set {x € M : P(z,A) = 1} is closed (strong
Feller property) and has g measure 1 because 1 = p(A) = [ p(dz)P(z, A).
Thus supp(p) C {z € M : P(x,A) = 1}. Similarly supp(v) C {z € M :
P(x, M\ A) =1}.

(77) Let u be invariant and let A be such that P14 = 14 p-almost surely
and 0 < p(A) < 1.Set f = P14. Then f(z) € {0, 1} for 1 almost every x and
(by the strong Feller property) f is continuous. Thus f restricted to supp(u)
takes values in {0, 1} If now supp(y) is connected then f restricted to supp(pu)
is constant and u(A) € {0,1}. (i) follows from (i7). QED

5.3 The asymptotic strong Feller property

The asymptotic strong Feller property was introduced in [24| by Hairer and
Mattingly to prove uniqueness for the invariant probability measure of the
Navier—Stokes equation on the two-dimensional torus, subject to degenerate
stochastic forcing. Before we define this property, we introduce some notation.

Let (M, d*) be a separable metric space, with P(M) the space of probabil-
ity measures on (M, B(M)). One important idea in this section is to consider
a whole family of metrics on M, but throughout, d* will be the metric that
gives rise to the topology on M, and in particular induces the o-field B(M).
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For any bounded metric d on M, we let Lip,(d) denote the set of B(M)-
measurable functions ¢ : M — R such that

lp(z) — o(y)| < d(x,y), Vrz,y€ M.

Notice that Lip,(d) contains all constant functions. If the metric d is contin-
uous with respect to the topology induced by d* and if B;(M) denotes the
Borel o-field with respect to d, then Lip,(d) is equal to the set of By(M)-
measurable functions ¢ : M — R such that |¢(z) — ¢(y)| < d(z,y) for all
x,y € M. For u,v € P(M), we define

ln=vla:="sup (up—vo).
¢€Lip, (d)
Boundedness of d guarantees that every function in Lip,(d) is bounded and
thus integrable with respect to any Borel probability measure on M.

Exercise 5.19 Let d* be bounded. Show that (u,v) — || — v||q+ defines a

bounded metric on P(M).

Remark 5.20 If 6(z,y) := 1,,, is the discrete metric, then

= vlis = glu— vl = gsup{lpf —vfl: f € B(M), [ fllo <1},

where | — v| is the so-called total variation distance between p and v. The
latter will play a key role in Chapter 7.

We call a metric d on M continuous if it is continuous as a function from
M x M to [0,00), where M x M has the topology induced by the product
metric (d* * d*)((x,y), (z',y')) = d*(x,2') + d*(y,y’). Notice in particular
that d* itself is continuous. A sequence of metrics (d,),>1 on M is called
nondecreasing if for every n € N*,

dpi1(x,y) > dp(z,y), VYr,ye M.

Recall that 0(z,y) := 1,4, and that J, is the Dirac measure that assigns mass
1 to {x}.

Definition 5.21 (Hairer, Mattingly) We say that a Markov kernel P on
M is asymptotic strong Feller at x € M if there exist a nondecreasing se-
quence (ng)k>1 of positive integers and a nondecreasing sequence (dy)g>1 of
continuous metrics on M such that

lim di(y,z) =0(y,2), Yy,z € M,
k—o00
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and
inf limsupsup ||0,P"™* — §,P"*||4, = 0.

t€UCM, koo yeU
Uopen

We call P asymptotic strong Feller if it is asymptotic strong Feller at every
x e M.

Since (dg)g>1 is nondecreasing and converges to a bounded metric, each
metric dy is, of course, bounded.

5.3.1 Strong Feller implies asymptotic strong Feller

In this subsection, we show that every strong Feller Markov kernel also has
the asymptotic strong Feller property. The proof of this statement makes use
of the ultra Feller property, which we now define. A Markov kernel P on M
is called wltra Feller if for every x € M,

xeglcfm Zlelg 1627 — 6, P|ls =0,
Uopen

where 0 denotes the discrete metric. The following statement corresponds to
Theorem 1.6.6 in [22]. It is due to Dellacherie and Meyer, see [10].

Proposition 5.22 Let P and () be strong Feller Markov kernels on M. Then
the Markov kernel PQ) is ultra Feller.

The proof of Proposition 5.22 we present here is taken from [22|. It is an
adaptation of an argument due to Seidler. We begin by stating two lemmas.

Lemma 5.23 Let P be a strong Feller Markov kernel on M. Then there
exists m € P(M) such that P(x,-) < 7 for every x € M.

Proof Since M is separable, there is a dense sequence (z,,),>1 of elements
of M. We define the probability measure

(A) = iZ_”P(mn,A), Ae B(M).

n=1

To obtain a contradiction, assume there is € M such that P(z,-) is not
absolutely continuous with respect to w. Then there is A € B(M) such that
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m(A) =0 and P(z,A) > 0. Let f := 14 € B(M). Since P is strong Feller,
Pf is continuous. We have Pf(x) = P(x,A) > 0. Since m(A) = 0, we have
0 = P(x,,A) = Pf(x,) for every n € N*. But then continuity of Pf and the
fact that (z,,) is dense in M imply that Pf = 0, a contradiction. QED

The following real-analysis lemma corresponds to Corollay 1.6.3 in [22],
where a proof can be found. Recall from the proof of Lemma 4.44 in Sec-
tion 4.4 that a o-field F is called countably generated if there exists a countable

family of sets {A, }nen such that F = o(A, :n € N).

Lemma 5.24 Let (2, F,m) be a measure space such that F is countably gen-
erated. Let (¢n) be a bounded sequence in L>®°(Q, F, 7). Then there erist a
subsequence (¢n, )k>1 and ¢ € L>(Q2, F,m) such that

lin [ 60, (2)(0) wldo) = [ o@)f(@) wldo), VF € LN Fm).
We proceed to the proof of Proposition 5.22.
Proof |[of Proposition 5.22] Since @ is strong Feller, Lemma 5.23 yields
existence of a probability measure m on (M,B(M)) such that Q(z,:) < 7
for every x € M. To obtain a contradiction, suppose that the kernel P() is

not ultra Feller. Then there are x € M and € > 0 such that for every open
neighborhood U of z,

sup |6, PQ — 6,PQ||5 > €.
yelU

Forr > 0and y € M, let B,.(y) :={z € M : d*(y,z) < r} be the open d*-ball
of radius 7 centered at y. Then for every n € N*, there is y, € By,(x) such
that

10.PQ — 0,,PQ||s > €.

According to Remark 5.20,

sip  (PQé(x) — PQo(ya)) > 25, Vn € N,
PEB(M):[|¢]loo<1

where the expression on the left denotes the total variation distance between
9, PQ and 0,, PQ. As a result, there is a sequence (¢y,),>1 in B(M) such that
[#n]loc <1 and

PQo,(x) — PQon(yn) > 2e, Vn e N (5.1)
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Since M is a separable metric space, part (ii) of Exercise 4.45 implies that the
o-field B(M) is countably generated. And since (¢,,) is a bounded sequence in
L>(M,B(M), ), Lemma 5.24 implies that there exist a subsequence (¢, )r>1
and a function ¢ € L>*(M,B(M), ) such that

lim /M¢nk(x)f(x) m(dx) = /M¢(x)f(x) m(dx), Vfe€ LY (M,B(M),x).

k—o0

Since Q(z,-) < m for every x € M, we have that for every x € M there is
h, € LY(M,B(M), ) with Q(x,dy) = h,(y) 7(dy). Then, for every x € M,

lim Qdy, (z) = Qo(x).

To keep notation short, set ¢y := Q¢,, for every k € N*, and set ¢ := Q¢.
We also introduce the functions (p;);>1 defined by

pj(w) = suplp(r) — ()|, v e M,

k>j

and note that lim; . p;(z) = 0 for every x € M. For every k > 1,

[Vklloe < [ldnylle <1 and  [lprlloc < ll9]loo +sup [¥1lloe < [|0]lo0 +1,

so bounded convergence implies that
klim Pip(x) = Py(x) (5.2)
—00

and
lim Ppj(xz) =0

Jj—o0

for every x € M. For every m € N*,

lim sup Pp;(yn;) < limsup Ppp(yn,;) = Ppm ()

Jj—00 j—o00

because (p;) is a nonincreasing sequence of nonnegative functions in B(M),
lim; ;o Yn; = 2, and P is strong Feller. Since the estimate above holds for
every m € N* and since lim,, .o, Ppn(x) = 0, it follows that

lim Pp;(y,,) = 0. (5.3)

Jj—0o0
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Consequently,
liglsogp (PQon, (2) — PQny (Yn,,))
< limsup| Pye(2) — P(2)|
+ ligi)scgp\Pw(m) — PY(yn, )| + liI;LS£P|P¢(ynk) — PYr(yn, )|

<limsup Ppy(yn,) =0,
k—o00

where we used (5.2), the assumption that P is strong Feller, and (5.3). This
contradicts (5.1). QED

We are now ready to state and prove the main result of this subsection.

Proposition 5.25 Let P be a Markov kernel on a separable metric space
(M,d*). If P is strong Feller, then it is also asymptotic strong Feller.

Proof Consider the sequence of continuous metrics
dy(z,y) == LA (kd"(z,y)), keN,

where a A b denotes the minimum of @ and b. The sequence is clearly nonde-
creasing, and

lim di(x,y) = d(z,y), Vx,ye M.

k—o0

If P is strong Feller, then Proposition 5.22 implies that P? is ultra Feller.
Therefore
0= inf supl§,P*—§,P?s. (5.4)
U

zeUCM, yE
Uopen

Since (di)r>1 is nondecreasing and converges pointwise to §, the sequence
of functions fi(y) := ||0.P? — 6,P?||4, is nondecreasing and dominated by
f(y) == ||0.P? — §,P?||5. Thus, for every open neighborhood U of z,

lim sup sup fi(y) < sup lim fi(y) < sup f(y).
k—oo yeU yeU k—o0 yelU

Together with (5.4) and ny := 2 for all £ > 1, this yields

inf limsupsup ||0,P™ — §,P"*||4, = 0.

T€UCM, koo yeU
Uopen
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QED

Remark 5.26 If P is a Markov kernel on a separable metric space such that
Pm is strong Feller for some n € N*| then P is asymptotic strong Feller. This
follows if one replaces P? in the proof of Proposition 5.25 with P2,

The following exercise shows that the converse of Proposition 5.25 does
not hold, i.e. there are Markov kernels which are asymptotic strong Feller
but not strong Feller.

Exercise 5.27 Consider the mapping
F: RQ - R27 (1’1,332) = <x27xl)‘

For (z,0) € R? x R, set Fy(z) := F(x) + ey, where e; := (1,0)7 (cf. part
(ii) of Exercise 5.40 in Subsection 5.4.1). Let m be a probability measure on
(R, B(R)) that is absolutely continuous with respect to Lebesgue measure.

(i) Show that the Markov kernel P corresponding to the random dynamical
system (F,m) is not strong Feller. Hint: Consider for instance the
function f(z1,22) := 1.,>0.

(ii) Use the result from Exercise 7?7 to show that P? is strong Feller, and
conclude that P is asymptotic strong Feller.

5.3.2 Uniqueness of the invariant probability measure

The following theorem, first shown in [24], provides an important justification
for introducing the asymptotic strong Feller property. It can be seen as a
strengthening of Proposition 5.18, part (i), for Polish spaces.

Theorem 5.28 (Hairer, Mattingly) Let (M,d*) be a Polish space, i.e.
a complete and separable metric space, and let P be a Markov kernel on
(M,B(M)). Let p,v be ergodic probability measures with respect to P. If P
is asymptotic strong Feller at a point x € supp(u) Nsupp(v), then u=v. In
particular, if P is asymptotic strong Feller, then two distinct ergodic proba-
bility measures have disjoint support.
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The proof of Theorem 5.28 requires several tools we yet need to introduce.
We therefore postpone it to the end of this subsection. First, we define the
important notions of coupling and lower semicontinuity. Let (X, e) be an
arbitrary metric space and let p,v € P(X). A coupling of pu and v is a
probability measure I' on (X2, B(X) @ B(X)) such that

['Ax X)=pu(4), T(X xA)=v(A), VAeBX).
We denote by C(u,v) the set of couplings of p and v.

Exercise 5.29 Assume in addition that X is separable and let P(X?) be the
set of Borel probability measures on X?, endowed with the topology of weak

convergence. Show that for every p,v € P(X), C(u,v) is a closed subset of
P(X?).

Let f : X — R be a function. We say that f is lower semicontinuous
(respectively, upper semicontinuous) at a point zg € X if

f(zo) < liminf f(x), resp. f(xo) > limsup f(x).
T—T0 T—T0
Clearly, f is continuous at a point xq € X if and only if f is both upper and
lower semicontinuous at xo. We call f lower semicontinuous (respectively,
upper semicontinuous) if f is lower (upper) semicontinuous at every point
Ty € X.

Exercise 5.30 Let f: X — [0,00) be a function.

(i) Show that .
f(x) = inf{f(y) +e(z,y) 1y € X}

defines a continuous function on X.

(ii) Show that f is lower semicontinuous if and only if there exists a non-
decreasing sequence (f,)n,>1 of continuous functions from X to [0, 00)
that converges pointwise to f. Hint: Consider the functions f,(x) :=
inf{f(y) +ne(z,y) : y € X},n € N*, and use part (i).

The following statement, cited without proof here, can be found in [46]
(see Particular Case 5.16 of Theorem 5.10 for the formula and Theorem 4.1
for existence of a minimizing coupling). It is an instance of the famous
Kantorovich—Rubinstein duality theorem. The term duality refers to the as-
serted equivalence of a maximization and a minimization problem.
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Theorem 5.31 Let (M,d*) be a Polish space and let d be a bounded metric
on M that is lower semicontinuous as a function from the product metric
space (M x M,d* xd*) to [0,00). Then, for every p,v € P(M), we have

lu—vlla= inf / d(z.y) T(de,dy)
M2

rec(p,v)

and the infimum on the right is attained.

Lemma 5.32 Let (M,d*) be a Polish space, let (d,,),>1 be a nondecreasing
sequence of continuous metrics on M, and let d be a bounded metric on M
such that

lim d,(z,y) = d(z,y), Vz,ye M.

n—o0

Then, for every p,v € P(M), we have
lim = vla, = l[n— vl
—00

Proof Let u,v € P(M). Since (d,)n>1 is nondecreasing and since d is
bounded, we have

I —vla, <|lp—vla, <llp—va<oo, VneN.

Therefore,

[:= lim ||p—va,

exists and is less than or equal to || — v||q. By Theorem 5.31, there are
couplings (I';,),>1 of p and v such that

e —v|a, = / dy(x,y) T'y(dx,dy), Vn e N".
M2

Since p and v are Borel probability measures on a Polish space, they are tight,
i.e. for every € > 0 there is a compact set K C M such that u(K),v(K) > 1—
¢ (see, e.g., Theorem 7.1.4 in [12]). Hence, by Exercise 5.33 below, the family
of couplings (I',),>1 is tight as well. By Prohorov’s theorem, (I';),>; admits
a subsequence that converges weakly to a probability measure ', € P(M?).
And by Exercise 5.29, Iy, € C(u, v). For simplicity, we denote the convergent
subsequence again by (I';),>1. For n < m, we have

/ d(2,y) To(d, dy) < / A, y) To(dr, dy) = |l — vlla, < 1.
M2

M2
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Since each d,, is continuous and bounded, and since I';, converges weakly to
', we have

lim dy(x,y) T)n(de, dy) = / dn(x,y) To(dz, dy).
m—0o0 M2 M2
Thus,
M?2

By monotone convergence,

[ > / d(z,y) Ts(dx,dy) > inf / d(z,y) T(dz, dy). (5.5)
M2 recC(uv) Jpr2

Since d is the pointwise limit of a nondecreasing sequence of continuous func-

tions, Exercise 5.30 implies that d is lower semicontinuous. Hence, by virtue

of Theorem 5.31, the expression on the right side of (5.5) equals ||u — v||4.

We have thus shown that [ > ||u — v||4, and together with [ < ||u — v||; one

obtains lim,, e ||t — Vg, = |t — v|la. QED

Exercise 5.33 Let (X, e) be a metric space and let pu,v € P(X) be tight.
Show that C(u,v) C P(X?) is a tight family of probability measures.

Lemma 5.34 Let (M,d*) be a separable metric space, let P be a Markov
kernel on (M,B(M)), and let d be a metric on M that is bounded by 1.
Assume further that there are € > 0 and U € B(M) such that

sup |0, P — 0, P[4 <.

z,ycU
Let p,v € P(M) and set o := p(U) Av(U). Then
|uP —vPlg <1—a(l—e).

Proof Since d is bounded by 1, we have ||uP—vP||4 < 1, so the assertion
holds if & = 0. If a > 0, define for A € B(M) the Borel probability measures

il (A) :=%, WU (A) ::%,
oy (A) — apU(A) o p(A) — arl(A)
p(a) = LS p(a) =2
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and observe that

(1 —a)i+ap”,

=(1—a)v+av.

w
v
Exercise 5.35 below and the fact that u¥(U¢) = vY(U°¢) = 0 yield

WP =V Pla< [ 15.P = 6,Pla i (do) o)
U

By assumption, the expression on the right is bounded from above by €. The
triangle inequality for || - ||4 then implies

|uP — vP|lqa < (1 —a)||iP — P||a+ a|[p’ P — Y P|ls < 1 — a + ae.

QED

Exercise 5.35 Let (M, d*) be a separable metric space, let P be a Markov
kernel on (M, B(M)), and let d be a bounded metric on M. Show that

nP = vPla< [ 15.P = 6,Pla n(dalv(dy), Vv € P(OM)
M2

We are now ready to prove Theorem 5.28.

Proof |[of Theorem 5.28] Let = € supp(u) N supp(v) such that P is
asymptotic strong Feller at x. Then there exist a nondecreasing sequence
(ng)k>1 of positive integers as well as a nondecreasing sequence (dy)g>1 of
continuous metrics on M such that limy_, di(y, 2) = 6(y, 2), y, 2 € M, and

inf limsupsup ||0,P™* — §,P"*||4, = 0.

2eUCM, [ oo yeU
Uopen

Let U be an open neighborhood of  and let K € N such that

1
sup [|0, P — 6, P"*[|g, < 7, Vk > K.
yeU 4

Since || - |4 satisfies the triangle inequality for every metric d on (M, d*), we
have

1
sup ||6,P™ — 6, P 4, < =,
y,z2€U 2

Vk > K.
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Set a := u(U) Av(U). Lemma 5.34 implies
Q@
|uP™ — vP"™ g <1— 5 Vk > K.
Since p and v are invariant probability measures,
a
H/’L_VHdk < 1_57 Vk > K.

As
Jim | = vlla, = [l =vls
—00
by Lemma 5.32, it follows that

o
i —vls < 1—5-

Since = € supp(u) N supp(v), we have a > 0, so ||u — v|s < 1. In particular,
for every A € B(M),

2> [p(la = Lae) = v(1a — Lac)| = 2|u(A) — v(A)]

in view of Remark 5.20. This implies that ;1 and v are not mutually singular.
Since p and v are ergodic, it follows from part (ii) of Proposition 4.29 that
pw=v. QED

5.4 Petite sets, small sets and Doeblin points

We call a measurable set C' a petite set if there exist a € (0,1) and some
nonzero Borel measure £ on M such that

Rq(z, A) = £(A)

for all z € C and A € B(M). We call the set C' a small set if there is a
nonzero Borel measure £ on M such that

Pz, A) = £(A)

for all x € C' and A € B(M). Clearly, every small set is petite.



5.4. PETITE SETS, SMALL SETS AND DOEBLIN POINTS 111

Remark 5.36 In the terminology of Meyn and Tweedie [33] (Chapter 5), a
Vo-petite set for a probability measure a on N is a set C' € B(M) such that

> a(n)P(z,A) > v,(A), VreC, AeB(M),
n=0

where v, is some nonzero Borel measure on M. A v,,-small set for m € N*
is a set C' € B(M) such that

P™(z, A) > vm(A), Yz e O, AeB(M),

where v, is a nonzero Borel measure on M. With these definitions, the class
of petite sets defined above is equal to the class of sets that are v, -petite for
some a € (0, 1), where

Ay(k) :=d"(1 —a), keN.

Our notion of a small set corresponds to the notion of a r4-small set.

We call a point * € M a weak Doeblin point (respectively a Doeblin point)
if * has a neighborhood that is a petite set (respectively a small set).

The importance and usefulness of these notions will be highlighted in
Chapters 6 and 7. The following proposition extends Example 5.3.

Proposition 5.37 Assume that there exists an accessible weak Doeblin point
for P. Then P is &-irreducible.

Proof By assumption, there exists an open set C' and a non trivial measure
¢ such that C N T # @ and R,(x,.) > £(.) for all z € C. Let pp = 05 (1 —
a)?a’a*" = (k+1)(1 — a)?a*. Then, for all A measurable and z € M

S pePt(r, A) = R2(x, A) /R 2, dy) Ry, A) > Ra(z, C)E(A).

k>0

By accessibility R,(z,C) > 0. QED
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5.4.1 Doeblin points for random dynamical systems

Let © be a nonempty open subset of R? for some d € N*, let A be the Borel
o-field on O, and let m be a probability measure on (0, A). For n € N*,
the n-fold product measure m ® ... ® m will be denoted by m". Let k € N*
and let M be a nonempty open subset of R¥, with Borel o-field B(M). Let
F:0© x M — M be a Cl-mapping. Recall from Chapter ?? that the pair
(F,m) induces a random dynamical system with associated Markov kernel

P(x,G)=m({0 € ©: Fy(z) e G}), (z,G)e M x B(M).
For n € N* and x € M, let
Onw O = M, (01,...,0,) — (Fp, o...0 Fy)(x).
The following proposition is essentially Lemma 6.3 in [4].

Proposition 5.38 Let z* € M, n € N*, and 6* = (0,...,0%) € ©" such
that the following conditions hold.

(a) The Jacobian matriz D, 4«(0)|o=p« has rank k;

(b) There is a neighborhood V- C ©™ of 8% such that m"(-NV') is absolutely
continuous with respect to \"¢(- NV, where \"? is the Lebesque mea-
sure on R™.  The corresponding probability density function p has a
representative p such that

c:= inf p(d) > 0.

U2%

Under these conditions, x* is a Doeblin point with respect to the Markov kernel
P, and in particular a weak Doeblin point with respect to P.

Proof Since Dy, .+ (6)]o=p~ is a (k x nd)-matrix of rank k, we have either
k = ndor k < nd. To avoid repeating ourselves, we will only prove the slightly
more complicated case k < nd. The case k = nd can be easily derived by
making small modifications to the proof for k < nd. Assume without loss of
generality that the first k& columns of D, .+ (0)|g—p« are linearly independent.
We will often write points # € O™ as 6 = (8%, 9("=F)) where ) € RF is
the vector consisting of the first k& components of §, and where ("¢ is the
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vector of the remaining (nd — k) components. For x € M, consider the C*
mapping

Gp: 0" = M xR™™*, 0= (0" 00) s (p,,(6),00 ).
We also define the C! mapping
H:0"x M — M xR™™ x M, (0,2)— (G.(0), ).
Since

det DH(@, :E) ‘029*7x:$* =det DG+ (9) |9:9*
= det Dyoy @no+ (0P, (07) "9 | gy # 0,

the inverse function theorem implies that there is an open neighborhood W
of (6*,z*) such that the restriction of H to W, denoted by Hy, is a C* dif-
feomorphism. By intersecting W with an open subset of V' x M that contains
(0*, z*) and calling the resulting set W again, we may assume without loss of
generality that 6 € V for every (0,2) € W. The set H(W) is a neighborhood
of H(0*,2%) = (g (07), (%)) 2%) 5o there are open neighborhoods Z
of 4+ (0%), Ty of (6%)"=% and Uy of 2* such that Zy x Ty x Uy C H(W).
Let Wy := Hﬁ,l(ZO x Ty x Up). For any x € Uy, set

Ve={0eO": (0,x) € Wy}.

It is straightforward to check that for every x € Uy, the restriction of G to
V, is a C* diffeomorphism that satisfies G,(V,) = Zy x Ty.
Let © € Uy and A € B(M). We have

Pz, A) > P(2, AN Zo) = / ™ (d6).
P % (ANZo)

Since G, ((AN Zy) x Ty) C ¢, (AN Zy), the expression on the right is
bounded from below by

/ m"(d) > / ™ (d6).
Gz ((ANZo)xTh) VenGz ' ((ANZo)xTo)

As V, C V, the integral on the right equals

p(0) A"(dh) > ¢ / N"(dh).

/VzﬂGzl((AﬂZo)xTo) VenGz H((ANZo) xTo)



114 CHAPTER 5. IRREDUCIBILITY

There is no loss of generality in assuming that V' and U, are each contained
in a compact set. Since the mapping (0, z) — det DG, () is continuous, we
have
¢:= sup |det DG,(0)| < oc.
9eV,zely
Hence,

Pz, A) > &

/ |det DG,.(6)] A™(df).
C JVonGz 1 ((ANZo)xTo)

Since the restriction of G, to V, is a diffeomorphism, the change of variables
formula (see for instance Theorem 2.47 in [17]) implies that the expression
on the right equals

EN=R(TNR(A N Zo).
C

The measure £(A) := SN""F(To) AN (AN Zy) on (M, B(M)) is nontrivial and
does not depend on x € Uy, so Uy is a small set with respect to the kernel P".

As Uj is a neighborhood of z*, the point x* is a Doeblin point with respect
to P*". QED

Example 5.39 (additive noise) Recall the setting of Exercise ?7: We have
M=0=R F: M — M, Fy(z) := F(z) + 0 for (0,2) € © x M, and
m(df) = h(0) dO, where h € L*(df). Assume in addition that F is C*, which
implies that (0,2) — Fp(x) is C' as well. Finally, suppose that there are a
nonempty open set V.C © and a representative h of h such that

inf h(6) > 0.

eV

For every x* € M and 0* € O,

D1 4+ (8)|g=0+ = Lixr,

where 1gxy 18 the identity matriz of dimensions (k X k). Since 1gxy has rank
k, every pair (x*,0%) € M x V satisfies the conditions of Proposition 5.58.
Hence, every point x* € M is a Doeblin point with respect to the Markov
kernel P(z,G) =m({0 € © : Fy(z) € G}).

Exercise 5.40 |degenerate additive noise| Let m be a probability measure
on (R, B(R)) that is absolutely continuous with respect to Lebesgue measure
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on R, with probability density function h. Assume further that there are a
nonempty open interval I C R and a representative h of h such that

inf h(6) > 0.

oel

Show the following statements.

(i) Let F:R? - R?2 F = (F;,F5)" be a C! map and let (z*,0}) € R*> x I
such that
00, Fo(F(2%) + 07er) 40,

where e; = (1,0)". Set
Fg(x) = F(ﬂ?) + (961, (x, 9) € R? x R.

Then z* is a weak Doeblin point for the Markov kernel associated with
(F,m).

(ii) Let £ > 2, and let F' : R* — RF be defined by F(x1,...,75) =
(T, 21,2, ..,2p_1) . Set

Fg(.%’) = F(f[) + feq, (l’, 9) e R* x R,

where e; = (1,0,...,0)" € R*. Then any point z* € R* is a weak
Doeblin point for the Markov kernel associated with (F,m).

5.4.2 Random switching between deterministic vector
fields

Let N € N* and let u be a probability measure on the finite set £ :=
{1,...,N}. Let vy,...,vy be Borel probability measures on R, := (0, 00)
that are absolutely continuous with respect to Lebesgue measure and whose
probability density functions admit representatives pi,..., py with

inf p;(t) >0, i€k, R>0.
tel(%,R)p() !

On the set © := R, X E, we define the probability measure
m(T x {i}) == p()v(T), T e B(R,), i€ E.

Let M be a nonempty open subset of R* for some k € N*, equipped with the
Euclidean metric and the corresponding Borel o-field. On M, we consider a



116 CHAPTER 5. IRREDUCIBILITY

family of vector fields (G;);cg that are C° smooth and forward complete, i.e.
for every i € E, G; : M — R¥ is C*, and for every zy € M, the initial-value
problem

dz
o =Gila(t), >0,
z(0) =xg

has a unique solution, denoted by t — ®;(¢,xo), that is defined for all ¢ > 0
and satisfies ®;(t,x9) € M for all t > 0. The function ®; : [0,00) x M — M
is called a flow function. For every 0 = (t,1) € ©, define

Fo: M — M, x— &(t,2).

Smoothness of the vector fields (G;);cr implies that the map (¢, z) — Fiy;(2)
is C*° smooth for every i € E, see for instance Theorem 17.9 in [29].

In words, the Markov chain (X,,),en on M induced by the random dy-
namical system (F,m) can be described as follows: Pick an index i € E and
a time t € R, according to the distribution m. Starting at Xo € M, flow
along the vector field G; for time t. The point X; € M is the point reached
at time ¢. Then, pick 7 € E and s € R, according to m and independent of
v and ¢, and flow along G, for time s, leading to the point Xy € M, etc. The
following exercise gives a concrete example of such a Markov chain.

Exercise 5.41 Let puq, po, 43 > 0 such that py + po + 3 = 1, and let
A1, A2, Az, 0,3 > 0. On © := Ry x {1,2,3}, define the probability
measure m by

m(T x {i}) = ,m/ e dr, T eB[R,), ic{l,23).

T

For 0 = (t,i) € ©, let

T + aqt, 1 =1,
Fy:R—=>R, 2— <z — ast, 1= 2,
xe st i=3

Prove the following statements.
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(i) If uz > 0, then the Markov kernel P associated with (F,m) admits a
unique invariant probability measure. Hint: Use Theorem 4.31 on ran-
dom contractions.

Consider the function
ft, i) = (=) tayt, (t,i) €06
and the Borel measure

a(A):=m({0€0O:f(0)ecA}), AcBR).

(ii) Show that if pg = 0, then the Markov kernel P satisfies
Px,G)=a{¢ €R:z+£€G)), z€R,GeBR).

(iii) Deduce from part (ii) that if u3 = 0 and pyai /A1 # peas/Ae, then P
does not admit any invariant probability measures. Hint: See Exam-
ple 4.19.

The main result in this subsection (Theorem 5.44) is a sufficient condition
for the existence of a weak Doeblin point with respect to the Markov kernel
P induced by (F,m). This condition will be formulated in terms of the Lie
algebra generated by (G;)icp. The Lie bracket of two C*' vector fields G and
H on a nonempty open subset M of R is itself a vector field on M, defined

as
|G, H(x) .= DH(x)G(z) — DG(x)H(x), z € M.
Here, DG(x) and DH(x) denote the Jacobian matrices of G and H, respec-
tively, evaluated at the point x. The products DH (z)G(z) and DG (z)H (z)
are to be understood as matrix-vector products.
If &5 and 5 denote the respective flow functions of G and H, one has
the alternative characterization

G, H](z) = %L(t,x)h_o, ze M, (5.6)

where

L(t,z) := oy (-\/E, e <—\/%7 Oy (\/57 Co (ﬁ’ x))))

for t > 0 and x € M (see, for example, Proposition 3.b in Chapter 2 of |26]).
Notice that for every fixed z € M, L(-,z) is defined in a neighborhood of 0
because G and H are C'.



118 CHAPTER 5. IRREDUCIBILITY

Exercise 5.42 |Properties of Lie brackets|

(i) Show that the Lie bracket [-, -] is bilinear and antisymmetric, i.e. for any
C! vector fields A, B, C and for any A € R, one has

Why is this enough to deduce linearity for the second argument?

(ii) To a vector field A on M, one can associate the operator on C*°(M,R)
that maps f € C*°(M,R) to x — (A(x),Vf(x)). Here, (-, ) denotes the
Euclidean inner product on R* and V f denotes the gradient of f. This
operator is usually identified with A, so one writes Af for the image of
f under the operator. Let A and B be C? vector fields on M. Show
that

[A, Bl = AB — BA,

where AB and BA should be interpreted as compositions of the opera-
tors A and B.

(iii) Use the result from (ii) to prove the Jacobi identity: For C* vector fields
A, B,C, one has

[A,[B,C)] + B, [C, A + [C, [A, B]] = 0.

We inductively define a sequence of families of vector fields by Gy =
{G,}icp and G,41 := G, U{[G;,V] :i € E,V € G,} for n € N. Recall that
the linear span of a set S contained in some vector space is the set of all
(finite) linear combinations of elements in S. We say that the weak bracket
condition holds at a point x € M if the linear span of {V(z) : V € U,enG,, }
is equal to the full space R*. As alluded to earlier, this condition admits
an alternative formulation in terms of the Lie algebra generated by (G;)ick-
The latter is defined as the smallest linear subspace L of the vector space of
C vector fields on M that is closed under Lie brackets ([G, H] € L for all
G, H € £) and contains (G})cp-

Exercise 5.43 Let £ denote the Lie algebra generated by (G;)ick.
(i) Show that G,, C L for all n € N,

(ii) Deduce from (i) that the weak bracket condition at a point z implies
that {V(z): V € L} =Rk
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(iii) Show that G, the linear span of UneN G,,, is closed under Lie brackets.
Hint: This will follow once it is shown that for every n € N, A € G,,,
and B € G, one has [A, B] € G. The Jacobi identity from Exercise 5.42
may be helpful.

(iv) Conclude that the weak bracket condition holds at a point z € M if and
only if {V(z): V € L} =R~

We now state the main result of this subsection.

Theorem 5.44 Assume that pu(i) > 0 for every i € E. If the weak bracket
condition holds at a point x* € M, then there is n € N such that x* is a
Doeblin point with respect to P"™. In particular, x* is then a weak Doeblin
point with respect to P.

Remark 5.45 In light of Proposition 5.37, Theorem 5.44 has the following
corollary: If (i) > 0 for every ¢ € E and if the weak bracket condition
holds at an accessible point x* € M, then P is é-irreducible. For the class
of random dynamical systems considered in this subsection, with u(i) > 0
for every 7 € E, a point x € M is accessible if and only if for every y € M
and for every neighborhood U of = there are n € N*, (iy,...,4,) € E", and
(t1,...,t,) € R such that

(F(tmin) ©...0 F(tl,il)) (y) € U.

Since the expression on the left is defined as ®;, (¢, ®;, , (tn-1,..., Py (t1,y)...)),
the condition above says that any neighborhood of = can be reached from
any starting point in M in finite time by composing flows of the vector fields

The proof of Theorem 5.44 relies on a slight generalization of Proposi-
tion 5.38. To state this generalization, let 7" be a nonempty open subset of
R? d € N*, and let E be a finite set. Let m be a probability measure on
© := T x E, equipped with the product o-field of B(T) and the power set
of . As in Section 5.4.1, the n-fold product measure m ® ... ® m will be
denoted by m”. Let M be a nonempty open subset of R*, k € N*, with Borel
o-field B(M). Let F : © x M — M be a map such that for every i € E,
(t,x) = Fyp(z)is C*. Forn € N*, i= (iy,...,4,) € ", and x € M, let

9011790 T — M, (tl, C. ,tn) — (F(tn,in) O0...0 F(tl,il))(x)-
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Proposition 5.46 Let x* € M, n € N*, and t* = (¢5,...,t:) € T™ such that
the following conditions hold.

1. There is i€ E™ such that the Jacobian matriz D@}, . (t*) has rank k;

2. There is a neighborhood V- C T" of t* such that m™((- N'V) x {i})
is absolutely continuous with respect to \"*(- N V). The corresponding
probability density function p has a representative p such that

c:= tlgé_p(t) > 0.

Under these conditions, x* s a Doeblin point with respect to P", and in
particular a weak Doeblin point with respect to P.

Exercise 5.47 Prove Proposition 5.46. Hint: The proof of Proposition 5.38
can almost be repeated verbatim.

The setting of randomly switched vector fields introduced at the beginning
of this subsection is clearly covered by the more general setting of Proposi-
tion 5.46, with 7" = R, and d = 1. The proof of Theorem 5.44 therefore
reduces to checking conditions 1 and 2 of Proposition 5.46. While condition 2
follows almost immediately from the definition of m, establishing condition 1
requires a link between the weak bracket condition and the full-rank condition
on the Jacobian matrix of <p;w This link is provided by the following result
from geometric control theory, which is implied by Theorem 1 of Chapter 3
in [26]. To help the reader understand this result, we give its proof.

Theorem 5.48 Under the assumptions of Theorem 5.44 and for 1 < j <k,
the following statement holds: For every € > 0 there are i € E7 and t* €
(0,e)7 such that Dy} ,.(t*) has rank j.

Proof We prove Theorem 5.48 by induction. In the base case j = 1, the
weak bracket condition at z* implies that there is ¢ € E such that G;(z*) # 0.
Then, for any € > 0, there is t* € (0, ) such that G;(®;(t*,2*)) # 0. Since

Spllx (t") = Fey(a") = O;(t", 27),

one has ‘
Dyl . (7) = Gi(®4(t, 7)),
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which has rank 1.

In the induction step, assume that the statement holds for some 1 < j < k,
and let € > 0. Since the weak bracket condition holds at =*, it also holds in an
open neighborhood M* C M of x*. There is no loss of generality in assuming
that ¢ is so small that ¢! .(t) € M* for every i € E7 and t € (0,¢)’. By
induction hypothesis, there are i € E7 and t* € (0,¢)’ such that Dy} . (t*)
has rank j. Since a full rank is preserved under small perturbations of the
matrix entries, there is an open neighborhood N of t* in (0,€)’ such that
D(,p;x* has rank 7 on N. The mapping @;x is then a differentiable map
between the manifolds N and M, and Dy} . has constant rank j on N. By
the constant-rank theorem (see, e.g., Theorem 2.b of Chapter 2 in [26]), there
is an open neighborhood U of t* in N such that S := gozm (U) is an embedded
submanifold of M of dimension j.

We call a vector field V' tangent to S if for every y € S, V(y) is a vector
in 73,5, the tangent space with respect to S at the point y. We will now show
that there is at least one vector field G;, ¢ € F, that is not tangent to S.

Assume this is not the case, i.e. G; is tangent to S for every ¢ € E. The
set of vector fields tangent to S is clearly closed under linear combinations.
It is also closed under the Lie bracket operation because of the flow-based
characterization of the Lie bracket in (5.6) and the fact that the flow of a
vector field tangent to S stays in S for ¢ in a nonempty open interval around
0 (see Proposition 1 of Chapter 2 in [26]). This shows that every vector field
in £, the Lie algebra generated by (G;):cp, is tangent to S. Fix an arbitrary
point y € S. The submanifold S was defined in such a way that the weak
bracket condition holds at every point in S and in particular at y. Since
V(y) € T,,S for every V € L, the tangent space 1,5 has dimension k, which
is strictly larger than j. This contradicts the fact that S has dimension j.

Let y € S and i;,, € E such that G;,,,(y) ¢ T,S. There is t € U such

that y = ¢} .. (t). Then

D@;ﬁf;* (E’ O) :D(tly--~7tj+1)q)7;j+1 (tj+1> (10;',1‘* (t1> SRR tj)) ‘(tl,...,tj):£7tj+1:0
= (DQD;,Q[:* (t)> Gij+1 (903,95* (t))) - (D@;,x* (t)a Gij+1 (y)) :

Since t € N, the matrix Dy} (t) has rank j. As a result, the columns of
Dgp}x* (t) are j linearly independent elements of T, S. Since the (j + 1)st col-

umn of Dgo}_lﬂl*;(f:, 0) is not contained in 7}, it follows that Dgo}_lﬁf;(f:, 0)

has rank (j+1). Again by virtue of the fact that having full rank is preserved
under small perturbations of the matrix entries, it follows that for ¢ € (0,¢)



122 CHAPTER 5. IRREDUCIBILITY

sufficiently small, D}7;2. (£,¢) has rank (j +1). QED

To complete this subsection, it remains to prove Theorem 5.44.

Proof [of Theorem 5.44] Let 2* € M be a point where the weak bracket
condition holds. By Theorem 5.44, there are i € E¥, and t* € R’i such that
D, .- (t*) has rank k.

Let V := (0, R)* for some R > 0 so large that t* € V. For Borel sets
Ay, A C(0,R) and A := Ay X ... X Ay, we have

k k

mh (A x {i}) = [ m(A < fi}) = [] ntiw(A) = / p(t) dt.

=1 =1 A

where
k

p(6) = [ [ uti)pu (1)

=1

and thus infiey p(t) > 0. The theorem then follows from Proposition 5.46.
QED



Chapter 6

Harris and Positive Recurrence

6.1 Stability and positive recurrence

Let (X,,) denote a Markov chain (defined on (€2, A,F,P)) on M with kernel

P. Recall that we let
1 n

denote its empirical occupation measure.

If there exists m € P(M) such that, for every initial distribution
(i.e law of Xy), (v,) converge weakly to 7 (i.e P (v, = m) = 1) the kernel
P (respectively the chain (X,,)) is called stable and 7 is called the stationary
distribution of P (respectively (X,)). If furthermore P,(v,f — nf) =1 for
every bounded measurable function f : M +— R then P (respectively
(X)) is called positively recurrent.

Recall that P is said uniquely ergodic if Inv(P) has cardinal one. The
following proposition easily follows from the definitions and Proposition 4.5.

Proposition 6.1 If P is positively recurrent with stationary distribution ,
then it is stable, uniquely ergodic and Inv(P) = {r}. If P is Feller and stable
with stationary distribution m, then it is uniquely ergodic and Inv(P) = {r}.

Remark 6.2 A Feller stable Markov chain is not necessarily positively re-
current. For instance, let X,, € R be recursively defined as

1
Xn+1 - §Xn + §n+1

123
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where (&,) are independent uniformly random variables taking values in {—1, 1}.
Then it is not hard to show that (X,,) is Feller stable and that , its stationary
distribution, is the uniform distribution over [—2,2]. On the other hand, for
Xo=0,X,€D={>7",2"%0 : 0, € {-1,1},m € N} so that v,(D) =1
while 7(D) = 0.

Another example (borrowed from [13]) is the following. Let P be the Ker-
nel on [0, oo defined by P(0,0) =1 and for z > 0, P(z,0) =1— P(z,z/2) =
27", This kernel is do-irreducible, Feller and admits dy as (unique) invariant
probability. It is stable (since X, < &) but is not positively recurrent,

2”
because the probability that X,, never touches 0 is positive.

Exercise 6.3 Let (X,,) be the deterministic system on S' = R/Z defined by
Xpt1 = (X, +a) mod 1 where o € R\ Q. Show that (X,,) is stable but not
positively recurrent.

Proposition 6.4 (i) Suppose that P is Feller, uniquely ergodic and that (for
every initial distribution) {v,} is almost surely tight. Then P is stable.

(ii) Suppose that P is strongly Feller and stable. Then P is positively recur-
rent.

Proof The first part follows from Theorem 4.20. If P is strongly Feller, then
for every bounded measurable f, Pf is continuous so that, v,,(Pf)—n(Pf) —
0. By invariance of 7w, m(Pf) = nf and, as shown in the proof of Theorem

4.20 v (Pf) — vpf — 0. QED

Remark 6.5 A Feller (even strongly Feller) uniquely ergodic Kernel on a non
compact space is not necessarily stable. For instance, let P be the Kernel on
N defined as P(0,0) =1 and forn >1 P(n,n—1)=1—p,P(n,n+1) =p
with 1 > p > 1/2. Then Jy is the unique invariant probability of this Markov
chain but the chain is not stable since P,(X,, — 0co) > 0 for all x > 0. Another
(similar) example on R™ is given by the deterministic linear dynamical system,
Xnt1 = aX, with a > 1.
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6.2 Harris recurrence

The chain (X,,) is called Harris recurrent if there exists a non zero measure
& such that for every Borel set A C M and every z € M

€(A) > 0= P, (limsup14(X,) =1} = 1.

n—oo

Note that an Harris recurrent chain is &-irreducible. Recall that an harmonic
function is a measurable function i : M +— R such that

Ph = h.

Theorem 6.6 Suppose that (X,,) is Harris recurrent. Then every bounded
harmonic function is constant.

Proof Let h be bounded and harmonic. Let (X7) denote the chain having
P as transition kernel and initial condition X7 = z. Then Y,, = h(X?) is a
bounded (in particular uniformly integrable) martingale. Hence, by Doob’s
convergence theorem (Theorem A.7 in the appendix), lim, o Y, = Y exists
almost surely and E(Y|F,) = Y,. Given a € R let {h > a} (respectively
{h < a},{h = a} be the set of u € M such that h(u) > a (respectively
<,=). If&({h > a}) > 0 then (X7Z) enters {h > a} infinitely often. Thus
Yo > a so that Y, = E(Y|F,) > a. In particular, h(z) = Yy > a. Similarly
if £({h < a}) > 0 then h(z) < a. Let now a be such that {h = a} # 0. Then
E{h#a}) =E&Upen{a— (n+1)"P <h<a+ (n+1)71}) = 0. This proves
that h =a. QED

Positive recurrence and Harris recurrence are intimately linked as shown
by the next important theorem.

Theorem 6.7 The following assertion are equivalent:
(a) P is Harris recurrent and Inv(P) # (;
(b) P is positively recurrent;

(c) There exists © € Inv(P) such that for all f € L'(7w) and every initial
distribution pu,

Py lim v, (f) = 7(f)))1.

n—o0
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Proof ¢ = b= aisimmediate. Conversely, if P is Harris recurrent with an
invariant probability 7 then P is uniquely ergodic. Let f € L}(7), A= {w €
MY 2 dimy, e =300, f 0 0F(w) = 7f} and g(z) = P,(A). By the ergodic
theorem g(z) = 1 m almost surely. We now claim that ¢ is harmonic, which
with Theorem 6.6 proves the result. To prove the claim we use the invariance
of A under # and the Markov property:

g(l’) = ECE(]‘A) = ECE(]‘A © 9) = Ex(Ex(lA © 9)“F1)) = Ex(g(Xl)) = Pg(l’)

QED

Theorem 6.8 Suppose P is strong Feller, uniquely ergodic with an invariant
probability © having full support. Then the equivalent conditions of Theorem
6.7 hold true.

Proof Let f € L'(7) and let g be defined like in the proof of Theorem
6.7. We have seen that g is harmonic. Since P is strong Feller g is con-
tinuous, and by the ergodic theorem g(x) = 1 for = almost all . The set
{z € M : g(xz) = 1} is then a closed set containing the support of 7. This
proves that P is positively recurrent. QED

Corollary 6.9 Suppose P is strong Feller with an invariant probability m
having full support. If M 1is connected, then the equivalent conditions of The-
orem 6.7 hold true.

Proof follows from Theorem 6.8 and Proposition 5.18 QED

6.2.1 Petite sets and Harris recurrence

A convenient and practical way to ensure that a chain is Harris recurrent is
to exhibit a recurrent petite set.

Given a Borel set C' C M we say that x € M leads almost surely to C' if
P, (¢ < o0) = 1 where

Tc =min{k > 1: X, € C}.
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We say that C'is recurrent if every x € M leads almost surely to C.
For further reference, we define the successive return times in C' recursively
by
70 — min{k > 7Y X, € O}
with 73 = 0.

Proposition 6.10 Let C' C M be a recurrent petite set. Then (X,,) is Harris
recurrent.

Proof It easily follows from the definition of a petite set (see Section 5.4),
that for all z € C' and A Borel, P,(74 < 00) > £(A). Thus, using the strong
Markov property, for all z € M,

Py(ta < 00) > Pu(Fk > 70 : Xj € A) = E,(Px, (T4 < 00)) > £(A).
Therefore, by the Markov property, for all n € N
P(1a < 00| F,) =Py, (14 < 00) > £(A).

The first term of this inequality converges to 1., (see Theorem A.7 in the
appendix). Thus P,(74 < 0co) =1 for all z, whenever £(A) > 0. By the strong
Markov property, this implies that X,, € A infinitely often. QED

6.3 Recurrence criteria and Lyapunov functions

We discuss here simple useful criteria, based on Lyapounov functions, ensur-
ing that a set is recurrent. It also provide moments estimates of the return
times. Conditions (a) and (b) of the next results are folklore (see the notes
at the end of the chapter). We learned condition (a’) from Philippe Robert
(see [41], Proposition 8 in Chapter 8).

Proposition 6.11 Let V : M — [1,00[ be a measurable map and C C M a
Borel set. Assume that for all x € C' PV (x) < oo and that one of the three
following conditions hold:

(a) PV -V <—1on M\C,

(a’) Condition (a) and sup,cy Eo(|V(X1) — V(2)|P) < oo for some p > 1,
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(b) PV =V < =XV on M\ C for some 1> \>0.

Then for all x € M

(i) E,(rc) < PV (z) + 1 under condition (a);

(ii) E.(78) < (1 +VP(x)) for some constant ¢ > 0, under condition (a');
(iii) E,(e’0) < E, (e~ 18- N7e) < L PV(z) under condition (b).

In particular, C' is a recurrent set.

Proof Let V, = V(X,nr.) + (n ATc). Then (V,),>1 is a supermartingale.
Indeed, for all n > 1

E(Vii1r — Vol Fn) = E(Vis1 — Vol F) Lrosn = (PV (X)) — V(X)) 1rosn < 0.

Thus E,(n A 7¢) < E (V) < E (Vi) = PV(x) + 1. This proves the first
assertion. The proof of assertion (ii7) is similar. Set V,, = % Then
(Vi)n>1 is a supermartingale. Thus

PV
Ex(e—log(l—/\)n/\m) < Em(Vn) < Ex(vl) _ - (i)
We now prove assertion (ii), following Robert ([41], Proposition 8, Chapter
8).
We claim that for all x > —1

(14+2)P <1+4pr+ Cpr(x) (6.1)

where
p(p—1)

r(r) = 2*(1 + |z|)*~? and C, = 1

for p > 2; And
r(z) =|z|” and C, =1

for 1 < p < 2. Indeed, by Taylor-Lagrange formula, for all x > —1,

plp—1) ,
5% R(x)

(I+2)P=14pzr+
with R(z) = fol(l — 5)(1 + sz)P~2ds. Thus |R(z)] < 5(1 + |z|)P~?) for p > 2.

For 1 <p <2, and x > 0,|R(z)| < fol(l — 8)sP P72 = p(pl_l)xp_Q while for
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l<p<2and -1 <z <0|R(z)] <1 (because s € [0,1] = (1 —s)(1+sx)P~2
is decreasing, hence bounded above by 1). This proves the claim.
Now set

Zn =1+ e(V(X,) + g)

where € > 0, and

At = V(Xnr) — V(X)) + %
Then
20— 201+ oy,
so that by (6.1) and condition (a),
B2l ) < 2801 — 2o+ G (TS 7o)

on the event 7c > n. Now, it is easy to check that r(‘EAZ%“) < g—i(l—i— |A1])P)

for p > 2, and T(EAZL“) < 5”%—“@ for 1 < p < 2. Thus, for ¢ > 0 small

enough, condition (aT)l and (a’) make (Zpnre) & supermartingale. The end of
the proof is like the proof of (i). QED

Remark 6.12 if V is a Lyapounov function in the sense that PV < pV + &
with 0 < p < 1 and k > 0; the assumptions of the Proposition 6.11 (b) hold
true with 0 < A< l—pand C ={zx e M :V(z) < 15;5\}. Compare to
Proposition 4.23.

The next proposition extends assertion (7ii) of Proposition 6.11 and gives an
alternative condition (to conditions (a), (a')) to control the moments of 7¢.
The proof is based on a beautiful argument used in section 4.1 of Hairer’s
notes |?].

Proposition 6.13 Let V : M — [1,00[ be a measurable map and C C M a
Borel set. Let ¢ : [0,00[— R% be a C concave function and let h : [1, 00[—
[0, 00[ be the map defined by
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Assume that for all x € C' PV (x) < oo and that for allx € M\ C
PV(z) = V(z) < —p(V(2)).
Then, for allx € M\ C
E.(h™'(c)) < V(2)
and, for all x € C
E.(h ' (1¢)) < R H(h(PV(z)) + 1).

Proof First observe that ¢/ > 0 (for otherwise by concavity ¢ could not be
> 0). Forx > 1and t > 0 set H(t,z) = h='(h(z) +t). It is readily seen that
that

O 2 = U (1,2)) = 0(a) 1, 2). (6.2)
Thus
PH, | (PH) - P @)elH(E, )
S (t2) = ) <0. (6.3)

In particular, H is convex in ¢ and concave in z.
It follows that for all m > 0
H(n+1,V(Xn11)) = H(n, V(X)) =

Hn+1,V(Xon)) — Hin+ 1L,V(X,)) + Hin+ 1, V(X)) — H(n, V(X,))
< %—Z[(n + 1L, V(X)) (V(Xpi1) = V(X)) + %—}tf(n +1,V(X,)).
Therefore, on the event {X,, & C},
E(H(n+1,V(Xn)) — H(n, V(X3)) [ Fn)
OH

< —p(V (X)) 5 (n+ 1, V(X)) + %—f(n +1,V(X,)) <0.

Here the first inequality follows from the hypotheses on V' and the second
from equation (6.2). This makes the process (H(n A 7o, V(Xunre))n>1 @ su-
permartingale. Thus

E,(h ' (nA1e)) < Eu(H(nATe, V(Xonre))) < EL(H(L, V(X)) < H(1, PV(2))

where the last inequality follows from concavity of H in x and Jensen inequal-
ity. In case x € M \ C, by monotony and concavity of h

h(PV (z)) < h(V(x) =@ (V(2))) < h(V(2))=h'(V(2))e(V(2)) = h(V(z)) - 1.
Thus H(1, PV (z)) < V(x). This proves the result. QED
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6.3.1 Subsets of recurrent sets

Let C C M be a recurrent set for the chain (X,,) (for instance the sublevel set
{V < R} of a Lyapounov function) and U C C' a measurable smaller subset
(for instance the neighborhood of a Doeblin point). It is often desirable to
deduce recurrence properties of U from recurrence properties of C. This short
section discusses two such results.

The induced chain on C'is the process (Y,,),>1 defined as

Yo=X .
e
Exercise 6.14 Verify that (Y},),>1 is a Markov chain on C.

Proposition 6.15 Let C' C M be a nonempty recurrent set and U C C a
measurable subset. Suppose that there exists k > 1 and 0 < ¢ < 1 such that
for all z € C

P.(Jie{l,...,k}Y,eU)>c¢

where (Y,,) stands for the induced chain on C. Then
(1) U is recurrent;
(ii) If sup,ec EL(78) < oo for some p > 1, then

supE, (1) < oo
zeC

(iii) If sup,co E.(e*7) < oo for some Ao > 0, then

)\TU) < 00

supE, (e
zeC

for some 0 < A < .

Proof For all x € M, P, almost surely

1,<oo = lim P.(1y < 00| F_ ) = lim Py, (1p < 00) > €.
n—o00 Tc —00

n
Here the first equality follows from the Martingale convergence theorem A.7
and the second from the strong Markov property. This proves that U is
recurrent.
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Let oy = min{n > 1 :Y, € U}. The proofs of assertions (i7) and (7i7)
now follow from the identity 7y = TéUU), exactly as in the proof of Proposi-
tion 2.17 (i), (i7). The verification is an easy exercise left to the reader. QED

When P is Feller, the existence of a compact recurrent set C' makes every
accessible open set U recurrent. More precisely,

Proposition 6.16 Suppose that P is Feller. Let C C M be a nonempty
compact set, x* € M an accessible point from C (i.e z* € I'c) and U a
neighborhood of x*.

(1) If C is recurrent, so is U;
ii) If U C C and sup,,.- E,(72) < oo for some p > 1, then
zeC C

supE, (1)) < o0
xeC
(iii) If U C C and sup,cc E,(e7¢) < 0o for some A\g > 0, then

>\TU)

supE, (e < 0

zeC
for some 0 < X < .

Proof For ¢ > 0 and i € N* let O(e,i) = {zr € M : P(z,U) > e}.
By Feller continuity and Portemanteau’s theorem 4.1, O(e,4) is an open set.
By accessibility of z* the family {O(e,i),e > 0,7 € N*} covers C. Thus,
by compactness, there exist ¢ > 0 and a finite set I C N such that C C
UierO(e, ). This shows that, for all z € C,

P,(ry < k) > e (6.4)

with & = max I. Assertions (i7) and (i7i) then follow from Proposition 6.15
because, for all z € C,

P.(Fie{l,...,k}Y,€eU)>P.(1y <k)>e.

The proof of first assertion is similar to the proof of the first assertion in
Proposition 6.15. Namely, for all x € M, P, almost surely,

1, <o = lim P.(1y < 00| F_ ) = lim Py, (1y < 00) > €.
n—00 TC n—00

Thus P,(1y < 00) =1. QED
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6.4 Petite sets and positive recurrence

We have seen (Proposition 6.10) that the existence of a recurrent petite set
for a Markov chain makes it Harris recurrent. If, in addition, the return times
to the set are bounded in L', then it is positively recurrent.

Theorem 6.17 Let C C M be a recurrent petite set such that

supE,(7¢) < 0.
zeC

Then the equivalent conditions of Theorem 6.7 hold true.

Before proving this theorem, we start with a proposition relating the recur-
rence properties of the chain (X,,) and the sampled chain Y,, := X1, , where

forn > 1, Ty := 0, and (A;);>1 is a sequence of i.i.d. random variables taking
on values in N.

Recall that in the particular case where A; has a geometric distribution
with parameter a, (i.e. P(A; =n) = a"(1 — a) for all n € N) then (Y},) has
kernel R,.

The hazard rate of A; is the sequence

n € N.

A(n) = P(A; = n|A; > n) = D& Z)

P(A; = n)’
For a geometric distribution with parameter a, the hazard rate is constant
and equals 1 — a.

v

Exercise 6.18 Suppose A; has a negative binomial distribution with pa-
rameters (a,m) (see Exercice 5.2 (ii)). Prove that A(n) is nondecreasing and
converges to 1 — a. In particular,

. o _ m

711161%)\(71) =A0)=(1—a)™
The next result is an easy consequence of the memoryless property when A;
has a geometric distribution (prove it as an exercise) and this is exactly what
we’ll need for the proof of Theorem 6.17. It is however interesting to point
out that it remains valid under the weaker assumption that the hazard rate
of A; is bounded below. Tom Mountford helped us with the proof of this
proposition and suggested the minorization condition on the hazard rate.
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Proposition 6.19 Let (A,), (T,) be as above, i.e. (A,) is an i.i.d. sequence
of N-valued random variables and T,, := A1 + ...+ A,,.. Assume that there is
a € (0,1) such that

inf A(n) >1—a > 0.

neN
Let N ={n; <ny <...<ng<...} CN bean infinite set of integers and
v :=min{n >1: T, € N'}.
Then
(i) P(ry <o0) =1
(ii) P(T,, > n;) <o for all i > 1;
(iii) E(A1)E(Ty) < nu 4D 0is (i — ni)as

(iv) If M(n) =1 —« for all n € N (meaning that A; has a geometric distri-
bution with parameter « ), inequalities (ii) and (iii) are equalities.

Proof (i). Forn>1,let F, :=0(Ay,...,A,) and v(n) :=P(F >0: T, =
n). We claim that v(n) > 1 — « for all n > 1. One has

v(n) =E(P(3i > 0: T; = n|Fy))
=v(n)P(A; =0) + E(v(n — A1)Lloca,<n) + P(A; = n).

Thus, v(1) = A(1) > 1—a. Suppose now that v(i) > 1—afori=1,...,n—1.
Then

v(n)P(A1 >0) > (1 —-a)P(0< Ay <n)+P(A;1=n)> (1 —a)P(A; >0).

This proves the claim by induction. It follows from what precedes that
P(ty < oo|lF,) >1— (1 — )", so that P-almost surely

Ly <oo = lim Pty < 00| Fp,) = 1.
(7). For k > 1, let Sy :=min{i > 0: ni <T; < ngr1} € NU{oc}. Then
P(T7 > nit1) = P(Thy > npgr; Sp < 00) + P(T7,, > g1 Sk = 00).
Using the strong Markov property,

P(TTN > Ny 1; Sk < OO) = E(P(TTN > nk+1|F5k)1{5k<oo})
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= E((1 — v(ng41 — Ts)) 1z, sny Lsp<oo}) < aP (T > ny; Sy < 00).
On the other hand,

P<TTN > M 15 Sk = OO)
:Z P<{T07T17 <o 7Tl} N {nla . 7nk} = (Z)sz < nk§Ti+1 > nk+1>7

i>0
and

PETo, Th,.... i} N {ny, ..., = 0; T < ny; Tir > g | F3)

= 1{T0,T1 ..... Ti}ﬁ{nl ..... nk}1T¢<nkP(Ai+l > N1 — ]—IL|‘E)
< alyp ..ot Men P(Aiv1 > g — 13| F)

by the assumption on the hazard rate of (A;). Therefore,
P(T: > nit1; Sk = 00)
i>0
=aP(T;,, > ny; Sk = 00).
Finally we have shown that
P(T%, > nit1) < aP(T5,, > ny).

(zii). Let M,, :=T,, — E(T},) = T,, — nm, where m := E(A;). Then (M,,) is
an (F,)-martingale with zero mean. Thus, by part (ii) of Theorem A.4,

E(Munry) = 0 =E(Tr\nn) — mE(Tar A ),

and, by monotone convergence,

mE(ry) = E(T;,) = anP(TTN =ny) = Z(nk“ —ng)P(T5,, > ny)

k>1 k>0

with the convention ng := 0.
(1v). This follows immediately from the proofs of (ii) and (iii). QED
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Proof of Theorem 6.17 In view of Theorem 6.7 and Proposition 6.10 it
suffices to show that there exists an invariant probability for (X,,).

First observe that we can always assume that £(C') > 0 where £ is the
minorizing measure of R,. Indeed, let & () = a* [ £(dy)P*(y,-). Then for all
rel

Ra(ZL’, ) > akRaPk(‘rﬂ ) > gk()

so that &, is another minorizing measure. Now, there exists k& such that
& (C) > 0, for otherwise we would have P*(y, ) = 0 for all k and £ almost
all y, in contradiction with the assumption that C' is recurrent. Replacing &
by such a & proves our claim.

Let 7¢ < Té?) < Té?) < ... be the successive times at which (X,,) enters
C. That is Tékﬂ) = min{n > Ték) : X, € C}. By assumption (4i7) (of the
theorem to be proved) and the strong Markov property

E, () < kM

for all z € C. Let (Y,,) be the chain with kernel R,, 7% = min{n > 1:Y, € C}
and Q(z,-) the kernel on C' defined by Q(z, A) = P,(Y,y € A) for all Borel
set A C C. By Proposition 6.19 (i), 7& < oo a.s so that @ is a Markov
kernel (i.e Q(z,C) = 1). Furthermore Q(z,A) > R,(z,A) > ey(A) with
e =¢&(C) and YP(A) = g(E—A). In other words, @ is a Markov kernel whose full
state space (here C') is a small set. Then, by a theorem that will be proved
later (Theorem 7.7 in Chapter 7), @ has a (unique) invariant probability 7.

If Yo is distributed according to 7 so is Y,y and by Proposition 6.19 (i)

M
Eﬂ-(Tg) S ;

By Exercise 4.24 this implies that (Y,,) (or equivalently R,), hence (X,,), ad-
mits an invariant probability. QED

6.4.1 Positive recurrence for Feller chains

The next results give some (much more tractable) conditions ensuring that a
Feller chain is positively recurrent.

Theorem 6.20 Let P be Feller. Assume that there exist a compact recurrent
set C' such that sup,co E,(1c) < 0o, and an accessible weak Doeblin point
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x* € Int(C) (the interior of C'). Then the equivalent conditions of Theorem
6.7 hold true.

Proof By assumption there exists U C C' a neighborhood of z*, and a non
trivial measure £ such that R,(x,-) > &(+) for all z € U. By Proposition 6.16
U is recurrent and sup,.o E, (1) < oco. We can then apply Theorem 6.17,
with U in place of C. This proves the result QED

Corollary 6.21 Let P be Feller. Assume that there exists a weak Doeblin
accessible point, a proper map V : M — Ry and nonnegative constants R, M
such that PV <V —1 on {V > R}, and PV < M on V < R. Then the

equivalent conditions of Theorem 6.7 hold true.

Proof Let 2* be the weak Doeblin accessible point. Choose R large enough
so that V(z*) < R. Set C' = {V < R} and apply Proposition 6.11 (a) and
Theorem 6.20. QED

Theorem 6.22 Let P be Feller. Assume that there exists a weak Doeblin
accessible point and that for all x € M the empirical occupation measure (vy,)
is P, almost surely tight (this is true for instance under the assumptions of
corollary). Then the equivalent conditions of Theorem 6.7 hold true.

Proof By assumption there exists an open accessible petite set C. By
Proposition 5.37 and 4.20, there exists a unique invariant probability 7 for
P and v, = 7w P, almost surely for all z € M. Since C is open and ac-
cessible 7(C') > 0 (see Proposition 5.8 (i7)) and, by Portmanteau theorem,
liminf v,(C) > w(C). This proves that every point x leads almost surely to
C. The result then follows from Proposition 6.10 and Theorem 6.7 QED
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Chapter 7

Harris and Orey Ergodic
Theorems

7.1 Total variation distance

Recall that B(M) is the set of real-valued bounded measurable maps on M.
For f € B(M), || f||~ is defined by (1.1). Given two probability measures «
and 8 on M the total variation distance between o and (3 is defined by

oo = B = sup{la(f) = B(NI = f € BM), [[fllo <1} (7.1)

It is easy to verify that this defines a metric on P(M).
Note that if K is a Markov kernel on M,

K = K| < |or = f (7.2)
because K maps {f € B(M), ||fllcoc < 1} into itself.
Proposition 7.1 Let o, € P(M).

(i)
=Bl =2 sup a(A) - B(A).

AeB(M)

(i) Assume o and B are absolutely continuous with respect to v € P(M)
with respective densities p and q. Then

o — B Z/Ip—qld%

139
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(iii) The space P(M) equipped with the total variation distance is complete.

Proof We begin by assertion (i7). For all f € B(M) with ||f|lec < 1,
la(f) = B(N) < [Ip— gldy so that |a — B] < [ |p — g|dvy. Conversely, set
f=1p2q = 1yq Then a(f) = B(f) = [ |p — qldr.

We now pass to the proof of (7). We can always assume that for some
v € P(M), a and (3 are absolutely continuous with respect to . It suffices
for instance to choose v = O‘TJFB Then,

o — B = /G (b — )y + /M la= )i =20a(0) ~5(G)

with G = {p > ¢}. Also, for all A € B(M), a(A) — B(A) < a(ANG) —
BANG) < a(G) — B(G). Our last job is to prove completeness. Let (i)
be a Cauchy sequence for the total variation distance. Then, in view of (i),
for every Borel set A, (uun(A)) is a Cauchy sequence in R, hence converges to
some number p(A). By the Cauchy property, the convergence is uniform in
A. That is sup separy [Hn(A) — p(A)| — 0. From this it is easy to verify that
1 is a probability measure over M. QED

Exercise 7.2 For f: M — R, let A(f) = sup{L;f(y)‘ cx,y € M}. Show
that

la — B| = sup{|a(f) — B(f)| : f measurable, A(f) < 1}.

Remark 7.3 Although the total variation distance (7.1) and the Fortet-
Mourier distance (4.2) look very similar, they induce quite different topologies
on P(M). Clearly,

ple, ) < la =g
so that convergence in total variation implies weak convergence; but the con-
verse is false. Let, for example, X be a random variable on R whose law
Px is absolutely continuous with respect to the Lebesgue measure dz (e.g. a
Gaussian random variable) and X,, = % Then X,, — 0 almost surely, hence
Px, = 0o, while |Px, — do| = 2 by Proposition 7.1, ().

Remark 7.4 (Total variation of signed measures) A finite signed mea-
sureon M is amap g : B(M) — R such that (@) = 0 and which is o-additive.

That is
M(U An) = Z N(An)
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for any family {A,,}, A, € B(M), having disjoint elements. The Hahn-Jordan
decomposition theorem (see [12], Theorem 5.6.1) asserts that such a measure
can be written as

p=pt—p,
where ©™ and 1~ are nonnegative measures that are mutually singular: There
exists D € B(M) such that for all A € B(M), ut(A) = u(A N D) and
p(A) = —u(A N D). The total variation measure of u is the nonnegative
measure ut + = and its total variation norm is

|l = (M) + = (M) = sup{|u(f)] = f€BM), [Iflle <1}

When M is a compact metric space, the topological dual C*(M) of C(M)
can be identified with the space of bounded signed measures equipped with
the total variation norm, so that convergence in total variation coincides with
(strong) convergence in C*(M). We refer the reader to [12], Chapter 7, for
more details and a proof of this latter point.

Exercise 7.5 Use the Hahn-Jordan decomposition to show assertion (i) of
Proposition 7.1.

7.1.1 Coupling

Given «, € P(M), a coupling of o and (3 is a random vector (X,Y) defined
on some probability space (€2, .4, P) taking values in M x M such that X has
distribution o and Y has distribution [.

Proposition 7.6 Let o, 8 € P(M). Then
(1) (Coupling Inequality) For every coupling (X,Y) of (o, B),

v = B] < 2P(X #Y);

(ii) (Mazimal coupling) There ezists a coupling (X,Y) of (a, B) such that

o — B = 2P(X £ Y).

Proof (i). For all A € B(M),

PXeA)-PYecA)=PXecAX#Y)-PY e A X#Y)<PX#Y).
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This inequality, combined with Proposition 7.1 (i), proves (i).
(77). Assume (without loss of generality) that do = pdy and df = qd~y for
some v € P(M) (e.g. v = (a+ §)/2). Then, by Proposition 7.1 (iz),

|a—5\:/|p—qrdv=2<1—e>

where ¢ = [(p A ¢)dy. If ¢ = 0, @ and 3 are mutually singular and any
coupling satisfies the equality |o — ] = 2P(X # Y) = 2. If ¢ # 0, let
Ue M,V eMWeMO e {0,1} be independent random variables having
distributions (pAq)dy, 7= (p—(pAq))dv, = (¢—(pAq))dy and (1—e)do+edy,
respectively. Set X = OU + (1 — ©)V and Y = OU + (1 — ©)W. Then
PIX#Y)=P(©O©=0)=(1-¢),and (X,Y) is a coupling of (a, 3). QED

7.2 Harris convergence theorems

Throughout all this section P is a Markov kernel on M . Recall (see Section
5.4) that a set C' € B(M) is called a small set for P if there exists a nontrivial
measure £ on M (called the minorizing measure of C') such that

P(,) > €() (7.3)

for all z € C. Recall also that a point is called a Doeblin point if it has a
neighborhood which is a small set.

7.2.1 Geometric convergence

The importance of small sets is emphasized by the following simple version
of Harris’s theorem.

Theorem 7.7 Let m € N;m > 1. Suppose M 1is a small set for P™ with
minorizing measure . Then for all o, 5 € P(M),

P — P < (1 =) ™o — 3],

where 0 < € = £(M) < 1. Furthermore P has a unique invariant probability
measure ™ and
laP" — 7| < (1 —¢e)™|a — x|
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Proof First suppose m = 1. Set ¢ = %,5 =¢(M), and

K(z,") = P(mai)_—;iﬁ(')

Then, K is a Markov kernel and aP = ey 4+ (1 — ¢)aK so that

if e < 1.

jaP — BP| = (1 —¢)lak — BK| < (1 —¢)|a — ],

where the last inequality follows from (7.2). Hence, a — aP is a strict
contraction for the total variation distance. Then

laP" — BP"| < (1 —¢e)"a— [

and o — aP has a unique fixed point, by application of the Banach fixed
point theorem, because the space of probability measures endowed with the
total variation distance is complete.

If now m > 1, set Q@ = P™. Write n = km +r for r € {0,...,m — 1} and
aP" = BP"| = [aP"Q* = BP"QH < (1 — e)aP" — BP'| < (1 — &) |a— 6.

To conclude, notice that if 7 is invariant for P™, then = > "7 P* is invari-

ant for P. QED

Remark 7.8 Theorem 7.7 doesn’t require that P is Feller (and not even that
M is a metric space).
Aperiodic small sets

A measurable set C' C M is said to be aperiodic if the set

R(C)={k>1 :inf P*(z,C) > 0}

zeC

is nonempty and aperiodic as defined in Section 2.2.1.

Exercise 7.9 (a) Let P be Feller and let U C M be an open, accessible
(i.e Ry(z,U) > 0 for all z € M) small set. Show that R(U) is nonempty.

(b) Construct a Feller Markov chain having an open recurrent set for which
R(U) = 0.
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Let x* € M be an accessible Doeblin point for P Feller. We say that z*
is aperiodic if it has a neighboring small set U which is aperiodic. Observe
that if £(U) > 0 (where £ stands for the minorizing measure of U) then z* is
aperiodic.

Proposition 7.10 Assume P is Feller. Let x* € M be an accessible and
aperiodic Doeblin point and let C' C M be a compact set. Then there exists
m > 1 such that C' is a small set for P™.

Proof Let U be a small set, neighborhood of z* with R(U) aperiodic. Then,
by aperiodicity, there exists ng € N such that £k € R(U) for all k > ng (see
Proposition 2.21).

For § > 0 and k € N* let O(0,k) = {z € M : P*x,U) > §}. By
Feller continuity and Portemanteau’s theorem 4.1, O(4, k) is an open set. By
assumption (z* accessible) the family {O(d,k),0 > 0,k € N*} covers M.
Thus, by compactness, there exist 6 > 0 and integers ky, ..., k, such that
C C U ,0(6,k;). For x € O(d, k;) and k > nyg

PR 2 [ P dy P
U

> /UPki(x,dy)Pkl(y, U)¢() > 5;25 PMy, U)E().

Here £ stands for the minorizing measure of U. Thus, for m = max{ky, ..., k,}+
ng + 1 and some ¢ >0
P™(x,.) > d¢().

QED

Theorem 7.7 and this latter proposition imply the following useful result for
Feller chain on compact sets.

Corollary 7.11 Assume P is Feller on M compact and that there exists an
accessible and aperiodic Doeblin point. Then the conclusion of Theorem 7.7

holds.

When M is not compact, the assumption (made in Theorem 7.7 or used in
Corollary 7.11) that all the space is a small set is usually not satisfied. A
sufficient condition ensuring geometric convergence is given by the existence
of a small set and a Lyapunov function forcing the system to enter this small
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set. A classical proof relying on coupling and renewal properties will be
given in the next section. Hairer and Mattingly in [25] gave an alternative
beautiful proof based on the construction of a suitable semi-norm making P
a contraction. This proof is given below.

Theorem 7.12 (Harris, Hairer & Mattingly) Assume that there exist:

(a) A measurable map V : M — R;,0 < p <1 and k>0 such that

PV < pV + K;

(b) A probability measure v on M and 0 < e <1 such that
forallz € Vg :={x € M :V(z) <R} and R > 2x/(1 — p).

Then, there exist a (unique) invariant probability © for P and constants
0 <~ < 1,C > 0 such that for all f : M — R measurable with || f|v :=

sup 1%1(/?(1) < 09,
[P f(x) = w(f)] < Cy" (1 + V(@) fllv
for all x € M.

Proof For >0 and f: M — R measurable, possibly unbounded, let
|f(@) — f(y)]

=su cx,y € M}
We claim that for some 1 > > 0and 0 <y < 1,
Iflls <1 =1[Pflls <. (7.4)

Assume the claim is proved. Observe that || f]|1 < ||flls < %Hle < %HfHV
Then

1P flle < 1P flls < 7"l s < "B fllv-

Equivalently

[P f(z) = P f(y)l <7"BIfllv(2+ V() + V(y).
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Thus,
[P fz) —mf| < / |P" f(z) = P" f(y)lm(dy) <4"B7 Y fllv(2+ V(z) + V).

where 7 is some (hence unique) invariant probability (see Exercise 7.13). This
proves the result.

We now pass to the proof of the claim. Let f be such that || f]|z < 1.

If V(z) +V(y) = R. Then

Pf(z) — P(y)| = | / (f(w) — £(0))8, P(du)s, P(dv)|

< / () — F(0)]8.P(du)5,P(dv) < 2+ BPV(x) + BPV(y)

<2420k + pB(V(x) +V(y)) <2+ 8V (x) +V(y)))

where
B(2k + pR) + 2

BR+ 2
The last inequality follows from the fact that for all p, > 0 and a > 2p,

= 6]07 1[

t>r=a+pt <7m(2+1)

where 7, is the solution to a + pr = (2 + 7). It suffices to set a = 2 + 20k
and r = SR.

Suppose now that V(z) + V(y) < R. In particular, z,y € Vg. Like in the
proof of Theorem 7.7, write Pf = (1 —e)K f + e(f) where for all x € Vj,
K(z,-) is a Markov operator. Thus

[Pf(x)=Pfy)l = A=e)|[Kf(x) - K[f(y)| < A—e)A+BKEV(z)+ KV (y)).
Also (1 —e)KV(x) = PV (z) — eV < pV(z) + k. Thus
[Pf(x) = Pf(y)l < (1 =2)+26r+pB(V(2) +V(y)) <122+ 5(V(2) +V(y))

with 79 = max(p,1 — e + Bk). Finally it suffices to choose fx < € and to set
v =max(71,72). QED
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Exercise 7.13 (i) Suppose that is M is Polish space, P is Feller and that
there exists a proper and continuous map V : M +— R, satisfying as-
sumption (a) of Theorem 7.12. Show that the set of Inv(P) is nonempty.
Hint: Use Corollary 4.23.

(ii) Suppose only that M is measurable space. Show that Py (M) = {u €
P(M) : V € L'(u)} is complete for the distance dg(u,v) = |u — vs
defined in the proof of Theorem 7.12. Deduce that, under the assump-
tions of Theorem 7.12, there exists a unique invariant probability for P.
Hint: Use inequality (7.4) to show that

[P —vPlg <vlp— vl (7.5)
for some 0 <~y < 1and 8 > 0.

Corollary 7.14 Suppose P is Feller and that and that there exists a proper
map V : M — Ry satisfying assumption (a) of Theorem 7.12. Suppose
furthermore that there exists an accessible aperiodic Doeblin point. Then the
conclusion of Theorem 7.12 hold true.

Proof Choose R > (13—’;)2. The set C' = {V < R} is a compact set (be-

cause V' is proper) and petite for some P™ by Proposition 7.10. Since
pmvo< o™V o+ fp, Theorem 7.12 applies to P™ and the result follows.
QED

7.2.2 Coupling, splitting and polynomial convergence

This section is the natural counterpart of Section 2.4 on countable chains. It
revisits the convergence theorems of the previous section and relate the rate
of convergence to the moments of the return time to a recurrent small set.

Theorem 7.15 Let C C M be an aperiodic, recurrent small set for P.

(1) Ifsup,cc Eu(7c) < 00, then P is positively recurrent and, letting m denote
its tnvariant probability,

|uP" — 7| —0

for every probability p € P(M).
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(ii) If supyec EL(78) < 00 for some p > 2, then there exists ¢ > 0 such that
for every probability p € P(M) and for every n € N*,

P = 7] < ——e(1+ B (%)),

np—1
iii) If sup,. - E.(e27¢) < 0o for some Ao > 0, then there exist 0 < A < \g
zeC
and ¢ > 0 such that for every probability measure p on M and for every
n €N,
|uP™ — 7| < e (1 4+ E,(e27)).

Proof Positive recurrence follows from Theorem 6.17. The rest of the proof
relies on a coupling argument that goes back to Harris ***FIX*** and Num-
melin [35] . We proceed in two steps.

Step 1. We first assume that C' is an atom, meaning that there exists a
probability £ on M such that for all x € C, P(x,-) = £(-). In this situation
the proof is very much like the proof given for a countable Markov chain
(Theorem 2.35). Let (X,,) and (Y;,) be two independent chains (induced by
P), P, the law of ((X,,Y}))n>0 when (X, Yp) has law ¢ ® v, and let

Toxc =min{n >1: X, € C\Y, € C}.
Because C'is an atom, for all u, v € P(M)
Pu@u(Xn € Toxe < n) - Pu@u(KL € Toxo < n)

Hence
(uP" — 7| = |pP" — 7 P"| < Pugn(Toxc > n).

Let now (Tén)) (respectively (}()n))) denote the successive hitting times of C

by (X,) (respectively (Y,)). The assumption that C' is an aperiodic atom
make the processes T := (75""),50 and T := (F5""),20 two aperiodic in-
dependent renewal processes (see Section 2.3) and 7oy is their first common
renewal time. The additional assumption that sup,.-E.(7¢) < oo make
these processes L' (as defined in Section 2.3) so that Toxc < oo almost
surely (see Equation (2.5) and the discussion preceding it). This proves the
first assertion by letting v = m, the invariant probability of P. To prove the
second assertion, by Markov inequality and Theorem 2.33 we get that for all
0<qg<p,
1

. 1
P — 7| < E]EM@W(T%XC) < E(C(l +]Eu(7'g> + Ew(Tg))
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The problem then reduces to estimate E,(74). Here again, the assumption
that C is an atom will prove to be very useful. Like for countable Markov
chains, ™ can be explicitly written as

w(f) = AL 2R o, (70) 4+ (X))
E.(7c)
for any x € C and all f > 0 measurable. The proof is similar to the proof
of assertion (7i¢) in Theorem 2.6 (compare to Exercise 4.24) and left to the
reader. Applying this formulae to the map y — E,(¢)(7¢)) for some nonneg-
ative function 1 leads to

Tc—1

E.(¢(1c)) = m(C)E. (Y _ ¥(k)),
k=0

for all x € C| exactly as in Proposition 2.13. In particular
E.(74) < W(O)Ea:(Tg’+1>

for all x € C. This concludes the proof of the second assertion.
The proof of the third assertion is similar. By Markov inequality and
Theorem 2.34 there exists 0 < A < A\g such that

|uP™ — 71| < e ME eq(e770%¢) < e (14 E,(eM70) 4 E, (7).

On the other hand, for all z € C
el — 1

Er(e7) = MO (o1

).
Step 2. We suppose now that C'is a small set with minorizing measure £. Let
e=¢M), () = % and let K be the kernel on C' defined by

P(z,) —ep()

K(z,:) = T )

The idea of the splitting method consists to constructs (X,,) with the help
of an auxiliary sequence (I,), 1, € {0,1}. If X, & C, then I, is set to 0. If
X, € C, I, is randomly chosen according to a Bernoulli distribution with
parameter €. At the next step, X, is distributed according to
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More formally, consider the Markov kernel () defined on
M ={(z,1) e M x{0,1} 12 ¢ C=1i=0},
by: For all x € M\ C

Q(z,0,dy x {0}) = Pz, dy)(1 —elc(y)),
Q(I,O,dy X {1}> = P(.I, dy)glc(’y)a

and for all x € C

Q(z,0,dy x {0}) K(z,dy)(1 —¢elc(y)),
Qz,0,dy x {1}) = K(z,dy)elc(y),
Q(z,1,dy x {0}) P(dy)(1 —elc(y)),
Q(z,1,dy x {1}) Y(dy)elo(y).

We let (X, I,) denote the canonical process on (2, F) = (MY B(M)®N),
Fn = 0((Xi, I;)i<n), and for each v € P(M),P, the Markov measure on 2
making (X, I,,) a Markov chain with kernel @) (with respect to (F,)) and
initial law v. As usual we write P, ; for P(;(I’i). We shall also use the following
convenient notation:

P, = ]P)(%O) ifeeM \ C,
P, = (1 — €)P(x,0) + SP(IJ) if v e C.

Let G, = 0((Xi)i<n)- It is not hard to verify (but still a good recommended
exercise) that

Py (Xnt1 € -Gn) = P(Xa,-)
for all n > 1 and v € P(M); and that

P,(X; € ) = P(a, ).

This shows that (X,,),>0 is a Markov chain with kernel P and initial value
Xo=xon (Q,F,(Gn),P,).
We claim that:

(a) C x {1} is a recurrent aperiodic atom for Q;

(b) If for some p > 1, sup,c- E,(78) < oo, then there exist a,b > 0 such
that for all (z,i) € M

Ex,i(Tgxl) < aEw(Tg) +b;
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(c) If for some A\g > 0, sup,cc E.(e7) < oo, then there exist a > 0 and
0 < A < Ag such that for all (z,7) € M

E,i(e’1) < R, (eX™).

Assume the claims are proved. Then, by step 1 (X,,, I,,) is positively recurrent,
so is (X,) and P"(z,-) = P,(X, € -) converges in total variation, as n — oo
toward , the invariant probability of P. If sup, - E,(75) < oo then, by (b)
in the claim, sup,co E;1(78y) < 00. Thus, by step 1,

1

np—1

|P"(x, A)=7(A)] = [Po(Xn € A)=7(A)] £ —7c(14+E(701)) £ —c(1+aE(76)+D).

np—1
This proves the second assertion. The third one is similar.

We now prove the claims. Clearly C' x 1 is an atom for (). Identify C' with
the subset of M consisting of points (x,7) such that x € C. Then (under this
identification) C'x 1 C C' and we rely on Proposition 6.15 to prove the claim.
By the assumption that C' is recurrent for P, for all x € M

1 =Py(1c <00) = (1 =¢)Ppo)(17c < 00)+ P 1) (T < 00).

Thus for all (x,i) € M P, (7c < 00) showing that C is recurrent for Q.
Also,
]P)(x,i)((XTC’ITC> e (C x 1) =¢£

because, P(,:)((Xr., I,) € C x 1|G;,) = €. Thus, by Proposition 6.15 (i),
C x 1 is recurrent for (). We now prove that it is aperiodic. Forz € C, 7,k > 1

]P)($71)<Xj+k - O, ]j+k = 1) = €P(m71)<Xj+k - O) > €E(m71)<170:jpk(XTc, C))
> eP(eyy(re = j) inf, P*(x,C).
FAS

Since C' x 1 is an atom, P, 1)(7¢ = j) doesn’t depend on x € C and is > 0
for some 7 = jo > 1. By aperiodicity of C' for P, there exists nyg € N such that
for all £ > ng

inf P*(z,C) > 0.
zeC

Therefore infyec P (Xi € C, I, = 1) > 0 for all k& > ng + jo. This proves
aperiodicity and concludes the proof of claim (a).

If sup,cc E.(78) < o0, then sup,cc E(,:)(78) < oo and by Proposition
6.15 (27) sup,cc B (téy) < 00. Now

Tox1 < Te + Tox1 © Or,
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so that,

B (161) €277 By (16) + 500 By (76,0)) = 0B (72) + 0.

Claim (c) is proved similarly. QED

Remark 7.16 It is interesting to compare Theorems 7.12 and 7.15 (iii).
Under the assumptions of Theorem 7.12, the set C' = {V < R} with R > %a

satisfies condition (#4i) of Theorem 7.15 (with Ao = 552). This follows from
Proposition 6.11 (éii) or Proposition 6.13 (choose ¢(s) = Ags). Then, by
Theorem 7.15, |P"f(x) — 7(f)] < e *c(1 + V(2))]|f]loo for all f € B(M).
Observe however that the conclusion of Theorems 7.12 is stronger, in the sense
that it allows to deal with functions that are unbounded but only bounded

by 1+ V.

7.3 Orey’s theorem

#*T() BE WRITTEN***
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Appendix A

Monotone class and Martingales

A.1 Monotone class theorem

A set H C B(M) is said to be stable by bounded monotone convergence if
fn€ Hand 0 < f, < for1 < 1implies that f =lim, f, € H.

Theorem A.1 (Monotone class theorem) Let H C B(M) be a vector
space of bounded functions containing the constant functions and stable by
bounded monotone convergence. Let C C B(M) be a set stable by multiplica-
tion and let o(C) denote the sigma algebra generated by C' (i-e the smallest
sigma algebra making the elements of C' measurables). If C C H, then H
contains every bounded o(C')-measurable function.

A.2 Conditional expectation

We recall here the definition of conditional expectation and give some of its
basic properties. More details and proofs can be found in standard textbooks
such as [3].

Let (2, F,P) be a probability space, and let B be a o-field contained in
F. Let X be a real-valued random variable such that E(|X|) < co. Then
there exists a real-valued random variable Z with E(|Z]) < oo such that

(i) Z is B—measurable;
(ii) For all A € B, we have

E(Z14) = E(X1.).

155
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The random variable Z is unique in the following sense: If Z’ is any other ran-
dom variable satisfying E(|Z’|) < oo and the conditions in (i) and (ii), then
P(Z' = Z) = 1. In other words, the space of equivalence classes L'($, B, P)
has a unique element Z satisfying the condition in (ii). This element of
LY(2, B, P) is called the conditional expectation of X given B, and is denoted
by E(X|B). If we write Y = E(X|B) for some B-measurable random variable
Y, we mean that Y is a representative of the equivalence class E(X|B).

One can also define conditional expectation for nonnegative random vari-
ables: Let X : Q — [0, 00| be measurable, i.e. {w € Q: X(w) € A} € F for
every set A C [0, 00] such that A\ {oo} is a Borel subset of [0,00). For every
n €N, let X,, := X An and let Z, be a B-measurable random variable such
that E(|Z,|) < oo and E(Z,14) = E(X,,14) for every A € B. By changing
the values of (Z,) on a set of measure 0 if necessary, one can assume that
(Zy(w))nen is nondecreasing for every w € . The function

Z(w) = lim Z,(w)
n—oo
then maps from  to [0,00] and satisfies the conditions in (i) and (ii). If
7"+ Q@ — [0,00] is any other random variable satisfying (i) and (ii), then
P(Z = Z') = 1. On the set of B-measurable functions from 2 to [0, o],
consider the equivalence relation given by equality P-almost surely. The con-
ditional expectation of X given B, denoted by E(X|B), is defined as the unique
equivalence class that satisfies (ii).

Theorem A.2 (Properties of conditional expectation) Let X be a ran-
dom variable, with E(|X|) < oo or X € [0, 00|, and let B be a o-field contained
win F. Then,

(i) E(E(X]|B)) = E(X);

(i) If E(JX]) < oo (resp. X € [0,00]), we have for every B-measurable
random variable Y with E(|XY]) < oo (resp. Y € [0,00])

E(XY|B) = YE(X|B),
with the convention that 0 - 0o = 0;
(iii) For every o-field A contained in B, we have
E(E(X|B)|A) = E(X]A).

This is often called tower property.
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A.3 Martingales

Here, we recall the few results from martingale theory that are used in this
course. As for conditional expectation, there are many introductory texts on
probability theory that provide more details and proofs, e.g. [47] or [3].

Let (2, F,IF,P) be a filtered probability space. We let F., denote the o
field generated by U,>oF,. A sequence (M,,) of adapted (i.e M, is F,, measur-
able) and L' real valued random variables is called a martingale (respectively,
a submartingale, respectively a supermartingale) if

E(Mn+1|]:n> = Mn resp. >, resp. <

for all n > 0.
A simple, but useful consequence of Jensen inequality is the following.

Proposition A.3 Let (M,) be a martingale (resp. a submartingale) and ¢ a
conver function (resp. a conver non decreasing function) such that ¢(M,) €
L'; then (¢(M,)) is a submartingale .

It is often useful to extends the martingale (sub, super) property to stopping
times. Doob’s optional stopping theorem shows that this is the case for
bounded stopping times.

Theorem A.4 (Optional stopping) Let M = (M,) be a martingale (resp.
submartingale, supermartingale).

(1) If T is a stopping time, then (M,sr)n>0 18 @ martingale (resp. submartin-
gale, supermartingale);

(i) If S < T are stopping times bounded by some constant N, then
E(Mry|Fs) = Mg resp. >, resp. <.
Proof (i) Foralln € N

Mn+1AT — Mpar = (Mn+1 - Mn)]-{T>n}

Taking the conditional expectation with respect to JF,, proves the result.
(i7) Assume (M,,) is a martingale. Proving that F(My|Fs) = Mg amounts
to prove that forall A € Fgand 0 < k < N, E(Mplanis=k}) = E(MiLangs=r}))-

N

E(Mrlangs—i}) = E(Milir—iylangs=r}) ZE (Mn|Fi)Lir=iy L angs=r}))
i—k
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N
= Z E(E(Mn1ir—iylants=r}|Fi)) = E(Mn1an{s=r})
i—h

= E(E(Mn1angs=k}|Fr)) = E(IMp1an{s=r})-

The proof for sub and supermartingales is similar. QED

Corollary A.5 (Doob’s inequality) Let (X,,) be a non negative sub mar-
tingale. Then for all o > 0

E(X
P(sup X;>a)< ( N>.

0<i<N «

Proof Let 7" = min{i > 0 : X; > a}. Then T'A N is a stopping time
bounded by NN, so that by the optional stopping theorem

E(Xn) > E(Xnar) = E(XN1rsn) + E(X71lr<n) > aP(T < N).
QED

The two following theorems are classical convergence results due to Doob.

Theorem A.6 Let (M,) be a submartingale. Assume that sup, E(M ) < oc.
Then there ezists My, € L' such that M,, — M., almost surely.

Theorem A.7 Let (M,) be a martingale. Then the following assertions are
equivalent:

(a) (M,) is uniformly integrable;

(b) (M,) converges almost surely and in L' to some random variable M;
(c) M, =E(M|F,) for some M € L.

Furthermore, in case (¢) limy, oo M, = My = E(M|FL).

Let (M,) be an L? martingale (i.e M, € L?), the quadratic variation of (M,,)
is the process ((M),) recursively defined as

<M>0 =0, <M>n+1 - <M>n = E(<Mn+1 - Mn)2|]:n) = E(Mn2+1|~Fn) - Mv%

Note that ((M),) is nondecreasing, predictable (i.e M, is F,_1 measur-
able) and that (M? — (M),), is a zero mean martingale. We let (M), =
lim,, oo (M),,.
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Theorem A.8 (Strong law of large numbers) Let (M,,) be a L? martin-
gale. Then,

(i) If E(M)o) = Ym0 E((Mig1 — My)?) < o0, then (My) converges almost
surely and in L? to some random variable M;

(ii) On (Mw) < oo (M,) converges almost surely to some finite random
variable My;
(iii) On (M) = 00 lim,, o

M, __
m =0 a.s.

(iv) If sup, E(242) < oo, then limy, o Mo =0 as.

n

Proof We only prove the last statement, which is sufficient in this book and
whose proof is short.By Doob’s inequality, for all n € N

M 1 1
P( sup [V >¢e) <P(sup |[Mi|* >e%2*") < ——E((M)y) <C 2
g n

2n§k§2n+1 k k§2n+1 - 8222n

and the result follows from Borel-Cantelli lemma QED
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