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1. Introduction and background A recurring question in the theory of repeated games is to
define properly a notion of good strategy for a player facing an unknown environment. Consequently, in
this paper, we are not concerned with the formalisation of strategic interactions between rational players,
but rather between a decision maker and nature. Not much is known about the latter, no assumption
is made on its payoff function, its thinking process or its rationality. We take the point of view of the
former, whose objective is to maximize his/her average payoff in the long run. A naive approach in
this direction is to assume that the game is zero-sum and to look for optimal strategies. However, the
fact that his/her opponent might not try to maximize his/her payoff could lead to bad outcomes. A
possible definition of good strategy for the decision maker has been proposed by Hannan (see [16]). It is
closely related to the concept of regret. After n stages, the regret of the decision maker is the difference
between the payoff that he could have obtained if he knew in advance the empirical moves of nature and
the average payoff he actually got. A good strategy for the decision maker may then be defined as a
strategy which ensures that, regardless of the behaviour of nature, the regret asymptotically goes to zero.
Such a strategy is called consistent. Consistent strategies are known to exist for a long time and can
be constructed, for instance, using so-called block-annealing procedures (see e.g. [5], [10], [11] and [18]).
For a complete bibliography on the topic, see the last quoted paper. Also, for a recent comprehensive
overview about consistency in games, see [22] (in french). However fictitious play strategies are known
to be non-consistent (see [14]) while smooth fictitious play strategies have been shown to be ”almost”
consistent by Fudenberg and Levine [13] (see section 1.2 for a rigorous exposition). In this paper, we
consider a time-varying smooth fictitious play with a smoothing parameter decreasing to zero, that we
call vanishingly smooth fictitious play (VSFP). VSFP strategies initially behave like smooth fictitious
play and asymptotically like fictitious play. The main objective of this work is to answer the following
question raised to us by Drew Fudenberg and Satoru Takahashi: ”are VSFP strategies consistent?”

1.1 Notation We consider a two-player finite game in normal form. I and L are the (finite) set of
moves of respectively player 1 (the decision maker) and player 2 (the nature). The map π : I × L → R
denotes the payoff function of player 1. The sets of mixed strategies available to players are denoted
X = ∆(I) and Y = ∆(L), where

∆(I) :=

{
x ∈ RI+ |

∑
i∈I

xi = 1

}
,

and analogously for ∆(L). As usual π is extended to X × Y by multilinearity:

∀x ∈ X, y ∈ Y, π(x, y) =
∑
i∈I

∑
l∈L

π(i, l)xiyl.

In the following, (i1, ..., in, ...) (respectively (l1, ..., ln, ...)) will denote the sequence of actions picked by
player 1 (resp. his/her opponent). Let (Ω,F ,P) be a probability space, endowed with a filtration (Fn)n.
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Formally, a strategy for player 1 is a choice of an adapted process (in)n on (Ω, (Fn)n,P), Throughout the
paper, we assume that the agents play independently: specifically, for (i, l) ∈ I × L, we have

P (in+1 = i, ln+1 = l | Fn) = P (in+1 = i | Fn)P (ln+1 = l | Fn) .

Finally, we call

xn =
1

n

n∑
k=1

δik

the average moves of player 1 at time n, yn the average moves of player 2 and

πn =
1

n

n∑
k=1

π(ik, lk)

the average payoff to player 1.

1.2 Consistency, definition and comments We now introduce Π : Y → R, defined by

Π(y) := max
i∈I

π(i, y).

A strategy of the decision maker is consistent if, against any strategy of nature, the average payoff
obtained by player 1 is at least as much as if the sequence of empirical moves of nature was known in
advance, and the decision maker had played a best response against it. More precisely, let us define the
average regret evaluation along a sequence of moves hn = (i1, l1, ...in, ln):

en := max
i∈I

π

(
i,

1

n

n∑
m=1

lm

)
− 1

n

n∑
m=1

π(im, lm) = Π(yn)− πn.

Definition 1.1 A strategy for player 1 is said to be consistent if, for any strategy of nature,

lim sup
n

en ≤ 0, P− almost surely.

It is η-consistent if
lim sup

n
en ≤ η, P− almost surely.

Given y ∈ Y , we call br(y) the set of best responses of player 1 to y, namely,

br(y) = Argmaxx∈Xπ(x, y).

The discrete-time fictitious play (FP) process has been introduced in [6]. We say that player 1 uses a FP
strategy, with prior y0 if, for n ≥ 1,

P(in+1 = · | Fn) ∈ br(γn),

where γn = 1
n+1y0 + n

n+1yn. It is well known that this strategy is not consistent. A simple example is
given by the following (see e.g. [14]).

Example 1.1 Assume that the game is matching pennies, i.e. the payoff matrix of player 1 is given by

(H T

H 1 0
T 0 1

)
and the prior is y0 = (1/3, 2/3). If player two acts accordingly to the deterministic rule heads (H) on odd
stages and tails (T) on even stages, then player 1 and 2 always play the opposite and the average regret
satisfies limn→∞ en = 1/2.

However, η-consistency can be achieved by small modifications of fictitious play, which are usually
called stochastic fictitious play strategies. Originally, stochastic fictitious play was introduced by Fuden-
berg and Kreps in [12] and the concept behind this is that players use fictitious play in a game where
payoff functions are perturbed by some random variables in the spirit of Harsanyi [17]. On the subject,
see also [13], [14] or [2]. In this paper, we adopt another point of view and assume that player 1 chooses
to randomize his/her moves by adding a small perturbation function to his/her initial payoff map π.

The class of perturbation functions considered here is the following. It is directly inspired by [14] or
[20]. Let ρ : Int(X)→ R be a C2 map such that:
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(A1) There exists λ > 0 such that, for all x ∈ Int(X) and h ∈ TX,〈
D2ρ(x)h, h

〉
≥ λ‖h‖2.

(A2) the first derivative of ρ verifies
lim
x→∂X

‖∇ρ(x)‖ = +∞.

We introduce the perturbed payoff function π̃ defined, for x ∈ X, y ∈ Y and β > 0 by

π̃(x, y, β) = π(x, y) +
1

β
ρ(x).

Under (A1) and (A2), the function π̃ enjoys the following property:

(i) For all y ∈ Y , β > 0, Argmaxx∈X π̃(x, y, β) reduces to one point and defines a continuous map br
from Y × R∗+ to Int(X).

(ii) There exists L > 0 such that the map y 7→ br(β, y) is Lipschitz continuous, with Lipschitz
constant Lβ.

The map (y, β) ∈ Y × R∗+ 7→ br(y, β) is usually called a smooth best response map.

Throughout the remainder of the paper, we assume that ρ verifies (A1) and (A2). We call such a map is
a good perturbation function.

Remark 1.1 Let ρ : x ∈ X 7→ ρ(x) = −
∑
i∈I xi log xi be the entropy function. It is a particular case of

a good perturbation function, and the resulting smooth best response is the so-called logit map, given by

L(β, y)i =
exp(βπ(i, y))∑
k∈I exp(βπ(k, y))

Definition 1.2 Player 1 plays accordingly to a smooth fictitious play strategy, with the parameter β > 0
(SFP(β)) if

P (in+1 = i | Fn) = br(yn, β)i, ∀n ≥ 1.

Theorem 1.1 (Fudenberg and Levine, 1995) For any η > 0, there exists β0 > 0 such that a SFP(β)
strategy is η-consistent for any β > β0.

Smooth fictitious play is closely related to the so-called exponential weight algorithm and also to the
follow the perturbed leader algorithm (see [7], chapters 4.2 and 4.3), even if the link with the latter is less
obvious. In [23], the authors discuss the consistency of continuous-time versions of FP and SFP.

1.3 Vanishingly smooth fictitious play A related natural strategy is given by the following.
Recall that br is a smooth best response function, induced by a good perturbation function.

Definition 1.3 Let (βn)n be a sequence going to infinity. The vanishingly smooth fictitious play strategy
induced by βn (and br) for player 1 is defined by

P (in+1 = i | Fn) = br (yn, βn)i ∀n ≥ 1.

We use the notation VSFP(βn) in the sequel. Consistency is not verified for any choice of (βn)n. If this
sequence increases too fast, then consistency might fail to hold, as shown by the following example.

Example 1.2 Assume that, once again the game is 2-player matching pennies and that nature uses the
deterministic strategy described in example 1.1. Then, if player one plays accordingly to a VSFP strategy
induced by the logit map, βn = n and prior y0 = (1/3, 2/3), we have

γ2n =

(
1

2
− 1

6(2n+ 1)
,

1

2
+

1

6(2n+ 1)

)
and γ2n+1 =

(
1

2
+

1

6(n+ 1)
,

1

2
− 1

6(n+ 1)

)
.

After a few lines of calculus (left to the reader) one gets:

E
(
δl2n+1 | Fn

)
= L(γ2n, β2n) =

 1

1 + exp
(

2n
3(2n+1)

) , 1

1 + exp
(
− 2n

3(2n+1)

)
 .
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Hence (π(i2n+1, l2n+1))n is a sequence of independent random variables taking values in {0, 1}, such that

lim
n

P (π(i2n+1, l2n+1) = 1) = lim
n

1

1 + e2n/3(2n+1)
=

1

1 + e1/3
= 1/2− a

with a > 0. Similarly, (π(i2n, l2n))n is a sequence of independent random variables taking values in {0, 1}
and

lim
n

P (π(i2n, l2n) = 1) =
1

1 + e2/3
= 1/2− b

with b > 0.

Therefore, consistency is not satisfied for VSFP strategies with βn = n since en → (a+ b)/2 > 0.

We now can state our main result.

Theorem 1.2 Any VSFP(βn) strategy, with βn ≤ nν for some ν < 1, is consistent.

In [4], the authors prove the same result as Theorem 1.1 using stochastic approximation methods. Specifi-
cally, they consider the state variable (xn, yn, πn)n, write it as a stochastic approximation process relative
to some differential inclusion, and prove that it almost surely converges to the consistency set :

{(x, y, π) : Π(y)− π ≤ η} .

This is the approach taken in this paper. In section 2 we show how our state variable can be written as a
stochastic approximation algorithm, relative to some non-autonomous differential inclusion. A concept of
Lyapunov function with respect to a set A for non-autonomous systems is introduced in section 3 and, in
Proposition 3.2, we establish that A attracts the so-called perturbed solutions, under the right conditions.
In our specific case, we also prove that there exists a Lyapunov function relative to the consistency set.
The proof of our main result, Theorem 1.2, is given in Section 4. It consists in showing that (xn, yn, πn)n
is almost surely a perturbed solution with good properties and applying the results of Section 3. In the
appendix, we provide some general stability results for non-autonomous differential inclusions, namely
we estimate the deviation of so-called perturbed solutions from the set of solutions curves.

2. Stochastic approximations

2.1 A stochastic difference inclusion As it was previously mentioned, we are interested in the
asymptotic behavior of the state variable vn := (xn, yn, πn) ∈ M := X × Y × [−‖π‖∞, ‖π‖∞], where
‖π‖∞ := maxi,l |π(i, l)|. We have

xn+1 − xn −
1

n+ 1

(
δin+1 − Eσ(δin+1 | Fn)

)
=

1

n+ 1
(−xn + br(yn, βn)) .

Writing the analogous recursive formulas for yn and πn, we obtain that

vn+1 − vn −
1

n+ 1
Un+1 ∈

1

n+ 1
Fn(vn),

where

− the noise sequence
Un+1 = (vn+1 − vn)− E(vn+1 − vn | Fn)

is a bounded martingale difference,

− the set valued map Fn is given by

Fn(x, y, π) := {(br(y, βn)− x, τ − y, π(br(y, βn), τ)− π, τ ∈ Y } . (1)

2.2 Stochastic approximations relative to non-autonomous differential inclusions On a
more general level, let M ⊂ Rd and F : R+ ×M ⇒ Rd be a set-valued map taking values in the set of
non-empty, compact, convex subsets of Rd. We say that F is regular if :

(R1) s 7→ F (t, w) is measurable, for each w ∈M ;
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(R2) for any t ∈ R+, the map w 7→ F (t, w) has a closed graph, i.e.

{(w,w′) ∈M ×M : w′ ∈ F (t, w)}

is closed;

(R3) The map F is uniformly bounded, i.e., supt,w supw′∈F (t,w) ‖w′‖ ≤ ‖F‖∞ < +∞.

Consider a discrete time stochastic process (vn)n in M , defined by the recursive formula

vn+1 − vn − γn+1Un+1 ∈ γn+1Fn(vn), (2)

where Fn : M ⇒ Rd is a set-valued map, (γn)n is a positive sequence, decreasing to 0 and (Un)n a
sequence of M -valued random variables defined on a probability space (Ω,F , P ). Set τn :=

∑n
i=1 γi and

m(s) := sup{j | τj ≤ s}. We make the following additional assumptions:

(SA1) For all c > 0, ∑
n

e−c/γn <∞,

(SA2) (Un)n is uniformly bounded (by ‖U‖∞) and

E (Un+1 | Fn) = 0,

(SA3) The map F : R+ ×M ⇒M , given by

F (t, w) := Fm(t)(w)

is regular.

Definition 2.1 If the conditions (SA1), (SA2) and (SA3) are met, we say that (vn) is a good stochastic
approximation algorithm relative to F .

Call v(·) the continuous time affine interpolated process induced by (vn)n and γ(·) (resp. U(·)) the
piecewise constant deterministic processes induced by (γn)n (resp. (Un)n):

v(τi + s) = vi + s
vi+1 − vi
γi+1

for s ∈ [0, γi+1], γ(τi + s) := γi+1 for s ∈ [0, γi+1[,

and analogously for U .

Lemma 2.1 For almost every s ∈ R+, v(·) is differentiable and we have

v̇(s)− U(s) ∈ F (s, vm(s)).

Proof. We have

v(s) = vm(s) +
vm(s)+1 − vm(s)

γm(s)+1
(s− τm(s))

Hence, if s /∈ {τn, n ∈ N∗}, v(·) is differentiable and

v̇(s) =
vm(s)+1 − vm(s)

γm(s)+1
.

Consequently
v̇(s)− U(s) ∈ Fm(s)(vm(s)) = F (s, vm(s)).

�

In the sequel, we use the notation v(s) := vm(s). Notice that v is a piecewise constant map on R+.

Let us come back to the particular case of section 2.1, where vn = (xn, yn, πn) and Fn is given by (1).

Lemma 2.2 (vn)n is a good stochastic approximation algorithm with step size γn = 1/n, relative to the
map F given by

F (t, w) := Fm(t)(w) =
{

(br(y, βm(t))− x, τ − y, π(br(y, βm(t)), τ)− π, τ ∈ Y
}
. (3)
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Proof. We only need to prove that F is a regular set-valued map. The fact that F has non-empty
compact convex values is straightforward, as well as measurability. Also, the map F takes values in a
compact set. Thus F is uniformly bounded. Given s ∈ R+, we now need to check upper semi-continuity
of v 7→ F (s, v), which is equivalent to {(v, w), w ∈ F (s, v)} being closed. Let (xn, yn, πn) converge to
(x, y, π) and τn →n τ ∈ Y . We then have limn br(yn, βm(s)) = br(y, βm(s)). Hence,

limn

(
br(yn, βm(s))− xn, τn − yn, π

(
br(yn, βm(s)), τn

)
− πn

)
=

(
br(y, βm(s))− x, τ − y, π

(
br(y, βm(s)), τ

)
− π

)
∈ F (s, x, y, π).

�

In the particular case where F is an autonomous set-valued map (i.e. F does not depend on t ∈ R+),
stochastic approximation algorithms described above have been studied in [3] where it is proved that
there is a deep relationship between the asymptotic behavior of (vn) and the solutions of the autonomous
differential inclusion

ẇ ∈ F (w).

In particular, they show that, if there exists a global attractor A for the deterministic dynamics, then
the limit set of (vn)n is contained in A.

Unfortunately, in our case, the mean deterministic system associated to our random process (vn)n is
a non-autonomous differential inclusion, as we will see later on.

3. Lyapunov functions relative to nonautonomous differential inclusions

3.1 Perturbed solutions and uniform Lyapunov functions Let us consider the non-
autonomous differential inclusion

ẇ(s) ∈ F (s,w(s)), s ∈ [a, b] (4)

A map w : [a, b] → M is a solution of (4) if it is absolutely continuous and, for almost every s ∈ [0, T ],
ẇ(s) ∈ F (s,w(s)). The existence of solutions from any initial condition is guaranteed under various sets
of assumptions, in particular for regular F (see Section 5.2 for more details)

Definition 3.1 A map v : R+ →M is a perturbed solution of the non-autonomous differential inclusion
ẇ(s) ∈ F (s,w(s)) if there is a locally integrable function U : R+ → Rd such that

(PS1) v is absolutely continuous,

(PS2) limt→+∞∆(t, t+ T ) = 0 where

∆(t, t+ T ) := sup
h∈[0,T ]

∫ t+h

t

U(s)ds

(PS3) v̇(s)− U(s) ∈ F (s, v(s)) for some measurable map v : R+ →M such that

‖v(s)− v(s)‖ ≤ δ(s),

with δ(s) ↓s 0.

Remark 3.1 Notice that, in the autonomous case, this is Definition (II) in [3]

Proposition 3.1 Let v(·) be the continuous time affine interpolated process associated to a good stochas-
tic approximation. Then v is almost surely a perturbed solution, with v(s) = vm(s) and δ(s) = cγ(s) (where
c is some positive constant).

Proof. This is a direct consequence of Lemma 2.1 and Proposition 4.4 in [1]. We will provide more
details in the particular case we are interested in, in Section 4. �

We now define a concept of Lyapunov function adapted to non-autonomous differential inclusions.

Definition 3.2 Let A be a compact set in M and V be an open neighbourhood of A. A smooth map
Φ : R+ × V → R+ is called a uniform Lyapunov function for the non-autonomous differential inclusion
(4) with respect to A if the following hold:
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a) we have

A =

{
w ∈ V : ∃sn ↑ +∞, lim

n→+∞
Φ(sn, w) = 0

}
,

b) There exist two maps λ : R∗+ →]0, 1[ and ε : R+ × R+ → R+ with the property that

lim
T→+∞

λ(T ) = 0 and lim
t→+∞

ε(t, T ) = 0, ∀T > 0;

and, for any t > 0, T > 0 and any solution w on [t, t+ T ], we have

Φ(t+ s,w(t+ s)) ≤ λ(s)Φ(t,w(t)) + ε(t, T ), ∀s ∈ [0, T ].

If V = M then Φ is called a global uniform Lyapunov function.

Remark 3.2 Assumption a) is checked in particular if the somewhat more explicit condition is verified:

a′) there exists a continuous map g : V → R+ such that

A = {w ∈M : g(w) = 0}, ‖g(w)− Φ(s, w)‖ →s→+∞ 0,

uniformly in w ∈ V .

The following lemma will be useful to prove the main result of this section, namely Proposition 3.2.

Lemma 3.1 Let (Φk)k≥k0 , (λk)k≥k0 and (ηk)k≥k0 be positive sequences of real numbers such that 0 <
λk < 1 and

(i) for any k ≥ k0

Φk+1 ≤ λkΦk + ηk+1;

(ii) for k ≥ k0 + 1, denoting Hk := Πk−1
i=k0

λi and H̃k = Hk

∑k−1
i=0 H

−1
i ηi, we have limk→∞Hk =

limk→∞ H̃k = 0.

Then limk→∞Φk = 0.

Proof. Without loss of generality, we assume that k0 = 0. A simple recursive argument yields

Φk ≤ Hk

(
Φ0 +

k∑
i=1

H−1
i ηi

)
and the proof is complete. �

We say that Φ is uniformly Lipschitz if there exists LΦ > 0 such that, for any s ≥ 0 and w,w′ ∈M ,

|Φ(s, w)− Φ(s, w′)| ≤ LΦ‖w − w′‖.

We now need to define Lipschitz continuity for non-autonomous set-valued maps: call dH the Hausdorff
distance, given by

dH(E,F ) = max

{
sup
x∈E

d(x, F ), sup
y∈F

d(y,E)

}
.

Recall that dH is a pseudo-metric on the set of non-empty subsets of M and a metric if we restrict to the
non-empty compact sets of M . We say that F is Hausdorff continuous if it is continuous with respect of
the Hausdorff metric:

lim
t→t0,w→w0

dH(F (t, w), F (t0, w0)) = 0.

If F is Hausdorff continuous, we call it L-Lipschitz, for an integrable function L : [a, b]→ R+ if

dH(F (t, w), F (t, w′)) ≤ L(t)‖w − w′‖, for a.e. t ∈ [a, b], ∀ w,w′

We now state the main result of this section. Corollary 5.1 (stated in the appendix) plays an important
role here, as it gives upper bound for the deviation of perturbed solutions from actual solutions of the
deterministic system. For convenience of the reader, we chose to postpone this technical result to Section
5.2.
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Proposition 3.2 Assume that v is a perturbed solution relative to a regular Lipschitz map F (with
L : R+ → R+) and that Φ is a global uniform Lyapunov function with respect to a compact set A and the
differential inclusion (4). Assume also that there exists a sequence of positive real numbers (Tk)k such
that

(i) Sk :=
∑k
i=1 Ti → +∞,

(ii) there exists k0 ∈ N and a sequence (rk)k such that, for any k ≥ k0

R(Sk, Sk+1) ≤ rk,

with R defined by (7) in Corollary 5.1,

(iii) Φ is uniformly Lipschitz, with constant LΦ,

(iv) denoting Hk := Πk
i=k0+1λ(Ti) and ηk := ε(Sk−1, Tk) + LΦrk−1, we have

lim
k→+∞

Hk

k∑
i=1

H−1
i ηi = 0.

Then the limit set of v, L((v(s))s>0) := {v∗ : ∃sn ↑ +∞, limn v(sn) = v∗} is contained in A.

Proof. First, by Corollary 5.1, for any k ∈ N, there exists a solution wk on [Sk, Sk+1] such that
wk(Sk) = v(Sk) and

sup
s∈[Sk,Sk+1]

‖v(s)−wk(s)‖ ≤ R(Sk, Sk+1).

By (ii) the sequence of solutions curves (wk)k≥k0 is such that

sup
s∈[Sk,Sk+1]

‖v(s)−wk(s)‖ ≤ rk.

On the other hand, by definition of Φ and wk, we have

Φ(Sk+1,w
k(Sk+1)) ≤ λ(Tk+1)Φ(Sk,w

k(Sk)) + ε(Sk, Tk+1).

Hence, by (iii) and (iv), for any k ≥ k0,

Φ(Sk+1, v(Sk+1)) ≤ Φ(Sk+1,w
k(Sk+1)) + LΦ

∥∥v(Sk+1)−wk(Sk+1)
∥∥

≤ λ(Tk+1)Φ(Sk, v(Sk)) + LΦrk + ε(Sk, Tk+1)

= λ(Tk+1)Φ(Sk, v(Sk)) + ηk+1

Clearly, Hk → 0, by definition on λ. Calling Φk := Φ(Sk, v(Sk)) and λk := λ(Tk+1) we have Φk → 0 by
Lemma 3.1. Now let v∗ be a limit point of v(s): v∗ = limn v(sn), for some sequence sn ↑n +∞. Call
k(n) := sup{k ∈ N : Sk ≤ sn}. For n large enough, k(n) ≥ k0 and

Φ(sn, v(sn)) ≤ λ(sn − Sk(n))Φ(Sk(n), v(Sk(n)) + LΦrk(n) + ε(Sk(n), sn − Sk(n))→n→+∞ 0.

We therefore have

Φ(sn, v∗) ≤ Φ(sn, v(sn)) + LΦ‖v∗ − vn‖ →n→+∞ 0.

Consequently v∗ ∈ A and the proof is complete. �

3.2 A Lyapunov function for the differential inclusion induced by (1) We now focus on the
particular case of Section 2.1 and prove that there exists a global Lyapunov function with respect to the
so-called consistency set.

Theorem 3.1 Let A = {(x, y, π) ∈M | Π(y)− π ≤ 0}. There exists a global uniform Lyapunov function
Φ relative to the compact set A and the non-autonomous differential inclusion

ẇ(s) ∈ F (s,w(s)). (5)
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Proof. Let Φ : R+ ×M → R+ be defined by

Φ(s, x, y, π) =

{
Π̃(y, βm(s))− π if Π̃(y, βm(s)) ≥ π
0 if Π̃(y, βm(s)) < π.

where
Π̃ : Y × R∗+ → R, (y, β) 7→ max

x∈X
π̃(x, y, β) = π̃ (br(y, β), y, β) .

We prove that properties a′) and b) (of respectively Remark 3.2 and Definition 3.2) hold. Notice that

A = {(x, y, π) : g(x, y, π) = 0} and ‖g(x, y, π)− Φ(s, x, y, π)‖ →s→+∞ 0

uniformly, where g(x, y, π) := max{0,Π(y) − π}. Let t and T be positive real numbers and w(s) :=
(x(s), y(s), π(s)) be a solution of the non-autonomous differential inclusion (5) on [t, t + T ], such that
π(s) ≤ Π̃(y(s), βm(s)). Thus

ẏ(s) = τ(s)− y(s), π̇(s) = π(br(y(s), βm(s)), τ(s))− π(s),

where τ(s) ∈ Y, ∀s. Let

Ψ(s) := Φ(s, x(s), y(s), π(s)) = π̃
(
br(y(s), βm(s)), y(s), βm(s)

)
− π(s).

Recall that βm(s) is piecewise constant on [t, t+ T ]. Hence, for almost every s ∈ [t, t+ T ], we have

Ψ̇(s) = π̃
(
br(y(s), βm(s)), ẏ(s), βm(s)

)
− π̇(s)

= π̃
(
br(y(s), βm(s)), τ(s), βm(s)

)
− π̃

(
br(y(s), βm(s)), y(s), βm(s)

)
−π(br(y(s), βm(s)), τ(s)) + π(s)

≤ −Ψ(s) +
1

βm(s)
ρ(br(y(s), βm(s))) ≤ −Ψ(s) +

1

βm(s)
,

where we recall that ρ denotes the perturbation function. The first equality is obtained using the enveloppe
theorem and the fact that π̃ is linear in its second argument. Since βn is increasing, we therefore have,
for almost every s ∈ [t, t+ T ],

Ψ̇(s) ≤ −
(

Ψ(s)− 1

βm(t)

)
.

Thus, applying Gronwall’s lemma to the function s 7→ Ψ(s)− 1
βm(t)

, we obtain

Ψ(t+ T ) ≤ e−TΨ(t) +
1− e−T

βm(t)
≤ e−TΨ(t) +

T

βm(t)
.

Consequently, Φ is a global uniform Lyapunov function with respect to A, which proves the result. �

4. Proof of Theorem 1.2 We are now ready to prove our main result. We already proved that the
interpolated random process induced by (vn)n is almost surely a perturbed solution of the differential
inclusion (5) with F given by (3) and δ(s) = cγ(s), and that there exists a global uniform Lyapunov
function Φ with respect to

A = {(x, y, π) ∈M | Π(y)− π ≤ 0} ,
see respectively Proposition 3.1 and Theorem 3.1. Therefore we now check that the assumptions of
Proposition 3.2 hold. Be aware that we have not used the particular form of the parameter sequence
(βn)n so far. Recall that βn = nν , for some ν ∈ (0, 1).

Notice that γn = 1/n. Therefore we have τn ∼ log n and m(s) = O(es)1. Recall that, given positive
real numbers t and T , ∆(t, t+ T ) denotes the random variable

sup
h∈[0,T ]

∫ t+h

t

U(s)ds.

The next lemma (proved in [8] or [1] for instance) gives an upper bound of the quantity P (∆(t, t+ T ) ≥ α).

1more precisely, e−1
e

es ≤ m(s) ≤ es − 1
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Lemma 4.1 There exists positive constants C and C ′ (depending on ‖U‖∞) such that, for any α > 0,

P (∆(t, t+ T ) ≥ α) ≤ C exp

(
−α2et

C ′T

)
.

The set-valued map F is regular and L(·)-Lipschitz, with the same Lipschitz constant as the map
(s, y) 7→ br(y, βm(s)). Hence L(s) = Lβm(s), for some constant L (by property (ii) of br). Hence, (by
replacing ν by ν′ > ν) we can assume without loss of generality that L(s) ≤ eνs. In the next proposition,
we see that assumptions (i) and (ii) of Proposition 3.2 hold, if we choose Tk = (νk)−1.

Proposition 4.1 If we choose Tk := (νk)−1 there exist some constant r > 1 with the property that, with
probability one, there exists k0 ∈ N such that points (i) and (ii) of Proposition 3.2 are verified for v, with
rk = k−r

Proof. Point (i) clearly holds. We now need to prove (ii). In this particular case, the quantity
R(Sk, Sk+1) satisfies

R(Sk, Sk+1) ≤ (∆(Sk, Sk+1) + cγ(Sk)) exp

(∫ Sk+1

Sk

L(τ)dτ

)
.

By our choice of the sequence (Tk)k, exp(νSk) ≤ exp (1 + log k) ≤ 3k. Hence

exp

(∫ Sk+1

Sk

L(τ)dτ

)
≤ exp(Tk+1e

νSk+1) ≤ C0,

for some constant C0 which depends on ν. Choose r ∈ (1, ν+1
2ν ). By Lemma 4.1,

P

(
∆(Sk, Sk+1) exp

(∫ Sk+1

Sk

L(τ)dτ

)
≥ 1

2kr

)
≤ C exp

(
−k−2reSk

4C ′C0Tk+1

)
≤ C exp

(
−k−2r+1/ν

C ′C0ν−1(k + 1)−1

)
≤ C exp

(
−k−2r+1+1/ν

C ′1

)
for some positive constant C ′1. Now, since γ(Sk) ≤ 2e−Sk ≤ 2k−1/ν and r < 1/ν, we have for k large
enough

cγ(Sk) exp

(∫ Sk+1

Sk

L(τ)dτ

)
≤ 3c

k1/ν
≤ 1

2kr
.

Consequently, if we call Ak the event{
(∆(Sk, Sk+1) + cγ(Sk)) exp

(∫ Sk+1

Sk

L(τ)dτ

)
≥ 1

kr

}
,

then

P (Ak) ≤ C exp

(
−k−2r+1+1/ν

C ′1

)
.

By an application of the Borel Cantelli lemma, with probability one, there exists k0 ∈ N such that, for
any k ≥ N,

R(Sk, Sk+1) ≤ (∆(Sk, Sk+1) + cγ(Sk)) exp

(∫ Sk+1

Sk

L(τ)dτ

)
≤ 1

kr
,

which yields the result. �

Consequently, points (i) and (ii) of Proposition 3.2 are almost surely satisfied for k ≥ k0, with Tk =
(νk)−1 and rk = k−r, r > 1. We now need to check points (iii) and (iv).

Let b be a positive constant and consider the map φ : Y × [−‖π‖∞, ‖π‖∞]→ R+, given by

φ(y, π) =

{
Π̃(y, b)− π if Π̃(y, b) ≥ π
0 if Π̃(y, b) < π.
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Let (y, π) be such that Π̃(y, b) > π. Then, by Lemma 6.2 in [4] (see also [15]), we have

∂

∂y
φ(y, π)(h) =

∂

∂y
π̃(br(y, b), y, b)(h)

= π(br(y, b), h)

and
∂

∂π
φ(y, π) = −1.

Thus
|φ(y, π)− φ(y′, π′)| ≤ ‖π‖∞‖y − y′‖+ |π − π′|

and φ is Lipschitz with Lipschitz constant that does not depend on b, which means that the map v 7→
Φ(s, v) is uniformly Lipschitz.

We now prove point (iv). By Theorem 3.1, Φ is a global uniform Lyapunov function relative to

A = {(x, y, π) ∈M | Π(y)− π ≤ 0} ,
with λ(T ) = e−T and ε(t, T ) = T

βm(t)
. Hence

ηk+1 = LΦk
−r +

Tk+1

βm(Sk)
≤ LΦk

−r + c
Tk+1

k
,

for some positive constant c. We have
∑
i ηi < ∞ and Hk = e−

∑k
i=k0

Ti , which converges to zero. Thus
point (iv) is checked (see point b) of Lemma 5.1 for a proof).

As a consequence, Proposition 3.2 applies and

L((v(s))s>0) ⊂ A
almost surely. In particular

lim sup
n

en ≤ 0, almost surely

and Theorem 1.2 is proved.

5. Appendix

5.1 Sufficient conditions for Lemma 3.1, (ii) to hold

Lemma 5.1 Point (ii) of Lemma 3.1 is verified in the following cases:

a) λk = λ < 1 and limk→∞ ηk = 0,

b) limk→∞Hk = 0 and
∑
i ηi < +∞.

Proof. For point a), Hk = λk and we have

H̃k+k′ = λk+k′

 k∑
i=1

H−1
i ηi +

k+k′∑
i=k+1

H−1
i ηi


≤ λk

′
max

i=1,...,k
ηi + ηk+1

k′−1∑
i=0

λi

≤ λk
′

max
i=0,...,k

ηi + ηk+1
1

1− λ
,

which gives the result.

For the second point, remember that (Hk)k is a decreasing sequence. Hence

H̃k+k′ ≤ Hk+k′

 k∑
i=1

H−1
i ηi +H−1

k+k′

k+k′∑
i=k+1

ηi


≤ Hk+k′

(
k∑
i=1

H−1
i ηi

)
+

+∞∑
i=k+1

ηi.

Given ε > 0, by choosing k large enough, the second term is smaller than ε. Then we can pick k′ large
enough so that the first term is also smaller than ε and the proof is complete. �
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5.2 Stability of one-sided Lipschitz differential inclusions Let M ⊂ Rd. Consider a set-valued
map F : R+ ×M ⇒ M taking values in the set of non-empty, compact, convex subsets of M . Given
a < b, let us consider the non-autonomous differential inclusion (4):

ẇ(s) ∈ F (s,w(s)), s ∈ [a, b]. (6)

For A ⊂ M we let F−1(A) = {(s, w) ∈ [a, b] ×M : F (s, w) ∩ A 6= ∅}. We say that F is measurable
if F−1(A) is measurable, for any closed set A ⊂ M . It is upper semi-continuous (USC) (resp. lower
semi-continuous (LSC)) if, for any closed (resp. open) set A ⊂ M , F−1(A) is closed (resp. open) in
[a, b]×M . If M is compact, F is upper semi-continuous if and only if its graph is closed.

We now introduce a regularity condition:

Definition 5.1 (Relaxed One-sided Lipschitz) we say that the set-valued map F is Relaxed One-
sided Lipschitz (ROSL) on [a, b]×M if there exists an integrable map L : [a, b]→ M such that, for any
t, t′ in [a, b] w,w′ ∈M and any y ∈ F (t, w) there exists y′ ∈ F (t′, w′) with

< w′ − w | y′ − y >≤ L(t)‖x′ − x‖2, ∀t ∈ [a, b].

Remark 5.1 If F is L(·)-Lipschitz then it is L(·)-ROSL.

The question of existence of solutions to (4) has been studied extensively. One of the first result on
the topic was proved by Filippov (see [9]) and says that if F (·, ·) is Hausdorff continuous on any closed
set of [a, b] ×M then, for any w0 ∈ M , there exists a solution w(·) of (4), with w(a) = x0. Under less
restrictive assumptions, the same result still holds (see [21]; on the topic, see also [19]).

Theorem 5.1 (Olech, 1975) Assume that F is regular. Then there exists a solution w(·) of (4), with
w(a) = w0.

The following result will prove useful to establish Theorem 5.2.

Lemma 5.2 Let y be a continuously differentiable function on [a, b] and f , g be non-negative, continuous
maps. If, for every s ∈ [a, b], ‖ẏ(s)‖ ≤ f(s)‖y(s)‖+ g(s) then

‖y(s)‖ ≤ ‖y(a)‖ exp

(∫ s

a

f(τ)dτ

)
+

∫ s

a

g(u) exp

(∫ s

u

f(τ)dτ

)
ds

Proof. Notice that

‖y(s)‖ ≤ ‖y(a)‖+

∫ s

a

‖ẏ(u)‖du ≤ ‖y(a)‖+

∫ s

a

g(u)du+

∫ s

a

f(u)‖y(u)‖du

and apply the integral form of Gronwall’s lemma. �

In the remaining of this section, we assume that F is regular. The set of solution trajectories on [a, b]
(resp. starting in w0) will be labelled S(a, b) (resp. S(w0, a, b)).

Theorem 5.2 Let W : [a, b]→M be an absolutely continuous function such that there exists a measurable
map v : [a, b]→M and a bounded measurable map r : [a, b]→ R+ which satisfy, for almost every s ∈ [a, b],

d(W (s), v(s)) ≤ r(s), Ẇ (s) ∈ F (s, v(s)).

Then

a) if F is ROSL with respect to the integrable function L, then there exists a solution w : [a, b]→M
of (4) such that w(a) = W (a) and

sup
s∈[a,b]

‖w(s)−W (s)‖2 ≤
∫ b

a

α(s) exp

(
4

∫ b

s

L(τ)dτ

)
ds,

where α(s) = 4L(s)r2(s) + 4r(s)‖F‖∞.
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b) if we now assume that F is Lipschitz continuous, with respect to L then the conclusions of a)
trivially still hold and w can also be chosen such that

sup
s∈[a,b]

‖w(s)−W (s)‖ ≤
∫ b

a

r(s)L(s) exp

(∫ b

s

L(τ)dτ

)
ds.

Proof. We prove the first point. Consider the set-valued map G : [a, b]×M ⇒M given by

G(s, x) :=

{
v ∈ F (s, w) : (w −W (s) | v − Ẇ (s)) ≤ 2L(s)‖w −W (s)‖2 +

1

2
α(s)

}
.

For any (s, w), the set G(s, w) is non-empty. Indeed, by the ROSL condition, since Ẇ (s) ∈ F (s, v(s)),
there exists v ∈ F (s, w) such that

(w − v(s) | v − Ẇ (s)) ≤ L(s)‖w − v(s)‖2.

Hence we have

(w −W (s) | v − Ẇ (s)) ≤ L(s)‖w − v(s)‖2 + ‖v(s)−W (s)‖(‖v‖+ ‖Ẇ (s)‖)
≤ 2L(s)‖W (s)− w‖2 + 2L(s)r(s)2 + 2r(s)‖F‖∞

= 2L(s)‖W (s)− w‖2 +
1

2
α(s).

Now clearly, the set G(s, w) is compact and convex. The map w 7→ G(s, w) has a closed graph, for any
s ∈ [a, b]. Finally It is measurable in s since every map involved is measurable. Consequently, there exists
a solution to the non-autonomous differential inclusion

ẇ(s) ∈ G(s,w(s)),

with initial condition w(a) = W (a). In particular, w is a solution of (4) and we also have, for almost
every s

(w(s)−W (s) | ẇ(s)− Ẇ (s)) ≤ 2L(s)‖W (s)−w(s)‖2 +
1

2
α(s).

Hence , for almost every s, we have

d

ds
‖w(s)−W (s)‖2 = 2(w(s)−W (s) | ẇ(s)− Ẇ (s))

≤ 4L(s)‖W (s)−w(s)‖2 + α(s)

and point a) follows from the differential form of Gronwall’s lemma.

When the Lipschitz continuity holds, let us consider the set-valued map H : [a, b]×M ⇒M given by

H(s, w) :=
{
v ∈ F (s, w) : ‖v − Ẇ (s)‖ ≤ L(s)‖w −W (s)‖+ L(s)r(s)

}
.

The fact that H has non-empty values follows from Lipschitz continuity: given s and w, since Ẇ (s) ∈
F (s, v(s)), there exists v ∈ F (s, w)) such that

‖v − Ẇ (s)‖ ≤ L(s)‖w − v(s)‖ ≤ L(s) (‖w −W (s)‖+ ‖W (s)− v(s)‖) .

Hence v ∈ H(s, w) 6= ∅. Also H(s, w) is convex and compact, the map w 7→ H(s, w) has a closed graph
and s 7→ H(s, w) is measurable. Thus, there exists a solution x to the non-autonomous differential
inclusion

ẇ(s) ∈ H(s,w(s)),

with initial condition w(a) = W (a). In particular, w is a solution of (4) and we also have, for almost
every s

‖ẇ(s)− Ẇ (s)‖ ≤ L(s)‖w(s)−W (s)‖+ L(s)r(s)

By Gronwall’s lemma (see Lemma 5.2), we then have

sup
s∈[a,b]

‖w(s)−W (s)‖ ≤
∫ b

a

L(s)r(s) exp

(∫ b

s

L(τ)dτ

)
ds

and point b) is proved. �
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Corollary 5.1 Let v : [a, b]→M be an absolutely continuous map. Assume that there exist measurable
maps v : [a, b] → M , δ : [a, b] → R+ bounded and U : [a, b] → M integrable such that, for almost every
s ∈ [a, b],

v̇(s)− U(s) ∈ F (s, v(s)), ‖v(s)− v(s)‖ ≤ δ(s).
Then if F is L(·)-Lipschitz, there exists a solution w on [a, b] such that w(a) = v(a) and

sup
s∈[a,b]

‖v(s)−w(s)‖ ≤ R(a, b),

where

R(a, b) = ∆(a, b) exp

(∫ b

a

L(τ)dτ

)
+ sup
s∈[a,b]

δ(s)

(
exp

(∫ b

a

L(τ)dτ

)
− 1

)
(7)

and ∆(a, b) = sups∈[a,b] ‖
∫ s
a
U(τ)dτ‖.

Proof. Define W : [a, b]→M by

W (s) := v(s)−
∫ s

a

U(τ)dτ.

Clearly, W is absolutely continuous and, for any s for which v is differentiable, we have Ẇ (s) = v̇(s) −
U(s) ∈ F (s, v(s)). Additionally,

‖W (s)− v(s)‖ ≤ ‖v(s)− v(s)‖+ ‖
∫ s

a

U(τ)dτ‖ ≤ δ(s) +

∥∥∥∥∫ s

a

U(τ)dτ

∥∥∥∥ .
By a direct application of Theorem 5.2 with r(s) = δ(s) +

∥∥∫ s
a
U(τ)dτ

∥∥ , there exists a solution w such
that w(a) = W (a) = v(a) and

sup
s∈[a,b]

‖v(s)−w(s)‖ ≤ ∆(a, b) +

∫ b

a

L(s)

(
δ(s) + ‖

∫ s

a

U(τ)dτ‖
)

exp

(∫ b

s

L(τ)dτ

)
ds

≤ ∆(a, b) + ( sup
s∈[a,b]

δ(s) + ∆(a, b))

∫ b

a

L(s) exp

(∫ b

s

L(τ)dτ

)
ds ≤ R(a, b).
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