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ABSTRACT: Given a finite connected graph G, place a bin at each vertex. Two bins are called a pair
if they share an edge of G. At discrete times, a ball is added to each pair of bins. In a pair of bins, one
of the bins gets the ball with probability proportional to its current number of balls raised by some
fixed power α > 0. We characterize the limiting behavior of the proportion of balls in the bins.

The proof uses a dynamical approach to relate the proportion of balls to a vector field. Our main
result is that the limit set of the proportion of balls is contained in the equilibria set of the vector field.
We also prove that if α < 1 then there is a single point v = v(G, α) with non-zero entries such that
the proportion converges to v almost surely.

A special case is when G is regular and α ≤ 1. We show e.g. that if G is non-bipartite then the
proportion of balls in the bins converges to the uniform measure almost surely. © 2013 Wiley Periodicals,
Inc. Random Struct. Alg., 46, 614–634, 2015

Keywords: gradient-like system; Pólya’s urn; reinforcement; stochastic approximation algorithms;
unstable equilibria

1. INTRODUCTION AND STATEMENT OF RESULTS

Let G = (V , E) be a finite connected graph with V = [m] = {1, . . . , m} and |E| = N , and
assume that on each vertex i there is a bin initially with Bi(0) ≥ 1 balls. For a fixed parameter
α > 0, consider a random process of adding N balls to these bins at each step, according to
the following law: if the numbers of balls after step n−1 are B1(n−1), . . . , Bm(n−1), step
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GENERALIZED PÓLYA’S URN WITH GRAPH BASED INTERACTIONS 615

n consists of adding, to each edge {i, j} ∈ E, one ball either to i or to j, and the probability
that the ball is added to i is

P
[
i is chosen among {i, j} at step n

] = Bi(n − 1)α

Bi(n − 1)α + Bj(n − 1)α
· (1.1)

In this paper, we study the limiting behavior, as the number of steps grows, of the
proportion of balls in the bins of G. More specifically, let N0 = ∑m

i=1 Bi(0) denote the
initial total number of balls, let

xi(n) = Bi(n)

N0 + nN
, i ∈ [m], (1.2)

be the proportion of balls at vertex i after step n, and let x(n) = (x1(n), . . . , xm(n)). Call the
point (1/m, . . . , 1/m) the uniform measure. The first result classifies the limiting behavior
of x(n) when G is regular and α = 1.

Theorem 1.1. Let G be a finite, regular, connected graph, and let α = 1.

a. If G is non-bipartite, then x(n) converges to the uniform measure almost surely.
b. If G is bipartite, then x(n) converges to � almost surely.

Above, � is a subset of the (m − 1)-dimensional closed simplex defined as follows: if
V = A ∪ B is the bipartition of G, then

� = {(x1, . . . , xm) : ∃ p, q ≥ 0, p + q = 2/m, s.t. xi = p on A, xi = q on B}. (1.3)

Theorem 1.1 includes the case of any finite complete graph. A complete graph with at
least three vertices is non-bipartite, thus the proportion of balls in the bins converges to the
uniform measure almost surely.

Theorem 1.1 also includes the case of cycles: if the length is odd, then the proportion
converges almost surely to the uniform measure; if the length is even, then the random
process’ limit set is contained in � almost surely.

Theorem 1.1 is consequence, after finer analysis, of a general result for any G and any
α > 0. We show that the random process is a stochastic approximation algorithm, thus it
is related to a vector field in the closed simplex, and the limit set of the random process is
contained in the equilibria set of the vector field (see Theorem 3.3). Let � denote such an
equilibria set.

Theorem 1.2. Let G be a finite, connected graph, and let α > 0. Then the limit set of
x(n) is contained in � almost surely.

Call G balanced bipartite if there is a bipartition V = A ∪ B with #A = #B.

Corollary 1.3. Let G be a finite, connected, not balanced bipartite graph, and let α = 1.
Then � is finite and x(n) converges to an element of � almost surely.

Theorem 1.2 also allows to characterize the limiting behavior of the random process
when α < 1 and G is any graph.
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Theorem 1.4. Let G be a finite, connected graph, and let α < 1. Then there is v = v(G, α)

with non-zero entries such that x(n) converges to v almost surely.

The last result deals with star graphs. The star graph is a tree with m vertices and m − 1
leaves.

Theorem 1.5. Let G be a finite star graph with at least three vertices, and let m be the
vertex of highest degree.

a. If α ≤ 1, then x(n) converges to(
1

m − 1 + (m − 1)
1

1−α

, . . . ,
1

m − 1 + (m − 1)
1

1−α

,
(m − 1)

1
1−α

m − 1 + (m − 1)
1

1−α

)
almost surely.

b. If α > 1, then with positive probability x(n) converges to (0, . . . , 0, 1), and with
positive probability x(n) converges to

(
1

m−1 , . . . , 1
m−1 , 0
)
.

A motivation for the model proposed above is: imagine there are 3 companies, denoted
by M, A and G. Each company sells two products. M sells OS and SE, A sells OS and SP, G
sells SE and SP. Each pair of companies compete on one product. The companies try to use
their global size and reputation to boost sales. A natural question is which company will
sell more products in the long term. In this scenario, one can easily see that the interacting
relation among the three companies forms a triangular network. On this triangle, a vertex
represents a company and an edge represents a product. Under further simplifications, our
model describes in broad strokes the long-term evolution of such competition.

Another motivation for the model comes from a repeated game in which agents improve
their skill by gaining experience. The interaction network between agents is modeled by a
graph. At each round a pair is competing for a ball. A competitor improves his skill with
time, and the number of balls in his bin represents his skill level.

There are several natural ways to generalize our model to capture more complex inter-
actions, but here we focus on the simplest setup. The model can be viewed as a class of
graph based evolutionary model, which has been studied in various fields, e.g. biology [15],
economics [9], mathematics [20], and sociology [19].

The classical Pólya’s urn contains balls of two colors, and at each step one ball is drawn
randomly, its color is observed, and a ball of the same color is added to the urn. In our
process the interactions occur among pairs of bins, and on each of them the model evolves
similar to the classical Pólya’s urn. We therefore call it a generalized Pólya’s urn with graph
based interactions. For other variations on Pólya’s urn, see e.g. [6, 12, 14].

Let us sketch the ideas used in this article. We show that the proportion of balls in
the bins is a stochastic approximation algorithm, then it is related to a vector field in the
closed simplex. In our case the vector field is gradient-like: it has a strict Lyapunov function
(see Definition 3.2), whose set of critical values has empty interior. This is enough to
prove Theorem 1.2. Corollary 1.3 follows from concavity properties of the strict Lyapunov
function.

The method described above is usually called a dynamical approach, because the vector
field generates an autonomous ordinary differential equation (ODE), and dynamical infor-
mation on the ODE give information on the random process. From now on, we make no
distinction between the vector field and its ODE.

Random Structures and Algorithms DOI 10.1002/rsa
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The dynamical approach restricts the possible limits of the random process. Some equilib-
ria are stable, and some are unstable. In order to exclude convergence to unstable equilibria,
we look at the random process itself. Using probabilistic arguments, we give checkable con-
ditions to guarantee that the random process has zero probability to converge to unstable
equilibria (see Lemma 5.2). This is enough to prove Theorems 1.1, 1.4 and 1.5.

This work initiates a program to understand the limiting behavior of x(n) and its
dependence on G and α. Several open problems are presented in the last section.

2. STOCHASTIC APPROXIMATION ALGORITHMS

A stochastic approximation algorithm is a discrete time stochastic process whose general
form can be written as

x(n + 1) − x(n) = γnH(x(n), ξ(n)) (2.1)

where H : R
m × R

m → R
m is a measurable function that characterizes the algorithm,

{x(n)}n≥0 ⊂ R
m is the sequence of parameters to be recursively updated, {ξ(n)}n≥0 ⊂ R

m is
a sequence of random inputs where H(x(n), ξ(n)) is observable, and {γn}n≥0 is a sequence
of “small” nonnegative scalar gains. Such processes were first introduced in the early 50s
on the works of Robbins and Monro [18] and Kiefer and Wolfowitz [10].

Let us show that the random process defined by (1.2) is a stochastic approximation
algorithm. We start by specifically formulating the model. Write i ∼ j whenever {i, j} ∈ E.
Let Fn denote the sigma-algebra generated by the process up to step n, and let Ci(n) denote
the number of balls added to i at step n. For each neighboring pair of vertices i ∼ j, consider
0-1 valued random variables δi←j(n+1), δj←i(n+1) such that δi←j(n+1)+δj←i(n+1) = 1
and

E
[
δi←j(n + 1)|Fn

] = Bi(n)α

Bi(n)α + Bj(n)α
= xi(n)α

xi(n)α + xj(n)α
· (2.2)

Also, assume that δi←j(n + 1) and δi′←j′(n + 1) are independent whenever the edges {i, j}
and {i′, j′} are distinct. Thus

Ci(n + 1) =
∑
j∼i

δi←j(n + 1). (2.3)

We want to show that x(n) = (x1(n), . . . , xm(n)) satisfies a difference equation of the
form (2.1). Observe that

xi(n + 1) − xi(n) = Bi(n) + Ci(n + 1)

N0 + (n + 1)N
− Bi(n)

N0 + nN

= −Nxi(n) + Ci(n + 1)

N0 + (n + 1)N

= 1
N0
N + (n + 1)

(
−xi(n) + 1

N
Ci(n + 1)

)
and so x(n) satisfies (2.1) with

γn = 1
N0
N + (n + 1)

, ξ(n) = 1

N
(C1(n + 1), . . . , Cm(n + 1)) (2.4)

Random Structures and Algorithms DOI 10.1002/rsa
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and H : R
m × R

m → R
m defined by

H(x(n), ξ(n)) = −x(n) + ξ(n).

Conditioning on Fn, H has a deterministic component x(n) and a random component
ξ(n). Nevertheless, nothing can be said about converging properties of ξ(n). To this matter,
we modify the above equation by decoupling ξ(n) into its mean part and the so called
“noise” part, which has zero mean. If one manages to control the total error of the noise
term, the limiting behavior of x(n) can be identified via the limiting behavior of the new
deterministic component.

3. THE DYNAMICAL APPROACH

The dynamical approach is a method introduced by Ljung [13] and Kushner and Clark [11]
to analyze stochastic approximation algorithms. Formally, it says that recursive expressions
of the form (2.1) can be analyzed via an autonomous ODE

dx(t)

dt
= H(x(t)) , (3.1)

where H(x) = limn→∞ E [H(x, ξ(n))].
In this perspective, our stochastic approximation algorithm can be written as

x(n + 1) − x(n) = γn {(−x(n) + E [ξ(n)|Fn]) + (ξ(n) − E [ξ(n)|Fn])} .

Denote ξ(n) = (ξ1(n), . . . , ξm(n)). Eqs. (2.2), (2.3) and (2.4) imply

E [ξi(n)|Fn] = 1

N

∑
j∼i

E
[
δi←j(n + 1)|Fn

] = 1

N

∑
j∼i

xi(n)α

xi(n)α + xj(n)α
·

Thus, defining {un}n≥0 ⊂ R
m by

un = ξ(n) − E [ξ(n)|Fn] (3.2)

and F = (F1, . . . , Fm) by

Fi(x1, . . . , xm) = −xi + 1

N

∑
j∼i

xi(n)α

xi(n)α + xj(n)α
, (3.3)

our random process takes the form

x(n + 1) − x(n) = γn [F(x(n)) + un] . (3.4)

The above expression is a particular case of a class of stochastic approximation algo-
rithms studied in [2], on which the behavior of the algorithm is related to a weak notion of
recurrence for the ODE: that of chain-recurrence. Under the assumptions of Kushner and
Clark lemma [11], it is proved that the accumulation points of {x(n)}n≥0 are contained in
the chain-recurrent set of the ODE.

Random Structures and Algorithms DOI 10.1002/rsa
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If, furthermore, the system is gradient-like and the set of critical values of the strict Lya-
punov function has empty interior, then the accumulation points of {x(n)}n≥0 are equilibria
of the ODE. See Theorem 3.3 below.

In this section we introduce some definitions, state Theorem 3.3, and prove that our
model satisfies two of the three conditions of Theorem 3.3.

Let U ⊂ R
m be a closed set, and let F : U → R

m be a continuous vector field with
unique integral curves.

Definition 3.1 (Equilibrium point). A point x ∈ U is called an equilibrium if F(x) = 0.
x is called stable if all the eigenvalues of JF(x) have negative real part, and it is called
unstable if one of the eigenvalues of JF(x) has positive real part. Let � denote the set of all
equilibrium points. We call it the equilibria set.

Definition 3.2 (Strict Lyapunov function). A strict Lyapunov function for F is a con-
tinuous map L : U → R which is strictly monotone along any integral curve of F outside
�. In this case, we call F gradient-like.

3.1. A Limit Set Theorem

The reason we can characterize the limit set of the random process via the equilibria set of
the vector field is due to results in [2–4] which, to our purposes, are summarized as follows.

Theorem 3.3. Let F : R
m → R

m be a continuous gradient-like vector field with unique
integral curves, let � be its equilibria set, let L be a strict Lyapunov function, and let
{x(n)}n≥0 be a solution to the recursion

x(n + 1) − x(n) = γn [F(x(n)) + un] ,

where {γn}n≥0 is a decreasing gain sequence1 and {un}n≥0 ⊂ R
m. Assume that

1. {x(n)}n≥0 is bounded,
2. for each T > 0,

lim
n→∞

(
sup

{k:0≤τk−τn≤T}

∥∥∥∥∥
k−1∑
i=n

γiui

∥∥∥∥∥
)

= 0 ,

where τn =∑n−1
i=0 γi, and

3. L(�) ⊂ R has empty interior.

Then the limit set of {x(n)}n≥0 is a connected subset of �.

Proof. See Theorem 1.2 of [2] and Proposition 6.4 of [3].

1limn→∞ γn = 0 and
∑

n≥0 γn = ∞.

Random Structures and Algorithms DOI 10.1002/rsa
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3.2. The Random Process (3.4) Satisfies 1 and 2 of Theorem 3.3

Firstly, note that {γn}n≥0 satisfies

lim
n→∞ γn = 0 and

∑
n≥0

γn = ∞.

Of course, {x(n)}n≥0 is bounded. It remains to check condition 2. For that, let

Mn =
n−1∑
i=0

γiui.

{Mn}n≥0 is a martingale adapted to the filtration {Fn}n≥0:

E [Mn+1|Fn] =
n−1∑
i=0

γiui + E
[
γn+1un+1|Fn

] = n−1∑
i=0

γiui = Mn.

Furthermore, because for any n ≥ 0

n∑
i=0

E
[‖Mi+1 − Mi‖2|Fi

] ≤ n∑
i=0

γ 2
i ≤
∑
i≥0

γ 2
i < ∞ a.s.,

the sequence {Mn}n≥0 converges almost surely to a finite random vector (see e.g. Theorem
5.4.9 of [7]). In particular, it is a Cauchy sequence and so condition 2 holds almost surely.

In order to apply Theorem 3.3, we will construct a strict Lyapunov function for the ODE

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dv1(t)

dt
= −v1(t) + 1

N

∑
j∼1

v1(t)α

v1(t)α + vj(t)α

...
dvm(t)

dt
= −vm(t) + 1

N

∑
j∼m

vm(t)α

vm(t)α + vj(t)α

(3.5)

that satisfies condition (iii) of Theorem 3.3.
Before that, let us specify the domain of the vector field F. Fix c < 1/N , and let 	 be

the set of m-tuples (x1, . . . , xm) ∈ R
m such that:

1. xi ≥ 0 and
∑m

i=1 xi = 1, and
2. xi + xj ≥ c for all {i, j} ∈ E.

Clearly, F : 	 → T	 is Lipschitz. Moreover, we have

Lemma 3.4. 	 is positively invariant under the ODE (3.5).

Random Structures and Algorithms DOI 10.1002/rsa
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Proof. Given {i, j} ∈ E,

d

dt
(vi + vj) = −vi + 1

N

∑
k∼i

vα
i

vα
i + vα

k

− vj + 1

N

∑
l∼j

vα
j

vα
j + vα

l

≥ −(vi + vj) + 1

N

(
vα

i

vα
i + vα

j

+ vα
j

vα
j + vα

i

)

= −(vi + vj) + 1

N
·

If v belongs to the boundary of 	, there exists some {i, j} ∈ E such that vi + vj = c, and
then

d

dt
(vi + vj) ≥ −(vi + vj) + 1

N
= −c + 1

N
> 0,

which means that F points inward on the boundary of 	. This proves that condition 2 is
preserved.

4. THE GENERAL CASE: PROOF OF THEOREM 1.2

Let L : 	 → R be given by

L(v1, . . . , vm) = −
m∑

i=1

vi + 1

αN

∑
{i,j}∈E

log (vα
i + vα

j ). (4.1)

Lemma 4.1. L is a strict Lyapunov function for F.

Proof. We have

∂L

∂vi
= −1 + 1

αN

∑
i∼j

αvα−1
i

vα
i + vα

j

= −1 + 1

N

∑
i∼j

vα−1
i

vα
i + vα

j

, (4.2)

thus

dvi

dt
= vi

(
−1 + 1

N

∑
i∼j

vα−1
i

vα
i + vα

j

)
= vi

∂L

∂vi
· (4.3)

If v = (v1(t), . . . , vm(t)), t ≥ 0, is an integral curve of F, then (4.3) implies

d

dt
(L ◦ v) =

m∑
i=1

∂L

∂vi

dvi

dt
=

m∑
i=1

vi

(
∂L

∂vi

)2

≥ 0.

Also, the last expression is zero if and only if vi(
∂L
∂vi

)2 = 0 for all i ∈ [m], which is equivalent
to F(v) = 0.

Let � ⊂ 	 be the equilibria set of F. For each S ⊂ [m], let

	S = {v ∈ 	 : vi = 0 iff i /∈ S}

Random Structures and Algorithms DOI 10.1002/rsa
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denote the face of 	 determined by S. 	S is a manifold with corners, positively invariant
under the ODE (3.5).

Definition 4.2. v ∈ 	S is an S-singularity for L if

∂L

∂vi
(v) = 0 for all i ∈ S.

Let �S ⊂ 	S denote the set of S-singularities for L.

Lemma 4.3. � =⋃S⊂[m] �S.

Proof. If v ∈ 	S, then dvi
dt = vi

∂L
∂vi

= 0 for all i /∈ S. Thus v ∈ � iff ∂L
∂vi

= 0 for all i ∈ S.

To prove Theorem 1.2, it remains to show that L(�) has empty interior. L|	S is a C∞

function, thus by Sard’s theorem L(�S) has zero Lebesgue measure, so L(�) has zero
Lebesgue measure as well. In particular, it has empty interior.

4.1. Proof of Corollary 1.3

Each restriction L|	S is concave2. We claim that L|	S is strictly concave. Let u, v ∈ 	S and
c ∈ (0, 1). If L(cu + (1 − c)v) = cL(u) + (1 − c)L(v), then ui + uj = vi + vj for every
{i, j} ∈ E, i.e.

ui − vi = (−1)(uj − vj) , ∀ {i, j} ∈ E.

The values of ui − vi along any path in G alternate between u1 − v1 and −(u1 − v1):

ui − vi =
{

u1 − v1 if the distance from i to 1 is even,
−(u1 − v1) if the distance from i to 1 is odd.

(4.4)

Let A be the vertices within even distance to 1 and B those within odd distance to 1. If G
is non-bipartite, then A ∩ B �= ∅, thus u1 = v1. If G is bipartite, then V = A ∪ B is the
bipartition. By (4.4),

0 =
m∑

i=1

ui −
m∑

i=1

vi = (u1 − v1)#A − (u1 − v1)#B.

Because G is not balanced bipartite, #A �= #B and again u1 = v1. In any case we have
u1 = v1, i.e. u = v. Thus L|	S is strictly concave. By the same reasoning as in the end of
the proof of Theorem 1.2, the corollary is established.

2This follows from a simple fact on convex functions. Let ψ : R → R be an increasing, concave function, and let
f : R

k → R be a (strictly) concave function. Then ψ ◦ f is also (strictly) concave.

Random Structures and Algorithms DOI 10.1002/rsa
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5. NON-CONVERGENCE TO UNSTABLE EQUILIBRIA

In this section we give checkable conditions to guarantee that the random process has zero
probability to converge to unstable equilibria of F when α ≤ 1. This is Lemma 5.2, and its
proof is an adaptation of the proof of Theorem 1.3 in [16].

The checkable condition is in terms of the partial derivatives of L. Before stating it, let
us make some general considerations. By (4.2),

∂L

∂v1
= −1 + 1

N

∑
i∼1

vα−1
1

vα
1 + vα

i

·

∂L/∂v1 is finite if α = 1 or v1 > 0, and infinite otherwise. Define ∂L/∂v1 : 	 → R ∪ {∞},
which is continuous. In particular, if ∂L/∂v1(v) > 0 then it is positive in a neighborhood of
v. In the proof of Lemma 5.2 we will make use of the lemma below.

Lemma 5.1. Let v ∈ 	 with v1 = 0 and ∂L/∂v1(v) > 3δ. Then there exists a
neighborhood N of v, an element u ∈ N , and ε0 > 0 such that

1. ∂L
∂v1

(u) > 3δ + mε0
N , and

2. for all w ∈ N and i ∼ 1 it holds

wα−1
1

wα
1 + wα

i

>
uα−1

1

uα
1 + uα

i

− ε0.

Proof. Firstly, assume that α = 1. ∂L/∂v1 is continuous, so we can fix a neighborhood N
of v satisfying condition 1. Each w ∈ N �→ 1/(w1 + wi), i ∼ 1, is uniformly continuous,
thus condition 2 also holds if N is small enough.

Now assume that α < 1. Again, we can fix a neighborhood N of v satisfying condition
1. In this case, the maps Li : w ∈ N �→ wα−1

1 /(wα
1 + wα

i ), i ∼ 1, are not uniformly
continuous. But they are convex3. Because Li|N∩{w1=0} = ∞, its minimum is attained

outside N ∩ {w1 = 0}. Thus we can choose a small neighborhood V of N ∩ {w1 = 0} that
does not contain the minima of none of the Li. Now, Li|N \V is uniformly continuous. Restrict
N if necessary and choose any u ∈ N \V . Thus if w ∈ N \V then Li(w) > Li(u) − ε0, and
if w ∈ V then Li(w) ≥ min Li|N \V > Li(u) − ε0.

Lemma 5.2. Let G be a finite, connected graph, α ≤ 1 and L as in (4.1). Let v be an
equilibrium with v1 = 0. If ∂L/∂v1(v) > 0, then

P

[
lim

n→∞ x(n) = v
]

= 0. (5.1)

Before embarking into the proof, let us explain why the conditions of the lemma are
equivalent to v being an unstable equilibrium. Firstly, assume that α = 1. We look at the
jacobian matrix JF(v):

3This is consequence of two facts of convex functions. Fact 1. If f : R
k → (0, ∞) is concave, then 1/f is convex.

Fact 2. (x, y) ∈ (0, ∞)2 �→ xαy1−α is concave.
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∂Fi

∂vj
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi
∂2L

∂vi∂vj
if i ∼ j,

∂L

∂vi
+ vi

∂2L

∂v2
i

if i = j,

0 otherwise.

Without loss of generality, assume that v ∈ 	S with S = {k + 1, . . . , m}. Thus

JF(v) =
[

A 0
C B

]
(5.2)

where A is a k × k diagonal matrix with aii = ∂L/∂vi, i ∈ [k]. The spectrum of JF(v) is the
union of the spectra of A and B. With respect to the inner product (x, y) =∑m

i=k+1 xiyi/vi,
B is self-adjoint and negative semidefinite (by the concavity of L), hence the eigenvalues of
B are real and nonpositive. Therefore, JF(v) has one real positive eigenvalue if and only if
one of aii is positive.

When α < 1, JF(v) is not defined, in particular because a11 is not finite. Nevertheless,
a11 explodes to infinity, which intuitively means that v is unstable.

Proof. Firstly, we claim that

P

[
lim

n→∞ B1(n) = ∞
]

= 1. (5.3)

This is easy: because 1 ≤ Bi(n) ≤ N0 + nN , we have

P
[
1 is chosen among {1, i} at step n + 1

] = B1(n)α

B1(n)α + Bi(n)α
≥ 1

2(N0 + nN)

for every i ∼ 1, and so (5.3) follows from the Borel-Cantelli lemma.
Fix B > 0 large enough (to be specified later), and define

Yn = {x(k) ∈ N , ∀ k ≥ n} ∩ {B1(n) > B}, n > 0.

By (5.3), {limn→∞ x(n) = v} ⊂ ⋃m≥n Ym for any n > 0. Thus the lemma will be proved if
we show that

P [Yn] = 0 for sufficiently large n. (5.4)

Let δ > 0 and N as in Lemma 5.1. For a fixed n0, let Gn = Fn ∩ Yn0 , and let c > 0 such
that [

1 + δ(1 + 2δ)

1 + 3
2δ

]
1

1 + δ
= 1 + c. (5.5)

We claim that if B is large enough, then there is n0 > 0 such that

E
[
log x1((1 + δ)n)|Gn

] ≥ log x1(n) + 1

2
log(1 + c) for all n > n0. (5.6)
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Before proving the claim, let us show how to conclude the proof of the lemma. By
contradiction, assume that (5.4) is not true for some n > n0. Define Tk = (1 + δ)kn and
Xk = log x1(Tk). By (5.6),

E [Xk+1|Gn] = E
[
E
[
Xk+1|GTk

]|Gn

] ≥ E [Xk|Gn] + 1

2
log(1 + c).

By induction,

E [Xk|Gn] ≥ X0 + k

2
log(1 + c) ≥ − log (N0 + nN) + k

2
log(1 + c)

which is a contradiction, because the left hand side is bounded.
We now prove (5.6). The proof uses a coupling argument and Chernoff bounds. Let

t ∈ {n + 1, . . . , (1 + δ)n}. Restricted to Yn0 , we have

P
[
1 is chosen among {1, i} at step t

] = B1(t − 1)α

B1(t − 1)α + Bi(t − 1)α

≥ B1(n)

N0 + (t − 1)N
· x1(t − 1)α−1

x1(t − 1)α + xi(t − 1)α

≥ B1(n)

N0 + (t − 1)N

(
uα−1

1

uα
1 + uα

i

− ε0

)
.

Define a family of independent Bernoulli random variables {Et,i}, t = n + 1, . . . , (1 + δ)n,
i ∼ 1, as follows

P
[
Et,i = 1

] = B1(n)

N0 + (t − 1)N

(
uα−1

1

uα
1 + uα

i

− ε0

)
.

Now couple {Et,i} to our model: if Et,i = 1, then 1 is chosen among {1, i} at step t. If n0 is
large enough4, then

E

⎡⎢⎣ ∑
n+1≤t≤(1+δ)n

i∼1

Et,i

⎤⎥⎦ ≥ B1(n)

(
(1+δ)n∑
t=n+1

1

N0 + (t − 1)N

)(∑
i∼1

uα−1
1

uα
1 + uα

i

− mε0

)

> B1(n)
δ(1 + 3δ)

1 + 3
2δ

·

By Chernoff bounds (see Corollary A.1.14 of [1]), if ε1 > 0 then there is B0 large enough
such that

P

⎡⎢⎣ ∑
n+1≤t≤(1+δ)n

i∼1

Et,i > B1(n)
δ(1 + 2δ)

1 + 3
2δ

⎤⎥⎦ > 1 − ε1 (5.7)

4Because log(1 + x) > x
1+x for small x > 0, if n0 is large then

N
(1+δ)n∑
t=n+1

1

N0 + (t − 1)N
> log

(
N0 + (1 + δ)nN

N0 + nN

)
> log

(
1 + δ

1 + 1
2 δ

)
>

δ

1 + 3
2 δ

·
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for every B1(n) > B0. Whenever (5.7) holds, the coupling gives that

B1((1 + δ)n) − B1(n) ≥
∑

n+1≤t≤(1+δ)n
i∼1

Et,i > B1(n)
δ(1 + 2δ)

1 + 3
2δ

(5.8)

and thus by (5.5) we have

x1((1 + δ)n) > x1(n)

[
1 + δ(1 + 2δ)

1 + 3
2δ

]
1

1 + δ
= x1(n)(1 + c).

From (5.7), it follows that

P [x1((1 + δ)n) > x1(n)(1 + c)|Gn] > 1 − ε1. (5.9)

Because x1((1 + δ)n) >
x1(n)

1+δ
and ε1 > 0 can be chosen arbitrarily small, (5.9) gives

E
[
log x1((1 + δ)n)|Gn

]
> (1 − ε1) log(x1(n)(1 + c)) + ε1 log

(
x1(n)

1 + δ

)
> log x1(n) + 1

2
log(1 + c),

thus establishing (5.6).

6. REGULAR GRAPHS: PROOF OF THEOREM 1.1

Here, G is a finite, r-regular, connected graph, and α = 1. Assume first that G is non-
bipartite, and let u ∈ 	 be the uniform measure. By Corollary 1.3, � is finite and x(n)

converges to an element of �. Furthermore, #�S ≤ 1 for every S ⊂ [m]. It is easy to
check that u ∈ �[m], thus �[m] = {u}. We will show that any other equilibrium satisfies the
conditions of Lemma 5.2, in which case we conclude the proof of Theorem 1.1 (a).

Now assume that G is bipartite, and that V = A ∪ B is the bipartition of G. Let � be
defined as in (1.3). Every v ∈ � is an equilibrium: for i ∈ A

Fi(v) = −vi + 1

N

∑
j∼i

vi

vi + vj
= −p + rp

N(p + q)
= 0,

and the same holds for i ∈ B. We will show that any other equilibrium satisfies the conditions
of Lemma 5.2 and thus is unstable. This being proved, Theorem 1.1 (b) is established.

Summarizing the above discussion, to prove Theorem 1.1 we just need to prove the
lemma below.

Lemma 6.1. Let G be a finite, regular, connected graph, and let α = 1.

a. If G is non-bipartite, then every element of �\{u} is unstable.
b. If G is bipartite, then every element of �\� is unstable.

Proof. Let v ∈ �S satisfying either (a) or (b). By Lemma 5.2, it is enough to show that
∂L/∂vi > 0 for some i ∈ [m]\S. Since ∂L/∂vi = 0 for i ∈ S, it suffices to show that∑m

i=1
∂L
∂vi

> 0, i.e.

−m + 1

N

m∑
i=1

∑
j∼i

1

vi + vj
> 0. (6.1)
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We first claim that the above expression is nonnegative. For this, note that the summand has
2N terms and, by the arithmetic-harmonic mean inequality,[

m∑
i=1

∑
j∼i

1

vi + vj

]
·
[

m∑
i=1

∑
j∼i

(vi + vj)

]
≥ (2N)2, (6.2)

with equality if and only if

vi + vj = const., ∀ {i, j} ∈ E. (6.3)

Since G is r-regular, N = rm/2 and
m∑

i=1

∑
j∼i

(vi + vj) = 2r.

So (6.2) gives
m∑

i=1

∑
j∼i

1

vi + vj
≥ (2N)2

2r
= Nm, (6.4)

thus proving our claim.
If (6.1) is not true, then (6.3) holds. Fix the vertex 1 of G, and let v1 = p and vi = q for

every neighbor i ∼ 1. Thus the values of vi along any path in the graph G alternate between
p and q, i.e.

vi =
{

p if the distance from i to 1 is even,
q if the distance from i to 1 is odd.

If G is non-bipartite, it has a cycle of odd length, then p = q and v = u, and if G is
bipartite then v ∈ �. In both cases, we get a contradiction.

7. PROOF OF THEOREM 1.4

If α < 1, then the function x �→ xα , x > 0, is strictly concave. Thus each restriction L|	S is
also strictly concave5, so L has at most one S-singularity.

If S �= [m], then vi = 0 and ∂L/∂vi = ∞ on �S. By Lemma 5.2, �S consists of an
unstable equilibrium. Let �[m] = {v}. Thus v has non-zero entries and x(n) converges to v
almost surely.

8. STAR GRAPHS: PROOF OF THEOREM 1.5

When G is the star graph with m vertices and m is the vertex with higher degree, (3.5)
becomes ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dvi(t)

dt
= −vi(t) + 1

m − 1
· vi(t)α

vi(t)α + vm(t)α
, i ∈ [m − 1],

dvm(t)

dt
= −vm(t) + 1

m − 1

m−1∑
j=1

vm(t)α

vm(t)α + vj(t)α
·

(8.1)

5Again, we are using that if ψ : R → R is an increasing, concave function, and f : R
k → R is a (strictly) concave

function, then ψ ◦ f is also (strictly) concave.
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Case 1. α ≤ 1.

When α = 1, note that (0, . . . , 1) ∈ �. We will show that any v ∈ �\{(0, . . . , 0, 1)}
satisfies the conditions of Lemma 5.2. By the arithmetic-harmonic mean inequality,

∂L

∂vm
= −1 + 1

m − 1

m−1∑
i=1

1

vi + vm
≥ −1 + m − 1

1 + (m − 2)vm
> 0.

Because v ∈ �, we also have vm = 0.
When α < 1, direct calculations show that(

1

m − 1 + (m − 1)
1

1−α

, . . . ,
1

m − 1 + (m − 1)
1

1−α

,
(m − 1)

1
1−α

m − 1 + (m − 1)
1

1−α

)
is an equilibrium point in the interior of 	. By concavity of L, it is the unique equilibrium
point in the interior of 	. The result thus follows from Theorem 1.4.
Case 2. α > 1.

When m = 2, our model is a class of generalized Pólya’s urn. For simplicity, we refer
to this process as “g-urn”. It is known (see e.g. Theorem 4.1 of [8]) that in this case

P

[
lim

n→∞ x(n) = (0, 1)
]

> 0 and P

[
lim

n→∞ x(n) = (1, 0)
]

> 0.

Now assume m > 2. Observe that, as events,{
lim

n→∞ x(n) =
(

1

m − 1
, . . . ,

1

m − 1
, 0

)}
⊃

m−1⋂
i=1

⋂
n≥1

{δi←m(n) = 1}.

By a coupling argument, we can identify this last event to the following one: in m − 1
independent g-urns, just one color of ball is added in each g-urn since the beginning of the
process. Rubin’s Theorem (see e.g. Theorem 3.6 of [17]) guarantees that the event “just
one color of ball is added to the g-urn since the beginning of the process” has positive
probability, and so

P

[
lim

n→∞ x(n) =
(

1

m − 1
, . . . ,

1

m − 1
, 0

)]
> 0.

To prove the other claim, first observe that{
lim

n→∞ x(n) = (0, . . . , 0, 1)
}

⊃
m−1⋂
i=1

⋂
n≥1

{δi←m(n) = 0}.

By a coupling argument, the term on the right hand side of the above inclusion has positive
probability (again by Rubin’s Theorem). This concludes the proof of Theorem 1.5.

Remark 8.1. Given a finite connected graph G = (V , E), call I ⊂ V an independent set
if {i, j} �∈ E for i, j ∈ I . The proof of Theorem 1.5 gives the following: if α > 1 and I is an
independent set, then

P

[
lim

n→∞ xi(n) = 0, ∀ i ∈ I
]

> 0.
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9. VARIANTS OF THE MODEL

9.1. Edges with Different Weight Functions

Let G = (V , E) be a finite, connected graph. For each edge {i, j} ∈ E, let f{i,j} : (0, 1) →
(0, 1). A variant of the model is described as follows. Let x1(n − 1), . . . , xm(n − 1) be the
proportions of balls after step n − 1. At step n, for each edge {i, j} ∈ E add one ball either
to i or j with probability

P
[
i is chosen among {i, j} at step n

] = f{i,j}(xi(n − 1))

f{i,j}(xi(n − 1)) + f{i,j}(xj(n − 1))
·

In other words, we replace the law of δi←j(n) in (2.2) by the above one, defined in terms of
the f{i,j}’s.

If we assume that, for each {i, j} ∈ E, f{i,j}(x) = xα{i,j} for some α{i, j} > 0, then

L(v1, . . . , vm) = −
m∑

i=1

vi + 1

N

∑
{i,j}∈E

log
(

vα{i,j}
i + vα{i,j}

j

)
α{i, j}

is a strict Lyapunov function for this variant model.
If furthermore each α{i, j} < 1, then we can argue as in the proof of Theorem 1.4 and

conclude that there exists v (depending on G and α{i, j}, {i, j} ∈ E) with non-zero entries
such that x(n) converges to v almost surely.

9.2. Hypergraph Based Interactions

We can similarly define a variant of the model on hypergraphs. Let G = (V , E) be an
hypergraph, where V = [m] and E ⊂ 2V , |E| = N . Let x1(n − 1), . . . , xm(n − 1) be the
proportions of balls after step n − 1. At step n, for each hyperedge e ∈ E add one ball to
one of its vertices with probability

P
[
i is chosen on hyperedge e at step n

] = xi(n − 1)∑
j∈e

xj(n − 1)
·

Notice that when G is the trivial hypergraph with only one hyperedge [m], this variant is a
Pólya’s urn model with balls of m colors. See for instance §4.2 of [17].

A special case of this variant was considered in [20]. The authors defined6 a model called
“Friends II” in a graph G̃ = ({1, . . . , m}, Ẽ). If we define a hypergraph G = (V , E) whose
vertices are the edges of G̃ and whose hyperedges are the sets of neighboring edges in G̃,
i.e. V = Ẽ and E = {e1, . . . , em} with ei = {{i, j} ∈ Ẽ}, then “Friends II” in G̃ is the same
as our variant in the hypergraph G.

6Actually, they only considered the model on complete graphs.
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The autonomous ODE of this variant is⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dv1(t)

dt
= −v1(t) + 1

N

∑
e∈E
1∈e

v1(t)∑
j∈e vj(t)

...
dvm(t)

dt
= −vm(t) + 1

N

∑
e∈E
m∈e

vm(t)∑
j∈e vj(t)

·
(9.1)

In this case,

L(v1, . . . , vm) = −
m∑

i=1

vi + 1

N

∑
e∈E

log

(∑
i∈e

vi

)
is a strict Lyapunov function.

In addition to the above two variants, one can also consider a model in which the number
of balls added at each step is some process possibly depending on the outcome so far.

10. THE CASE α = 1 FOR REGULAR BIPARTITE GRAPHS

This section is of independent interest, and its purpose is to provide a better understanding
of the vector field F when G is a finite, r-regular, bipartite, connected graph, and α = 1. We
prove that every v in the interior of � is stable in any direction transverse to �, by looking
at the jacobian matrix

JF =

⎡⎢⎢⎢⎢⎣
∂F1

∂v1
· · · ∂F1

∂vm
...

. . .
...

∂Fm

∂v1
· · · ∂Fm

∂vm

⎤⎥⎥⎥⎥⎦ (10.1)

of the vector field F = (F1, . . . , Fm) defined by (3.5). Because v ∈ � belongs to a line of
singularities, 0 is an eigenvalue of JF(v). We prove that

Lemma 10.1. Let v ∈ int(�). Any eigenvalue of JF(v) different from 0 has negative real
part, and 0 is a simple eigenvalue of JF(v).

Proof. We explicitly calculate the entries ∂Fi/∂vk . Let v ∈ � with vi = p for i ∈ A and
vi = q for i ∈ B. We have five cases:

• i = k ∈ A:

∂Fi

∂vi
(v) = −1 + 1

N

∑
j∼i

vj

(vi + vj)2
= −1 + mq

2
·

• i = k ∈ B: analogously,

∂Fi

∂vi
(v) = −1 + mp

2
·
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• i ∼ k and i ∈ A:

∂Fi

∂vk
(v) = − vi

N(vi + vk)2
= −mp

2r
·

• i ∼ k and i ∈ B: analogously,

∂Fi

∂vk
(v) = −mq

2r
·

• i �∼ k: in this case, ∂Fi/∂vk = 0.

If we label the vertices of A from 1 to m/2, the vertices of B from 1 to m/2, and if we
let M = (mij) be the m/2 × m/2 adjacency matrix of the edges connecting vertices of A to
vertices of B (i.e. mij = 1 when the i-th vertex of A is adjacent to the j-th vertex of B), then
JF(v) takes the form

JF(v) = −I + m

2r

[
rqI −pM

−qMt rpI

]
·

Letting μ = p/(p + q) and ν = q/(p + q), JF(v) can be written as

JF(v) = −I + 1

r

⎡⎣ rνI −μM

−νMt rμI

⎤⎦ =: −I + 1

r
S. (10.2)

Given a matrix X , let σ(X) denote its spectrum. By (10.2),

σ(JF(v)) = 1

r
σ(S) − 1

and so it is enough to estimate the set σ(S). The lemma will follow once we prove that

a. every element of σ(S) is either real or has real part equal to r/2,
b. r is the largest real eigenvalue of S, and
c. r is a simple eigenvalue of S.

Let’s prove (a). Let λ = a + bi ∈ σ(S). Because rμ, rν < r, we can assume that
λ �= rμ, rν. Note that the matrix

S − λI =
⎡⎣ (rν − λ)I −μM

−νMt (rμ − λ)I

⎤⎦
is singular if and only if its Schur complement

(rν − λ)I − (−μM)(rμ − λ)−1I(−νMt) = μν

rμ − λ

[
(rμ − λ)(rν − λ)

μν
I − MMt

]
is singular. Because MMt is symmetric, all of its eigenvalues are real and so

(rμ − λ)(rν − λ)

μν
∈ R =⇒ (rμ − λ)(rν − λ) ∈ R.
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Calculating the imaginary part of (rμ − λ)(rν − λ), it follows that

−rb + 2ab = 0 =⇒ b = 0 or a = r/2,

which proves (a).
To prove (b), let λ ∈ σ(S) ∩ R, say Sx = λx, where x = (x1, . . . , xm) ∈ R

m\{0}. Letting
xi = max{|x1|, . . . , |xm|} for i ∈ A, we have

λxi = rνxi − μ
∑
j∼i

xj ≤ rνxi + μ
∑
j∼i

xi = rxi

and thus λ ≤ r. The same holds if i ∈ B.
It remains to prove (c). When λ = r, we have for i ∈ A

rxi = rνxi − μ
∑
j∼i

xj =⇒ xi = −1

r

∑
j∼i

xj

and similarly for i ∈ B. Thus the function h : V → R defined by

h(i) =
{

xi if i ∈ A,
−xi if i ∈ B

is harmonic in G. By the maximum principle, h is constant, and so r is a simple eigenvalue
of S.

11. FURTHER QUESTIONS

This work is part of a program to answer the following

Problem 11.1. Given a finite connected graph G and α > 0, what is the limiting behavior
of x(n)?

Theorem 1.4 gives a full answer when α < 1. When α = 1, it is not clear what to
expect, because the properties of the graph should be taken into account. We conjecture the
following.

Conjecture. Let G be a finite, connected, not balanced bipartite graph, and let α = 1. Then
there is a single point such that x(n) converges to it almost surely.

When α > 1 the question remains widely open, even when G is a triangle. The uniform
measure is always an equilibrium. When 1 < α < 4/3, it is stable and thus x(n) converges
to it with positive probability. Also, by Remark 8.1, for any i ∈ {1, 2, 3}, xi(n) converges to
zero with positive probability. In general, we think there exists α0 = α0(G) such that when
α > α0

P

[
lim

n→∞ x(n) ∈ ∂	
]

= 1.

When G is the star graph, item (b) of Theorem 1.5 gives a partial answer to the question.
Now turn attention to the special cases we considered, summarized in Table 1.
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TABLE 1. The Limiting Behavior of x(n).

G Regular Non-Bipartite Regular Bipartite Star Graph

α < 1 uniform measure uniform measure v(m, α) of Theorem 1.5
α = 1 uniform measure �

probability > 0 to
α > 1 ? ? (0, . . . , 0, 1) and(

1
m−1 , . . . , 1

m−1 , 0
)

When G is regular bipartite and α = 1, Theorem 1.1 says that the limit set of x(n) is
contained in �. However, we do not know if the limit exists. When the number of vertices is
two, the model is the classical Pólya’s urn, and in this case it is known that x(n) converges
to a point of � almost surely. See e.g. §2.1 of [17].

Problem 11.2. For a general regular bipartite graph and α = 1, does x(n) converge to
a point of � almost surely?

In Section 10 we proved that every point in the interior of � is stable in any direction
transverse to �.

Problem 11.3. In Theorems 1.1, 1.2 and 1.4, what is the rate of convergence of x(n) to
its limit?

This problem is related to the control of the eigenvalues of JF on �, and of quantitative
estimates on the precision that {x(n)}n≥0 shadows a real orbit of the ODE associated to F.
See e.g. §3.2 of [17].

Another question of interest is the following

Problem 11.4. What is the correlation between the number of balls in the bins, as a
function of α and of the number of steps n, e.g. when G is an Euclidean lattice?

Remark 11.5. After the preparation of this manuscript, we learned that the Conjecture
and Problem 11.2 were solved affirmatively [5].
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