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A B S T R A C T

Geostatistical cascade modeling of Mineral Resources is challenging in vein-type gold deposits. The narrow shape
and long-range features of these auriferous veins, coupled with the paucity of drill-hole data, can complicate the
modeling process and make the use of two-point geostatistical algorithms impractical. Instead, multiple-point
geostatistics techniques can be a suitable alternative. However, the most challenging part in implementing the
MPS is to use a suitable training data set or training image (TI). In this paper, we suggest using the radial basis
function algorithm to build a training image and the DeeSse algorithm, one of the multiple-point statistics (MPS)
methods, to model two long-range veins in a gold deposit. It is demonstrated that DeeSse can replicate long-range
vein features better than plurigaussian simulation techniques when there is a lack of conditioning data. This is
shown by several validation processes, such as comparing simulation results with an interpretive geological block
model and replicating geological proportions.

1. Introduction

A Mineral Resource estimation model is needed for mining project
planning (Rossi and Deutsch 2014). Cascade resource modeling allows
one to first create the geological domains and then to model the grades
of the mineral of interest in each domain separately (Alabert and Mas-
sonnat, 1990; Roldão et al., 2012; Boucher and Dimitrakopoulos, 2012;
Jones et al., 2013). The domains are often selected based on geological
interpretation, including lithology, rock types, grade thresholds, and the
assumption that the continuous variables are homogeneous and sta-
tionary within the appropriate domain (Rossi and Deutsch 2014). The
estimation of grades within each domain can be implemented using
different interpolation algorithms. Considerable challenges can be
encountered when modeling the geological domains. Although deter-
ministic modeling of geological domains can be straightforward, such a
model does not reflect uncertainty across geological domain boundaries,
particularly in the areas where the borehole dataset is scarce. In
contrast, geostatistical simulation enhances the geological interpreta-
tion and measures the uncertainty in the location of the domain
boundaries by creating several numerical outputs or realizations of the
geological domains. However, using these techniques in modeling
long-range and narrow geological features (such as gold veins) is

challenging. Two-point geostatistics, such as the sequential indicator
simulation (Journel and Gómez-Hernández, 1993) and plurigaussian
simulations (Armstrong et al., 2011; Madani, 2021), can be used to
stochastically model the geological domains, but they may fail to
adequately model the long-range features of geological domains
(Abulkhair and Madani, 2022). Instead, multiple-point statistics (MPS)
(Guardiano and Srivastava, 1993a,b; Strebelle, 2002) have demon-
strated their relevance for simulating heterogeneous structures and
long-range geological features (Mariethoz and Caers, 2014). Several
techniques based on multiple-point statistics have emerged in recent
decades, such as single normal equation simulation (SNESIM) (Strebelle,
2002) or filter-based simulation (FILTERSIM) (Zhang et al., 2006),
which enable the replication of increasingly complex geometries and
spatial patterns. This work focuses on using the Direct Sampling
(DeeSse) (Mariethoz et al., 2010) approach, one of the latest
MPS-developed algorithms, which relies on a training image (TI) similar
to other MPS-based algorithms. The benefit of DeeSse is that it scans the
TI using a distance function rather than constructing a catalog of pat-
terns, which is common in other MPS algorithms. This approach
significantly speeds up the simulation and reduces memory usage. The
most challenging step in MPS might be the choice of a reliable TI (Emery
and Lantuejoul, 2014; Boisvert et al., 2007; Mariethoz and Caers, 2014;
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Dubrule, 2017). One solution to this difficulty is to employ explicit or
implicit geological models to create such a dataset. Explicit modeling
combines hand contouring and wireframing to connect polygons from
2D cross-sections and mold the ore body geometry into a 3D model
(Vistelius, 1989; Houlding, 1994; Mallet, 1992, 2002). In the mining
industry, it is typical to utilize explicit models like wireframes as TI in
MPS workflow (Goodfellow et al., 2012a,b; Boucher et al., 2014;
Robles-Stefoni and Dimitrakopoulos, 2016; Rezaee et al., 2014; Quigley
et al., 2018; Paithankar and Chatterjee, 2018). However, explicit
modeling itself is labor-intensive and often subjective to the geologist’s
perspective (Silva and Deutsch, 2014, 2015). In contrast, implicit
modeling techniques such as indicator kriging (Deutsch and Journel,
1998), Radial Basis Function (RBF) (Franke, 1982), and Support Vector
Classification (SVC) (Smirnoff et al., 2008; Hardy, 1971) automate
geological boundary construction, reducing manual digitization time.
The latter, RBF algorithm, is popular among geo-modelers and is
available through several commercial software programs.

Silva and Deutsch (2014, 2015) provided an alternative to integrate
two TIs in the MPS algorithm instead of using only one unique TI,
leading to the capture of both short and large-scale geological features in
the simulation results. In this workflow, one image is deduced from an
implicit geological model and another image is derived from Sequential
Indicator Simulation. The former and latter represent the large-scale and
the short-scale geological features, respectively. Although this algorithm
appears to be efficient in reproducing the expected geological outputs, it
is slow in performance due to the involvement of the Single Normal
Equation Simulation (SNESIM) algorithm (Strebelle, 2002) as the main
engine in this stochastic technique. This is because the SNESIM algo-
rithm is insufficient for modeling a large number of cells (Tahmasebi,
2018).

In this work, DeeSse is used to model four geological domains in a
gold deposit, where the veins showed a long-range geological feature.
The TI is created using the RBF algorithm. Then, following the cascade
paradigm, sequential Gaussian simulation (SGS) (Goovaerts, 1997) is
used to model the gold in each domain independently and then to derive
the final predictive model of the entire gold deposit. The results are then
compared with plurigaussian simulations, deterministic cascade
modeling, and a case where the influence of geological domains is
neglected.

This paper introduces a novel method to quantify the uncertainty of
geodomains. Implicit geological modeling with Radial Basis Functions
often falls short in capturing the full range of uncertainties due to its
deterministic nature. In contrast, the proposed approach employs MPS
to provide a representation of uncertainty. This approach is particularly
effective for stochastically modeling vein-type deposits, which are
characterized by their irregular and complex structures. By using the
proposed method, it is possible to generate stochastic realizations that
better reflect the inherent variability and complexity of these deposits.
The stochastic realizations are designed to be compatible with the im-
plicit deterministic models of geodomains, thereby bridging the gap
between deterministic and probabilistic modeling approaches. By inte-
grating this uncertainty quantification method with existing geological
modeling frameworks, the approach enhances the ability to predict and
manage geological uncertainties. This has significant implications for
resource estimation, risk assessment, and decision-making in the field of
geological exploration and mining.

2. Methodology

2.1. Cascade modeling

Cascade resource modeling (Alabert and Massonnat, 1990; Roldão
et al., 2012; Boucher and Dimitrakopoulos, 2012; Jones et al., 2013) is a
popular method for evaluating ore bodies in various types of deposits.
This method needs a deterministic model of geological domains and a
model of grade estimation for each domain separately. However,

deterministic models do not reflect associated geological uncertainty,
which can be detrimental to the final grade estimate model. Therefore, it
is recommended to use stochastic models of geological domains for
resource estimation. These methods are based on simulation approaches
that offer a variety of different scenarios, reflecting the equally plausible
spatial distribution of the geo-domains rather than a singular
geo-domain layout. Incorporating geological control into Mineral
Resource evaluation can be facilitated by utilizing probability maps.
One alternative for using the probabilistic description of geological
domains in estimating the final grade is to use a weighting equation
proposed by Emery and Gonzalez (2007). In this technique, the esti-
mated model is created by multiplying the expected grades for each
lithological domain by the likelihood/probability of occurrence of that
domain in each block separately. This method takes into account the
continuity of the ore grades associated with each lithological domain as
well as the uncertainty in the spatial layout of these domains within the
deposit (Emery and Gonz’alez, 2007):

Final predictive grade=
∑n

k=1

Probability
(
kth domain

)

∗ Predictive grade
(
kth domain

)
(1)

2.2. Modeling of geological domains

To build the probabilistic model of geological domains as required in
Eq. (1), there are several geostatistical approaches. Among others, MPS
has demonstrated its relevance for modeling curvilinear and long-range
patterns of geological domains in comparison to the conventional
variogram-based geostatistical approach (Mariethoz and Caers, 2014).
To learn about spatial variability, MPS-based techniques employ a
conceptual training data set (TI) rather than two-point statistical func-
tions such as the variogram (Mariethoz and Caers, 2014). The TI can
contain multiple collocated variables, situated in space or time, or be
limited to a single variable and spatial coordinates (Mariethoz and
Caers, 2014). The TI is a key component of all the MPS methods because
it represents complex geological features of geological domains.

2.2.1. Multiple-point statistics (a brief review)
The rationale behind the MPS-based approaches is to derive spatial

variability information from a conceptual training image (TI), rather
than from a covariance function commonly used in two-point geo-
statistics (Mariethoz and Caers, 2014). Compared to variogram-based
algorithms, the main advantage of MPS is its ability to model
multiple-point relationships and complex curvilinear patterns that exist
in geological settings (Boisvert et al., 2007). Moreover, MPS can analyze
and reproduce higher-order statistics obtained from the TI (Boisvert,
2010). This implies that the quality of simulated realizations depends
significantly on the quality of the TI, making the construction of TI an
extremely important process. Based on numerous examples of MPS
performance in modeling curvilinear geological domains, both
under-informed and over-informed cases are well-suited for MPS,
whereas covariance matrices struggle with such datasets (Mariethoz,
2018). Several authors have analyzed MPS and compared it to
variogram-based methods, either by reviewing available algorithms or
by applying statistical validation techniques (Boisvert, 2010; De Iaco
and Maggio, 2011; Tan et al., 2014; Tahmasebi, 2018; Madani et al.,
2019). Apart from applications in petroleum and hydrogeology, MPS has
proved applicable in the mining industry as well, particularly for
modeling slate deposits (Bastante et al., 2008) and dykes in copper de-
posits (Rezaee et al., 2014).

Several alternatives to MPS-based algorithms have emerged since
Guardiano & Srivastava’s initial implementation in 1993, known as
extended normal equation simulation (ENESIM). This advancement has
seen the introduction of many more sophisticated algorithms. The
incorporation of a search tree into ENESIM addresses the CPU time
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limitation inherent in single normal equation simulation (SNESIM)
(Strebelle, 2002). Additionally, similar algorithms have been developed
to simulate patterns rather than pixels, such as filter-based simulation
(FILTERSIM) (Zhang et al., 2006) and simulation of patterns (SIMPAT)
(Arpat and Caers, 2007). Other alternatives to MPS algorithms include
simulated annealing (SA) (Deutsch, 1992), Markov random field (MRF)
(Toftaker and Tjelmeland, 2013) methodologies, and the list approach
(IMPALA) developed by Straubhaar et al. (2011). Recently, the appli-
cation of machine learning in the MPS framework has become a focus of
various research groups (Avalos and Ortiz, 2020; Bai and Tahmasebi,
2020). Another notable alternative is DeeSSe (Mariethoz et al., 2010),
extensively explained in the following sections.

2.2.2. Building training image (TI)
To implement MPS-based algorithms, a training image (TI) needs to

be created. There are several methods to develop a TI, including a
conceptual geological model, physical principles, geostatistical algo-
rithms, regular statistics, and occasionally empirical methods
(Mariethoz and Caers, 2014). Other approaches involve using 2D images
of outcrops or aerial photographs (Anderson et al., 1999; Bayer et al.,
2011), gridded geological models of deposits with similar geology
(Pyrcz et al., 2008), and conceptual models generated using Boolean
methods such as object-based (Deutsch and Wang, 1996) and
process-based techniques (Pyrcz et al., 2009).

In the mining industry, it is a common practice to use an interpretive
geological block model to create the TI (Goodfellow et al., 2012a,b;
Boucher et al., 2014; Robles-Stefoni and Dimitrakopoulos, 2016; Quig-
ley et al., 2018; Paithankar and Chatterjee, 2018). These models are
typically derived from geological interpretations or interpolated models
based on exploration borehole samples available from the deposit.

In this study, we propose to build the TI using the Radial Basis
Function (RBF) (Franke, 1982) available in several software programs.
The benefit of employing RBF is that it is a fast and automated technique
(Seequent, 2022).

This method utilizes the borehole dataset together with geological
knowledge to delineate the geodomains in the TI. This approach offers
several advantages:

A) Borehole data naturally preserves the geological characteristics
in the subsurface. Creating the training image using borehole
data ensures that the model accurately represents the geological
features observed in the field.

B) The training image is created from drillhole data, accurately
depicting the spatial distribution of lithological units, minerali-
zation, and other geological properties recorded in the boreholes.

C) Borehole data frequently provide detailed information on specific
subsurface areas. Using this data to generate the training image
enables the capture of localized geological variations that may
not be adequately represented in regional geological models.

D) Images created from borehole data for training purposes typically
exhibit greater geological accuracy than synthetic or conceptual
models. This can lead to more precise geological simulations and
predictions.

Therefore, in this study, we created TI and used this as an interpre-
tive geological block model for this deposit, upon which further
comparative analyses can be based.

2.2.3. Direct sampling approach (DeeSse)
Once the training image is constructed, various MPS algorithms can

be employed to conditionally simulate the geological domains at target
blocks. Among these algorithms, the DeeSse algorithm (Mariethoz et al.,
2010; Straubhaar and Renard, 2021) stands out as a pixel-based MPS
technique that utilizes a distance function during the scanning of the TI.
This approach is efficient and bypasses the necessity for a conditional
cumulative probability distribution function (cpdf) at each step because

it directly samples the TI. Consequently, there is no need to store
scanning results in a database. The DeeSse algorithm initially assigns
each conditioning datum (e.g., borehole data) to the nearest node in the
simulation grid. If multiple conditioning data are available for assign-
ment to the same grid node, the closest one is placed to the center of the
node (Mariethoz et al., 2010). This strategy helps ensure that the
simulated model closely matches the known data points, leading to a
more accurate representation of the geological domains in the area. In
essence, it assists in producing realistic simulation outcomes that reflect
the known spatial patterns and characteristics present in the condi-
tioning data. Then, The DeeSse algorithm uses conditioning data from
the simulation grid as data events, samples the TI, and proceeds to the
next node following MPS principles. The first parameter of DeeSse is the
maximum number n of nodes or conditional data considered in the
neighborhood of the node being simulated. The method terminates
sampling when it has scanned up to a maximum fraction f of the TI,
provided no data events have computed distances below the prescribed
acceptance threshold t. The algorithm efficiently scans the target image
in an optimum manner to swiftly move to different locations and
effectively cover the image, reducing the amount of iterations required
during the sampling process. To achieve this, the algorithm selects the
node within the TI where the data event around this node has the
smallest Euclidean distance from the data event around the simulated
location in the simulation grid. In simpler terms, the algorithm chooses
the node within the TI that closely matches the conditioning data on the
simulation grid, aiming to faithfully reproduce the observed patterns in
the TI.

3. Mineral grade modeling

To obtain the predictive model of grades as required in Eq. (1), re-
alizations produced by sequential Gaussian simulation (SGS)
(Goovaerts, 1997) can be used. Implementing SGS involves first
forward-transforming all continuous values (grades) to a normal distri-
bution, and then back-transforming the simulated results to the raw
distribution. To simulate the variable at a specific location, a random
value is sampled from the probability distribution and added to the
conditioning dataset. The algorithm then proceeds to the next node
along the entire random path through the grid. The covariance or var-
iogram function is essential to characterize the spatial continuity of the
mineral grade. This is achieved by conducting a variogram analysis on
the normal scores of the mineral grade, followed by fitting an appro-
priate model to the obtained results. The simulation results, comprising
an ensemble of realizations, are then averaged to support the predictive
model in Eq. (1).

Fig. 1. Isoclinal view of the conditioning borehole dataset. The spheres
represent centroids of the intervals logged for lithology.
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3.1. Case study – gold deposit

For the actual case study in this research, a borehole dataset (Fig. 1)
from a vein-type gold deposit was utilized. The drilling campaign con-
sists of 56 drill-holes covering four geo-domains: sedimentary, andesite
and veins A and B. The dataset includes a continuous variable - gold
grade, measured in part per million (ppm) (Fig. 2), along with
geographic coordinates. Due to confidentiality concerns, the name and
location of this gold deposit cannot be disclosed. The veins and host
rocks in this deposit are characterized as the ore domains (veins A and B)
and waste domains (sedimentary and andesite), respectively. The spatial
variability of gold grade is significantly influenced by the studied lith-
ological domains.

3.2. Building training image

The first step in our proposed approach is to create a training image
to serve as input for theMPS algorithm. To accomplish this, geo-domains
over the borehole samples were targeted for implicit 3Dmodeling in this
deposit using RBF in Leapfrog 2021.2 software package (Seequent,
2022). Initially, we focused on the surface interaction between sedi-
mentary and andesite domains. This involved positioning the sedimen-
tary layer atop the andesite, ensuring contact between them. For the
veins, the surface contacts were determined under the assumption of the
intrusion concept.

After creating the geological model in this software, the deposit was
discretized into 25,530 blocks of dimensions 10 m Х 10 m Х 10 m along
the X, Y, and Z axes, respectively. This solid block model was exported
and used as the training image. This model can also be considered as an
interpretive geological block model for this deposit. Fig. 3 illustrates the
resulting block model of the training image.

3.3. Geostatistical simulations of veins

Geostatistical simulation algorithms are utilized to create an uncer-
tainty model by generating multiple sets of possible values distributed
across the analyzed area. These sets of values, known as realizations, are
crucial for obtaining a reliable assessment of joint uncertainty (Journel
and Huijbregts, 1978). For this particular investigation, 100 realizations
of geo-domains were generated to achieve this goal. Stochastic modeling
of gold veins was conducted using the DeeSse algorithm in the ISATIS.
neo program (Geovariances, 2024). The training image created by
Leapfrog was employed for this purpose. To maintain reasonable CPU
time, the maximum scan fraction f was set to 0.5, with a maximum of 36
nodes n in the neighborhood. This means only half of the TI can be
scanned to locate the node with the shortest similarity distance. The
acceptance threshold t was set to 0.02. This aligns with the

recommendation by Meerschman et al. (2013), advocating for mini-
mizing this value to effectively replicate geological domains with
long-range connectivity. The resulting realizations demonstrate that the
structure of gold veins appearing in the TI was accurately replicated by
DeeSse as shown in Fig. 4.

The results are then compared with plurigaussian simulation
(Armstrong et al., 2011; Madani 2021), a two-point stochastic technique
for spatial modeling of categorical variables. A significant feature of this
technique is that domain experts can identify and impose the contact
relationship between the categories using a flag. To establish pluri-
gaussian models, it is necessary to first identify the contact relationships
among geological domains, which can be inferred from borehole data.
However, the density of data is sometimes insufficient to establish re-
lationships between geological domains, requiring expert knowledge of
the deposit, such as an interpretive geological model, to infer these
contact relationships. Therefore, in this study, the model created in
Leapfrog (Fig. 3) serves as an interpretive geological block model for this
algorithm. As depicted, sedimentary rock contacts both andesite and
vein A, while vein B only contacts andesite and vein A. This indicates
that sedimentary rock and vein B do not contact each other. This contact
relationship, known as flag (Armstrong et al., 2011; Madani, 2021), is
illustrated in Fig. 5a. Consequently, two Gaussian random fields (GRF)
are considered. The first GRF controls both groups of geological do-
mains, specifically the sedimentary-andesite and veins A and B, while
the second GRF model distinguishes between the two veins and also
between sedimentary and andesite.

The multidirectional variogram was calculated using borehole data,
but due to insufficient data, no clear structure could be deduced from
experimental variograms in different directions. Therefore, it was
decided to investigate variography using the interpretive geological
block model (TI in Fig. 3). For the first GRF, this approach demonstrated
better structures with a long-range variogram along the northing di-
rection and comparatively shorter variogram ranges along the east and
the vertical directions. In contrast, the second GRF displayed different
spatial continuity, showing a long-range variogram structure along the
north and east directions and a short-range variogram structure along
the vertical direction.

Once the flag and variograms are determined, the next step involves
implementing plurigaussian simulations. For this purpose, several al-
ternatives are considered. The first alternative involves a plurigaussian
simulation model with a global proportion (GP) of geological domains.
This means that the truncation rule is based on the global statistics of the
relative frequency (proportion) of geological domains. The global pro-
portions in this alternative are calculated using the interpretive
geological block model. The proportions represent the declustered
proportions (Madani and Emery, 2015). Proportions of geological do-
mains for sedimentary, andesite, vein A and vein B are 12.62%, 80.69%,
1.69%, and 5.00%, respectively. Andesite dominates the deposit, while
Vein A represents the lowest proportion, which poses challenges for the
modeling process. The second alternative is to use a vertical proportion
curve (VPC) (Armstrong et al., 2011). This curve displays the proportion
of each geological domain at each elevation and is highly valuable for
modelers because it illustrates the original distribution of the geological
domains.

Fig. 5b depicts the computed VPC for this deposit. As observed,
sedimentary dominates near the surface, while vein A and vein B suc-
cessively appear from top to bottom within the deposit. Andesite is also
consistently present across the deposit. This graph is generated using a
deterministic interpretive geologic block model.

The third alternative implements a local proportion model (LPM),
which involves estimating the proportion of each geological domain
based on borehole data at the target simulation blocks (Armstrong et al.,
2011). These estimated local proportion models can then be used as soft
data in plurigaussian simulation. Fig. 6 demonstrates one realization of
each alternative. As seen in Fig. 6a, the alternative one, which uses the
global proportion for the truncation rule, fails to adequately model all

Fig. 2. Isoclinal view of the conditioning borehole dataset. The spheres
represent centroids of the intervals logged for gold grade.
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Fig. 3. Block model of the gold deposit: (a) 3D view, (b) cross-sectional view.

Fig. 4. Four random realizations of vein-type gold deposit obtained from MPS.

Fig. 5. a) Contact relationship between four geological domains (flag); b) vertical proportion curve of the four geo-domains.

A. Zhexenbayeva et al.
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geological domains, resulting in patchy and unstructured geo-domains.
Alternative two (Fig. 6b) mimics the vertical fluctuation of the geolog-
ical domains, consistent with the inferred VPC (Fig. 5b), but it does not
accurately capture the narrow structure of the veins. Alternative three
(Fig. 5c) shows improved results compared to alternatives one and two.
It represents the vertical variation of geological domains. However, it
does not properly reproduce the long-range shape of veins, particularly
Vein A, which has the smallest proportion.

A useful information that can be derived from the realizations is the
transition probabilities, which indicate the frequencies of simulated
geodomains between neighboring blocks across the simulation domain
and realizations. Tables 1, and 2 represent this information for all three
alternatives of the plurigaussian simulations and MPS results, respec-
tively, alongside the interpreted geological block model. Each rock unit
is likely to be in contact with every other, except for sedimentary rock
and vein B. This distinction is reflected only in alternative two of the
plurigaussian simulations results. Alternative one may be affected by
insufficient conditioning data, hindering the algorithm from accurately
capturing contact relationships. In alternative three, the local proportion
calculated from limited conditioning data may explain the minor tran-
sition probabilities between these two distinct geodomains. Alternative
two accurately reproduces the transition probabilities between andesite
and vein B. by incorporating the vertical proportion curve to depict the
vertical variation of geodomains due to contact limitation. MPS results
show the lowest transition probability between these two geodomains
compared to alternatives one and three. Upon comparing the simulation
outcomes (Table 1) with the interpretive geological block model
(Table 2), it becomes evident that theMPS outcomes better represent the
probabilities of transitions between each geodomain.

3.4. Uncertainty assessment

Once the realizations are ready, one can produce local uncertainty
maps. In this regard, by using probability maps, it is feasible to assess the

Fig. 6. A realization from a) alternative one: global proportion; b) alternative two: vertical proportion curve; and c) alternative three: local proportion model.

Table 1
Transition probabilities calculated by considering the simulated geodomains on
adjacent blocks (average statistics over 100 realizations).

Plurigaussian simulations (alternative one/two/three)

When leaving a
block of
geodomain …

When finds a block belonging to geodomain …

Andesite Sedimentary Vein A Vein B

Andesite 0.8727/
0.9340/
0.9532

0.0448/
0.0184/
0.0122

0.0379/
0.0108/
0.0103

0.0446/
0.0369/
0.0243

Sedimentary 0.4222/
0.1555/
0.1228

0.4998/
0.8319/
0.8641

0.0762/
0.0126/
0.0116

0.0018/
0.0000/
0.0014

Vein A 0.2340/
0.2332/
0.2567

0.0506/
0.0309/
0.0286

0.5523/
0.5737/
0.5699

0.1631/
0.1622/
0.1448

Vein B 0.2730/
0.2283/
0.2420

0.0011/
0.0000/
0.0014

0.1639/
0.0479/
0.0584

0.5619/
0.7238/
0.6983

MPS

When leaving a block of
geodomain …

When finds a block belonging to geodomain …

Andesite Sedimentary Vein A Vein B

Andesite 0.9733 0.0027 0.0065 0.0175
Sedimentary 0.0263 0.9711 0.0022 0.0004
Vein A 0.3539 0.0125 0.5700 0.0636
Vein B 0.2698 0.0007 0.0185 0.7110

A. Zhexenbayeva et al.
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degree of uncertainty in rock units at a specific, localized (block-by-
block) scale. It is now possible to characterize the geo-domains at each
target location in the deposit by their probabilities of occurrence, which
are calculated from the frequencies observed over numerous (in this
case, 100) conditional realizations.

Before producing such probabilistic maps, the global variation of
gold grade is investigated in the four geological domains. Fig. 7 illus-
trates the boxplots of gold grade in the four geo-domains, where the
distributions of gold are shown. It can be seen that the distribution of
gold grade in sedimentary rock and andesite is similar in terms of the
range of data and median, as well as in veins A and B. Therefore, from
the modeling perspective, we are mainly dealing with two main geo-
domains: waste and ore. Grouping the geo-domains also makes the
analysis of gold more convenient due to the paucity of data in vein A and
sedimentary domains. As a result, we will continue the investigation
with two major groupings of geological domains. Hence, the probability
maps were computed for two main geo-domains (waste and ore) and not
for all the geo-domains separately. As mentioned previously, probability
maps were calculated by analyzing the frequency of occurrence of each
geo-domain across the 100 conditional realizations for each block cell.
The more frequently a geo-domain appeared across the ensemble of
realizations, the higher the probability that it would be present in a
given block. The resulting probability map reflects uncertainty by

showing areas with varying levels of risk and expected outcomes.
The probability maps provide additional information to the inter-

preted geological model by highlighting the probability of having the
geo-domains of interest (Fig. 8), serving as a supplement to the deter-
ministic model (Fig. 3). This is an improvement over deterministic
modeling. Therefore, the probabilities of two geo-domains were ob-
tained from realizations produced by MPS (Fig. 8a) and plurigaussian
simulations (Fig. 8b). Alternative three for the latter approach is chosen
for further investigation since it looks to generate better outcomes in
terms of replicating the long-range structure of geological domains than
alternatives one and two. As shown, zones colored in red represent areas
with a high probability of containing a specific geo-domain, reflecting a
low level of risk of not finding it. Conversely, zones colored in dark blue
identify areas with a low probability of finding a specific geo-domain,
representing a high level of certainty that the geo-domain will not be
present. Zones colored in light blue, green, or yellow represent areas of
high boundary uncertainty. The probability maps created from the 100
realizations in Fig. 8a show that the pattern of geological units holds
consistent across all simulations, proving that the desired patterns of
long connectivity of veins, their forms, and dimensions are reproduced
in MPS properly. The probability of ore obtained from plurigaussian
simulation illustrates the shape of the veins. However, when compared
to the interpretive geological block model, the probability map of ore
obtained from MPS is more compatible with our expectations for the
shape of veins (ore). MPS takes into account the current geological un-
derstanding of the ore body and reflects the uncertainty in the spatial
arrangement of the geo-domains boundaries in a better way in terms of
reproduction of long-range and shape continuity.

3.5. Statistical validation

After calculating the local uncertainty and presenting it in the format
of probability maps, it is important to validate the produced models by
comparing them to the interpretive geological block model. For this
purpose, the most probable rock unit is calculated and the correspond-
ing most likely category is assigned to each block. For instance, if the
probability of ore and waste at the block X is 0.7 and 0.3, respectively,
then based on the maximum probability, the ore is assigned to that
block. The most likely rock model is then compared block by block with
the interpretive geological block model. Specifically, when a block in the
stochastic model shows the same rock unit as in the interpretive
geological block model, a “match” category is assigned; otherwise, a
“mismatch” category is assigned. As can be observed, the MPS results
(Fig. 9a) more closely resemble the interpretive geological block model
than the plurigaussian simulations (the alternative three) (Fig. 9b),
primarily due to the higher percentage of matching blocks across the
vein’s boundaries.

To evaluate the generated models, the MPS and plurigaussian sim-
ulations are compared in terms of their ability to replicate the declus-
tered proportions of ore (Vein A and Vein B) and waste (Sedimentary
and Andesite) (Fig. 10). The results indicate that MPS outperforms
plurigaussian simulations in accurately reproducing these proportions.
Plurigaussian simulations face challenges in this deposit, particularly in
accurately replicating the original declustered proportions of ore and
waste, due to several factors. Firstly, the heterogeneous nature of veins,
often characterized by complex geological structures within the ore
zone, poses a significant obstacle. Secondly, the limited availability of
drill-hole data may not adequately capture the anticipated long-range
structure of the veins. In contrast, MPS employs a sophisticated
modeling approach that considers higher-order patterns and structures
of geological data to effectively reproduce the original declustered
proportions. Additionally, MPS uses a TI as a reference for simulating
patterns and features observed in the original data, which proves highly
effective, especially in cases of data scarcity.

Exploring the spatial contiguity of the ore domain within this deposit
can provide valuable insights. It is crucial that the chosen geostatistical

Table 2
Transition probabilities calculated by considering the interpretive geological
block model on adjacent blocks.

Interpretive geological block model

When leaving a block of
geodomain …

When finds a block belonging to geodomain …

Andesite Sedimentary Vein A Vein B

Andesite 0.9746 0.0025 0.0071 0.0158
Sedimentary 0.0239 0.9729 0.0032 0.0000
Vein A 0.3254 0.0158 0.5961 0.0627
Vein B 0.2440 0.0000 0.0213 0.7347

Fig. 7. Boxplots of gold grade for each geo-domain. The whiskers present the
minimum of data, 1st, 2nd (median), 3rd quartiles, and maximum of data.
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modeling approach accurately represents the ore domain (veins) with
enhanced interconnectivity or spatial contiguity. This approach would
yield a more condensed and contiguous simulated ore domain at the
target grid nodes. To achieve this, we employed the connectivity func-
tion (Renard and Allard, 2013) as a multiple-point statistic to quantify
the likelihood that a grid node is connected with another grid node
situated at a lag separation distance (h) within the same ore domain.
Consequently, the probability of connectivity between any two grid
nodes can be expressed as a function of h, illustrated here for the ore
domain across Easting (X), Northing (Y), and Vertical (Z) directions
(Fig. 11). Connectivity functions were computed across individual re-
alizations of plurigaussian simulations and MPS, averaged, and then

compared with the function derived from the interpretive geological
block model. As shown in this figure, MPS demonstrates greater
compatibility with the interpretive geological block model in terms of
connectivity metrics compared to plurigaussian simulation results.

Another approach to evaluate the efficacy of the proposed method is
to analyze the reproducibility of initial variograms for ore and waste
zones. Indicator variograms were computed for indicators associated
with the ore domain in the Easting (X), Northing (Y), and Vertical (Z)
directions. The experimental variograms of the indicators from the
interpretive geological block model were compared with those derived
from the corresponding average variogram generated by plurigaussian
simulations andMPS (Fig. 12). As observed, MPS results exhibit superior

Fig. 8. Probability model of ore, obtained from a set of 100 conditional simulations of a) MPS; and b) plurigaussian simulations.

Fig. 9. Match (gray blocks) and mismatch (black block) visualization for the results obtained from a) MPS, b) plurigaussian simulations.

Fig. 10. Proportion reproduction of ore and waste throughout the realizations obtained from a) MPS; and b) plurigaussian simulations; the dashed line represents the
original declustered proportions of waste.
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reproduction of the indicator variograms. Plurigaussian simulation re-
sults demonstrate a notable bias despite the incorporation of spatial
continuity into the modeling procedure.

3.6. Grade modeling

The cascade modeling approach used in this study relies on predic-
tive models of grades and also a probabilistic description of each geo-
domain. These uncertainty models are produced using MPS and
plurigaussian simulations, providing the probability of ore and waste are
available at each target block. Before obtaining the final grade estimate
model, it is essential to generate predictive models of ore and waste in
each block. To achieve this, the gold grade values from datasets
belonging to ore and waste were initially separated. For generation of
the grade estimate model, which is a mathematical or computational
tool used to predict the spatial distribution of grades, various deter-
ministic interpolation techniques can be employed. The initial experi-
mental variogram analysis did not reveal a distinct structure in the raw
gold grade ore data. However, upon transformation to normal scores, a
satisfactory structure emerged. This transformation indicated satisfac-
tory variograms at this Gaussian scale.

After transforming the data to normal scores, separate variogram
models were computed for the two geodomains: one for the ore dataset
and another for the waste dataset, given the expected differences in the
spatial variability of the grade between these two domains.

The variogram models were calculated using a lag distance of 15 m
and a tolerance of 7.5 m. Due to limited data availability in different
directions (Appendix 1, Fig. 16), omnidirectional experimental

variograms were computed for both ore and waste, and variogram
models were fitted accordingly (Fig. 13):

γore =0.83nugget + 0.15Sph(14.94m)

γwaste =0.5nugget + 0.53Cubic(132.907m)

In the next step, using the conditional data and the variogram
models, 100 realizations of the gold variable (for each ore and waste
domain) were generated by using the SGS approach. The most likely E-
type maps were created by averaging the 100 simulation results and
contrasting them with the most likely gold veins model obtained in the
preceding steps. As a result, two SGS E-type values are now available at
each block location, whether it is ore or waste after back-transforming to
the original scales. Therefore, predictive grades required in Eq. (1) were
available with k = 2 throughout the deposit. Then, each predictive
model was multiplied by the probability of occurrence of the specific
geological domain (ore or waste) and the final results were obtained
after summing up the four values as in Eq. (1).

To evaluate the outcomes, three distinct cases are contrasted in the
following sections:

Case I. Predictive gold models were developed using SGS and the
probability of ore and waste geological domains acquired from MPS.

Case II. Predictive gold models were developed using SGS and the
probability of ore and waste geological domains acquired from pluri-
gaussian simulations (only alternative three).

Case III. Predictive gold models were developed using SGS in each

Fig. 11. Connectivity measures as a function of lag separation along Easting (X), Northing (Y), and Elevation (Z) for the ore domain. Dashed magenta line: average of
connectivity measures obtained from plurigaussian simulation results, dashed dark red line: average of connectivity measures obtained from MPS results, and dashed
black line: connectivity measures obtained from interpretive geological block model.
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Fig. 12. Indicator variograms as a function of lag separation along Easting (X), Northing (Y), and Elevation (Z). Dashed magenta line: average of indicator var-
iograms obtained with 100 realizations of plurigaussian simulations, Dashed dark red line: average of indicator variograms obtained with 100 realizations of MPS,
and Dashed black line: indicator variograms calculated over the interpretive geological block model.

Fig. 13. Omnidirectional variograms for gold grade in (a) waste, (b) ore.
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domain of the interpretive geological domain separately, implying
traditional cascade modeling.

Case IV. Predictive gold models were developed using SGS without
separating the data into ore and waste, and the geological information
was neglected.

The third case represents the traditional cascade modeling of ore
grades, where the deposit is first split into ore and waste, and the gold
grade is estimated or simulated inside each domain independently. The
fourth case serves to highlight the significance of confining simulations
within homogeneous domains, emphasizing the ineffectiveness of dis-
regarding geological factors.

3.7. Application to mineral resource evaluation

Fig. 14 represents the obtained results of produced models using
probabilistic modeling and deterministic approaches. As can be seen, the
model obtained via case I accurately and realistically reproduced the
gold grade along the vein continuity (Fig. 14a). Although case II
mimicked the shape of the veins to some extent, it suffers from insuffi-
cient continuity in grade estimation, where the gold grade in the vein
appears slightly disseminated (Fig. 14b).

Case III (Fig. 14c) represents the traditional cascade modeling for
such a deposit with vein structures. While the gold grade follows the
shape of the veins, it shows the hard boundary of gold grade variation
around the veins. As illustrated, the deterministic approach in case IV
(Fig. 14d) is also unable to properly replicate the vein structures along
the geo-domain layout, causing significant inaccuracies in the
morphology of the orebody.

Table 3 shows the statistical parameters obtained from Cases I, II, III,
and IV for the final predictive model of gold grade in ore zones. As can be
seen, Case IV, where the impact of geological domains is ignored, shows
a significant underestimation of high values. However, the other cases
properly reproduce the high values. In addition, Cases III and IV illus-
trate the lowest variances, implying a higher smoothing effect compared
to Cases I and II, which exhibit less smoothing effect.

Fig. 15 illustrates the recoverable functions derived from Cases I, II,

III, and IV, representing the final predictive gold grade within the ore
zone block model. As evident from the figures, Cases I and II exhibit
strikingly similar results in tonnage (Fig. 15a) and metal quantity
(Fig. 15c), whereas Cases III and IV demonstrate the highest and lowest
values for both tonnage and metal quantity. There are notable distinc-
tions in the mean grade above cutoffs among the cases, with Case IV
notably exhibiting a pronounced smoothing effect.

4. Discussion

This study demonstrates a potential workflow for modeling a vein-
type gold deposit. It begins by employing MPS to construct the geolog-
ical domains, followed by establishing the predictive model for esti-
mating the final gold grade, incorporating the probabilistic definition of
these geological domains. This work provides insights into the imple-
mentation details of the proposed algorithm for these type of deposits,
which exhibits long-range geological structures such as veins. For this
purpose, a reliable implicit geological modeling approach is required to
establish an interpretive geological model that aligns with the geological
settings of the deposit being studied.

Implicit geological modeling provides several benefits, including the
ability to quickly generate models by deducing geological contacts from
limited data, integrating numerous data types for thorough in-
terpretations, analyzing uncertainties, and reducing the need for manual
involvement through automation. Explicit geological modeling can also
be utilized, but it may have challenges in effectively representing
intricate geological characteristics, especially when the input data is

Fig. 14. Final grade model using cascade approach with probability driven from a) Case I (MPS), b) Case II (plurigaussian simulations), c) Case III (traditional
cascade modeling)), and d) Case IV (without considering any geological controls).

Table 3
Statistical parameters of final predictive model of gold grade in ore zone, and
original boreholes.

Gold grade (ore)- ppm Mean Variance Minimum Maximum

Drillhole sample points 4.07 43.61 0.00 30.30
Case I 3.17 1.90 0.05 29.41
Case II 3.10 1.73 0.00 30.30
Case III 4.13 1.44 0.00 30.30
Case IV 1.75 0.26 0.29 5.78
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limited (such as in this study), which could result in less accurate
geological interpretations. In addition, explicit modeling may necessi-
tate a significant level of skill to accurately parameterize and compre-
hend outcomes, hence restricting its accessibility to individuals lacking
specialized experience.

The produced implicit geological model can then be used as a TI to
generate the stochastic geological model of the deposit using the DeeSse
algorithm, which is an MPS-based algorithm.

We utilized the constructed TI as the interpretive geological block
model. This method requires drill-hole data and basic geological
comprehension. Although there are numerous advantages to generating
TI using borehole data, there may be some legitimate criticisms of this
method. Borehole data usually encompasses a restricted area and might
not fully represent the geological heterogeneity in the subsurface. Biases
in data collection or interpretation might cause inaccuracies or artifacts
in the training image, impacting the reliability of simulations. Limited
borehole data can complicate the representation of geological features
and interactions, leading to overly simplistic or inaccurate training
representations. The discrete nature of borehole data, offering point
measurements rather than continuous spatial information, may pose
challenges in faithfully capturing the continuity and spatial correlation
of geological features within a training image, especially in regions with
sparse data coverage. Overall, using borehole data to create a training
image has advantages in terms of geological realism and direct repre-
sentation of field observations. However, it is crucial to consider the
limitations and potential biases of the data source to maintain accuracy
and reliability in modeling. By combining borehole data with other
geological information sources and implementing suitable quality con-
trol procedures, it is possible to lessen these restrictions and improve the

effectiveness of training images in geological modeling applications.
The DeeSSe method offers numerous benefits in geological modeling.

This approach provides realistic depictions of geological formations by
integrating various forms of input data tools for probabilistic modeling.
DeeSSe effectively manages intricate geological scenarios, facilitating
the observation and interpretation of geological models. Its interpretive
flexibility allows users to incorporate their geological knowledge,
thereby aiding decision-making in mineral exploration and mine plan-
ning. DeeSSe enhances comprehension and evaluation of geological
characteristics, promoting well-informed decision-making in the
resource sector. Despite these advantages, the DeeSSe algorithm also has
limitations. Firstly, it requires significant processing resources due to its
complex nature, which may limit access for users with limited
computing capabilities in large-scale deposits. Furthermore, the process
of parameter adjustment can be labor-intensive and requires expertise in
both geology and computational modeling. Model validation can be
challenging, especially when ground truth data are scarce. Additionally,
the accuracy of its output depends on the quantity of the input data,
potentially leading to discrepancies in the generated geological models.

Despite these challenges, a thorough examination of these parame-
ters can help alleviate the constraints of the DeeSSe algorithm in
geological modeling applications.

Due to the lack of stationarity in that specific case study, it is not
feasible to conduct a reliable cross-validation exercise. Stationarity,
which assumes that the statistical properties of the system do not change
over space, is a fundamental requirement for many modeling tech-
niques. In its absence, the model’s predictions may not be consistent or
accurate across different regions of the study area. Consequently, it
becomes challenging to demonstrate the correctness of the uncertainty

Fig. 15. Recoverable functions over the final predictive model of gold grade in ore zone for a) tonnage-cutoff, b) mean grade-cutoff, c) metal quantity-cutoff.
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assessment using proper scoring rules, which are statistical tools used to
evaluate the accuracy of probabilistic predictions. Without stationarity,
the variability in the data can lead to misleading results, undermining
the validity of the scoring rules.

Additionally, the same problem arises with the plurigaussian tech-
nique. This method also relies on the assumption of stationarity to
effectively model the spatial distribution of geological features. In this
specific case study, the lack of stationarity compromises the ability of
the plurigaussian technique to accurately represent the uncertainty,
further complicating the validation of the uncertainty assessment. As a
result, both MPS and plurigaussian methods face significant challenges
in this context, highlighting the need for alternative approaches or
additional data to address the issue of non-stationarity and cross-
validation.

In this study, SGS was utilized to support the predictive model out-
lined in Eq. (1). This decision was based on the observation that the
distribution of gold grade within the ore zone lacked a discernible
structure on its original scale, making the application of simple or or-
dinary kriging impractical. However, by transforming the data into
normal scores, it became feasible to fit a variogram model to the
experimental variograms. This adjustment was necessary due to the
limited availability of data, with only 82 samples of gold grade in the ore
zone. Therefore, Gaussian-based geostatistical methods are preferred
under such circumstances. Additionally, alternative approaches such as
multi-Gaussian kriging may also be considered viable alternatives.

5. Conclusion

This study aimed to model a vein-type gold deposit with long-range
features using multiple-point geostatistical simulation. Modeling the
structure of veins poses a challenge due to their complex geometry,
which often widens in two dimensions while remaining narrow in the
third dimension, making it difficult for mine geologists to explicitly
evaluate their layout. Geological modeling typically involves deter-
ministic interpretation and definition of primary lithological zones,
utilizing insights from geological experts and drill-hole samples. This
technique requires a thorough understanding of the geology of the ore
deposit before grade estimation and further mine planning. However,
there is always uncertainty regarding the actual extent of the lithological
zones. Failure to consider geological control can reduce the accuracy of
the final grade model. A probabilistic technique has been proposed as a
solution to this issue, involving geostatistical simulation of geo-domains,
using the MPS approach, and comparing the results to those of pluri-
gaussian simulations. The reason for using Multiple-Point Statistics
(MPS) was not merely to ensure the conditioning of the model, but
rather to provide a comprehensive representation of uncertainty. By
leveraging MPS, the approach captures the complex spatial relationships
and variability inherent in geological formations, offering a more

detailed and accurate model of uncertainty compared to traditional
methods. This allows for a better understanding of the potential range of
geological scenarios, ultimately leading to more informed decision-
making in geological modeling and resource estimation.

Through various evaluation methodologies, the results demonstrated
that MPS outperformed the plurigaussian simulations. In MPS, the shape
of veins was replicated more accurately, aligning better with the inter-
pretive geological block model produced by implicit modeling. This was
confirmed using match/mismatch maps and geological proportion
reproduction. Once the probabilistic description of geological domains
was established, the predictive gold grade estimates were compared
across three cases. It was shown that the gold grade is better modeled
along the veins when we used the MPS results. For future work, the
method can be extended to apply other MPS algorithms such as SNESIM
and Filtersim for geological domaining and other methods for modeling
the gold grade such as turning bands simulation (Emery, 2008).
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Fig. 16. Experimental variograms in different directions for gold grade-ore (a: original scale; b: nscores) and for gold grade-waste (c: original scale; d: nscores).
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