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Abstract
Simulation of random fields is widely used in Earth sciences for modeling and uncertainty quantification. The spatial features 
of these fields may have a strong impact on the forecasts made using these fields. For instance, in flow and transport problems 
the connectivity of the permeability fields is a crucial aspect. Multi-Gaussian random fields are the most common tools to 
analyze and model continuous fields. Their spatial correlation structure is described by a covariance or variogram model. 
However, these types of spatial models are unable to represent highly or poorly connected structures even if a broad range 
of covariance models can be employed. With this type of model, the regions with values close to the mean are always well 
connected whereas the regions of low or high values are isolated. Substitution random functions (SRFs) belong to another 
broad class of random functions that are more flexible. SRFs are constructed by composing ( Z = Y◦T  ) two stochastic pro-
cesses: the directing function T (latent field) and the coding process Y (modifying the latent field in a stochastic manner). In 
this paper, we study the properties of SRFs obtained by combining stationary multi-Gaussian random fields for both T and 
Y with bounded variograms. The resulting SRFs Z are stationary, but as T has a finite variance Z is not ergodic for the mean 
and the covariance. This means that single realizations behave differently from each other. We propose a simple technique 
to control which values (low, intermediate, or high) are connected. It consists of adding a control point on the process Y to 
guide every single realization. The conditioning to local values is obtained using a Gibbs sampler.

Keywords Stochastic simulation · Composition of Gaussian processes · Connectivity properties · Conditioning

1 Introduction

Random fields play a key role in Earth sciences (Chilès and 
Delfiner 1999; Lantuéjoul 2002). Indeed, stochastic spatial 
(or temporal) simulation is one of the most important tools 
for uncertainty quantification allowing the forecasting of 
natural phenomena and risk assessment. For example, the 
modeling of groundwater flow and solute transport under-
ground requires hydraulic conductivity fields as input for 
the numerical code solving the flow equations. Generating 
an ensemble of stochastic hydraulic conductivity fields is a 
key step for representing and propagating the uncertainty in 

this system. In general, the goal of geostatistical simulation 
techniques is to provide methods to generate random fields 
that respect some spatial features and honor conditioning 
data if present. In particular, the size, shape, orientation, 
and connectivity are spatial characteristics that need to be 
controlled by a simulation technique to represent realistic 
geological structures.

Non-parametric methods such as multiple-point statistics 
(Mariethoz and Caers 2014), or machine learning techniques 
such as generative adversarial networks (Goodfellow et al. 
2016) allow generating complex realistic random fields, pro-
viding that a training data set is available. Such algorithms 
are extremely flexible because they do not require inferring 
the parameters of an analytical statistical model, but they can 
be difficult to set up (parameters, neural network architec-
ture) and can be time-consuming (learning structures from 
training data).

Conversely, simulation methods based on analytical mod-
els are easier to set up, and faster, but they are limited in 
terms of the complexity of the generated structures. A broad 
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description of such algorithms can be found in Chilès and 
Delfiner (1999). The most standard simulation techniques 
are based on the multi-Gaussian random field (or function) 
(GRF) model (see Chilès and Delfiner 1999, p. 394–395) 
also known as Gaussian processes (Rasmussen and Wil-
liams 2006). These random functions assume a multivariate 
Gaussian distribution as their spatial statistical law and can 
be defined by a covariance model, describing the statistics 
between any pair of points according to their relative loca-
tion. Considering stationary GRFs, anisotropies, and orien-
tations are easy to handle with the covariance model, but 
there is no mean to control and simulate various connectivity 
patterns (Renard and Allard 2013): values around the mean 
are always well connected (in more than one dimension), and 
low- or high-value regions are isolated.

But, connectivity patterns in hydraulic conductivity fields 
have a very strong impact on groundwater flow and solute 
transport (Zinn and Harvey 2003; Knudby and Carrera 2005; 
Renard and Allard 2013; Tyukhova and Willmann 2016): 
low-conductivity connected regions can act as a barrier 
to the flow, whereas high-conductivity connected regions 
enable flow paths and fast mass transfer. Zinn and Harvey 
(2003) proposed a simple technique to get low or high values 
connected from a GRF. A zero mean GRF is transformed 
by taking the absolute value which produces a low-value 
connected region, or high-value connected by reversing the 
sign. Then a normal-score transform is applied to ensure that 
the marginal distribution is Gaussian and finally, a coordi-
nate rescaling allows adjusting the covariance. However, this 
strategy produces peaks (non-derivable) for extreme value 
areas, and honoring the conditioning data is difficult.

In this article, we propose to modify stochastically GRFs 
to enrich the range of connectivity patterns that can be simu-
lated while keeping the ability of conditioning. We use the 
framework of substitution random function (SRF), defined 
as the composition of two independent random processes, 
Z(x) = Y(T(x)) . This family of random functions was intro-
duced by Lantuéjoul (1993). In his book, Lantuéjoul (2002) 
derives properties on Z assuming that the directing function 
(latent field T) has stationary increments and that the cod-
ing function is stationary. Moreover, he describes an algo-
rithm for conditional simulation and proposes examples for 
categorical fields. These examples are based on Chentsov 
simulation as the directing function and a Markov chain as 
the coding process.

To our knowledge, only a few applications of SRF can 
be found in the scientific literature. Recently, Allard et al. 
(2020) developed a simulation technique for generating 
space-time random fields, where the coding process consists 
of a cosine function with a random amplitude and a random 
phase. Emery (2008) develops SRF methods for continu-
ous simulation, based on a multivariate directing function 
composed of independent latent GRFs with unbounded 

variograms, and on a GRF as the coding process with sepa-
rable covariance. In this way, a finite integral range can be 
obtained for the resulting SRF and, as a consequence, its 
ergodicity. Illustrations on a pollution data set show the abil-
ity of SRF to generate realizations of pollutant concentra-
tion depicting clustering of high values with more spatial 
contrasts than classical GRF.

In this work, another point of view is adopted, we investi-
gate how to modify a stationary GRF considered as a latent 
field (directing function) with the use of a continuous coding 
process defined as a uni-dimensional multi-Gaussian pro-
cess, to obtain various connectivity patterns. Considering 
that the directing function has a bounded variogram (finite 
variance) implies that the resulting SRF is not ergodic for 
the mean and the covariance. Different characteristics will 
be depicted from one realization to another. We introduce a 
control point on the coding process to guide the simulation 
towards the desired connectivity property. The idea is to 
condition the coding process at the mean of the latent field. 
Moreover, we derive an expression for the expectation of 
the probability distribution function of the simulated values 
in a single realization for this case. This allows applying an 
anamorphosis (normal score transform, or more generally 
change of distribution) while preserving the ability to gener-
ate conditional simulations.

The paper is organized as follows. Theoretical develop-
ments are proposed in Sect. 2 to 4, illustrations are presented 
in Sect. 5, and finally, a discussion and conclusions are given 
in Sect. 6.

2  Substitution random functions (SRF) 
as a composition of multi‑Gaussian 
processes

A substitution random function (SRF) Z on ℝd with values 
in ℝ is a composition

where T and Y, respectively called the directing function and 
the coding process, are two independent random functions. 
The directing function is assumed to have stationary incre-
ments, i.e. the distribution of T(x) − T(x + h) depends only 
on the lag vector h, and the coding process is assumed to be 
stationary, i.e. the distribution of Y at a family of locations 
{ti} is the same as the distribution at {ti + t} for any t. Note 
that the directing function can be multivariate, T with values 
in ℝk , which implies a coding process on ℝk . In the follow-
ing, we consider the univariate case ( k = 1 ). Under these 
assumptions, some properties on Z are known. In particular, 
the SRF Z is stationary with same distribution at any point as 

(1)Z(x) = Y(T(x)), x ∈ ℝ
d,
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Y (Lantuéjoul 2002), i.e. denoting DV the point distribution 
of a random function V,

Moreover, denoting CY (s) = Cov(Y(t), Y(t + s)) the covari-
ance function of Y (assuming it exists), the covariance func-
tion of Z, CZ(h) = Cov(Z(x), Z(x + h)) , is expressed as (Lan-
tuéjoul 2002)

In the following, we focus on the case where

• T is a stationary GRF on ℝd , defined by its mean �T and 
covariance function CT,

• Y is a stationary GRF on ℝ , defined by its mean �Y and 
covariance function CY.

In this framework, T(x + h) − T(x) follows a zero-mean 
normal distribution of variance 2(CT (0) − CT (h)) , and the 
covariance of Z (Eq. (3)) can be written as

To facilitate the notations, we introduce

which is the mean of the covariance function of Y accord-
ing to the centered normal distribution of variance s2 , with 
the convention that gY (0) = CY (0) = �2

Y
 . With this notation 

we get

2.1  Integral range and ergodicity

For a stationary random function V on ℝd , the average value 
over a domain Ω ⊂ ℝd,

is an unbiased estimator of the point mean �V = �(V(x)) 
(independent of x), since �[V(Ω)] = �V . If its variance tends 
to zero when Ω grows to ℝd (a property known as ergodic-
ity for the mean, see Lantuéjoul (2002)), then this means 
that �V can be estimated by taking the average value of a 
single realization over a large domain. Assuming V second-
order stationary with covariance CV , the variance of V(Ω) 
is expressed as

(2)DZ = DY .

(3)CZ(h) = �
[
CY (T(x + h) − T(x))

]
.

(4)CZ(h) = �t∼N(0,2(CT (0)−CT (h)))

[
CY (t)

]
.

(5)

gY (s
2) =�t∼N(0,s2)

�
CY (t)

�

=
1√
2�s ∫

∞

−∞

CY (t) exp

�
−
1

2

t2

s2

�
dt

(6)CZ(h) = gY
[
2(CT (0) − CT (h))

]
.

(7)V(Ω) =
1

|Ω| ∫Ω

V(x)dx,

It is linked to the integral range of V defined as

that can be computed, if CV is integrable, as (Lantuéjoul 
2002)

This gives a simpler expression for the variance of V(Ω) for 
a large domain Ω,

Assuming that the covariance function CT of the GRF T 
decreases towards 0 (when |h| increases), such that the 
integral range of T, IR(T) (Eq.  (10)), is finite, implies 
Var(T(Ω)) → 0 when Ω → ℝd , i.e. T is ergodic for the mean.

However, even if the covariance function of Y is 
rapidly decreasing towards 0, from Eq.  (6) the covari-
ance function of Z is decreasing but lower bounded 
by gY (2CT (0)) = gY (2�

2
T
) ,  which is  str ict ly posi-

tive since the variance of T is finite. This implies 
by Eq.  (10) that IR(Z) = +∞ , and by Eq.  (8) that 
Var(Z(Ω)) ⩾ gY (2𝜎

2
T
) > 0 . More precisely, if we assume 

that CZ(h) − gY (2�
2
T
) is sufficiently rapidly decreasing such 

that A = ∫
ℝd

(
CZ(h) − gY (2�

2
T
)
)
dh is finite, then, with 1Ω 

the indicator function of the domain Ω,

and Var[Z(Ω)] converges to gY (2�2
T
) when Ω → ℝd , i.e., for 

a large domain Ω,

As Var[Z(Ω)] does not vanish, Z is not ergodic for the mean. 
A similar analysis of the ergodicity of the covariance can 
show that it is not ergodic as well for the covariance. This 
will be illustrated graphically with some examples in Sect. 5.

(8)
Var[V(Ω)] =

1

|Ω|2 ∫Ω ∫Ω

Cov(V(x),V(y))dxdy

=
1

|Ω|2 ∫Ω ∫Ω

CV (x − y)dxdy.

(9)IR(V) = lim
Ω→ℝd

|Ω|Var[V(Ω)]
CV (0)

,

(10)IR(V) =
1

CV (0) ∫ℝd

CV (h)dh.

(11)Var[V(Ω)] ≈
CV (0) ⋅ IR(V)

|Ω| =
1

|Ω| ∫ℝd

CV (h)dh.

(12)

0 ⩽ Var[Z(Ω)] − gY (2�
2
T
) =

1

|Ω|2 ∫Ω ∫Ω

(
CZ(x − y)

−gY (2�
2
T
)
)
dxdy

=
1

|Ω|2 ∫Ω

[
∫
ℝd

(
CZ(h) − gY (2�

2
T
)
)
⋅ 1Ω(y + h)dh

]
dy

⩽
1

|Ω|2 ∫Ω

Ady ⩽
A

|Ω| ⟶
Ω→ℝd

0,

(13)Var[Z(Ω)] ≈ gY (2𝜎
2
T
) > 0.
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2.2  Ensemble covariance and distribution of SRF

The non-ergodicity of Z for the mean and the covariance 
implies that one cannot infer the properties of Z from a 
single realization. For example, to estimate its covariance 
function (Eq. (6)), an ensemble of realizations {Zi}i∈I has 
to be considered on a large domain Ω,

(with Ω and I equipped with the uniform distribution). The 
covariance function CZ is then referred to as an ensemble 
covariance function. Similarly the cumulative distribu-
tion function (CDF) of Z, which is known to be the CDF of 
N(�Y , �

2
Y
) (see Eq. (2)), can be estimated from the ensemble 

of realizations,

where 1⩽z is the indicator function of the interval ] − ∞, z] , 
and Φ the CDF of N(0, 1).

In the next sub-sections, we analyze the properties of 
single realizations. This is important since in practical 
applications single realizations are used as input for fur-
ther computations.

2.3  Covariance of single SRF realizations

To decouple the ensemble of realizations and the simula-
tion domain in the estimation of the covariance (Eq. (14)), 
we use the fact that, for any random variables U, V, W,

Hence,

(14)CZ(h) ≈ Cov(x,i)∈{x∈Ω∶x+h∈Ω}×I
(
Zi(x), Zi(x + h)

)

(15)
FZ(z) =Φ

(
z − �Y

�Y

)
≈ 𝔼(x,i)∈Ω×I

[
1⩽z(Zi(x))

]

≈ 𝔼i∈I

[
FZi

(z)
]

(16)
Cov(U,V) = �∼W [Cov(U |W,V |W)]

+ Cov∼W [�(U |W),�(V |W)].

where CZi
 denotes the covariance of a single realization Zi 

computed over Ω . Note that in the last step, h is assumed to 
be a small lag vector compared to the size of Ω , such that in 
the second term, �x(Zi(x)) ≈ �x(Zi(x + h)) ≈ Zi(Ω) . Hence, 
the covariance function for a single realization, CZi

 , is in 
mean equal to the ensemble covariance function CZ , shifted 
by the variance of the average value over the simulation 
domain,

Writing CZs
(h) = �i

[
CZi

(h)
]
 the mean covariance function for 

single realization of Z, it follows by Eqs. (6), (13) and  (18) 
that, for a large domain Ω,

Analytical expressions for gY (s2) are given in Table 1 in the 
case of classical covariance functions CY of type Gaussian, 
exponential, and spherical, with a sill of �2

Y
 and a range of 

rY . They are obtained by simple integrations (the result for 
the Gaussian and exponential models can also be found in 
Emery (2008)).

2.4  Role of the parameters of the covariance 
models for the directing function 
and the coding process

In this section, we investigate the influences of the ranges 
and sills (variances) of the directing function T and the cod-
ing process Y onto the mean covariance function CZs

 for a 
single realization of Z.

From Eq. (19), CZs
 vanishes (or tends to zero) when CT 

does, therefore the mean range of single realization of Z is 

(17)

CZ(h) ≈ Cov(x,i)∈{x∈Ω∶x+h∈Ω}×I
(
Zi(x), Zi(x + h)

)

= �i

[
Covx(Zi(x), Zi(x + h))

]
+ Covi

[
�x(Zi(x)),

�x(Zi(x + h))
]
,

≈ �i

[
CZi

(h)
]
+ Vari

[
Zi(Ω)

]
.

(18)�i

[
CZi

(h)
]
≈ CZ(h) − Var[Z(Ω)].

(19)CZs
(h) ≈ gY

[
2(�2

T
− CT (h))

]
− gY

(
2�2

T

)
.

Table 1  Analytical expression 
of g

Y
(s2) for classical 

covariance model C
Y
 with sill 

C
Y
(0) = �2

Y
 and range r

Y
 ; Φ is 

the CDF of N(0, 1)

Model CY (t) gY (s
2) = �t∼N(0,s2)

[
CY (t)

]

Gaussian
�2
Y
exp

(
−3

t
2

r
2
Y

)
�2
Y

(
1 + 6

s
2

r
2
Y

)−1∕2

Exponential
�2
Y
exp

(
−3

|t|
r
Y

)
2�2

Y
exp

(
9s2

2r2
Y

)[
1 − Φ

(
3s

r
Y

)]

Spherical
�2
Y

(
1 −

3

2

|t|
r
Y

+
1

2

|t|3
r
3
Y

)
�2
Y

�
1 −

s√
2�r

Y

�
3 −

2s2

r
2
Y

��

if |t| ⩽ r
Y
 (0 otherwise)
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equal to the range of T, rZs = rT . In particular, a realization 
Z of the SRF displays the same anisotropies as in the latent 
field T.

The covariance function CY  with range rY  and sill 
�2
Y
= CY (0) can be written as

where CYb
 is the covariance function (of same type as CY ) 

with range and sill equal to 1. Using the definition of gY and 
the change of integration variable t = rY ⋅ u , it follows that

The mean sill of a single realization of Z is then equal to

Thus, the sill of Y, �2
Y
 , and the ratio �2

T
∕r2

Y
 controls the mean 

sill of a single realization of Z:

(20)CY (t) = �2
Y
⋅ CYb

(t∕rY ),

(21)

gY (s
2) = �t∼N(0,s2)

�
CY (t)

�
=

1√
2�s ∫

+∞

−∞

CY (t) exp

�
−

t2

2s2

�
dt

=
�2
Y√

2�s∕rY
∫

+∞

−∞

CYb
(u) exp

�
−

t2

2s2∕r2
Y

�
du = �2

Y
⋅ gYb(s

2∕r2
Y
).

(22)
�
2

Zs
= CZs

(0) = gY (0) − gY (2�
2
T
) = �2

Y

(
1 − gYb(2�

2
T
∕r2

Y
)
)
.

This means that taking a very small range rY compared to �T 
vanishes the spatial correlations on Y which tends to be a 
purely white Gaussian noise, and the variance of the result-
ing field Z will be equal to �2

Y
 . On the opposite, a very large 

range for Y compared to �T implies almost no variation in 
the resulting field Z (sill decreases to zero), because the cod-
ing process Y(t) will return nearly constant values for the 
simulated values t of the latent field. In particular, the mean 
sill of a single realization of Z, �2

Zs
 , does not exceed the sill 

of Y.
To summarize: the range(s) rT  controls the size and 

shape (anisotropy) of the main structures in single realiza-
tions Z, the ratio �2

T
∕r2

Y
 controls the size of the small scale 

fluctuations within these main structures, and the sill �2
Y
 

controls the overall amplitude of the simulated values in 
Z (see Figs. 1, 2 in Sect. 5).

(23)

�2
T
∕r2

Y
↗ ∞ ⟹ gYb(2�

2
T
∕r2

Y
) ↘ 0 ⟹ �

2

Zs
↗ �2

Y
,

�2
T
∕r2

Y
↘ 0 ⟹ gYb(2�

2
T
∕r2

Y
) ↗ gYb(0) = 1 ⟹ �

2

Zs
↘ 0.

Fig. 1  Example of one realization of a substitution random field 
(SRF). Top left) one realization of the 2D directing function T(x), 
bottom) one realization of the 1D coding process Y(t) (blue line), 
top right) resulting SRF field Z(x) = Y(T(x)) . The bottom plot shows 

additional information: the density distribution of simulated T values 
(in orange), �T , �Y , and rY (double arrows), and the mean values of T 
and Y as dotted purple lines (respectively vertical and horizontal)
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3  Adding control points on the coding 
process

As a consequence of the non-ergodicity of the SRF 
Z = Y◦T  , the properties of a single realization of Z may 
significantly differ from one realization to the other. First, 
as the values of the latent field T follow a normal distribu-
tion around its mean �T (for instance more than 95% of the 
T values are in the interval �T ± 2 ⋅ �T ), and providing that 
the ratio �2

T
∕r2

Y
 is not too high (i.e. the values do not vary 

too rapidly through Y), the distribution of the simulated Z 
values in one realization strongly depends on the value of 
Y(�T ) : a value smaller than �Y (mean value of the Gauss-
ian process Y) will favour low values (compared to �Y  ) 
in the field Z, whereas a value greater than �Y will favour 
high values.

Secondly, it is well known that, whatever the station-
ary covariance model for the directing function T, one can 
observe (in more than one dimension) that the region with 
values close to �T in the latent field, {x ∈ Ω T(x) ≈ �T} , 
is well connected, whereas the low-value and high-value 
regions are made up of several isolated zones (Zinn and Har-
vey 2003). Hence, in the field Z(x) = Y(T(x)) the region with 
values close to Y(�T ) will be well connected (see Figs. 1, 2 
in Sect. 5).

According to this finding, a simple idea consists of impos-
ing the value of Y at �T to control what is connected in the 

realizations of Z. Then, we use a control point Y(�T ) = y�T
 

and consider the conditional simulation

the constraint on Y (control point) indicating the region 
around the specified value y�T

 that has to be connected. 
Changing this value allows for exploring several scenarios 
of connectivity patterns. Note that in general an ensemble 
of control points on the coding process, {Y(tk) = yk}k∈K , can 
be considered.

3.1  Ensemble distribution of SRF conditioned 
to Y(�T) = y�T

The process Y is multi-Gaussian with a covariance function 
CY , a mean �Y (and a variance �2

Y
= CY (0) ), then Y(�T + t) 

given Y(�T ) = y�T
 follows the normal distribution

(24)Z | Y(�T ) = y�T
,

(25)

(
Y(�T + t) | Y(�T ) = y�T

)
∼ N

(
�Y +

CY (t)

�2
Y

(y�T
− �Y ),

�2
Y
−

CY (t)
2

�2
Y

)
.

Fig. 2  Example of one realization of SRF as in Fig. 1 but with a smaller range for Y; top left) field T(x), bottom) process Y(t) (blue line), top 
right) resulting SRF field Z(x) = Y(T(x))
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Hence, the distribution of Z(x) = Y(T(x)) given Y(�T ) = y�T
 

can be derived by computing its CDF

where the third equality holds because of the independence 
of T and Y, and the last equality follows from the conditional 
CDF of the distribution in Eq. (25) expressed with the CDF 
Φ of N(0, 1) and from T(x) ∼ N(�T , �

2
T
).

Note that the CDF in Eq. (26) is an ensemble distribu-
tion, which can be estimated from an ensemble of realiza-
tions Zi | Y(�T ) = y�T

 , as in Eq. (15),

3.2  Specifying a target distribution

The goal is to obtain realizations of the SRF with values 
following a marginal cumulative density function (CDF) 
G.

Knowing the ensemble distribution FZ , it is possi-
ble to transform the values of Z by applying the anamo-
rphosis H = G−1

◦FZ  ,  then FH◦Z = FZ◦H
−1 = G  as 

wanted. Thus, for any realization, the transformation is 
Zi(x) ↦ H◦Zi(x) = G−1(FZ(Zi(x)).

For unconstrained SRF simulation, FZ is the CDF of 
N(�Y , �

2
Y
) (see Eq. (2)), whereas for SRF controlled by the 

value of Y at the mean of T, i.e. Z | Y(�T ) = y�T
 , the CDF 

given in Eq. (26) can be used to define the anamorphosis 
H = G−1

◦FZ | Y(�T )=y�T
.

The ensemble distribution can be expressed as the mean 
distribution of all the single realizations (see Eqs.  (15) 
and  (27)). Hence, an idea to reduce the spread of the 
ensemble of the single CDFs is to apply the anamorpho-
sis Hi = G−1

◦FZ | Y(�T )=Yi(mean(Ti))
 to the i-th realization 

Zi = Yi◦Ti . In this way, each realization is transformed 
using its own anamorphosis that accounts for the value of the 
underlying realization of the coding process at the mean of 
the simulated T field. Note that one single realization could 
be transformed by an anamorphosis based on its empirical 

(26)

FZ �Y(�T )=y�T
(z) = ℙ

�
Z(x) ⩽ z �Y(�T ) = y�T

�

=
�
t

ℙ
�
Y(t) ⩽ z,T(x) = t � Y(�T ) = y�T

�

=
�
t

ℙ
�
Y(t) ⩽ z � Y(�T ) = y�T

�
⋅ ℙ(T(x) = t)

=
�
t

ℙ
�
Y(�T + t) ⩽ z � Y(�T ) = y�T

�
⋅ ℙ(T(x) − �T = t)

= 𝔼t∼N(0,�2

T
)Φ

⎛
⎜⎜⎜⎝

z −
�
�Y +

CY (t)

�2

Y

(y�T
− �Y )

�

�
�2

Y
−

CY (t)
2

�2

Y

�1∕2

⎞
⎟⎟⎟⎠

(27)FZ | Y(�T )=y�T
(z) ≈ �i∈I

[
FZi | Y(�T )=y�T

(z)
]
.

CDF itself, however, this latter often displays sharp transi-
tions and should then be smoothed to get a reliable anamo-
rphosis function.

4  Conditional SRF simulations with control 
points on the coding process

Conditioning SRFs can be done using a Gibbs sampler 
(Lantuéjoul 2002; Emery 2008). In this section, we show 
that this strategy can still be used in the presence of con-
trol points in the coding process. Let {Y(tk) = yk}k∈K a set 
of control points on Y and consider a set of conditioning 
data {Z(xj) = zj}j∈J . The aim is then to generate conditional 
simulations of

The following algorithm allows generating one conditional 
realization on a domain Ω . 

(1) Generate {tj = T(xj)}j∈J conditional to {Z(xj) = zj}j∈J 
and {Y(tk) = yk}k∈K.

(2) Generate a realization of T on Ω conditional to 
{tj = T(xj)}j∈J.

(3) Generate a realization of Y (on a set containing T(Ω) ) 
conditional to {Y(tj) = zj}j∈J and {Y(tk) = yk}k∈K.

(4) Retrieve Z(x) = Y(T(x)) , x ∈ Ω.

Whereas the steps (2) and (3) consist of classical con-
ditional multi-Gaussian simulations, the step (1) is more 
difficult: the aim is to generate values tj that are the outputs 
of T at the conditioning locations xj , and the inputs of Y 
sent to the conditioning values zj . Hence, these values tj 
must be consistent with the covariance of T regarding the 
locations xj and with the covariance of Y regarding the 
locations tk and the values zj and yk . This step (1) is done 
with a Gibbs sampler as follows. 

 (1a) Initialization: generate {tj = T(xj)}j∈J , unconditional 
simulation of T at the conditioning locations xj.

 (1b) Choose randomly (and uniformly) one index j0 ∈ J.
 (1c) G e n e r a t e  a  c a n d i d a t e  v a l u e 

t�
j0
= T(xj0 ) | {tj = T(xj)}j∈J,j≠j0.

 (1d) Compute the Metropolis ratio (see appendix A) 

 and update tj0 : accept the candidate t′
j0
 with probability 

pj0 = min(1, rj0 ) , i.e. draw u uniformly in [0, 1], and 
set tj0 = t�

j0
 if u ⩽ pj0 , and let tj0 unchanged otherwise.

(28)Z | {Z(xj) = zj}j∈J , {Y(tk) = yk}k∈K .

(29)

rj0 =
ℙ
(

Y(t′j0 ) = zj0 | {Y(tj) = zj}j∈J,j≠j0 , {Y(tk) = yk}k∈K
)

ℙ
(

Y(tj0 ) = zj0 | {Y(tj) = zj}j∈J,j≠j0 , {Y(tk) = yk}k∈K
) ,
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 (1e) Go to step (1b) until a given number of iterations is 
reached.

This algorithm produces a Markov chain 
({

t
(n)

j

}
j∈J

)

n⩾1

 fol-

lowing the distribution

as wanted in step (1). Note that the acceptation probability 
pj0 in step (1d) can be defined more generally as pj0 = f (rj0 ) , 
where f is a function defined on positive real number with 
values in ]0, 1] verifying f (u) = u ⋅ f (1∕u) . The function 
min(1, u) is such a function, u∕(1 + u) another one. Note 
finally that as for steps (2) and (3), step (1c) and the compu-
tation of the Metropolis ratio (Eq. (29)) in step (1d) involve 
only classical conditional multi-Gaussian simulations. The 
numerator (as well as the denominator) is treated by solving 
a kriging system to retrieve the mean and variance of the 
corresponding Gaussian distribution (the density function 
is used instead of ℙ(.)).

Note that, provided that the ensemble distribution of the 
SRF is known a priori (before generating realizations), the 
anamorphosis H discussed in Sect. 3.2 could be used to 
approximately fit a target distribution. In this situation, the 
data values zj = Z(xj) are first transformed via H−1 , i.e. 
z̃j = H−1(zj) , then the conditional SRF simulation Z̃ is done 
(given �Z(xj) = z̃j ), and finally the resulting field is back-
transformed via H, i.e. Z(x) = H

(
Z̃(x)

)
 . However, as a con-

ditioning data point may influence any point in the simula-
tion grid (non-ergodicity of Z), the ensemble distribution of 
SRF is no longer the same one as for unconditional simula-
tion; therefore, the anamorphosis only helps guide the reali-
zations towards the target distribution, but the final ensemble 
CDF will not fit it exactly.

5  Illustrations

In the following examples, Matérn covariances are used for 
the directing function and the coding process. The Matérn 
covariance model (Stein 1999) of parameter � is given by the 
function (in one dimension) defined as

where K� is the modified Bessel function of the second kind 
of order � (Olver et al. 2010). If h → 0 , then M�(h) → �2 , the 
variance of the model. The parameter r is a scale parameter 
linked to the effective range, reff  , such that M𝜈(h) < 0.05 ⋅ 𝜎2 
for h > reff  ; given � , one can numerically compute r as a 

(30)
�
(
{tj}j∈J

)
= ℙ

(
{tj = T(xj)}j∈J | {Z(xj) = zj}j∈J ,

{Y(tk) = yk}k∈K
)

(31)M�(h) = �2
⋅

1

2�−1Γ(�)

�√
2�

�h�
r

��

K�

�√
2�

�h�
r

�
,

function of reff  and inversely. The advantage of such a model 
is that the parameter � controls the smoothness of the result-
ing random fields: for � = 1∕2 , one gets the exponential 
model of effective range 3r, M1∕2(h) = �2 exp

(
−

|t|
r

)
 , and if 

� → +∞ , then M�(h) → �2 exp
(
−

t2

2r2

)
 , the Gaussian model 

of effective range 
√
6r (see expression of classical model in 

Table 1).

5.1  Simple case and influence of the range 
of the coding process

Two-dimensional SRFs Z = Y(T(x)) are generated in a simu-
lation domain Ω of 250 × 200 cells. For the latent field T, a 
Matérn covariance model of parameter �T = 3∕2 is used, 
with effective ranges of 45 and 15 (in number of cells) along 
horizontal and vertical axis respectively. The variance is set 
to �2

T
= 1 and the mean to �T = 0 . Note that for convenience 

these values for the variance and the mean for T can be kept 
constant because the final range of values in Z is controlled 
by the parameters of the coding process Y.

For the following examples, the mean of Y is set arbitrar-
ily to �Y = −3 , its variance to �2

Y
= 2 , and a (uni-dimen-

sional) Matérn covariance model of parameter �Y = 3 is cho-
sen (rather smooth). Different values of the effective range 
rY are used in the following examples, they are taken as a 
given coefficient times �T (according to the discussion in 
Sect. 2.4).

Figure 1 shows one example of a realization of the SRF 
Z(x) with rY = 3 ⋅ �T . The figure shows the simulation used 
for the directing function T(x) and the coding process Y(t). 
The most important feature is that the intermediate values 
(around 0) are connected over large distances in the simu-
lation of T(x) while the low values (around -5) are those 
which are connected in Z(x). Depending on the simulation 
of the coding process, the range of connected values will 
change. This feature is crucial since it will allow covering 
a broader range of connectivity patterns than the GRFs. 
Figure 2 shows another example with a smaller correlation 
length for the coding process, rY = 1 ⋅ �T . When comparing 
Figs. 1 and 2, we see that the sizes of the main structures in 
the fields T and Z are similar in both figures, but there are 
more inner variations within the large structures when rY is 
smaller, as expected. We also observe that large values in 
the Z field in Fig. 2 are more frequent and more connected 
than in Fig. 1. This is not related to the parameter rY , but it is 
explained by the fact that the value of Y(�T ) is low in Fig. 1 
(resp. high in Fig. 2) compared to �Y (see the dotted lines in 
the figures), as discussed in Sect. 3.
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5.2  Ensemble of unconstrained SRF simulations

Distributions and covariances computed from an ensem-
ble of SRF realizations are illustrated in this section. The 
same simulation domain and the same parameters as in 
the previous section are considered for both the directing 
function T and the coding process Y, except the range for 
Y set to rY = 2�T.

An ensemble of 200 realizations of Z(x) = Y(T(x)) 
is generated. Figure 3 shows two realizations from this 
ensemble as well as their density distributions and covari-
ances. For each realization Zi , the empirical cumulative 
distribution function FZi

 and the covariance function along 
x-axis, CZi

(h) = Covx∈{x∈Ω∶x+h∈Ω}
(
Zi(x), Zi(x + h)

)
 with hor-

izontal lag vector h, are computed. Statistics (min, max, 
mean, and quantiles) are then retrieved from these curves. 
For the CDF (Fig. 3d), the mean curve �i

[
FZi

]
 (in brown in 

the figure) is similar to the theoretical CDF of N(�Y , �
2

Y
) 

(in pink), according to  Eq.  (15). For the covariance 
(Fig. 3e, f), the mean curve �i

[
CZi

(h)
]
 (in brown) also fits 

well the theoretical function (in pink) given by Eq. (19) 
(with gY computed empirically). The two realizations dis-
played in Fig. 3a, b are selected such that their empiri-
cal CDFs are respectively below and above the quantiles 
25% and 75% of the theoretical CDF at �Y  . This figure 
shows the wide variability of the marginal distributions 
and covariances of the realizations obtained with the SRF 
model. In the following sections, we will use a control 
point on Y and histogram transforms to better constrain 
the realizations.

5.3  SRF simulations with a control point

The same set-up as in the previous section is considered 
but a control point is added to guide the simulations. 
An ensemble of 200 realizations of the constrained SRF 
Z(x) | Y(�T ) = y�T

 is generated. The value of Y at the mean 
of T is set to y�T

= �Y + 1.2�Y  . The results are shown in 
Fig. 4.

Figure 4d shows that the mean CDF curve �i

[
FZi |Y(�T )=y�T

]
 

(in brown in the figure) is very close to the theoretical CDF 
of FZ |Y(�T )=y�T

 (in pink) given by Eq. (26) (which is no longer 
Gaussian). Figure 4e, f show that the mean covariance curve 
�i

[
CZi | Y(�T )=y�T

(h)
]
 (in brown) does not deviate much from 

the theoretical covariance function given by Eq. (19) (not 
accounting for the control point). The two realizations dis-
played in Fig. 4a, b are selected such that their empirical 
CDFs are respectively below and above the quantiles 25% 
and 75% of the theoretical CDF at 1∕2(�Y + y�T

) . Note that 
the high-value region is rather well connected in both these 

realizations, but their covariance and distribution are rather 
different.

Compared to the unconstrained SRF simulations 
(Sect. 5.2), the distributions of the simulated values in every 
realization are less spread around the theoretical mean distri-
bution (compare Figs. 3c, d and  4c, d), whereas the covari-
ance curves show similar variability (compare Figs. 3e, f 
and  4e, f).

5.4  Conditional SRF

This section compares conditional simulations obtained with 
the SRF (Z) and GRF (X) models. Five conditioning data 
points are considered in the simulation grid (same domain 
as in the previous examples). The data values are respec-
tively set to −5 and −1 for the two points in the lower and 
upper parts of the simulation grid, and to −3 for the point 
near the center (see the circles in the first row of Fig. 5). For 
the SRF, we use the same parameters as those employed in 
Sect. 4, with the target distribution N(�Y , �

2
Y
) = N(−3, 2) , 

that is the anamorphosis H = G−1
◦FZ | Y(�T )=y�T

 is used, 
where G is the CDF of the target distribution. As mentioned 
in the last paragraph of Sect. 4, the target will not be fitted 
exactly. For the GRF, we propose to use the covariance 
model used for the latent field T, but with the variance and 
mean of Y to fit the target distribution. The following three 
cases are considered. 

(1) SRF with a low value as control  point , 
y�T

= �Y − 1.2 ⋅ �Y , and anamorphosis.
(2) SRF with a high value as control point, 

y�T
= �Y + 1.2 ⋅ �Y , and anamorphosis.

(3) GRF X based on the same covariance model as T, 
except the sill set to �2

X
= �2

Y
= 2 , and the mean set to 

�X = �Y = −3 . (No anamorphosis.)

In the three cases, 200 conditional realizations are generated. 
The results are shown in Figs. 5 and 6.

In Fig. 5, the first realization is displayed for each case 
in the top row, and the statistics on the cumulative distribu-
tion and the covariance along the x-axis of every realiza-
tion in the middle and bottom rows respectively. For the 
SRF, the distributions are guided by the target one, but the 
tails do not match well the target, whereas, for the GRF the 
distribution matches very well the target distribution every-
where. The theoretical mean covariance, computed without 
accounting for the control point, the conditioning data, and 
the anamorphosis, is shown as a pink dashed line on the 
two first plots. The presence of conditioning data and the 
anamorphosis explain the deviation from the actual mean 
of the covariances of the single realizations. Note that the 
covariance of the GRF is defined as �2

Y
 times the covariance 
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Fig. 3  Results for an ensemble of 200 realizations of unconstrained SRF; a–b) two selected realizations (same color bar), c–f) statistics com-
puted from the ensemble and theoretical result (pink)
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Fig. 4  Results for an ensemble of 200 realizations of SRF Z(x) | Y(�T ) = y�T  , with y�T
= �Y + 1.2�Y ; a-b) two selected realizations (same color 

bar), c-f) statistics computed from the ensemble and theoretical result (pink)
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of the predicting function T, CX(h) = �2
Y
⋅ CT (h) , thus the last 

row in Fig. 5 shows how the coding process Y transforms the 
covariance of T into the covariance of Z.

We then consider the connectivity of the simulated 
fields. The top row of Fig. 6 shows the first realization 
of each case, thresholded in three categories: in blue 
(resp. orange) the cells having a value less than �Y − �Y 
(resp. greater than �Y + �Y  ) and in green the remaining 
cells (with values between �Y ± �Y  ). The realization of 
the SRF for case (1) has the low values (blue) well con-
nected, whereas for case (2) the high values (orange) are 
well connected. For the GRF, the middle values (green) are 
well connected. This visual analysis confirms that the SRF 
simulations seem to have a different type of connectivity 
than the GRF simulations.

To quantify the connectivity properties, we use two metrics: 
the Γ connectivity function Γ(v) and the connectivity function 

�(h) . These metrics are described in detail in Renard and Allard 
(2013). They are defined for any continuous field Z on a grid Ω 
as follows. For a value v, the subset of Ω composed of the cells 
where Z is less than or equal to v, Sv = {x ∈ Ω ∶ Z(x) ⩽ v} , 
is considered, and the number N(v) of its connected compo-
nents, and their respective number of cells, n1,… , nN(v) , are 
retrieved. Then, Γ(v) is defined by Renard and Allard (2013) 
as the probability that two cells randomly chosen in S(v) are 
connected (i.e. belong to the same connected component). It 
can be expressed as

where �S(v)� = ∑N(v)

i=1
ni is the total number of cells in S(v). 

Note that Γ(v) is set to 1 if S(v) is empty. When this prob-
ability is equal to 1, all the grid cells having a simulated 

(32)Γ(v) =
1

|S(v)|2
N(v)∑
i=1

n2
i
,

Fig. 5  Results of conditional simulations: left column) SRF with low 
y�T

 , case (1); middle column) SRF with high y�T
 , case (2); right col-

umn) GRF X, case (3). Top row) first realization; middle row) cumu-
lative distribution; bottom row) covariance along x-axis. Statistics are 
computed over 200 realizations. See text for details
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value lower than v belong to the same connected compo-
nent. When the probability is close to zero, the set of cells 
with Z lower than v is highly fragmented and composed of 
many unconnected subsets. For each realization, the curve 
Γ(v) is computed and shown in the middle row of Fig. 6. A 
complete characterization of the connectivity pattern would 
require in addition the computation and analysis of the Γc(v) 
function for the complementary set corresponding to the val-
ues higher than the threshold. But, this analysis would go 
beyond the scope of this paper. Here, we can already observe 
and conclude from the middle row of Fig. 6 that the three 
Γ(v) functions are very different. On those plots (middle row 
of Fig. 6), the vertical dotted line indicates the abscissa value 

�Y . For the GRF, the Γ curve rapidly increases around this 
value, whereas for the SRF in case (1) it starts to increase 
before, reflecting the good connection of low values. In case 
(2), the curve remains longer with low probabilities, mean-
ing that the connections of the values below the threshold 
are broken by the connections of the high-value areas.

The connectivity function �(h) is another tool to 
quantify the connectivity. It provides more informa-
tion (about the size of the connected components) but 
is restricted to indicator (categorical) random func-
tions. Here we apply it only for the high values of Z. For 
a realization Z, the set M = Ω⧵S�Y+�Y

 is considered, i.e. 
x ∈ M ⟺ Z(x) > 𝜇Y + 𝜎Y  , which corresponds to the 

Fig. 6  Results of conditional simulations: left column) SRF with low 
y�T

 , case (1); middle column) SRF with high y�T
 , case (2); right col-

umn) GRF X, case (3). Top row) first realization thresholded; middle 

row) Γ(v) curves; bottom row) �(h) curves along x-axis for high-value 
region in thresholded realizations. Statistics are computed over 200 
realizations. See text for details
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orange region displayed in the top row of Fig. 6 for the 
first realization. Then, the probability that two grid cells x 
and x + h in M distant from a horizontal lag vector h are in 
the same connected component, is computed and written

the two-head arrow meaning that a path of adjacent cells 
within the set M and linking the two cells exists. Statistics 
on the � curves computed for each realization in each case 
are shown in the bottom row of Fig. 6. One observes that 
the SRF with the high control point value (case (2), mid-
dle column) shows higher probabilities of connection when 
h increases. This means that the probability of observing 
larger connected components is higher in this case. Although 
the range of the covariance is longer for the GRF than for the 
SRF, the � curves decrease faster (right column) and there-
fore the probability of getting large connected components 
drops rapidly to zero in that situation. This confirms that the 
SRF model can cover a much larger range of patterns for the 
connected components than the GRF model.

6  Conclusions

Stationary multi-Gaussian random fields (GRF) are param-
eterized by their mean and covariance model. They are easy 
to define and simulate but their connectivity patterns cannot 
be controlled. In two or three-dimensional simulations, low 
and high-value regions always form isolated zones, whereas 
the middle-value (near to mean) region is well connected. 
Using multi-Gaussian fields may therefore lead to an under-
estimation of the uncertainty when predicting flow and trans-
port (Gómez-Hernández and Wen 1998; Zinn and Harvey 
2003; Kerrou et al. 2008) because simulations with highly 
connected or highly disconnected hydraulic conductivity 
values would not be simulated by this technique. This paper 
investigated therefore the feasibility of using substitution 
random field (SRF) to generate fields having a broader (and 
if possible controlled) distribution of connectivity patterns.

To investigate this question, we used substitution random 
fields built by composing two stationary GRFs, the direct-
ing function T, and the coding process Y to get Z = Y◦T  . 
This technique is parsimonious because it uses the simple 
parameterization of GRFs with their mean and covariance 
function, but it allows enriching the generated spatial fea-
tures, in particular in terms of connectivity.

Assuming that the directing function T is second-order 
stationary with bounded variogram (finite variance), we 
have shown that the resulting SRF Z is not ergodic in the 
mean and the covariance. It means that the statistical prop-
erties of Z cannot be derived from a single realization or 
field observations. Nevertheless, we have established an ana-
lytical expression for the mean of the covariance function 

(33)�(h) = ℙ(x ↔ x + h | x, x + h ∈ M),

describing a large ensemble of realizations. Furthermore, 
adding a control point on the coding process Y, consisting of 
imposing the value of Y at the mean of T, allows to control 
partly the connectivity structures of the simulated fields: 
the region with values close to the prescribed value at the 
control point tends to be well connected. Moreover, the 
mean distribution over the ensemble of realizations can be 
expressed with respect to this control point. We show how 
the simulation of this type of SRF can handle conditioning 
data with a Gibbs sampler. Thus, we provide an algorithm 
able to generate conditional simulation with partial control 
of the connectivity patterns.

However, the type of SRF tested in this paper suffers 
from several drawbacks. First, the target distribution is only 
approximately reproduced for each single realization, espe-
cially around the extreme values. Indeed, for instance, fields 
with the high-value region well connected tend to present a 
peak for the high values in the histogram. This peak is dif-
ficult to transform in a long tail as in a Gaussian distribution. 
The underlying reason for this phenomenon is that it is not 
possible to create connected paths over a long distance (an 
infinite cluster) in a random field if the proportion of cells 
involved in this path is too small. Secondly, identifying the 
parameters of the underlying covariance models is difficult. 
The range of the coding process should be set relative to the 
standard deviation of the directing function. But more gener-
ally, the non-ergodicity of this model makes the inference of 
the parameters difficult. This suggests that further research 
should be conducted in this field before the method can be 
applied easily for field applications.

In summary, although the proposed method is still a bit 
difficult to constrain because the statistics and the connectiv-
ity patterns vary strongly between the realizations, this can 
also be seen as an advantage because it allows mitigating 
the risk of underestimation of uncertainty. This may be very 
important for groundwater flow and solute transport or other 
applications deeply impacted by connectivity structures.

Appendix A Metropolis ratio in the Gibbs 
sampler

The Metropolis ratio (Eq. (29)) in the Gibbs sampler algo-
rithm of Sect. 4 is obtained as follows (adapted from Lantu-
éjoul (2002)). Let � be the distribution over {tj}j∈J that has to 
be sampled in step (1) for conditional SRF given by Eq. (28), 
i.e.

where tJ = {tj}j∈J , and similarly for xJ , zJ , and tK , yK.
For a given index j0 , let J0 = J ⧵ {j0} be the ensemble of 

indices in J private of the index j0 , and for a candidate value 
t′
j0
 , let t′

J
 be the vector with the value t′

j0
 at index j0 and with 

(A1)�(tJ) = ℙ
(
T(xJ) = tJ |Z(xJ) = zJ , Y(tK) = yK

)
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t�
J0
= tJ0 , i.e. the vector obtained from tJ by updating only the 

j0-th component. Hence, the proposal distribution corre-
sponding to steps (1b-1c) (Sect. 4) in the Gibbs sampler 
algorithm, from tJ to the candidate t′

J
 is expressed as

The Metropolis ratio to get a chain whose distribution con-
verges towards � (invariant distribution) is then given by 
(Robert and Casella 2004)

Developing the expression in Eq. (A1), we have

The last factor above can be written as

By independence of T and Y, the numerator above can be 
written as

Hence, inserting in Eq. (A3) the expression of the proposal 
distribution Q (Eq. (A2)) and the expression of � obtained 
by gathering Eqs. (A4-A6), we obtain the Metropolis ratio

as given by Eq. (29) in step (1d) of the algorithm in Sect. 4.
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(A2)Q(tJ , t
�
J
) =

1

|J|ℙ
(
T(xj0 ) = t�

j0
|T(xJ0 ) = tJ0

)
.

(A3)r(tJ , t
�
J
) =

�(t�
J
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