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Abstract Multiple point statistics (MPS) algorithms allow generation of random
fields reproducing the spatial features of a training image (TI). Although many MPS
techniques offer options to prescribe characteristics deviating from those of the TI
(e.g., facies proportions), providing a TI representing the target features as well as
possible is important. In this paper, methods for editing stationary images by apply-
ing a transformation—painting or warping—to the regions, similar to a representative
pattern selected by the user in the image itself, are proposed. Painting simply con-
sists in replacing image values, whereas warping consists in deforming the image grid
(compression or expansion of similar regions). These tools require few parameters and
are interactive: the user defines locally how the image should be modified, then the
changes are propagated automatically to the entire image. Examples show the ability
of the proposed methods to keep spatial features consistent within the entire edited
image.
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1 Introduction

In Earth Sciences, geostatistical simulation algorithms based on a conceptual model,
such as multiple point statistics (MPS) techniques, are widely used for modeling
the underground, landscapes or natural processes and for assessing the associated
uncertainty. These methods allow the user to generate random fields reproducing the
spatial structures present in a training image (TI), which must be given by the user. The
TI can come from analog sites, satellite photographs, or simply be drawn by hand. MPS
requires that the TI contains repeated patterns, possibly with some non-stationarity.
Most MPS algorithms provide options to generate realizations presenting features
that are not in the TI (e.g., orientation/dilation of the patterns, local/global facies
proportions, etc.). Most often, this implies a compromise between the reproduction of
such specific features and the “quality” of the realizations. When target properties are
far away from what is found in the TI, one cannot predict what the MPS simulations will
look like. Indeed, for example, considering a binary TI with channelized structures,
imposing a target proportion of channels less than the proportion in the TI does not offer
any control on how this target proportion will be honoured: decreasing the proportion
of channels can be achieved by making the channels thinner or by reducing their
number. Hence, it is preferable to modify the TI before performing simulations, such
that it depicts the structures to be simulated as well as possible.

Motivated by the above concerns, the aim of this paper is to develop tools for
adapting the TI and then allowing the user to better control further MPS simulations.
Indeed, geological concepts and interpretations are inherently subjective. For this
reason, translating geological concepts in the creation of TIs is a real practical problem
and alongstanding limitation to the applicability of MPS. Thus, such editing tools bring
practical solutions to this question. Moreover, as MPS methods are available for the
simulation of categorical and continuous attributes, for example the direct sampling
technique (Mariethoz et al. 2010), these two types of variables are considered.

In computer graphics, Brooks and Dodgson (2002) proposed methods for editing
“textures” consisting of stationary images encoded with the three color channels, RGB.
In this paper, we propose interactive tools for editing images which preserve their sta-
tionarity (i.e., the repeated structures), adapted for continuous images as well as for
categorical ones (i.e., images defined by real (continuous) variables or discrete vari-
ables expressed by facies code representing, for example, the lithology in geological
applications). The methods consist in applying the same transformation everywhere
the image presents a similar structure to the one displayed in a pattern selected in the
image itself by the user. Two main transformation operations are proposed: painting
and warping. Painting consists in locally changing the values of the variables, with
smooth transitions for continuous images, and allowing a modification of the facies
code by existing code or new code for categorical images. The warping operation con-
sists of local geometrical transformations—expansion or shrinkage of image regions.
It is done by first applying a spatial deformation, and then by re-interpolating the
variable onto the initial regular grid of the image. The technique is quite different and
more sophisticated than mathematical morphology tools such as dilation and erosion
operations, which do not act on the support of the image. It is also quite different from
available methods for locally modifying properties of MPS simulations, such as block
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constraints (Straubhaar et al. 2016), proportion trends (Mariethoz et al. 2015), or local
affinities and orientations (Strebelle and Zhang 2005). For example, warping allows
the user to make channels thinner without breaking them, which is not necessarily the
case when performing successive erosions or by constraining MPS to a low proportion
of channels.

Tahmasebi (2017) proposes a method to update existing geological models also
based on underlying grid deformations, but with the purpose of correcting stochastic
realizations not honoring conditioning data, which can happen, in particular, if patch-
based algorithms are used. In this situation, problematic conditioning points are moved
to target points where the variable is equal to the data values and a grid deformation
is computed by using the method of thin-plate splines (Bookstein 1989). Contrary to
the warping process we propose, the values at the new locations are brought back to
the initial ones.

While the methods proposed in this paper can also be used to adapt a geological
model, their main purpose is to provide flexible tools for editing conceptual models
(TIs) in a consistent manner. Both operations—painting and warping—allow adapta-
tion of the features of displayed structures, and modification of the distribution of the
variable in the entire image. These editing processes are interactive: the user defines
locally how to change the image, then the entire image is automatically updated by
propagating these changes. Based on the self-similarity of the input image, the user
can also control the strength of the transformation. A dissimilarity map defined at each
pixel as a distance between the selected pattern and the pattern centered at that pixel is
computed. Then, the transformation is applied over each region where the dissimilarity
measure falls below a threshold. A small threshold implies a transformation of small
intensity, and its relaxation results in increasing the effects of the transformation.

The paper is organized as follows. The principle of the proposed methods and the
notion of dissimilarity, common to both types of transformation, are introduced in
Sect. 2. The algorithms for painting and warping processes are presented in Sects. 3
and 4 respectively. In Sect. 5, additional examples for both techniques applied on
two- and three-dimensional images are given as illustrations and the computational
performance is discussed. Finally, a conclusion and perspectives are given in Sect. 6.

2 Defining Editing Regions in Self-Similar Images

The principle of the proposed methods consists in a semi-automated editing process,
based on the self-similarity of an image defined by a variable Z(x) on a regular grid.
Considering a stationary image (i.e. depicting repeated structures), a specific location
is selected and similar changes are automatically applied everywhere the structures
are similar. Two types of transformation are considered: painting, which consists in
directly modifying the values of the variable, and warping, which consists in a space
deformation.

The proposed tools require in input: (i) to select a pattern in the image, (ii) to specify
the transformation to be applied, and (iii) to give threshold value(s) for the dissimilarity
to control the intensity of the transformation. The main computation steps are then to
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map the dissimilarity to the selected pattern, and to apply the transformation (painting
or warping) to the regions where the dissimilarity is below the given threshold.
Consider a pattern

d(xo, 1) ={Z (xo+h1),..., Z(x0+hn)}, (1)

selected in the image, where Z denotes the variable defined on each cell/pixel, xg
the central cell of the pattern and T = {hy, ..., hy} the set of (lag) vectors defin-
ing the geometry of the pattern. For each location x in the image grid G, a distance
D(d(x, ), d(xg, 7)) between the pattern d (x, t) centered at x and the reference pat-
tern d(xg, ) is computed. Then, the dissimilarity map is defined at each cell x € G
as
D (d(x, 1), d(x0, 7))

maxyeg (D(d(y, 1), d(x0, 7))

It consists in the relative dissimilarity with values in the range [0, 1], so dis(x) = 0
means that the pattern centered at x is identical to the selected pattern, and dis(x) = 1
that it is the pattern in the image having the highest distance from the selected pattern.

The distance D is defined as follows. If Z is a categorical variable, D is the pro-
portion of mismatching nodes in the pattern, and if Z is continuous, the Root Mean
Squared Error (RMSE) is used. (The Mean Absolute Error (MAE) could also be
employed.) Note that extrapolations are applied at the borders of the images to obtain
a smooth map. Illustrations are presented in Figs. 1a, b and 2a, b, for a categorical
image (Fig. la from Allard et al. 2011) and a continuous image (Fig. 2a from Zhang
et al. 2006), respectively.

dis(x) = 2)

3 Self-Similarity-Based Painting

Self-similarity-based painting consists in modifying the value of the variable in the
regions similar to the selected pattern (reference pattern). Those regions are determined
by using the dissimilarity map: the pixels where the dissimilarity is below a given
threshold are modified. The ensemble of those pixels is called the matching region or
matching pixels. The method requires only two input parameters: a threshold value ¢,
and a target value zZpew.
For categorical images, the new value zpew is simply assigned to the matching
pixels: the variable Z* in the output image is defined as
. Znew If dis(x) <t
27(x) = {Z(x) otherwise. &)

With continuous images, the new value cannot be simply assigned to all the match-
ing pixels, because this would result in very sharp interfaces at the borders of the
matching region, where “jumps” of the variable would be observed. Hence, to ensure
a smooth result in the case of a continuous variable, the output value at a pixel x is

defined as
dis(x)

Z*(x) = Z(x) + max (o, 1— ) “(Znew — Z(x)) . 4)
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(a) input image (c) output image

(b) dissimilarity map
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Fig. 1 Self-similarity-based painting on a categorical image (114 x 114): a input image; b dissimilarity
map; ¢ output image for = 0.3 and zpew = 3. In a—c, the red square is the 5 x 5 reference pattern

(a) input image with zoom in view (b) dissimilarity map
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Fig. 2 Self-similarity-based painting on a continuous image (200 x 200): a input image (Z(xg) = 155);
b dissimilarity map; ¢ output image for = 0.3 and zpew = 220; d correction factor map (0 in the gray
area). In a—d, the black square is the 7 x 7 reference pattern

Thus, for a matching pixel (dis(x) < t), the correction zpew — Z(x) is multiplied by
the factor 1 — dis(x)/¢, which has a linear dependence on the dissimilarity.

The painting process is illustrated in Figs. 1 and 2 for a categorical image and a
continuous image, respectively. For the categorical case, the dissimilarity is computed
based on the proportion of mismatching nodes in the pattern, and a new facies (in
orange) is introduced. For the continuous case, the dissimilarity (dis(x)) is computed
based on the RMSE over the pattern and the correction factor, max(0, 1 — dis(x)/¢)
from Eq. (4), is displayed.
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(a) input image (b) grid deformation

(¢) 1-neighbor interp. (d) 5-neighbor interp.

Fig. 3 Space deformation (not self-similarity-based): a input image (114 x 114); b transformation; c—d
output image using the nearest neighbor method (¢) and the inverse distance method on facies indicators
with 5 neighbors (d)

4 Self-Similarity-Based Warping

Self-similarity-based warping consists in applying a space deformation (expansion or
compression) onto the zones similar to the reference pattern selected by the user. This
is done by following two main steps: (1) moving the center of the cells of the original
grid according to the desired deformation, and (2) interpolating the values known at
the new locations onto the original grid.

In the following, let us first describe the interpolation step (Sect. 4.1) and then how
to set the space deformation based on self-similarity (Sect. 4.2).

4.1 Interpolation onto the Original Grid

Figure 3 illustrates the warping of a categorical image, which is not based on self-
similarity but corresponds to a zoom in the central part. In Fig. 3b, the black dots
correspond to the new locations of the center of each grid cell.

Let x; be the new location of the center of each pixel of the grid after applying
a given space deformation. The interpolation step consists in defining the new value
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Z*(x) in a pixel centered at x in the original grid from the values Z (x ;) known on the
migrated pixels.
For continuous images, an inverse distance method can be used. One can define

K
Z'x) =Y wiZ(x), )

i=1
where x;,i = 1, ..., K, are the K nearest neighbors of x among the migrated pixels,
and where the weights w;, i = 1, ..., K, are set inversely proportional to the distance

between x and x;
llx — x; ||~

w; = (6)

| —
Kl — !

For categorical images, direct interpolation does not make sense, because the new
values have to correspond to a facies code of the input image. However, the inverse
distance method can be used on the facies indicators: if z1, . . ., zys are the facies code,
one computes

K
Pu(x) =i+ 8(Z(x:). 2m) . )
i=1
form = 1,..., M, where §(Z(x;), zn) = 1if Z(x;) = z; and O otherwise. These
values P, (x), m = 1..., M, sum to 1, and can be interpreted as probabilities of
having the facies z,, at the node x. Then, a facies maximizing this probability is
simply assigned to the location x

Z*(x) =z, wWithm* = argmax,,_; 3 Pu(x). )

Note that if K = 1, the inverse distance method is equivalent to the nearest neighbor
method, which consists in assigning the value attached to the nearest neighbor. In the
previous illustration (where the transformation is not based on self-similarity), the
results of the interpolation with K = 1 and K = 5 are displayed in Fig. 3c and d,
respectively. One can observe that using more than 1 neighbor prevents noise in some
areas of the resulting image. Nevertheless, using too many neighbors could lead to
overly “smooth” images. In the following, the number of neighbors is set to 5.

4.2 Setting the Space Deformation

The two main ingredients used for self-similarity-based warping are transformations
and magnification fields (Keahey and Robertson 1997). In this section, these notions
are introduced for the bi-dimensional case. The generalization in three dimensions is
straightforward.

A space deformation is described by a transformation 7', a function from R? to R?
defining the displacement of the pixels in the grid

T:(x,y)— T(x,y) = (Ta(x, y), Ty (x, y)). &)
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The determinant of its Jacobian matrix
0 ,
My =det(DT) = — - — — — . —=, (10)
X

gives the associated magnification field (i.e. the magnification rate in every point in
R2) associated to 7.

In the context of self-similarity-based warping, the user selects a pixel x¢ in an
image and specifies a magnification rate to be applied to similar regions. The aim at
this point is to: (i) construct a target magnification field M (defined on the grid nodes)
based on the dissimilarity map and the desired magnification rate f (expansion or
compression), and (ii) find a transformation 7' for which the associated magnification
field Mt is close to M.

Self-similarity-based warping is illustrated in Fig. 4. Given the input image (Fig. 4a)
and the reference pattern (in red), the dissimilarity map (Fig. 4b) is computed, and
a target magnification field (Fig. 4c) is determined from the dissimilarity map and
according to the user inputs (see Sect. 4.2.1 for details). Then, a space deformation
(Fig. 4d) is computed from the target magnification field. The grid dots in Fig. 4d
correspond to the new locations of the center of each grid cell. The output image
(Fig. 4e) results from the interpolation of the original values at these new locations
onto the original grid (see Sect.4.1). The computation of the space deformation (shown
in Fig. 4d) is done by an iterative process (see Sect. 4.2.2): the evolution of the error
is shown in Fig. 4f.

4.2.1 Target Magnification Field

If £2 denotes the domain in R? on which the image is defined, the target magnification
field M on £2 should verify the following properties. All magnification rates have to
be positive: M (x, y) > O for all (x, y) € £2. A value greater than 1 corresponds to an
expansion and a value less than 1 to a compression. The target magnification field M
should be associated to a transformation mapping the image grid £2 onto itself

f M (x, y)dxdy =/ dxdy(= Area(£2)), (11)

2 2

(i.e., the expansion and compression regions should be balanced). Let
G={Gj)i=1,....,Ne,j=1,...,Ny}, (12)

be the set of grid nodes (pixel) of the initial image of size N, x N,. Each pixel
represents an area of 1, and the previous properties are expressed as follows

M@, j)>0,i=1,....,Ny, j=1,..., Ny, (13)
and

Nx N)’

> > M. j)= Ny N,y. (14)

i=1 j=1
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(a) input image (b) dissimilarity map (c) target magnif. field
- - 1.0 2.0
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(d) space transformation (e) output image f)
—0.4
-0.6
Im
w0
S-08
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0 300 600 900 1200
iteration

(g) zoom in view of input image, space transformation and output image

Fig.4 Self-similarity-based warping: a input image (114 x 114); b dissimilarity map; ¢ target magnification
field M for f = 2.0, and 11 = 0.2, 1 = 0.9; d space transformation; e output image; f evolution of the
error [Eq. (16)]; g zoom in views around the 3 x 3 reference pattern (in red)

To construct the target magnification field M from the dissimilarity map dis
(Sect. 2), three input parameters are required: two threshold values 0 < #; < £, < 1,
and a magnification rate f > 0. The thresholds are used to divide the grid G into three
regions: Gdis«] ={(, j) : dis(i, j) < t1}, Gzlgdisgzz and GdiS>t2 (defined simi-
larly). Then, the magnification rate is set to the specified rate f on G gjs_,,  the region
considered as similar to the selected pattern, to 1 on GdiS>t2’ region not modified,

and to f on G, <dis<n f being computed such that the property (14) is verified. It
follows that

. |G disy, |

f=1+ (L= 1), 15)

}Gn <dis<n

where | - | denotes the cardinality (number of elements). The idea is to use the region
G, <dis<s,> around Ggis_, . to compensate the specified magnification. Note that
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there is a constraint on the choice of the input parameters #1, t> and f, because the
magnification field must be positive on the whole grid (13). Hence, if the value of
M computed on the area G, dis<,, 1S negative or vanishes, the input parameters are
rejected, and the user should decrease f or 71 or increase ;. Note that if one defines
1y =1, the set Ggjs.,, is empty, and then the complementary set of G gjs_,, is used
for balancing the magnification field.

4.2.2 Computing a Space Transformation

Once the target magnification field M is constructed, one must find a transformation
T for which the corresponding magnification field M7 = det(DT) is close to M.
While the magnification field of a given transformation is straightforwardly computed
by calculating the determinant of the Jacobian matrix, the reverse is not obvious. This
is done iteratively, by the following steps (Keahey and Robertson 1997)

(1) Initialize T = identity.

(2) Compute field M7.

(3) Compute the error field Mg = M — Mr.

(4) Compute the Root Mean Squared Error (RMSE)

Ny Ny 2

[IMEg|| = (16)

i=1 j=1
(5) If the error ||ME|| is below a given tolerance, accept T, otherwise update T and
go to step 2.

A maximal number of iterations is set, and if the error Mg is stabilized over the last
iterations, one also exits the loop. Moreover, one can accept an error tolee) on each
grid cell (pixel) by replacing the error Mg (i, j) = M(i, j) — Mt (i, j) in step 3 by

MEg(i, j) = sign(M (i, j)—Mr (i, j)) max (M, j) — Mz (i, j)| — toleer, 0) . (17)

In step 2, the derivatives of 7 must be computed to retrieve M7 [see Eq. (10)] at
each pixel (i, j). The derivatives according to x are estimated by

L, j) ~@TG+1,)—TG—1,j)/2 for 1 <i <Ny, 1<j<N,y,
(1,j) ~TQ,j)—T(,)) for 1< j <Ny,
8L (Ny, j) ~ T(Ny, j) — T(Nx — 1, j) for 1< j < Ny,

and the derivatives according to y by

GG ATGj+D=TG0j—1D/2 for 1<i<Ny, 1<j<N,
%(i, ) ~T@G,2)—TGaG1) for 1 <i < Ny,
SN ~ TNy =TGNy = 1) for 1 <i < N,.
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The most delicate task is to update 7 in step (v) when the target magnification is
not reached. To decrease the error, the transformation 7' can be modified by moving
the (at maximum) 4 neighbors 7 — 1, j), T(i,j — 1), TG + 1, j), T(i,j + 1) of
T (i, j) alittle bit away from (resp. closer to) 7' (7, j) if the error Mg (i, j) is positive
(resp. negative). One proceeds as follows:

1. Initialize the displacement vector V (i, j) = (V. (@, j), Vy(, j)) = (0, 0) for all
pixels (i, j) in G.

2. Visiting all pixels (7, j) in G, update the displacement vector at each neighbor
pixel as follows. If Mg (i, j) > 0

VGi+1,j)«—Vi+1j)+a MG, j)-(TG+2,j)—TG0+1,))),
Vi-1)) <= VGi-Lj+a MG j) (TGC-=2,j)=T0-17)),
Vi, j+ D) «— VG, j+D4a-MeG, j) (TG j+2)—TG3 j+1)),
Vi, j=1D) «—= V@i, j—-D+a-MgG j)- (TG j—=2) T3 j—1),

andif Mg(i, j) <O

Vi+1,j))<«—V>i+Lj)+a-Mg@,j) - (TG+1,j)—TG, j)),
Vi—-1)«—Vi-1j))+a MG j) - (TG—-1,j)=TG3 )),
Vi.j+ 1D <= VG j+D+a MgG j) - (TG j+1)—=TGaJ))),
Vi, j=D «—=VG,j—-D+a MG j)- TG j—1)—=TG30)),

with a positive factor «. Note that the expressions in which one pixel index falls
out of the grid G are not applied.
3. Update T, ensuring that the nodes on the borders of the grid remain on the borders

Ti(i, j) «— Tx(i, j) + Vi (i, j), for1 <i < Ny, 1 <j <Ny,
Ty(i, j) <— Ty, j) + Vy(, j), for 1 <i < Ny, 1< j < Ny.

Note that the displacement vectors V (i, j) are reduced if needed, to ensure that
the spatial order of the pixels is maintained.

Self-similarity-based warping is illustrated in Fig. 4. A magnification rate of f = 2
and the threshold values #; = 0.2 and t, = 0.9 are used.

S Further Examples

In this section, some examples showing the practical application of the proposed
techniques are presented.

First, the painting process can be used to adapt the proportion of each category for
discrete images or to adapt the distribution of values for continuous images, while
controlling which spatial features of the input image need to be kept or modified.
For example, in Fig. 5, the proportion of the blue and green facies are modified by
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(a) input image (b) blue paint, t = 0.25 (c) blue paint, t = 0.5

(d) green paint, t = 0.25 (e) green paint, t = 0.5  (f) facies proportion
a b C d e

25.4% | 25.4% | 25.4% | 25.4% § 25.4%

Fig.5 Painting examples (114 x 114 categorical image, 5 x 5 reference pattern in red): a input image; b—e
output image for different settings (zpew = O for blue paint, znew = 1 for green paint); f facies proportion
for each case

(b) 2znew = 220,t=0.2 (€) znew = 220, t = 0.7
- s _

250 L‘{ 3 %\h_(\j 250 250
200 >9 @Z/_‘@c 200 200
150 | |EEASEE , 150 150
100 100 100
50 50 50
0 0 0

(€) znew = 110, t = 0.7
250 Y 20
200 < 200
150 bl i 150
100 == 100
50 50
0 J - 0 "0 50 100 150 200 250

Fig. 6 Painting examples (200 x 200 continuous image, 7 x 7 reference pattern in black): a input image
(Z(xg) = 155); b—d output image for different settings; f cumulative distribution function for each case
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(a) input image (b) output image

80

99 10 20
30 40 s¢ 0 1
80
90

Fig.7 Painting example for a three-dimensional categorical image (100 x 94 x 60, courtesy of TOTAL): a
input image; b output image (new facies paint (red), threshold # = 0.27); e¢—d section views going through
the center of the 3 x 3 x 5 reference pattern (in black) for the input and output images

changing the color of the paint (zpew) and the threshold value (7). Similarly for the
continuous case, the distribution of values is altered (Fig. 6).

The painting process can also be used to add a new facies to a categorical image
to distinguish spatial structures. A three-dimensional example is displayed in Fig. 7,
where a new facies is assigned at the top of the inner part of the channels.

Alternatively, the warping process allows a modification of the sizes of spatial
features. For example, it is used to modify the thickness of channels in example of
Fig. 8. Selecting a pattern in a channel, a magnification rate greater (resp. smaller)
than 1 allows one to make the channels thicker (resp. thinner). Notice that although
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(a) input image (b) expansion, f =2

(¢) compression, f =1/3 (d) facies proportion

Fig.8 Warping example (1101 x 551 categorical image, 5 x 5 reference pattern in red): a input image (Lena
River, from Landsat 7 image, USGS/EROS and NASA Landsat Project); b—c output image after expansion
and compression (11 = 0.5, tp = 1.0); d facies proportion in each case

the thickness of the channels is variable within the input image (Fig. 8a), the proposed
method is able to reduce it without breaking the channels (Fig. 8c).

The last example (Fig. 9) illustrates the warping process in three dimensions with
a continuous image. Applying an expansion (magnification rate greater than 1) on the
regions with low values allows a “swelling” of the blue area.

5.1 Computational Performance

All the examples and illustrations in this paper are produced running parallel code with
4 threads on a quad-core machine (Intel(R) Core(TM) i7-4810MQ CPU @ 2.80 GHz).
All the results have been obtained in less than 0.1 s (real time), except for the three
last examples: about 1 s and 2 s for the three-dimensional examples (Figs. 7, 9 resp.),
and about 5-65s for each output image of Fig. 8.

Whereas editing images by painting is straightforward, editing by warping is more
CPU-demanding because of the iterative procedure for computing the space transfor-
mation (Sect. 4.2.2). However, as shown in Fig. 4f, the error is strongly decreasing
in the beginning of this iterative procedure, and then diminishes slowly. Hence, one
can reduce the maximal number of iterations, and re-edit the output image if needed.
Nevertheless, satisfactory results can often be obtained after only a few iterations.

6 Conclusions

The proposed methods allow the user to edit bi- or three-dimensional, categorical or
continuous, stationary images, while keeping spatial features consistent. The methods

@ Springer



Math Geosci (2019) 51:109-125

123
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(b) output image
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Fig.9 Warping example for a three-dimensional continuous image (70 x 60 x 30): a input image; b output
image (f = 3,1t = 0.2, tp = 1.0); ¢ distribution of values for the input and output images; d—e section
views going through the center of the 3 x 3 x 3 reference pattern (in black)

are based on self-similarity following two different modes, painting and warping,
and provide interactive tools. The results are intuitive and few parameters, easy to
understand, are required in input. In both modes, the user selects in the image a pattern
representing the type of structures she or he wants to modify. The rate of dissimilarity
to this pattern is computed everywhere in the image. In painting mode, all the grid
nodes having a dissimilarity rate below a specified threshold 7 are directly modified
by using a painting value (zZnew). In warping mode, a space deformation is applied
to the image grid, and the values are then re-interpolated onto the initial grid. The
space transformation is iteratively computed such that the associated magnification
field, which is given by the determinant of the Jacobian matrix, matches a target field
defined by a specified magnification rate f and two thresholds #; < ;. The target
rate is set at each grid node to f if the dissimilarity rate is below #; (region similar
to the picked pattern), to 1 if it is above #, (frozen zone), and otherwise to a value
automatically computed to have a consistent field.

Based on self-similarity, these methods are designed for stationary images. Never-
theless, as the transformations are applied everywhere the image presents a structure
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similar to that of the selected pattern, these techniques are still consistent for images
displaying some non-stationarities. Then, as multiple point statistics techniques can
handle non-stationary training images, see for example Chugunova and Hu (2008),
Mariethoz et al. (2010), Straubhaar et al. (2011), the proposed tools can also be useful
in this case.

The computational time is rather low and these tools can be used interactively.
A graphical user interface (GUI) could be developed for these tools, in particular to
enable direct pattern picking on the view of the input image. In addition to viewing
of the output image, histograms and other statistical measures could be integrated to
offer better control of the editing processes.

The proposed tools give the user enhanced flexibility to set up the inputs required
by multiple point statistics algorithms. They allow a pre-processing step consisting in
adapting the training image to better fit some features desired in the output realiza-
tions, such as the facies proportions or the thicknesses of some spatial structures. For
geologist users of multiple point statistics, assessing whether the resulting training
image is satisfying largely relies on subjective criteria. In this context, the methods
described in this paper, combined with statistical measures and used in an iterative
manner, can be helpful tools.

Alternative uses of the proposed tools can be envisioned. Self-similarity-based
editing processes may be applied to an interpreted geological model (i.e., the output
of a modeling procedure). For example in mining applications, several models can be
generated from an existing model by moving the geological contacts whose positions
are uncertain (Boucher et al. 2014). In the same vein, such tools may also be integrated
into procedures aimed at solving inverse problems in hydrogeology (Li et al. 2015;
Jaggli et al. 2017): whatever the stochastic algorithm used to generate the parameter
field, at each step, a realization can be slightly modified to increase its likelihood,
given some observation data. The way to perturb a realization (i.e., the set-up for the
editing process) should then be automated.
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