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a b s t r a c t

Multiple-points statistics (MPS) allows to generate random fields
reproducing spatial statistics derived from a training image. MPS
methods consist in borrowingpatterns from the training set. There-
fore, the simulation domain is assumed to be at the same resolu-
tion as the conceptual model, although geometrical deformations
can be handled by such techniques.Whereas punctual conditioning
data corresponding to the scale of the grid node can be easily inte-
grated, accounting for data available at larger scales is challenging.
In this paper, we propose an extension of MPS able to deal with
block data, i.e. target mean values over subsets of the simulation
domain. Our extension is based on the direct sampling algorithm
and consists to add a criterion for the acceptance of the candidate
node scanned in the training image to constrain the simulation to
block data. Likelihood ratios are used to compare the averages of
the simulated variable taken on the informed nodes in the blocks
and the target mean values. Moreover, the block data may over-
lap and their support can be of any shape and size. Illustrative ex-
amples show the potential of the presented algorithm for practical
applications.
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1. Introduction

The multiple-point statistics (MPS) methods have become very popular in earth sciences, because
they allows to generate highly heterogeneous random fields reproducing the spatial statistics of a con-
ceptual geologicalmodel, the training image, given by the user. Thesemethods overcome some limita-
tions of classical geostatistical simulation techniques based on two-point statistics: variogram-based
methods such as sequential Gaussian simulation, sequential indicator simulation (sisim) (Deutsch and
Journel, 1998), transition probability based approaches such as TProgs (Carle, 1996), or Markovian-
type categorical prediction (MCP) based on amaximum entropy principle (Allard et al., 2011). Among
the existing MPS simulation algorithms, snesim (Strebelle, 2002) and impala (Straubhaar et al., 2011,
2013) successively populate each node of the simulation grid by randomly drawing a facies category
according to a probability distribution conditioned to the data event centered at the simulated node,
computed from a catalog of patterns found in the training image. A storage based on a tree struc-
ture is used in snesim ensuring computational time efficiency, and a list-based catalog employed in
impala guarantees low memory requirements. Using a catalog implies to consider only categorical
variables and patterns of fixed geometry. A multiple grid approach (Tran, 1994) is employed in theses
algorithms to capture large scale structures while keeping data events of reduced size. On the other
hand, the direct sampling algorithm (Mariethoz et al., 2010) is a distance-based MPS algorithm. To
simulate a node, the method consists in randomly scanning the training image until the pattern in
the training image is compatible with the pattern retrieved from the simulation grid and centered at
the simulated node. Then, the central node value is copied and pasted from the training image to the
simulation grid. The compatibility between two patterns is related to a distance. This basic simula-
tion principle leads to a very flexible method. Indeed, not using any catalog of patterns, categorical
as well as continuous variables can be considered by defining an appropriate distance between data
events, and the geometry of the patterns can vary during the simulation allowing to reproduce large
scale structures without using a multiple grid approach. In particular, punctual conditioning data can
be simply assigned in the simulation grid at the beginning of the simulation, whereas methods based
on a multiple grid approach implies some precautions to properly address punctual data (Straubhaar
and Malinverni, 2014). Distance-based MPS algorithms include also techniques consisting in pasting
patches of the training image in the simulation grid at a time instead of only one pixel value, such as fil-
tersim (Zhang and Journel, 2006) or simpat (Arpat and Caers, 2007). These latter methods use patterns
database built from the training image and are also based on multiple grid approaches. Other patch-
based MPS algorithms not using multiple grids nor databases consist in pasting overlapping boxes of
pixels along a raster path, by minimizing a cross-correlation function over the overlapping region in
the algorithm ccsim (Tahmasebi et al., 2012), or byminimizing an error between the common area fol-
lowed by an optimal cut through this area in the algorithm conditional image quilting (CIQ) (Mahmud
et al., 2014). Theses methods allow to better model the connectivity of the structures, but make the
conditioning difficult. Therefore, the direct sampling method is appealing due to its simplicity and its
flexibility. In particular it can easily be extended to the simulation of multivariate fields (Mariethoz
et al., 2010, 2012), providing an intuitive tool to manage various types of nonstationarities.

NomatterwhatMPS technique is considered, the simulation domain is filled by borrowing patterns
from the training image, which is assumed to have the same resolution as the simulation grid. Hence,
whereas punctual conditioning data (corresponding to the scale of the simulation domain) can be
straightforwardly handled, conditioning a simulation at local scale with data defined at a larger
scale is quite challenging. Classical parametric methods based on covariance models can be used to
integrate data with different support sizes (Liu and Journel, 2009; Journel, 1999). Essentially based on
cokriging theory, such techniques nevertheless require point-to-point, point-to-block and block-to-
block (cross-) covariance models and imply Gaussian assumptions.

In this paper, we propose an extension of the direct sampling algorithm able to deal with block
data, i.e. target values for the average of the simulated variable on subsets of the simulation domain.
The principle is to use the block data as a criterion for accepting a candidate location in addition to the
comparison of the patterns. The current averages accounting for the already simulated pixels in the
blocks plus the candidate value are compared to the target mean values and then a related mismatch
for each block data is computed. Indeed, we follow a similar strategy as for multivariate simulations
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(Mariethoz et al., 2010), where a mismatch (distance) between the training and simulated patterns
is computed for each variable. As several mismatches are computed, the condition for accepting
a candidate node has to be defined. One can define a global misfit as a weighted average of the
considered mismatches and check if it is below a certain threshold, as in the original direct sampling
algorithm. This requires to specify a weight per mismatch and a global threshold. Another option is
to specify a threshold per compared quantity, and accept the candidate value when each mismatch
is less than its corresponding threshold. To develop our extension, we use an implementation of the
direct sampling, called DeeSse (Straubhaar, 2015), based on this latter alternative.

It is important to highlight the differences between block data and local probability constraints.
Local probability constraints are classically given by probability maps, which gives at any point of
the simulation domain the probability of having a given category (facies) in a certain neighborhood.
These maps are related to an underlying fixed support size, and represent moving local probabilities
or proportions. Such constraints are designed for categorical variables and are handled in classical
techniques (Liu, 2006; Krishnan, 2008) by using probability aggregation methods (Allard et al., 2012).
Mariethoz et al. (2015) proposed a method to constrain distance-based MPS methods, such as the
direct sampling algorithm, to such local probability constraints. On the other hand, although block
data for binary variables can be viewed as proportion constraints, block data are defined on fixed
groups of nodes of any shape, on which target mean values are given. Moreover, for block data
conditioning to make sense, the simulated variable can be either continuous or discrete, provided
that it does not represent arbitrary category codes.

Downscaling or increasing the resolution of an image is a classical example where the support of
the data (input coarse scale image) is larger than the resolution of the output image. Mariethoz et al.
(2011) developed a super-resolutionmethodwhich consists in using the direct sampling algorithm to
generate small-scale structures from the patterns found in the coarse scale (training) image. This tools
assumes that the spatial structures have a property of scale invariance also called fractal property.
Tang et al. (2015) propose to downscale remotely sensed images accounting for available images at
different resolutions, using filtersim asMPS algorithm at coarse scale, combinedwith an area-to-point
cokriging method to integrate the fine scale information.

More generally, the algorithmpresented in this paper forMPS simulation accounting for block data
can be used in a range of applications, not restricted to downscaling, where a conceptual model for
the fine scale is known and the available conditioning data are defined on support of varying size
and shape, larger than the resolution of the simulation domain. In its current implementation, the
proposedmethod assumes that the block data are defined as the arithmeticmean of the values located
within a block of known geometry. In practice and in certain situations, the block values are defined
in a more complex manner, especially for non-additive variables such as permeability. Nevertheless,
our method can still be useful to generate simulations that offer an approximation of the fine-scale
structures.

This paper is organized as follows. In Section 2, some background information on the direct
sampling algorithm is given. Then, in Section 3, block data are defined and we present how the
algorithm is extended to account for block data. The manner the block data constraints are treated
is presented in detail in Section 4. In Section 5, a multiGaussian test case is presented. MultiGaussian
simulation offers a well-known framework, where the random fields are entirely described by an
analytical covariance model which is used for the simulation. Hence, expected results are known and
provide a point of comparison to study the performances of the proposed method. Then, application
examples displaying more complex structures and justifying the use of MPS are given in Section 6.
As illustrations, we apply the proposed method to simulate log-permeability fields in a downscaling
context and in a situation where conditioning data are available at three different scales. In another
synthetic example, we propose to model the subsurface geology conditionally to geophysical data.
Finally, the method is discussed in Section 7.

2. Basic direct sampling algorithm

The basic principle of the direct sampling technique (Mariethoz et al., 2010) for simulating a node
x in the simulation grid is to compare the pattern (or data event) d(x) centered at x with patterns of
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same geometry d(y) centered at random locations in the training image (TI), until d(x) and d(y) are
sufficiently similar. For univariate simulation, the direct sampling algorithm requires in input a TIwith
a unique variable Z , a simulation grid (SG), a normalized distance D used for comparing two patterns,
and the three following parameters:

• n: maximal size of the patterns;
• t: threshold: two patterns are considered similar if the distance between them is below t;
• f : maximal scan fraction f of the TI for the simulation of each node.

The algorithm consists in simulating the variable Z in the SG as follows. First, conditioning punctual
data (if present) are assigned in the SG and a random path visiting all non informed nodes in the SG
is defined. Then, each node x along this path is simulated by applying the steps (a–d) below.

(a) Retrieve the pattern

d(x) = {Z(x + h1), . . . , Z(x + hn)} (1)

in the SG, made up of the maximal n closest informed neighbors of x.
(b) Set Ecur = ∞ (best current error), ycur = NA (best current candidate), and fcur = 0 (current

scanned fraction of the TI).
(c) While Ecur > 0 and fcur < f do:

(i) Sample randomly a location y in the TI (not already visited during the while loop).
(ii) Retrieve the pattern d(y) = {Z(y + h1), . . . , Z(y + hn)} in the TI, and compute the error

E = max

0,

D(d(x), d(y)) − t
t


. (2)

(iii) If E < Ecur , then set Ecur = E and ycur = y.
(iv) If Ecur = 0, exit the while loop.
(v) Update the current scanned fraction fcur (by adding the inverse of the number of nodes in

the TI).
(d) Assign Z(x) = Z (ycur).

According to the definition (2) of the error E, we have E = 0 if and only if D(d(x), d(y)) 6 t . In that
case, the scan of the TI is interrupted (step (iv)). If this condition is not reached, the best candidate
ycur (i.e. giving the smallest error) met so far is retained (step (iii)). Moreover, note that decreasing
the maximal scan fraction f allows to save computational time, and specifying f < 1 (i.e. excluding
an exhaustive scan of the TI) can be useful to avoid ‘‘verbatim copy’’, i.e. exact copies of part of the TI
(Meerschman et al., 2013).

The distance D is normalized such that D(d(x), d(y)) falls in the interval [0, 1] for any pair of
patterns, so that the threshold t required in input should be in ]0, 1] in any situation. The definition
of the distance depends on the type of the simulated variable. Typically, if Z is a categorical variable,
the distance can be defined as the proportion of mismatching nodes,

D(d(x), d(y)) =
1
n

n
i=1

ai, with ai =


0 if Z(x + hi) = Z(y + hi),
1 otherwise. (3)

For a continuous variable Z , one can use the Manhattan distance

D(d(x), d(y)) =
1

max
y∈TI

Z(y) − min
y∈TI

Z(y)
 ·

1
n

n
i=1

|Z(x + hi) − Z(y + hi)| . (4)

Note that conditional punctual data, if present, are supposed to be within the range of values present
in the TI.
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3. Algorithm accounting for block data

Initially designed for continuous variables, block data can be considered for categorical variables as
well. In this situation, a unique numerical value is assigned to each category. These values should have
a physical signification, so that they can be arranged in order. Under these conditions, the distance (3)
can still be used for comparing patterns.

Considering a variable Z in the SG, a block data is defined by a triplet (B, µB, tB) where:

• B is a set of nodes (pixels) in the SG,
• µB is a target value for the mean of the variable Z over the nodes in B,
• tB is a tolerance corresponding to the half length of a target interval [aB, bB] containing µB: the

block data is considered as honored if the mean of Z on B is within this interval.

The target interval [aB, bB] is defined in Section 4.1. Defining the tolerance at left and the tolerance at
right respectively as

tB,left = µB − aB > 0, (5)

tB,right = bB − µB > 0, (6)

the target interval can bewritten [µB−tB,left , µB+tB,right ]. Note that by definition, tB,left +tB,right = 2tB.
Considering a set of block data, the aim is to simulate the variable Z in the SG such that the

spatial structures present in the TI are reproduced and each block data respected. The idea is to adapt
the direct sampling algorithm above, by adding a condition related to the block data constraints to
interrupt the scan of the TI, i.e. exit thewhile loop (step iv). During the scan of the TI for the simulation
of a node x in the SG, the current mean over each block containing x is computed accounting for
the informed nodes which are already simulated (or punctual data) within each block and for the
candidate value Z(y) at x. For each block B containing x, the current mean is compared to the target
mean value given in input and an error EB according to the specified tolerance is computed. The error
E (Eq. (2)) in step (ii) of the algorithm presented in the previous section is then updated by adding
each of these errors. More precisely, the following step (ii’) is inserted after the step (ii).

(ii’) For each block B containing the node x:
• Compute the current mean on the block B accounting for the candidate node y,

µ∗

B(y) =
1
k


k−1
i=1

Z

x(i)
B


+ Z(y)


, (7)

where

x(1)
B , . . . , x(k−1)

B


are the set of informed nodes in block B.

• Compute an error for the constraint on block B,
EB = EB


µB, µ

∗

B(y), tB,left , tB,right


(8)
depending on the targetmean valueµB and the tolerances at left tB,left and at right tB,right derived
from tB.

• Then, update the error E:
E = E + EB. (9)

The error EB is defined (Section 4.2) such that it is a positive value and vanishes if the current mean
µ∗

B(y) is within the target interval [µB − tB,left , µB + tB,right ]. Thus, the scan of the TI is stopped in step
(iv) once D(d(x), d(y)) 6 t and EB = 0 for each block containing x. Note that during a simulation, the
means on every blocks are stored and simply updated after the simulation of each node. Hence the
computation of µ∗

B(y) is very fast.
It is worth to notice that following this principle allows to deal with several specific constraints:

a global error expressed as a sum of specific errors is computed, reflecting the desired conditions.
For example, for multivariate simulation, an error related to the comparison of the patterns for
each variable is defined similarly to (2), each variable having their own distance type, data event
and threshold. Block data can then be considered in multivariate simulation, and each variable can
be constrained by block data. The tolerance related to a block data and the threshold applied to
the comparison of patterns play a similar role and allow to give more or less importance to the
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corresponding constraints. This strategy for dealing with multiple constraints (e.g. patterns similarity
or block data) and consisting in computing an error for each of them is implemented in a version of
the direct sampling technique called DeeSse (Straubhaar, 2015). Then, the condition for accepting a
candidate scanned node in the TI is that the global error, defined as the sum of the specific errors,
becomes zero, which means that all constraints are honored. The original version of the direct
sampling algorithm (Mariethoz et al., 2010) differs fromDeeSse in that a unique threshold is applied to
a global misfit expressed as a weighted average of the misfit (or distance) related to each constraint.
In any case, the principle of the block conditioning methodology remains identical with both types of
implementations.

4. Defining the target interval and the error for a block data constraint

In this section, the error EB (8) required by the method is defined in detail.

4.1. Target interval for block data

First, the target interval [aB, bB] = [µB − tB,left , µB + tB,right ] has to be defined. The rationale to not
take a symmetric interval aroundµB (i.e. tB,left = tB,right = tB) is that it would result in a bias regarding
the difference between the a posteriori average value (in the simulation) and the target mean value
µB: the expectation of this difference would not be equal to zero.

Following a rejection scheme, suppose that simulations of a variable Z are performed without
accounting for the block data constraint (B, µB, tB), and then only those for which the average of Z on
the block B iswithin the target interval [aB, bB] = [aB, aB+2tB] are retained. The idea is to determine aB
such that the mean of the average values on B considering the retained simulations is equal to µB. For
that, we estimate the distribution of the mean valueM on the block B (for simulation not conditioned
to block data) by the normal law

M ∼ N

m, s2


, (10)

where the ‘‘block mean’’m and the ‘‘block variance’’ s2 are estimated as

m =
1

NTI,B

NTI,B
i=1

µi and s2 =
1

NTI,B − 1

NTI,B
i=1

(µi − m)2, (11)

µi being the mean on the block BTI,i and

BTI,1, . . . , BTI,NTI,B


the set of all blocks of same geometry

as B and included in the TI. Let Xa be the random variable constructed as M restricted on the interval
[a, a + 2tB]; its density function is defined by

fXa(x) =
fM(x)

FM(a + 2tB) − FM(a)
, a 6 x 6 a + 2tB, (12)

where fM and FM are respectively the density and the cumulative distribution function of the Gaussian
random variable M . The left bound aB of the target interval is then chosen such that the mean of XaB
is equal to µB (Fig. 1), i.e. aB is the zero of the function

h(a) = E (Xa) − µB

= (FM(a + 2tB) − FM(a))−1
·

 a+2tB

a
xfXa(x)dx − µB

= m − µB +

s

exp


−

1
2

 a−m
s

2
− exp


−

1
2


a+2tB−m

s

2
√
2π (FM(a + 2tB) − FM(a))

. (13)
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Fig. 1. Illustration of the target interval for a block data; the dashed line is the density function fM of M ∼ N

m, s2


, with

m the block mean, and s2 the block variance (estimated from the TI); the solid line is the density function fX of X defined on
[aB, bB], fX is proportional to fM ; the bounds aB and bB are set such that bB − aB = 2tB and E(X) = µB , where µB and tB are the
target mean and the tolerance for the block B.

Note that the cumulative distribution function of a Gaussian law can be expressed with the error
function erf,

FM(x) =
1
2


1 + erf


x − m
√
2s


, erf(t) =

2
√

π

 t

0
e−u2du. (14)

As h is increasing and h(µB − 2tB) < 0 < h(µB), the zero of h can be easily computed by using the
bisection method.

Thismanner to define the target interval supposes that themean value on blocks of same geometry
as B in the TI follows a Gaussian distribution, which is a reasonable assumption for stationary TI.When
the target mean µB for a block B in the simulation domain is far from the block mean value m, the
target interval is strongly asymmetric around µB and this allows to avoid significant biases which
would appear in such cases by taking a symmetric interval around µB.

4.2. Error for block data

Once the target interval is known, we have to define the error EB (8) quantifying how far from the
target interval is the current mean on the block B. By the central limit theorem, we know that the
mean Zk of k independent and identically distributed random variables of mean µ and variance σ 2

approximately follows a normal law of samemean and variance σ 2/k, whose probability distribution
function is proportional to

Lµ,σ 2,k(z) = exp


−
k

2σ 2
(z − µ)2


. (15)

This likelihood function can be used to evaluate the probability that a mean z of k values is equal to
µ. Assuming that a value z ∈ [µ − tleft , µ + tright ] is acceptable, the likelihood ratio

Rµ,σ 2,k,tleft ,tright (z) =


Lµ,σ 2,k(µ − tleft)/Lµ,σ 2,k(z), if z ≤ µ

Lµ,σ 2,k(µ + tright)/Lµ,σ 2,k(z), if z > µ
(16)

i.e.

Rµ,σ 2,k,tleft ,tright (z) =


exp


−

k
2σ 2


t2left − (z − µ)2


, if z ≤ µ

exp


−
k

2σ 2


t2right − (z − µ)2


, if z > µ

(17)
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gives a rate less than or equal to 1 for acceptable cases, and a rate greater than 1 otherwise, which can
be used to quantify the ‘‘misfit’’ between z and µ.

For a given block data (B, µB, tB), the tolerance at left tB,left and the tolerance at right tB,right are
computed (Section 4.1), and the idea is to use this ratio to express the error EB. In Eq. (17),µ is set toµB,
tleft and tright are set to tB,left and tB,right respectively, and k to the number of nodes used for computing
the current mean on the block. It remains to define the variance involved in the likelihood. A local
variance σ 2

TI,B is computed such that it reflects the variance of the values within the blocks in the TI
having the samegeometry asB and amean close toµB. Considering all blocksBTI,1, . . . , BTI,NTI,B of same
geometry asB and included in the TI, themeanµi and the standard deviationσi of the valueswithin the
block BTI,i is computed for each i. Indeed, these pairs (µi, σi) form a sample of an unknown bivariate
distribution (M, S), for which we want to get an evaluation σTI,B of the conditional expectation
E (S|M = µb). An approximation is obtained using the Nadayara–Watson kernel estimator (Demir
and Toktamis, 2010)

σTI,B =

NTI,B
i=1

K((µb − µi)/h)

−1

·

NTI,B
i=1

K((µb − µi)/h)σi, (18)

with the Gaussian kernel K(t) = 1/
√
2π · e−t2 , and the fixed bandwidth, automatically computed

according to the ‘‘Silverman’s rule of thumb’’ (Sheather, 2004),

h = 0.9min


Var


{µi}

NTI,B
i=1


, IQR


{µi}

NTI,B
i=1


1.34


· N−1/5

TI,B , (19)

where Var is the variance, IQR is the interquartile range (i.e. the difference between the 75% and
25% quantiles), and NTI,B is the size of the sample. Note that an adaptive bandwidth could be used
by considering h(µi) instead of h in (18) for a more accurate estimation, as proposed by Demir
and Toktamis (2010) for example, but this would imply additional computation to determine the
bandwidth at each point of the sample. The curve for σTI,B as a function of µB is illustrated on an
example in Fig. 8. Note that the computation of the block mean m and the block variance s2 (11), and
the computation of the within block standard deviation σTI,B (18) require only one scan of the TI with
a block of same geometry as B to retrieve the local means µi and local standard deviation σi. This is
done once in a pre-processing step, and to save computational time, one can sample blocks within the
TI to achieve these computations instead of considering the exhaustive list of blocks BTI,1, . . . , BTI,NTI,B .

Then, the error EB in Eq. (8) is defined as

EB = max

0, RµB,σ

2
TI,B,k,tB,left ,tB,right


µ∗

B(y)

− 1


, (20)

where k is the number of nodes (including the candidate node y) used to compute the current mean
µ∗

B(y).
Although the values of the simulated variable on a block are clearly not independent, because they

have to respect the spatial statistics within the TI, the local standard deviation σTI,B defined above
allows to account for the variability of the values at the scale of the considered block in the TI, and
conditionally to the target blockmean value. Indeed, considering the variable Z on local areas in the TI
where themean is close toµB, the stronger the spatial correlation is, the smaller the local variancewill
be. Then, in the case where the target interval containing µB is not reached, the likelihood ratio (17)
and then the error EB (20) will also be larger. Therefore, when the local variability in the conceptual
model is small, the penalization of candidates y (not satisfying the constraint) is large.

Furthermore, using this likelihood ratio approach has the advantage that the error related to block
data constraints depends not only on the specified tolerance, but also on the number k of values
contributing to the currentmean. The error increaseswhen k increases, therefore the simulation of the
first nodes in a block will be less penalized, which is appropriate for block data conditioning because
the aim is not to force the value of the variable at punctual locations. Note also that a block data
constraint is enabled only when the number of informed nodes in the considered block has reached a
minimal proportion of the total number of nodes in the block, i.e. ignoring the constraint below this
threshold. In each example presented in this paper, all block data constraints are always enabled.
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a b

Fig. 2. (a) MultiGaussian simulation of size 100 × 100 with a mean of 0 and an isotropic spherical covariance with a range of
10 pixels and a variance of 1.0; (b) mean values on blocks of 20 × 20 pixels computed from field (a) and considered as target
block data for the multiGaussian test case.

5. MultiGaussian test case

In this section, we use our method for generating multiGaussian fields conditioned to block data.
The aim is to better understand how the method performs in a situation where the theoretical
solution is known because it can be expressed analytically. As a point of comparison, we will also
use multiGaussian simulations based on all the point-to-point, point-to-block, and block-to-block
covariances. The MPS technique is expected to work less efficiently in this situation because it does
not use all this information but only the patterns borrowed from an initial TI having a finite size.

For this test, the covariance model is set to the isotropic spherical model with a range of 10
(pixels) and a variance of 1.0, i.e. the covariance between two pixels with a distance h is given by
C(h) = 1 −


3/2 · h/10 − 1/2 · (h/10)3


if h < 10 and is equal to 0 for h > 10. The mean of the

multiGaussian fields is set to 0. A 100 × 100 unconditional multiGaussian simulation is displayed in
Fig. 2(a), and the corresponding means on blocks of 20 × 20 pixels covering the entire field shown in
Fig. 2(b) are considered as target block data for this test case.

On the one hand,we generate 500multiGaussian simulations conditioned to the blockmean values
of Fig. 2(b) based on cokriging. Let NP = 10′000 be the number of points in the simulation grid,
NB = 25 the number of blocks, and CPP the NP ×NP point-to-point covariance matrix, CPB the NP ×NB
point-to-block covariance matrix, and CBB the NB × NB block-to-block covariance matrix derived by
the covariance model, i.e.

CPP(i, j) = C(∥xi − xj∥), (21)

CPB(i, l) =
1
NB


xj∈Bl

C(∥xi − xj∥), (22)

CBB(k, l) =
1
N2

B


xi∈Bk


xj∈Bl

C(∥xi − xj∥). (23)

To obtain a multiGaussian simulation Y =

Y (x1), . . . , Y (xNP )


conditioned to the block data values

Y =

Y (B1), . . . , Y (BNB)


, we proceed as follows:

(1) generate an unconditional simulation Z ∼ N (0, CPP),
(2) compute the mean on each block Z =


Z(B1), . . . , Z(BNB)


, and

(3) update the field Z by setting Y = Z + CPB · C−1
BB ·


Y − Z


.

Step (1) is done using circulant embedding of the covariance matrix CPP and Fast Fourier Transform
(Wood and Chan, 1994), which provides exact simulations, and step (3) consists in a simple kriging of
the residuals on blocks (Dietrich and Newsam, 1996). One simulation resulting from this procedure,
and the pixel-wise mean over 500 realizations are displayed in the first column of Fig. 3.

On the other hand,weuse the proposedmethod. First, a 1′000×1′000unconditionalmultiGaussian
simulation is generated and is taken as the TI (not shown). Themain parameters of the direct sampling
algorithm are set to n = 12, t = 0.01 and f = 0.1, with the distance (4) (for continuous variable) (see
Section 2), and 500 realizations of size 100 × 100 conditioned to the block mean values of Fig. 2(b)
are generated for the tolerance tB = 0.5, tB = 1.0, and tB = 2.0 (on each block data) respectively. One
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Fig. 3. Results for the multiGaussian test case, using multiGaussian simulation and the proposed MPS method; (1st row) one
100 × 100 realization conditioned to block data of Fig. 2(b); (2nd row) the pixel-wise mean over 500 realizations; (1st col.)
(a,e) multiGaussian simulation; (2nd col.)(b,f) MPS with tB = 0.5; (3rd col.)(c,g) MPS with tB = 1.0; (4th col.)(d,h) MPS with
tB = 2.0.

simulation generated with the proposed method, and the pixel-wise mean over 500 realizations are
displayed for each tolerance value in the second to fourth columns of Fig. 3.

An experimental (omnidirectional) variogram is computed for each realization of each setup
(multiGaussian, MPS with tB = 0.5, tB = 1.0, tB = 2.0), and drawn in Fig. 4 (gray curves). The
variogram model (red curve) is given by γ (h) = C(0) − C(h), C(h) being the covariance model. The
mean value on a block for unconditional multiGaussian simulations follows the normal distribution
N

0, σ 2

BB


, where σ 2

BB is equal to the diagonal coefficients of the block-to-block covariancematrix CBB.
Then, in this situation, we can compute the ‘‘theoretical’’ target interval as a function of the target
mean, according to Section 4.1 with m = 0 and s2 = σ 2

BB. The differences between the average
values on the input blocks for every realization of each setup and the target values (called errors)
are displayed in Fig. 5 and we can observe that all these differences are within the theoretical interval
[−tB,left , tB,right ].

Figs. 3 and 4 show that the proposed method allows to reproduce the structures of the model,
but with a reduced point variance (sill of the variogram). The pixel-wise mean maps are all very
similar. Increasing the specified tolerance tB has a small impact on the results. Indeed, for ‘‘large’’ (resp.
‘‘small’’) target mean valueµB compared to the blockmeanm = 0, increasing tB results in an increase
of tB,right (resp. tB,left ) whereas only a little change will be observed on tB,left (resp. tB,right ). Hence, the
simulations remain conditioned to block data. Although the sill of the variograms increases a little
bit if a larger tolerance is specified, the sill of the covariance model is still greater, which means that
conditioningMPS simulations to block data implies a loss of variability at the pixel scale. Note also that
a little change of slope at dist = 1 can be observed on the variograms of the MPS simulations, which
corresponds to a small nugget effect (less than 0.1) not present in themodel, and that the slope of these
curves seems to stabilize to zero a little further than the range of themodel (dist = 10). However, each
experimental variogram presents a relatively similar shape, depicting the same type of structures.
Finally, recall that the proposedMPSmethod is not designed for amultiGaussian framework, forwhich
an analytical approach is more efficient.

6. Application examples

In this section, themethod is applied on synthetic cases, and the computation of the local standard
deviation (18) required to handle error on a block data constraint is illustrated.
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(a) MultiGaussian. (b) MPS, tB = 0.5.

(c) MPS, tB = 1.0. (d) MPS, tB = 2.0.

Fig. 4. Experimental variograms of the 500 realizations (gray curves), for each case of Fig. 3; (a) multiGaussian simulation;
(b) MPS with tB = 0.5; (c) MPS with tB = 1.0; (d) MPS with tB = 2.0. In each plot the red curve is the variogram model
γ (h) = C(0) − C(h) (spherical with a range of 10 pixels and a sill of 1.0). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

(a) MultiGaussian. (b) MPS, tB = 0.5.

(c) MPS, tB = 1.0. (d) MPS, tB = 2.0.

Fig. 5. Differences between observed and target values (Fig. 2(b)) for the mean on each block over 500 realizations, for each
case of Fig. 3; (a) multiGaussian simulation; (b) MPS with tB = 0.5; (c) MPS with tB = 1.0; (d) MPS with tB = 2.0. In each
plot the target mean values on blocks are in abscissa and the difference ‘‘block mean value on simulation minus target mean
value’’ in ordinate; for each block, the median (red point), the interquartile range (black line), and the minimum andmaximum
(red crosses) over 500 realizations are displayed; the two dashed curves correspond to −tB,left and tB,right , the tolerances at
left and at right of the target mean value computed from theoretical block mean m = 0 and block variance σ 2

BB according to
Section 4.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 6. Training image, 764×239 pixels of units 1.95312×1.5625m, representing a log-permeability field of a braided system.

a b

Fig. 7. Log-permeability reference field: (a) unconditional simulation (using the TI of Fig. 6), 240 × 120 pixels of units
1.95312 × 1.5625 m (same as for the TI); (b) mean values on blocks of 20 × 20 pixels computed from field (a). The color
bar is identical to that of Fig. 6. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

6.1. Simulating log-permeability fields conditioned to block data

Consider the TI displayed in Fig. 6 and representing a log-permeability field in a braided river
environment. The variable values follow a bimodal distribution and present sharp spatial transitions
typical of a channel structure.

First, an unconditional simulation is generated using the distance (4) (for continuous variable)with
the main simulation parameters n = 24, t = 0.05 and f = 0.25 (see Section 2). On this field, consid-
ered as a reference, we compute the average values on blocks of 20 × 20 pixels covering the entire
simulation domain (Fig. 7). As a first application, we propose to use ourmethod to downscale the field
of Fig. 7(b). More precisely, we consider in input the TI of Fig. 6 which depicts the fine scale structures
supposed to be known, and the 72 block data given in Fig. 7(b) (blocks and target mean values).

Let us illustrate on this example how the local standard deviation σTI,B (18) involved in the block
data error (20) is computed. Scanning the TIwith a block of 20×20 pixels, the localmean and standard
deviation (µi, σi) for every block is retrieved. Then, the value of σTI,B for a given target local mean µB
is computed with Eqs. (18) and (19). The joint density distribution (M, S) provided by the sample
(µi, σi), and the curve of the approximations σTI,B of E (S|M = µb) as a function of µB are displayed
in Fig. 8. In this example, the value of the bandwidth given by Eq. (19) is about 8.9 · 10−3.

One hundred realizations are generated using a tolerance tB = 0.5 for each block data, whereas
the simulation parameters are set to n = 24, t = 0.05 and f = 0.25 as before. For each realization,
one computes the a posteriori average value on each block given in input. Results are displayed in
Fig. 9. Two realizations are shown in Fig. 9(a) and (c), and the mean values on the blocks in Fig. 9(b)
and (d) respectively, which can be compared to the input block data (Fig. 7(b)). The pixel-wise mean
(Fig. 9(e)) and standard deviation (Fig. 9(f)) over 100 realizations show the central tendency and the
variability of the simulations. The differences between the a posteriori average values on the blocks
and the corresponding target values are displayed for the set of realizations in Fig. 9(g). The tolerance
at left tB,left and the tolerance at right tB,right is computed as a function of the target mean value
µB as explained in Section 4.1 and the curves −tB,left and tB,right are shown in Fig. 9(g). The plot of
this figure shows that the block data constraints are honored, since the differences are within the
interval [−tB,left , tB,right ] of length 2 · tB = 1.0. One can observe that for ‘‘extreme’’ target values µB,
the differences approximately remain centered on 0 which results from the asymmetry of the target
interval [µB − tB,left , µB + tB,right ]: small tB,right (resp. tB,left ) for small (resp. large) µB.
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Fig. 8. Joint distribution density ofmean (µi along abscissa) and standard deviation (σi , along ordinate) on every 20×20 pixels
block included in the TI of Fig. 6. The black curve shows the values of local standard deviation σTI,B as a function of target mean
µB resulting from Eqs. (18) and (19).

Tests with the same parameters as above are carried out, with a block data tolerance set to tB = 0.1
and tB = 1.0. Results are shown in Fig. 10. Compared to the results obtained with a tolerance of
tB = 0.5 (Fig. 9), a smaller value (tB = 0.1, left column of Fig. 10) results in realizations with
means on blocks closer to the target values and smaller pixel-wise variability. The pixel-wise standard
deviationmap shows smaller values and the pixel-wise meanmap is more contrasted with the blocks
given in input clearly visible. Note that using overlapping blocks, mimicking ‘‘mobile averages’’, could
attenuate the sharp limits around the blocks. On the contrary, one observes very few changes if the
tolerance value is relaxed (tB = 1.0, right column of Fig. 10). As discussed in Section 5, changing the
tolerance value has a small impact for block data with target mean value far from the block mean m
(computed from blocks in the TI) which corresponds to the abscissa value on the plots of Fig. 9(g) or
10(g)–(h) where the interval formed by the dashed lines is symmetric around 0 (i.e. tB,left = tB,right ).

As the method has to deal with multiple constraints, i.e. pattern reproduction and honoring block
data, a trade-off has to be found between the acceptance threshold value applied to the pattern
comparison and the block data tolerance. To illustrate the potential and the flexibility of the method,
we propose a second example using the same TI (Fig. 6) and overlapping input block data of various
sizes. A simulation grid of the same size and same pixel units as in the previous example is considered,
and six disk-shape block data are given in input (Fig. 11(i)), at three different scales: block A containing
5′067 pixels with target mean value (µB) of −2.0, block B with 993 pixels included in block A and a
target mean of −1.7, and blocks C to F constituted of 559 pixels each with target mean values set to
−2.8, −1.5, −1.6 and −2.9 respectively. The aim of this synthetic case is to simulate (log-) hydraulic
conductivity fields accounting for data collected at three different scales provided by e.g. pumping
and slug tests. The same parameters as for the previous example are chosen (n = 24, t = 0.05 and
f = 0.25). Results with a tolerance on each block data of tB = 0.02 and tB = 0.5 respectively are
displayed in Fig. 11. The pixel-wise mean maps are very similar, which shows that the method is
stable. However, the standard deviation map presents smaller value (i.e. less variability at pixel scale)
for the smaller tolerance.

6.2. Application accounting for geophysical data

In this section, we propose to use our method to face a more challenging (synthetic) case. The aim
is to reconstruct bidimensional rock facies maps based on geophysical data. A similar context as in
Lochbühler et al. (2014) is set up. Ground Penetrating Radar (GPR) measurements consisting in travel
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Fig. 9. Downscaling log-permeability data: (a) and (c) one realization conditioned to the block data of Fig. 7(b); (b) and
(d) corresponding mean values on 20 × 20 pixels blocks; (e–f) pixel-wise mean (e) and standard deviation (f) over 100
realizations; (g) differences between observed and target values for mean on each block over 100 realizations: median (red
point), interquartile range (black line), andminimum andmaximum (red crosses); the two dashed curves correspond to−tB,left
and tB,right , the tolerances at left and at right of the target mean value computed according to Section 4.1. For plots (a)–(e) the
same color scale as in Figs. 6 and 7 is used. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

times between transmitter and receiver antennas are considered. The TI with 5 facies in Fig. 12(a) is
used to describe the spatial structures. This image, used by Comunian et al. (2011) for 3D geostatistical
modeling, is derived from one digitized section of the fluvio-glacial aquifer environment at the Herten
site (Bayer et al., 2015). In the original digitized section, 10 facies were defined. As proposed by
Lochbühler et al. (2014), the number of facies is reduced to 5 by regrouping rock types having similar
hydraulic conductivity and porosity, and the facies codes are converted into radar wavespeed. More
precisely, the facies values used are the inverse of the radar wavespeed as explained below.

The TI used in this application is composed of 6 2D layers derived from 6 digitized sections at the
Herten site as explained above. One of these layer is displayed in Fig. 12(a), and each of them is of
dimension 320× 140 pixels and represents an area of 16× 7 square meters (1 pixel = 5 cm× 5 cm).
An unconditional MPS simulation of size 80× 140 pixels (with same units) is considered as reference
(Fig. 12(b)), and 28 transmitter–receiver antennas are placedwith regular spacing onboth sides. Travel
times between each pair of antennas from one side of the domain to the other and describing an
angle of less than 50° compared to the horizontal constitutes the input data (694 pairs, white lines
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Fig. 10. Results obtained by varying the block data tolerance: (left column) results with tolerance tB = 0.1; (right column)
results with tolerance tB = 1.0; (a–b) one realization; (c–f) pixel-wise mean (c–d) and standard deviation (e–f) over 100
realizations; (g–h) differences between observed and target values for mean on each block over 100 realizations: median (red
point), interquartile range (black line), andminimum andmaximum (red crosses); the two dashed curves correspond to−tB,left
and tB,right , the tolerances at left and at right of the target mean value computed according to Section 4.1. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

in Fig. 12(b)). In this synthetic case, we assume straight paths between two antennas, and compute
a mean radar wavespeed along each path. As the average velocity along a path is computed as a
(weighted) harmonic mean of the radar wavespeed in each rock type crossed by the path, inverse
radar wavespeed values are used so that harmonic means are replaced by arithmetic means. Thus, the
facies codes correspond to inverse radar wavespeed values and the input data are arithmetic means
between each considered pair of antennas. In our method, the support of a block data is a subset of
pixels corresponding to one path. Then, for each considered path, the computed mean is attached to
the set of pixels traversed by the corresponding straight line from one antenna to the other. Thus, we
obtain 694 intertwining block data made up of 80–169 pixels depending on the slope of the path.

Ignoring the reference field, 100 realizations are generated using our method. The distance (3)
designed for categorical variables is used to compare two patterns and the simulation parameters of
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Fig. 11. Examplewith overlapping blocks of various sizes. Six input disk-shape block data is considered (i) in input and the TI of
Fig. 6 is used. Results with tolerance tB = 0.02 and tB = 0.5 are shown in the first and second columns respectively: (a–b) one
realization; (c–f) pixel-wisemean (c–d) and standard deviation (e–f) over 100 realizations; (g–h) differences between observed
and target values for mean on each block over 100 realizations (boxplot); the red dashed lines correspond to the tolerances at
left or at right of the target mean value computed according to Section 4.1. Note that same color scale is used in (a–d) and (i)
and for the TI. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

the direct sampling algorithm are set to n = 36 t = 0.05 and f = 0.25 (see Section 2). A tolerance
of 2 · 10−3 is used for each of the 694 block data. The results are displayed in Fig. 13. First, spatial
structures of the TI (Fig. 12(a)) are well reproduced in the realizations (Fig. 13(b) and (c)), which are
slightly noisy. Indeed, when a pixel is simulated, the intertwined blocks implies numerous constraints
additionally to the pattern reproduction, and the method has to face several conditions, which are
honored aswell as possible.Moreover, the pixel-wisemean (Fig. 13(d)) and the occurrence proportion
maps (Fig. 13(e)–(i)) over a set of realizations show the most likely locations for each facies.

We are aware that assuming straight paths between transmitter–receiver antennas is not realistic.
Indeed, to get the propagation of the radar wave, eikonal equation should be solved as done in
Lochbühler et al. (2014). However, to apply our method, we have to define the support (geometry) of
the block data. Because the simulation grid is empty before starting the simulation, we cannot know
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a b

Fig. 12. TI and reference for the application accounting geophysical data: (a) one of the 6 2D layers of the TI, simplifiedmodel of
a section at the Herten site; (b) one unconditional MPS simulation with transmitter–receiver antenna marked by white circles
on both sides, and with straight paths superimposed in white representing the block data (among the 694 paths at total, only
those with the minimal or maximal slope considering each starting and ending point are displayed). In (a) and (b) the same
color scale is used, and the 5 facies correspond to inverse wavespeed values reflecting the hydraulic properties of the rock type.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Results of the application accounting for geophysical data: (a) reference field; (b–c) two realizations generated using
our method (tB = 2 ·10−3 , see text for details); (d) pixel-wise mean over 100 realizations; (e–i) occurrence proportion for each
facies (by color) over 100 realizations. For images (a–d) the same color scale as that of Fig. 12 is used. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

the propagation paths of the radar wave. Thus, without any information, straight paths are assumed.
This approach allows to guide the simulation of the rock type facies and it could be used to accelerate
procedures for the inversion of geophysical data.

7. Discussion and conclusion

In this paper, a MPS simulationmethod allowing to account for data at different scales is proposed.
The technique is based on the direct sampling algorithm (Mariethoz et al., 2010) which consists in
randomly searching in the TI for a pattern compatible to the one centered at the simulated node.
Several constraints in addition to the similarity of patterns can be handled. When scanning the TI, a
misfit according to each constraint is computed and the scan is stopped as soon as all misfits are below
some prescribed values. The proposed method, developed in the DeeSse software (Straubhaar, 2015),
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accounts for block data, that is target mean values for any subset of nodes included in the simulation
grid. The misfit related to a block data is quantified by using likelihood ratios accounting for local
standard deviation of the simulated variable in blocks within the TI, conditionally to the target mean
value. Moreover, the computation of this misfit also depends on the number of informed (already
simulated) nodes in a block. For each block data, a tolerance is specified by the userwhich corresponds
to the half length of a target interval containing the target value for themean on the block. This interval
(not symmetric in general) is automatically defined so that the differences between the a posteriori
average value and the target mean value has a zero mean (unbiased).

The proposed algorithm allows to benefit from the ability of the MPS techniques to generate
complex spatial features, while accounting for data collected at different scales, which is a common
practical problem. Data at the scale of one node (punctual data) or data at larger scale (block data)
can be handled by our method. In its current implementation, the method is designed for block
data expressed as arithmetic mean of the simulated variable on known supports (blocks). The blocks
are defined as subsets of pixels, which may overlap and be of any shape and size. Whereas the
multiGaussian test case shows that honoring block data using the proposedmethod comes at the cost
of a loss of variability at the pixel scale, the synthetic examples presented in this paper demonstrate
the potential of the method in practical applications. Although only 2D cases were chosen for
illustration, the proposed method can also be used for 3D simulations. Finally, extending the method
to deal with non-additive variables is a perspective which will enlarge the range of applications.
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