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Abstract Multiple-point statistics (MPS) allows simulations reproducing structures
of a conceptual model given by a training image (TI) to be generated within a stochas-
tic framework. In classical implementations, fixed search templates are used to re-
trieve the patterns from the TI. A multiple grid approach allows the large-scale struc-
tures present in the TI to be captured, while keeping the search template small. The
technique consists in decomposing the simulation grid into several grid levels: One
grid level is composed of each second node of the grid level one rank finer. Then
each grid level is successively simulated by using the corresponding rescaled search
template from the coarse level to the fine level (the simulation grid itself). For a con-
ditional simulation, a basic method (as in snesim) to honor the hard data consists in
assigning the data to the closest nodes of the current grid level before simulating it.
In this paper, another method (implemented in impala) that consists in assigning the
hard data to the closest nodes of the simulation grid (fine level), and then in spreading
them up to the coarse grid by using simulations based on the MPS inferred from the
TI is presented in detail. We study the effect of conditioning and show that the first
method leads to systematic biases depending on the location of the conditioning data
relative to the grid levels, whereas the second method allows for properly dealing
with conditional simulations and a multiple grid approach.
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1 Introduction

Multiple-point statistics (MPS) allows for powerful methods to generate complex ge-
ological fields in a stochastic framework. The basic principle of MPS methods is to
use a conceptual model given by a training image (TI) displaying the wanted spatial
features. As an application, the realizations of MPS algorithms can be set in input for
flow or transport process (Huysmans and Dassargues 2012). MPS techniques are also
widely used in inverse modeling where some geological conditioning data are avail-
able and some observations of physical processes have to be fit. For example, Ron-
ayne et al. (2008) use MPS in combination with a probability perturbation method
(Caers 2003; Caers and Hoffman 2006). The ensemble Kalman filter is employed for
assimilating dynamic data and updating geostatistical simulations by Hu et al. (2013),
Zhou et al. (2011) and Jafarpour and Khodabakhshi (2011). A frequency matching
method is used by Lange et al. (2012), and Cordua et al. (2012), while Mariethoz et al.
(2010a) and Alcolea and Renard (2010) propose to iteratively re–sample models for
solving inverse problems.

MPS methods allow for integrating a conceptual model, but also has to be able to
honor observed hard data. In MPS techniques, the conditioning strategy to hard data
is a crucial point in order to accurately assess the uncertainty (variability). Special
attention must be taken when simulating in neighborhoods of hard data, as the effects
of a biased conditioning are most visible in those regions. Several algorithms have
been developed since Guardiano and Srivastava (1993) introduced the concept of
MPS, and each of them addresses the data conditioning. The original MPS algorithm
snesim developed by Strebelle (2002) and the more recent algorithm impala proposed
by Straubhaar et al. (2011) use a multiple grid approach (Tran 1994), and then have
to deal with the data conditioning when the conditioning points do not fall on the
coarse grid level, because the methods consist in a pixel-based sequential simulation
starting with that level. In snesim, the hard data are relocated on the current grid level
before simulating it. Accuracy of data conditioning in snesim and its impact on flow
modeling are addressed in Saripally and Caers (2008). Other MPS techniques consist
in sequentially patching patterns provided by the TI, such as in the simpat (Arpat
and Caers 2007), filtersim (Zhang et al. 2006; Wu et al. 2008) or ccsim (Tahmasebi
et al. 2012) algorithms; at each step of the simulation, the patched pattern has to
honor the hard data. In simpat, the pattern is selected among a pattern data base in
two steps by distinguishing the hard data from the previous simulated nodes, whereas
in filtersim weighted distances giving more importance to the hard data are used.
Whereas both algorithms also use a multiple grid approach, ccsim is based on a raster
simulation path. This latter algorithm uses a cross-covariance function to express the
similarity of patterns, and deals with the hard data by splitting the pattern into smaller
regions. Unlike these previous methods, the direct sampling algorithm (Mariethoz
et al. 2010b) straightforwardly addresses the conditioning data. Indeed, the method
consists of a pixel-based sequential simulation where the TI is directly sampled and
an adaptive search neighborhood is used during the simulation. Thereby, no statistics
database, nor multiple grids are needed, and the hard data are simply assigned into
the simulation grid before starting the simulation.
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In this paper, a method for properly dealing with hard data in classical MPS algo-
rithms using a multiple grid approach is proposed. This technique consists in spread-
ing the conditioning data into each multiple grid level by simulation using the statis-
tics inferred from the TI. The method is implemented in impala (Straubhaar et al.
2011; Straubhaar et al. 2013), which also allows for facies connectivity data condi-
tioning (Renard et al. 2011). This paper is organized as follows. In Sect. 2, the prin-
ciples of classical MPS algorithms for unconditional simulations and the concept of
multiple grids are recalled. Then the conditional simulations in Sect. 3 are addressed,
where the proposed method is explained in detail (Sect. 3.1), and the method based
on relocation used in snesim is given (Sect. 3.2). Several tests showing the efficiency
of the proposed method in comparison with the relocating strategy are presented in
Sects. 4 and 5.

2 Multiple-Point Statistics (MPS) Algorithm Based on the Multiple Grid
Approach

In this section, some notations related to MPS algorithms and the multiple grid ap-
proach are introduced.

2.1 Sequential Pixel-based MPS Simulation

A simulation grid G is populated with a categorical variable s by performing a
sequential pixel-based simulation using statistics inferred from a TI. Assume that
the facies codes are s = 0, . . . ,M − 1 and that s = −1 is used as an uninformed
value. A search template τ is defined as a set of relative node locations (offsets)
h1, . . . , hN , 1 ≤ i ≤ N . A facies at a node u is simulated as follows: (1) the data
event d(u) = {s(u + h1), . . . , s(u + hN)} is retrieved from the simulation grid G, (2)
the conditional probability distribution function (CPDF)

P
(
s(u) = k|d(u)

)

= #{v ∈ T I : s(v) = k and s(v + h) = s(u + h) ∀h ∈ τ s.t. s(u + h) �= −1}
#{v ∈ T I : s(v + h) = s(u + h)∀h ∈ τ s.t. s(u + h) �= −1} , (1)

is computed, and (3) used for randomly drawing a facies code at u. Note that the
further informed node is dropped in d(u) until the denominator of Eq. (1) does not
vanish. Thus, for an unconditional simulation, all nodes in G are initialized by set-
ting the value −1, and each node is then successively simulated, conditional to the
previous simulated nodes within a given neighborhood. Note that the computation of
the CPDF (1) is done using a catalog storing the data events found in the TI, which is
scanned only once before the simulation. This catalog is managed with a tree structure
in snesim (Strebelle 2002) and with both list and tree structures in impala (Straubhaar
et al. 2013).
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2.2 Multiple Grid Approach

The multiple grid approach introduced by Tran (1994) allows for capturing the large-
scale structures within the TI while keeping the search template size small. It consists
in considering subgrids at different scales in the simulation grid, and simulating the
nodes from the coarse scale to the fine scale level by using a search template rescaled
accordingly. More precisely, a simulation grid is a boxed-shaped set of pixels with
integer coordinates

G = {
(nx, ny, nz) : 0 ≤ nx ≤ Nx − 1,0 ≤ ny ≤ Ny − 1,0 ≤ nz ≤ Nz − 1

}
, (2)

where Nx , Ny , and Nz are the dimensions along the x-axis, y-axis, and z-axis, respec-
tively. Note that for bi-dimensional simulations, Nz is set to 1. A subgrid is defined
by the offsets (integer lags) lx , ly , and lz between two neighboring nodes along each
direction

SG(lx, ly, lz) = {
(nx, ny, nz) ∈ G : nx ≡ 0 mod lx, ny ≡ mod ly, nz ≡ 0 mod lz

}
.

(3)

For MPS simulations, a number m of multiple grid levels is defined, and the subgrids

SGi = SG
(
2m−i ,2m−i ,2m−i

)
, 1 ≤ i ≤ m, (4)

are considered. Thus, we have SG1 ⊂ SG2 ⊂ · · · ⊂ SGm = G, and the sets

MG1 = SG1, MGi = SGi \ SGi−1, 1 < i ≤ m, (5)

called the multigrids, form a partition of the simulation grid G, and verify the rela-
tions

SGi =
i⋃

j=1

MGj , 1 ≤ i ≤ m. (6)

The simulation proceeds by populating the pixels of the multigrids MG1, . . . ,MGm

successively, that is, from the coarse level to the fine level. The simulation of the
nodes in the multigrid MGi , that is the uninformed nodes in the subgrid SGi , is per-
formed along a random path, by using the rescaled search template

τi = {
2m−i · h1, . . . ,2m−i · hN

}
, (7)

where τ = {h1, . . . , hN } is the initial search template defined on G.
Following this approach, the structures at large scale are simulated first, by us-

ing a search template that covers a wide area while keeping its size small. Note
that a different initial search template τ (before rescaling) can be specified for each
multiple grid level. Indeed, since the fine multigrid contains the major part of the
simulation grid (about 75 % and 87.5 % for bi- and three-dimensional cases, re-
spectively), choosing templates of decreasing size from the coarse to the fine level
allows a lot of computational time to be saved. This does not significantly affect
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the quality of the realizations, because when simulating the fine levels, the struc-
tures at larger scales are already simulated and guide the simulation. Moreover,
note that distinct numbers mx , my , mz of levels can be defined for each axis di-
rection. In this situation, we set m = max(mx,my,mz), define the ith subgrid as
SGi = SG(max(2mx−i ,1),max(2my−i ,1),max(2mz−i ,1)), and rescale the lag vec-
tors constituting the initial search template accordingly.

3 Conditional Simulations

In presence of hard data, we assume that the simulation grid covers every condition-
ing location (given by real coordinates) and that its resolution is fine enough so that
two distinct conditioning points do not fall onto the same pixel. The grid node or pixel
given by the integer coordinates (nx, ny, nz) in G (defined by Eq. (2)) corresponds to
a region [ox +nx · dx, ox + (nx + 1)dx]× [oy +ny · dy, oy + (ny + 1)dy]× [oz +nz ·
dz, oz + (nz + 1)dz] in real space, where (ox, oy, oz) is the origin and (dx, dy, dz) the
resolution of the simulation grid.

To honor the hard data and ensure the spatial continuity of the simulated features,
the hard data must be taken into account during the simulation of every multigrid
level. Then a strategy has to be developed to bring the information of the hard data
up to the coarsest level. In the following, a method implemented in impala using
MPS simulation is proposed in order to achieve this. Then we recall the method
implemented in snesim consisting in relocating the hard data before the simulation
of each subgrid.

3.1 Spreading Hard Data by MPS Simulation

The idea of the proposed method for bringing the information of hard data into each
multigrid level is to use MPS inferred from the TI to ensure consistency with the
conceptual model. In a situation with m levels, the hard data is first assigned into the
simulation grid G = SGm, and the neighboring nodes of the hard data locations in
the subgrid SGm−1 are simulated by using the template τm associated to the scale of
SGm. Then we continue by simulating the neighboring nodes in SGm−2 with τm−1,
and so on. At each scale, the neighboring nodes around the hard data are simulated
by using the template of the scale one rank finer. More precisely, the method consists
in the following steps:

1. Initializing the simulation grid. The variable at each node of the simulation grid
G is set to the uninformed value.

2. Assigning hard data. For each hard datum, its facies code is assigned to the clos-
est node in the simulation grid G = SGm. We note HD following the set of the
informed node locations after this step.

3. Spreading the hard data into the subgrids. For i = m − 1,m − 2, . . . ,1, we suc-
cessively do the following.
(a) We define a set of weak conditioning nodes WDi in SGi as follows. For a

node location u in HD, we define Wi(u) as the set of nodes in the subgrid SGi
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enclosing the node u, that is, if u = (ux,uy,uz) are the integer coordinates of
the pixel u, we set

u−
x = max

{
v ∈N : v ≡ 0 mod 2m−i and v ≤ ux

}
, (8)

u+
x = min

{
v ∈N : v ≡ 0 mod 2m−i and v ≥ ux

}
, (9)

and u−
y , u+

y , u−
z , u+

z similarly, and define

Wi(u) = {
v = (vx, vy, vz) ∈ SGi : vx ∈ {

u−
x , u+

x

}
, vy ∈ {

u−
y , u+

y

}
,

vz ∈ {
u−

z , u+
z

}}
. (10)

Then the set of weak conditioning nodes WDi is defined as

WDi =
⋃

u∈HD

Wi(u). (11)

(b) Then each uninformed node in WDi is simulated using the search template
τi+1, that is, the template corresponding to the scale of the subgrid one rank
finer, SGi+1.

Finally, the simulation continues by populating all the uninformed nodes in the multi-
grids MG1,MG2, . . . ,MGm as described in Sect. 2. For a bi-dimensional simulation
grid with 3 multigrid levels and one hard datum, any situation is similar to one of
the six cases shown in Fig. 1. Note that no conflict occurs when more than one hard
datum lead to a common weak conditioning node in the set resulting from the union
(11) (step 3a), because the facies at the hard data are not considered: The weak con-
ditioning nodes are the locations in a subgrid where a facies will be simulated (step
3b).

It is important to emphasize that no additional computation is required to build
the catalogs of statistics used for simulating the weak conditioning data (step 3b
above). Indeed, these statistics (one catalog per scale of subgrid/multigrid) are needed
for conditional and unconditional simulations, and every catalog is built once at the
beginning and stored in memory until the end of the execution of the program, which
is conceivable through the use of the list structure, cheap in terms of memory use,
and implemented in impala. Hence, this strategy for dealing with conditioning data
is not penalizing in terms of computational time.

3.2 Relocating the Hard Data

A much simpler method for addressing the hard data conditioning is used in snesim.
The main steps of the algorithm with m multiple grid levels for a conditional simula-
tion are the following (Remy et al. 2009):

1. The simulation grid G is initialized by setting every node to the uninformed value;
2. For i = 1, . . . ,m:

(a) Relocate every hard data to the nearest node in SGi .
(b) Simulate every uninformed node in SGi , by using the search template τi (cor-

responding to the scale of this subgrid).
(c) Remove the relocated hard data from SGi if i < m.
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Fig. 1 Spreading the hard data
into all the subgrids.
A bi-dimensional simulation
grid G with 3 multigrid levels is
considered: gray nodes for
coarse multigrid MG1; hatched
nodes for middle multigrid
MG2; white nodes for fine
multigrid MG3. Considering one
hard datum, any situation is
similar to one of the cases
illustrated from (a) to (f): the
black point marks the location
of the hard datum; the green
square is the corresponding hard
data node in G = SG3; the blue
squares are the nodes in WD2
simulated by using the search
template τ3; the red squares are
the nodes in WD1 simulated by
using the search template τ2

Relocating the hard data presents two drawbacks: (1) depending on their location and
the current subgrid level, more than one datum can be relocated on the same subgrid
node, and (2) following this strategy can be inconsistent with the spatial statistics
inferred by the TI. The method is recalled here because it will be compared in the
next sections to the proposed method presented in Sect. 3.1.

4 Illustrative Example

We consider the hand drawn bi-dimensional TI displayed on Fig. 2, of dimensions
640×480 and containing 3 facies. The facies 1 represents channels, the facies 2 some
small structures, and the facies 0 the matrix. We define 10 hard data in a simulation
grid of size 200 × 200, and set the number of multiple grid levels to 5. Although
this number is rather large compared to the dimensions of the simulation grid, it is
chosen to show the effect of the multiple grid approach on the data conditioning, and
it is justified by the large-scale structures depicted by the channels (facies 1). The
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Fig. 2 Training image used for
the tests, 640 × 480, 3 facies

proposed method implemented in impala is compared to snesim: 500 realizations are
generated by both algorithms and the results are shown in Fig. 3. One realization
provided by each algorithm is displayed on Figs. 3a and 3b, and shows that the input
parameters for the simulations give results of similar quality for both algorithms.
The occurrence proportion maps for each facies and both algorithms are shown in
Figs. 3c–3h. We observe that a wider area is frozen around the hard data when using
snesim because of the relocation of the conditioning points in each subgrid level. This
is studied in more detail in the next section.

5 Effect of Conditioning

The purpose of this section is to demonstrate through examples that the proposed
method properly addresses the hard data conditioning, that is, consistent with the
statistics of the conceptual model. For the tests, the previous bi-dimensional TI
(Fig. 2) is considered, because it contains large and small structures (facies 1 and 2,
respectively) and will allow to observe the behavior of the conditioning in the MPS
simulations when hard data values represent different features. For the first examples
(Sect. 5.1), only one hard datum located around the center of the simulation grid is
considered, and the variability (uncertainty) around the datum compared depending
on its location relative to the multiple grid levels. Next (Sect. 5.2), we consider a
dense hard data set and show that the method is stable when using different number
of multiple grid levels.

5.1 Examples with a Unique Hard Datum

As in Sect. 4, the number of multiple grid levels is set to 5 and a 200 × 200 simu-
lation grid is considered. For every test in this section, a unique hard datum placed
in the finest multigrid is considered. Several tests are performed with two different
(but close) locations in the finest multigrid, because it represents the worst case in the
sense that the information of the hard datum has to be spread through all the multi-
ple grid levels. Since only one hard datum is considered, it allows for a comparison
with the rejection method, which consists in generating unconditional simulations
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Fig. 3 Tests with 10 hard data
in a simulation grid of
dimensions 200 × 200, using the
TI in Fig. 2. Results using
impala and snesim are displayed
in the left and right columns
respectively; (a–b) one
realization; (c–h) occurrence
proportion maps computed over
500 realizations for: (c–d) facies
0, (e–f) facies 1, (g–h) facies 2.
The whites circles mark the hard
data locations in each map

and retaining only those honoring the hard datum. For each case, 500 realizations are
generated, using impala, snesim and the rejection method (based on impala).

Figure 4 shows the conditioning strategies of impala (left column) and snesim
(right column), according to the hard datum location given by the black dot. This
location is near the center of the simulation grid and slightly differs between the top
and bottom rows of Fig. 4. Note that the cross-marked node is the pixel of coordinates
(100,100) in the simulation grid G. For impala (Figs. 4a, 4c): the hard datum value
is first assigned to the node containing it; then, the nodes marked by a circle are
simulated using the template at the scale of MG5, the triangle-marked nodes at the
scale of MG4, the diamond-marked nodes at the scale of MG3, and the star-marked
nodes at the scale of MG2. Finally, the remaining uninformed nodes are simulated
from the coarsest multigrid (MG1) to the finest one (MG5). For snesim (Figs. 4b, 4d),
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Fig. 4 Conditioning strategies in impala (left column) and snesim (right column), for two situations (top
and bottom rows) with one hard datum. Each map is a part of the 200 × 200 simulation grid around the
pixel of coordinates (100,100) marked by a cross. The black dot shows the location of the hard datum.
Following the proposed strategy (impala): (a, c) circle-marked nodes: weak conditioning nodes in SG4
simulated at the scale of MG5; triangle-marked nodes: weak conditioning nodes in SG3 simulated at the
scale of MG4; diamond-marked nodes: weak conditioning nodes in SG2 simulated at the scale of MG3;
star-marked nodes: weak conditioning nodes in SG1 simulated at the scale of MG2; following the strategy
implemented in snesim: (b, d) the star, diamond, triangle, and circle mark the relocation of the hard datum
for the simulation at the scale of MG1, MG2, MG3, and MG4, respectively

the hard datum is first relocated to the star-marked node for the simulation of SG1,
then to the diamond-marked node for the simulation of uninformed nodes in SG2, to
the triangle-marked node for SG3, to the circle-marked node for SG2, and finally to
the node containing the black dot for SG5.

The results displayed on Figs. 5 and 6 are obtained with a hard datum value of 1
(channels) located in the simulation grid as shown respectively in the top and bottom
rows of Fig. 4. As expected, the realizations in the first line of Figs. 5 and 6 show
that a channel goes through the hard datum. Moreover, the results obtained by using
the proposed method show that, on average, the location of this channel is centered
on the hard datum (Figs. 5e, 5h, 6e, 6h), same as for the results provided by the
rejection method (Figs. 5d, 5g, 6d, 6g). On the contrary, when using snesim, the hard
datum lies on average on the border of the channel: the upper border (Figs. 5f, 5i) or
the lower border (Figs. 6f, 6i), depending on how the hard datum is relocated onto
the coarsest multiple grid level (Figs. 4b, 4d). The hard datum location between the
two situations differs only from one pixel in the vertical direction, and then very few
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Fig. 5 Results for the situation with one hard datum of value 1 (channel) located as shown in the top row
of Fig. 4. The node containing the hard datum is highlighted with a white circle in every map. (Top row)
One realization (200 × 200) obtained by (a) rejection method, (b) impala and (c) snesim; (middle row)
occurrence proportion map for facies 1 for 500 realizations generated by (d) rejection method, (e) impala
and (f) snesim; (bottom row) (g–i) zoom on the squared area displayed in the previous row

changes are expected locally on the occurrence proportion maps. This is the case
for the rejection method and the proposed method (impala), which provide similar
occurrence proportion maps, but not when snesim is used.

Similar tests are presented in Figs. 7 and 8, but setting the hard datum value to 2
(small structure). The above observations are corroborated by these examples.

Moreover, we compute the size of the geobody containing the hard datum, in num-
ber of nodes, for every realizations. The results are presented with boxplots in Fig. 9
and compared to the size of the geobodies constituted by the facies 2 found in the TI
(Fig. 2). The rejection method and the proposed method (impala) give close results
and the inter–quartile of the geobody sizes is included in the range of the geobody
sizes from the TI, whereas relocating the hard datum (snesim) leads to a systematic
bias; the geobody containing the hard datum covers a larger area, often exceeding
the largest geobody (facies 2) found in the TI. This example emphasizes that the bias
induced by the relocation strategy is significant when the sizes (diameters) of the typ-
ical structures are comparable to the node step (lag between two neighboring nodes)
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Fig. 6 Results for the situation with one hard datum of value 1 (channel) located as shown in the bottom
row of Fig. 4. The display is organized as in Fig. 5

in the coarsest subgrid. Indeed, in this example, the diameter of the geobodies con-
stituted by the facies 2 found in the TI is not larger than 24 = 16, which corresponds
to the node step for the first of the 5 multiple grid levels.

5.2 Examples with a Dense Hard Data Set

A set of 200 hard data in a simulation grid of dimensions 200 × 200, randomly ex-
tracted from an unconditional simulation (reference image) is now considered. This is
then compared with the results of 500 simulations by setting 3 and 5 multiple grid lev-
els and using impala (proposed method) and snesim (relocating strategy). Figures 10
and 11 show the results obtained by using impala and snesim, respectively.

It is observed that the proposed method is stable if the number of multiple grid
levels are changed: The occurrence proportion maps for each facies are quite simi-
lar when using 3 and 5 levels (Figs. 10d, 10e, 10f, and Figs. 10g, 10h, 10i). Hence,
it is also the case for the standard deviation maps of the indicator of each facies
(Figs. 10j, 10k, 10l, and Figs. 10m, 10n, 10o), since the variance of an indicator vari-
able I is equal to the product p · (1 − p), where p is the probability p = P(I = 1)
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Fig. 7 Results for the situation with one hard datum of value 2 (small structure) located as shown in the
top row of Fig. 4. The node containing the hard datum is highlighted with a white circle in every map. (Top
row) one realization (200×200) obtained by (a) rejection method, (b) impala and (c) snesim; (middle row)
occurrence proportion map for facies 2 for 500 realizations generated by (d) rejection method, (e) impala
and (f) snesim; (bottom row) (g–i) zoom on the squared area displayed in the previous row

(and then, the standard deviation is deduced from the occurrence proportion). On the
contrary, Fig. 11 shows that snesim is sensitive to the number of multiple grid lev-
els. If we increase the number of levels, the variability in the simulations decreases;
wider area around the hard data location are frozen (see the regions corresponding to
low values in the standard deviation maps of Fig. 11). Finally, comparing standard
deviation maps in Figs. 10 and 11, we observe that impala allows for more variability
than snesim.

6 Conclusions

In this paper, we propose a method for addressing the hard data conditioning in MPS
algorithms based on a multiple grid approach is proposed. This method consists in
bringing the information of the hard data through all the multiple grid levels accord-
ing to the conceptual model. First, the hard data are assigned to the nearest nodes
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Fig. 8 Results for the situation with one hard datum of value 2 (channel) located as shown in the bottom
row of Fig. 4. The display is organized as in Fig. 7

Fig. 9 Size of the geobody (facies 2) containing the hard datum for the 500 realizations obtained by (a)
rejection method (left column of Fig. 7); (b) impala (middle column of Fig. 7); (c) snesim (right column of
Fig. 7); (d) rejection method (left column of Fig. 8); (e) impala (middle column of Fig. 8); (f) snesim (right
column of Fig. 8). Each box represent the inter–quartile of the geobody sizes in pixels, the line within the
boxes their median, and the cross their mean. The two horizontal dashed lines represent the range (min
and max) of the size of the geobodies for facies 2 found in the TI
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Fig. 10 Results of 500 realizations obtained by impala in a situation with 200 hard data in a simulation
grid of dimensions 200 × 200, using the TI in Fig. 2. The hard data locations are highlighted by white
circles in every map. (1st row) (a) reference image from which the hard data are extracted, (b–c) one
realization with (b) 3 and (c) 5 multiple grid levels; (2nd row) occurrence proportion maps with 3 multiple
grid levels, for (d) facies 0, (e) facies 1, (f) facies 2; (3rd row) occurrence proportion maps with 5 multiple
grid levels, for (g) facies 0, (h) facies 1, (i) facies 2; (4th row) standard deviation maps with 3 multiple grid
levels, for the indicator of (j) facies 0, (k) facies 1, (l) facies 2; (5th row) standard deviation maps with 5
multiple grid levels, for the indicator of (m) facies 0, (n) facies 1, (o) facies 2
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Fig. 11 Results obtained by snesim in the same situation and with the same display as in Fig. 10
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in the simulation grid, and then from the second fine level to the coarse level, the
nodes enclosing the hard data are simulated using the MPS statistics of the level one
rank finer. Then the simulation is completed by simulating the remaining uninformed
nodes, from the coarse level to the fine level.

The method consisting, for each level from coarse to fine, in simply relocating
the hard data to the nearest node before simulating the remaining uninformed nodes,
leads to systematic biases depending on the location of the data, and to a decreasing
variability around the data when the number of multiple grid levels is increasing.
Unlike this latter method, we show that the proposed method is robust because: (1)
the variability (uncertainty) of the simulations in the surroundings of the hard data is
in accordance with the conceptual model and does not depend on the data location
relative to the multiple grid levels, and (2) the method is not sensitive to the specified
number of multiple grid levels. Hence, this technique, implemented in impala, deals
with the hard data conditioning properly, guaranteeing a fair representation of the
conceptual model.
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