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1. Introduction

This paper is a continuation of the article [8]. Let us first briefly recall the object of this previous paper. Consider the linear
system

Ax=b, (1)

where A = (aj) is a real symmetric positive definite (SPD), n x n matrix and b a vector in R". This equation is replaced by the
equivalent system

TAT'X = Th, x=T'%, 2)

where T is an n x n regular matrix, called preconditioner of A. The system (2) is solved using the preconditioned conjugate
gradient (PCG) algorithm:
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552 J. Straubhaar / Parallel Computing 34 (2008) 551-569

PCG Algorithm

Let xo € R"
Compute rg = b — Axg, so = T' - Tro and set dy = sg
If ||Iro|/]|b]| < tol: quit
For k=0,1,..., do:
ok = (Tls)/ (dk|Ady)
Xip1 = Xp + Oedy
Tkp1 = Tk — AAdy
If |resq1l/1IB]] < tol: quit the loop
Sk+1 = T Triyq
Bk = (Tks1ISk1) /(T |Sk)
diy1 = Ske1 + Brdy
End for k

The object of this paper is the study of some preconditioners with parallel computing. The speed-up and the efficiency are
used to evaluate the performances of parallelized algorithms. The speed-up is the ratio S, = T;/T,, where T, denotes the
computation time with p processors. The ideal situation is S, = p (when the numbers of processors is multiplied by a factor
p, the computation time is divided by p). The efficiency is the rate E, = S,/p, i.e. it is the efficiency in comparison with the
ideal case. Notice that if the first test is performed with m processors (i.e. no test has done with less processors), the speed-up
is calculated by S,(m) = mT,,/T, and the efficiency by E,(m) = S,(m)/p.

The construction of the preconditioner and the resolution with the PCG Algorithm constitute two distinct parts. The per-
formance evaluation for each one is presented in Sections 4 and 5 separately.

The preconditioner DIAG + LS CGS (OPT) (see Section 3 and [8]) and its block version are considered for these evaluations.
Note that for the construction part, the preconditioners whose columns (or rows) are computed independently can be trea-
ted in a similar way, for example the preconditioner FSPAI (factorized sparse approximate inverse) presented in [8] and devel-
oped in [5]. For the resolution part, the performance of the PCG Algorithm is evaluated and many preconditioners can be
considered, for example FSPAI or INC CGS (see Section 3 and [1]).

2. Computational resources

The numerical tests presented in this paper are performed on the CRAY XT3 parallel machines in CSCS (Swiss National
Supercomputing Center). More informations can be found in http://www.cscs.ch.

The code of the programs are written in fortran and the mpi (Message Passing Interface, see [2,3]) and suMem libraries are
used to manage the parallel environment. Some documentation can be found in http://www.cray.com.

3. Preconditioners using Gram-Schmidt and least squares method

Let us recall the construction of the preconditioners of kind LS CGS (for Least Squares and Conjugate Gram-Schmidt) pre-
sented in [8]. Using the Gram-Schmidt orthogonalization process relatively to the A-inner product
((x]y), = (x|Ay) = x' - A-y), an upper triangular and unitary diagonal n x n matrix Z such that D = Zt- A - Z is diagonal can
be constructed. An approximation Z of Z and the corresponding diagonal matrix

D = diag((z1|Az1), . . ., (z4|Azy))
give a preconditioner T = D~'/2 . Z' (verifying TAT' ~ I). Some coefficients in Z are fixed to zero in order to get a sparse pre-
conditioner. Several methodologies can be used to obtain an approximation Z. One possibility developed in [1] consists to
apply the A-orthogonalization process, ignoring the coefficients in Z fixed to zero (this leads to the preconditioner INC
CGS (incomplete conjugate Gram-Schmidt)).

The point of view developed in [8] is to construct the columns of Z independently with approximations in least squares
sense. Let z, the kth column of Z, z;(k) = Zy, = 1 and

Je=11<---<jyc{l,....k=1},
the indices set of the components of z, to determine. The relations
(z|Az)) =0, i=1,... k-1
can be written by the linear system
By =c, 3)

where

V=W ¥ =20 = G- )"
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B = (by) is the (k — 1) x p matrix defined by by = (a;|z;) (with a; the jith column of A) and ¢ = (cy, .. .,Ck_1)" is the vector in
R*1 defined by ¢; = —(ay|z). B

If Zx 1 = (Zj)1<ij<_, denotes the principal submatrix of Z of order k — 1, A the (k — 1) x p matrix obtained by keeping in A
the k — 1 first rows and the columns jy, ..., j, (i.e. Ay = a;) and @ the vector in R*! made up of the k — 1 first components of
ay (the kth column of A), we have

B=Z ,-A
and

c=-Z , G
Since the matrix Z,_; is regular (upper triangular and unitary diagonal), the linear system (3) is equivalent to

Ay = —iy. (4)
The system (4) is solved in the least squares sense, i.e. the considered solution is the vector y € R” which minimize

1Ay + @ (5)
This vector is given by the system (see for example [7, pp. 106-107])

At. Ay = —A' . Q. (6)
Consider the QR decomposition A = QR, where Q = (q;,. .. ,qp) is an (k — 1) x p matrix satisfying Q"-Q=I,and R=(ry) a
regular square and upper triangular matrix of order p (see [6, p. 11]). The solution of (6) is obtained by solving the triangular
system

Ry = —Q'a. (7)
According to (5), the vector z;, = (Zyy, - - - ,Zk,”()t, with Zj, =y, l=1,...,pand Zy =0 if i ¢ #,, realizes the minimum

m= min [Aciu+ . (8)

ueRk-1
u;=0,i¢ 7},
Note that the computation of the kth column z, of the matrix Z is independent of the other columns.
The set of indices _#, can be chosen in several ways (see [8]). Recall here the “optimal filling” of the matrix Z (using some
ideas in the article [4]). The set # = ¢, and the vector z, are constructed so that the minimum m of (8) is lower or equal to a

given number &. For this, the maximal number p,,, of indices in ¢ and the “additional filling” s(1 < s < p,,.4) are fixed; we
then proceed in the following way:

(i) start with ¢ = ¢,

(ii) compute the vector z, realizing the minimum m of (8),
(iii) if m < e or | 7| = pmax: qQuit the loop,
(iv) add s indices to # and go to (ii).

Once out of the loop, we set z; = (2},1,0,...,0)" € R". Notice that the condition m < ¢ in (ii) avoids a strong filling in Z. It
remains to choose the additional indices for a given set ¢. Let
r=Ac1Z +

where Z, realizes the minimum of (8), i.e. ||| = min{||A;_ju + a[||u € R u; =0,i ¢ #}. Let ¥ = {1 <I< k— 1|r, # 0} and,
foreachle &, set /4, ={1<j<k—-1]a; #0,j ¢ #}. Then

J = U M

ley
is a nonempty set (see [8]) in which the s new indices are selected in order to reduce ||r|. For each j € #, we have
2
. 2 2 (MAr-18))
min ||r + A6 = ||Ir|” ———5-,
R+ g = Il - et

we consider the weight

_(rlAcqeg)’

= 2
[ Ar-1€j]l

and we choose s indices in # among those of largest weight and we add them to # (if | #| < s, we select # entirely).
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To compute the vector z, realizing the minimum

l'l‘likl'l1 ||Ak,1u + Elk”,
uerk-1

u=0,ig 71 7
the QR decomposition A = QR of the matrix
A= (A8, . Aciey, A8 ... Acie;)
is computed (obtained by extending the QR decomposition)
A=(Acqe,,.... Acre,) = QR

known from the previous step and the vectory = (Zjx, ... L Ly s - -
is not necessary in an increasing order.

Moreover, the system (1) can first be preconditioned with the diagonal matrix T; = diag(a;;’?,...,am’?). Then, the pre-
conditioner T, presented above is computed for the SPD matrix T; - A - T'. This leads to the coupled preconditioner T, - Ty,
called DIAG + LS CGS (OPT).

The block version of this preconditioner consists to decompose the matrix A into diagonal blocks (block Jacobi decompo-
sition) and compute the previous preconditioner for each one (see [8]).

Theoretical results and numerical tests are given for this preconditioner in [8]. A parallel computing approach is devel-
oped in the following sections.

,Z; )" is obtained using (7). Note that ji,. .. .j,.J1,- - .Js

4. Construction of the preconditioner

Assume that the program use p processors. They are numbered from 0 to p — 1. The n x n matrix Z in the preconditioner LS
CGS (OPT) is distributed in the following way. The jth column of Z is computed by the processor j — 1 modulop. Since Z is
upper triangular, this equilibrates the filling and the computation charges on each processor. A continuous splitting of Z
(i.e. the first [n/p|(+1) on the processor 0, the [n/p|(+1) following ones on the processor 1, and so on) would be a bad choice,
because the processors with a small number would finish to compute their part much before the processors with a high
number. For the construction of the kth column of Z, the principal submatrix A,_; of order k — 1 and the first k — 1 compo-
nents of the kth column of A are used (for details, see previous section or [8]). Hence, the whole matrix A is stored on every
processors to avoid too many communications between them. The columns of the preconditioner are computed indepen-
dently; the copying of the matrix A into all processors and an error test at the end of computation constitute all the necessary
communications (realized with the mpi library).

Remark 4.1. The CSR (or CSC) storage format (see Section 5.1) is used for the matrix A and the local part of Z is stored in CSC
format.

For the block version of this preconditioner, the same method is applied to each block successively: the corresponding
block in A is copying on every processors and an error test completes the computation of the considered block. If M blocks
are considered and n = q - M + r is the Euclidean division of n by M (q, r are integers with 0 < r < M), the r first blocks are of
order q + 1 and the other ones of order q. The block treatment of this preconditioner allows to consider large matrices.

Remark 4.2. The algorithm of the construction of the preconditioner is parallelizable intrinsically. So, only one matrix is
considered for the performance evaluation in the next section.

4.1. Performance evaluation

The SPD test matrix gyro_k is considered. It’s a matrix of order n = 17,361 with nnz = 519, 620 nonzero coefficients in its
upper (or lower) part. This matrix is obtained from http://www.cise.ufl.edu/research/sparse/matrices.

This “small” problem gives a good idea of the computation performance according to the parameter p,,,, and the number
of blocks for the preconditioner DIAG + LS CGS (OPT). The parameters p,,,, = 10,20,50,100, ¢ = 9.09E — 13 and s = 1 (see
Section 3) are considered. The filling obtained for Z is given in Table 1 for standard and block versions. The quantity nnz
is the number of nonzero coefficients in Z.

The computation time (T,), the speed-up (S,) and the efficiency (E,) for the construction of these preconditioners are pre-
sented in Tables 2-5. The number p is the number of used processors. The speed-up and efficiency curves for the computa-
tion of the preconditioner Z for different values of the number of blocks are presented in Figs. 1-6. The number p of used
processors is represented on X-coordinate and the speed-up S, or the efficiency E, on the Y-coordinate.

Note that in Fig. 2 the curve for p,,., = 100 represents the values of E,(2).

In the standard version (Figs. 1 and 2), one block of order 17,361 is considered. In the 16 blocks version (Figs. 3 and 4), the
first block is of order 1086 and the 15 following ones are of order 1085. In the 32 blocks version (Figs. 5 and 6), the first 17
blocks are of order 543 and the 15 others ones are of order 542.
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Table 1
Filling of preconditioner matrix
DPmax nnz
1 block 16 blocks 32 blocks
10 189,702 179,641 170,015
20 360,174 327,797 297,542
50 863,688 729,669 607,914
100 1,683,529 1,309,240 993,436
Table 2
Performance evaluation for construction of preconditioner with p,,, = 10
p 1 block 16 blocks 32 blocks
Tp Sp E, Ty Sp E, T, Sp E,
1 1.31E+03 1.00E+00 1.00E+00 2.44E+02 1.00E+00 1.00E+00 8.92E+01 1.00E+00 1.00E+00
2 6.54E+02 2.00E+00 1.00E+00 1.23E+02 1.99E+00 9.94E-01 4.52E+01 1.97E+00 9.86E-01
4 3.28E+02 3.99E+00 9.96E-01 6.24E+01 3.92E+00 9.79E-01 2.31E+01 3.86E+00 9.65E-01
8 1.64E+02 7.97E+00 9.96E-01 3.23E+01 7.55E+00 9.44E-01 1.23E+01 7.24E+00 9.04E-01
16 8.32E+01 1.57E+01 9.83E-01 1.73E+01 1.41E+01 8.84E-01 6.83E+00 1.31E+01 8.17E-01
32 4.26E+01 3.07E+01 9.59E-01 9.62E+00 2.54E+01 7.93E-01 4.14E+00 2.16E+01 6.74E-01
64 2.16E+01 6.05E+01 9.45E-01 5.53E+00 4.42E+01 6.90E-01 2.70E+00 3.31E+01 5.17E-01
128 1.15E+01 1.13E+02 8.85E-01 3.71E+00 6.59E+01 5.15E-01 1.99E+00 4.48E+01 3.50E-01
Table 3
Performance evaluation for construction of preconditioner with p,,, = 20
p 1 block 16 blocks 32 blocks
T, Sy E, T, Sp E, T, Sp E,
1 3.46E+03 1.00E+00 1.00E+00 6.72E+02 1.00E+00 1.00E+00 2.26E+02 1.00E+00 1.00E+00
2 1.74E+03 1.99E+00 9.97E-01 3.38E+02 1.99E+00 9.94E-01 1.15E+02 1.98E+00 9.88E-01
4 8.69E+02 3.98E+00 9.96E-01 1.71E+02 3.93E+00 9.83E-01 5.86E+01 3.87E+00 9.66E—01
8 4.36E+02 7.94E+00 9.93E-01 8.95E+01 7.51E+00 9.39E-01 3.11E+01 7.28E+00 9.10E-01
16 2.21E+02 1.57E+01 9.80E-01 4.72E+01 1.43E+01 8.91E-01 1.70E+01 1.33E+01 8.32E-01
32 1.14E+02 3.03E+01 9.47E-01 2.62E+01 2.57E+01 8.02E-01 9.97E+00 2.27E+01 7.09E-01
64 5.92E+01 5.84E+01 9.13E-01 1.49E+01 4.52E+01 7.06E-01 6.27E+00 3.61E+01 5.64E-01
128 3.04E+01 1.14E+02 8.90E-01 9.53E+00 7.05E+01 5.51E-01 4.35E+00 5.20E+01 4.06E-01
Table 4
Performance evaluation for construction of preconditioner with p,,, = 50
p 1 block 16 blocks 32 blocks
Tp Sp E, Tp Sp E, T, Sp E,
1 1.41E+04 1.00E+00 1.00E+00 2.67E+03 1.00E+00 1.00E+00 8.08E+02 1.00E+00 1.00E+00
2 7.07E+03 1.99E+00 9.96E-01 1.34E+03 1.99E+00 9.95E-01 4.08E+02 1.98E+00 9.89E-01
4 3.55E+03 3.97E+00 9.93E-01 6.77E+02 3.95E+00 9.87E-01 2.08E+02 3.88E+00 9.71E-01
8 1.78E+03 7.92E+00 9.90E-01 3.55E+02 7.52E+00 9.41E-01 1.10E+02 7.33E+00 9.17E-01
16 9.00E+02 1.56E+01 9.78E-01 1.85E+02 1.45E+01 9.05E-01 5.96E+01 1.36E+01 8.47E-01
32 4.60E+02 3.06E+01 9.56E-01 1.02E+02 2.62E+01 8.20E-01 3.43E+01 2.36E+01 7.36E-01
64 2.36E+02 5.96E+01 9.32E-01 5.73E+01 4.67E+01 7.29E-01 2.10E+01 3.84E+01 6.00E-01
128 1.20E+02 1.17E+02 9.13E-01 3.56E+01 7.51E+01 5.86E-01 1.37E+01 5.90E+01 4.61E-01
Table 5
Performance evaluation for construction of preconditioner with p,,, = 100
p 1 block 16 blocks 32 blocks
Tp Sp Ep Tp Sp Ep Tp Sp Ep
1 7.78E+03 1.00E+00 1.00E+00 2.13E+03 1.00E+00 1.00E+00
2 2.22E+04 2.00E+00 1.00E+00 3.91E+03 1.99E+00 9.94E-01 1.07E+03 1.98E+00 9.92E-01
4 1.11E+04 4.00E+00 1.00E+00 1.97E+03 3.95E+00 9.88E-01 5.48E+02 3.89E+00 9.73E-01
8 5.56E+03 7.98E+00 9.97E-01 1.02E+03 7.59E+00 9.49E-01 2.90E+02 7.34E+00 9.18E-01
16 2.81E+03 1.58E+01 9.87E-01 5.32E+02 1.46E+01 9.14E-01 1.55E+02 1.37E+01 8.57E-01
32 1.43E+03 3.10E+01 9.68E-01 2.89E+02 2.69E+01 8.40E-01 8.85E+01 2.41E+01 7.53E-01
64 7.40E+02 6.00E+01 9.37E-01 1.63E+02 4.77E+01 7.46E-01 5.34E+01 3.99E+01 6.24E-01
128 3.78E+02 1.17E+02 9.16E-01 1.00E+02 7.77E+01 6.07E-01 3.48E+01 6.13E+01 4.79E-01
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Fig. 1. Speed-up in function of #proc. Speed-up for the construction, 1 block.
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Fig. 6. Efficiency in function of #proc. Efficiency for the construction, 32 blocks.

For each processor the number of computed columns in one block varies from one at the maximum. Consider for example
the 32 blocks version with 128 processors. Since 542 = 128 - 4 + 30, for the blocks of order 542, each processor from 0 to 29
computes 5 columns, and each other processor (from 30 to 127) computes 4 columns. For the blocks of order 543, each pro-
cessor from 0 to 30 computes 5 columns, and each other processor (from 31 to 127) computes 4 columns. Then, for the whole
preconditioner, each processor from 0 to 29 computes 32 - 5 = 160 columns, the processor 30 computes 17 -5+ 15 -4 = 145
columns and each processor from 31 to 127 compute 32 - 4 = 128 columns. This can explain why the block versions are less
efficient that the one with only one block.

4.2. Observations and conclusion

In general, when the amount of computations increases, the quality of performance is also increasing: the performance is
of good quality for large matrices. Compare Figs. 1-6 and the filling Table 1.

For the computation of each block, two communications (copying of part of A and error test) require synchronization of
the processors. Hence, the quality of the performance decreases when the number of blocks increases (see Figs. 1-6). How-
ever, for the construction of the preconditioner, the block decomposition is a good methodology to save computer time (see
Tables 2-5).

5. Resolution with the PCG Algorithm

In this section, the coupled preconditioner DIAG + LS CGS (OPT), written in the form T = D~/?Z', is supposed to be con-
structed and the resolution with the parallelized PCG Algorithm is studied. For this let us first introduce the storage meth-
odology, some communication routines and some simple computations.

5.1. Storage

Let B be a sparse m x n matrix and nnz the number of nonzero coefficients in B. This matrix can be described by the three
vectors

(1) ab: real vector of length nnz containing the nonzero coefficients of B, row by row;
(2) jab: integer vector of length nnz containing the column indices of the corresponding coefficients in ab;
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(3) iab: integer vector of length m + 1 containing the pointers of the beginning of each row in ab and jab, i.e. the values in
ab and jab from position iab(k) to iab(k + 1) — 1 concern the kth row. We have iab(1) =1 and iab(m + 1) = nnz+ 1.

This storage format is called CSR (compressed sparse row) storage format.

Exchanging the roles of rows and columns and replacing m by n in the CSR storage format, we obtained the CSC (com-
pressed sparse column) storage format.

For more details about storage formats, see [6] and the sparskit software developed by Saad from http://www-users.c-
s.umn.edu/~saad/.

Assume now that p processors numbered from O to p — 1 are used and let M be a sparse n x n matrix. In this case, a con-
tinuous splitting by rows of the matrix M can be considered: the g, first rows are stored on the processor 0, the g, following
ones on the processor 1, ..., and the g, ; last ones on the processor p—1, where g,=---=¢, ; =q+1 and
G =-=qy 1= q and n = q - p +r is the Euclidean division of n by p. The local part of the matrix M stored on the processor
iis denoted by M{, its dimension is g; x n and the CSR storage format is used.

In a similar way, a continuous splitting by columns of the matrix M can be considered. Then the local part of the matrix M
on the processor i is of dimension n x g; and the CSC storage format is used.

For a vector u in R", a continuous splitting by components can be considered and the local vector u C e R% will be stored
on the processor i. This is also used for a diagonal matrix D since it is characterized by a vector; then D denotes the local
diagonal g; x g; matrix on the processor i.

loc

Remark 5.1. Usmg the continuous splitting (by rows, columns or components) above, the notation M . can be replaced by
Mioe, uloc by tyoc, D loc by Dy, and g; by n,.; then each processor has its own local matrices Mo, Djqc, 1ts own local vector uy,.
and its own dimension ny.

5.2. Some communication routines

Let us here briefly present the concept of three communication routines provided by the mpi library which will be used in
the parallelized PCG Algorithm. For details, see [2,3].

The two first routines involve global communications, that is, every processors call the routine and receive its result on
return.

e MPI_ALLREDUCE routine. If, for each i from 0 to p — 1, v; is a vector in R stored on processor i, this routine allows to get the sum
V=7Vo+--+Vp_1 ON €Very processors.

e MPI_ALLGATHERV routine. If, for each i from 0 to p — 1, v; is a vector in R" stored on processor i, this routine allows to get the
vector v of length [ = I, + - - - + I,_; obtained by gathering vy, ..., v,_1 end to end (i.e. v = (v, ..., Vp_1)) ON €very processors.

The following routine is a one-sided communication routine, only one processor call it.

e MpI_GET routine. This routine allows the processor that call it to get a copy of a variable (or a vector) stored on another
processor.

Remark 5.2. The sumem library can also be used for communications. For example, the suMEM_GET routine corresponds to the
MPI_GET routine for this library.

5.3. Simple computations

In this section, the computation of the product u = M - v where M is an n x n matrix and v a vector in R" is explained in
some situations.
Using a single processor, assume that M is stored in CSR or CSC format with three vectors am, jam and iam (see above).

Algorithm 1.

Comp. of u = Mv, M in CSR format

For i from 1 to n, do:
w=0
For j from iam(i) to iam(i + 1) — 1, do:
w = w + am(j) - v(jam(j))
End for j
u(iy=w
End for i
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Algorithm 2.

Comp. of u = Mv, M in CSC format

u(i)=0,i=1,...,n
For i from 1 to n, do:
w =v(i)
For j from iam(i) to iam(i + 1) — 1, do:
u(jam(j)) = u(jam(j)) + am() - w
End for j
End for i

Assume now that p processors are used and that the matrix M and the vector v are stored respecting the splitting of Sec-
tion 5.1. Let us present the product u = M - v in three cases (the notations of Section 5.1 are used).

Algorithm 3. Splitting by rows, M, in CSR format, gathering

(1) Use MPI_ALLGATHERV to get the vector v on every processors from viq.
(2) Compute ujoc = M), - v on each processor using Algorithm 1.

Algorithm 4. Splitting by rows, M, in CSR format, one-sided communications

(1) Using mpi_cET, each processor get only the necessary components in the vectors vy, stored on the others processors in
order to perform the local product below.
(2) Compute ujoc = M), - v on each processor using Algorithm 1.

Algorithm 5. Splitting by columns, M), in CSC format

(1) Compute w = Mo - Vioc € R" on each processor using Algorithm 2.
(2) Use mPI_ALLREDUCE to get the vector u on every processors adding the p local vectors w in each processor.

Note that at the end of Algorithms 3 and 4, each processor has only the local part uy, of the vector u in its memory,
whereas at the end of Algorithm 5, the whole vector u is stored on every processors.

Remark 5.3. If Algorithms 1, 3 or 4 (resp. 2 or 5) is used for a matrix M stored in CSC (resp. CSR) format, the vector u = M* . v
is obtained.

5.4. PCG Algorithm step by step

Since the system matrix A is symmetric, the CSR and CSC formats are exactly the same for this matrix. For the matrix Z in
the preconditioner T = D~'/?Z", the CSC storage format is used, according to its construction by columns. Assume that the
continuous splitting of Section 5.1 is used to store the matrix A (splitting by rows, CSR format), the matrix Z (splitting by
columns, CSC format) and the diagonal matrix D' (splitting by components on the diagonal).

Then recall in details the steps in one iteration of the PCG Algorithm from the if-test in the loop:

s=27', (9a)
§=D'3, (9b)
s =18, (90)
t=(rls), (9d)
B = t/to, (e)
foig = t, (9f)
d=s+pd, (9g)
q = Ad, (9h)
a=t/(d|q), (91)
X=X+ 4, )
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r=r-—aq. (9k)
If ||r||%/||b]|* < tol* : go out of the loop. o

Assume that the vector r is splitted over all processors at the start. The step (9a) is performed using Algorithm 3 or Algorithm
4. Then, each processor computes

~ 7‘1.,
Sloc = Dlocsloc

and the step (9c) is completed using Algorithm 5. The whole vector s is then stored on every processors.

For the step (9d), the local inner product (ry.|Sioc) is computed locally on each processor and the MPI_ALLREDUCE routine is
used to get the sum. The steps (9e)-(9g) are executed by each processor globally. The step (9h) is local, i.e. each processor
computes

Qioc = Alocd-

The inner product in the step (9i) is obtained like in the step (9d). Then the steps (9j) and (9k) are local, the following com-
putations are performed on each processor:

Xioc = Xjoc + &dlou
Toc = Tloc — &qloo

For the test (91), the inner product (r|r) is computed like in the steps (9d) and (9i).

Remark 5.4. Consider the block version of the preconditioner DIAG + LS CGS (OPT) with M blocks (see Section 3). Assume
that p = M processors are used for the PCG Algorithm. In this case, there is one block on each processor and the three first
steps ((9a)-(9c¢)) can be locally completed without communication. If here Z,,. denotes the nloc x nloc diagonal block (own to
each processor), using Algorithms 1 and 2 for the first and third steps, respectively we get

3 t
Sloc = Zlocrlom
§=D,,

10c57

Sloc = Zlocsloc~

Then the vector s is not entirely stored on the processors. Hence, the step (9g) is computed locally
dloc = Sioc + Bdloc

and the step (9h) is completed using Algorithm 3 (or 4).

5.5. Performance evaluation

Two SPD test matrices are considered in order to study the performance of the resolution with the PCG Algorithm.

The convergence tolerance tol is set to 1072, For each test, the number of necessary iterations is given. Since this number
varies slightly, the speed-up is calculated by S, = (T, /It1)/(T,/Itp), where It, denotes the number of iterations with p proces-
sors. Thus, the comparisons of time are made per iteration. The efficiency will not be given here in order to reduce the tables.
The resolution algorithm is called PCG Algorithm with gathering if Algorithm 3 is used for the first step (9a) (see previous sec-
tion) and PCG Algorithm with one-sided communications if this step is completed using Algorithm 4.

Remark 5.5. The one-sided communications are performed using the sumemM_ceT routine (see Remark 5.2). Indeed, in
experiments, the sumem library is more efficient than the mpi library for this kind of communications.

5.5.1. First matrix

The SPD test matrix and the preconditioners of Section 4.1 are considered. The numerical results are presented in Tables
6-9.

Like in Section 4.1, the number p of used processors is represented on X-coordinate and the speed-up S, on the Y-coor-
dinate in Figs. 7-12.

Comparisons between PCG Algorithm with gathering and PCG Algorithm with one-sided communications in the case of
the preconditioner by blocks and p,,,, = 100 are presented in Figs. 13 and 14.

The use of one-sided communications is clearly better than the gathering methodology when the numbers of blocks and
the number of processors are the same. In this situation, no communication is necessary for the step (9a) with Algorithm 4.
Considering Remark 5.4, the call to the mpi_aLirepuck routine in the step (9c) can be replaced by a call to the Mpi_ALLGATHERV
routine in the step (9h) and so computer time can be save as shown by the Tables 10 and 11. (The number of iterations does
not vary when the methodology changes.)
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Table 6
Performance evaluation for resolution with PCG Algorithm, preconditioner with p,,, = 10
p 1 block 16 blocks 32 blocks

i T, Sp It, Tp Sp It, i So
PCG Algorithm with gathering
1 4328 3.06E+01 1.00E+00 5561 3.88E+01 1.00E+00 6315 4.37E+01 1.00E+00
2 4468 1.85E+01 1.70E+00 5596 2.28E+01 1.71E+00 6316 2.54E+01 1.72E+00
4 4400 1.23E+01 2.54E+00 5528 1.44E+01 2.67E+00 6328 1.75E+01 2.51E+00
8 4294 9.24E+00 3.29E+00 5678 1.27E+01 3.13E+00 6331 1.42E+01 3.08E+00
16 4470 8.91E+00 3.55E+00 5691 1.13E+01 3.50E+00 6328 1.28E+01 3.43E+00
32 4453 8.38E+00 3.76E+00 5737 1.07E+01 3.72E+00 6415 1.20E+01 3.71E+00
64 4288 7.55E+00 4.02E+00 5680 1.07E+01 3.71E+00 6276 1.17E+01 3.72E+00
PCG Algorithm with one-sided communications
1 4328 3.06E+01 1.00E+00 5561 3.90E+01 1.00E+00 6315 4.36E+01 1.00E+00
2 4468 2.08E+01 1.52E+00 5596 2.08E+01 1.88E+00 6316 2.61E+01 1.67E+00
4 4400 2.65E+01 1.18E+00 5528 1.39E+01 2.79E+00 6328 1.78E+01 2.46E+00
8 4294 5.00E+01 6.08E-01 5678 9.88E+00 4.03E+00 6331 1.38E+01 3.17E+00
16 4470 4.88E+01 6.48E-01 5691 9.00E+00 4.44E+00 6328 1.20E+01 3.64E+00
32 4453 5.69E+01 5.54E-01 5737 3.10E+01 1.30E+00 6415 9.21E+00 4.81E+00
64 4288 4.76E+01 6.37E-01 5680 3.61E+01 1.10E+00 6276 2.43E+01 1.78E+00
Table 7
Performance evaluation for resolution with PCG Algorithm, preconditioner with p,,, = 20
p 1 block 16 blocks 32 blocks

It, T, Sp It, Tp Sp It, T, Sp
PCG Algorithm with gathering
1 3546 3.02E+01 1.00E+00 5208 4.29E+01 1.00E+00 6008 4.78E+01 1.00E+00
2 3665 1.81E+01 1.72E+00 5217 2.41E+01 1.78E+00 5974 2.74E+01 1.73E+00
4 3660 1.16E+01 2.70E+00 5152 1.55E+01 2.74E+00 6201 1.82E+01 2.71E+00
8 3671 8.46E+00 3.70E+00 5328 1.25E+01 3.52E+00 6237 1.39E+01 3.58E+00
16 3689 7.80E+00 4.03E+00 5162 1.05E+01 4.05E+00 5911 1.18E+01 3.98E+00
32 3688 7.08E+00 4.44E+00 5017 9.59E+00 4.31E+00 5909 1.18E+01 4.00E+00
64 3649 6.66E+00 4.67E+00 5326 1.02E+01 4.32E+00 6163 1.10E+01 4.48E+00
PCG Algorithm with one-sided communications
1 3546 3.04E+01 1.00E+00 5208 4.31E+01 1.00E+00 6008 4.82E+01 1.00E+00
2 3665 2.17E+01 1.45E+00 5217 2.30E+01 1.88E+00 5974 2.93E+01 1.64E+00
4 3660 3.02E+01 1.04E+00 5152 1.42E+01 3.01E+00 6201 1.98E+01 2.51E+00
8 3671 5.51E+01 5.72E-01 5328 1.06E+01 4.16E+00 6237 1.58E+01 3.18E+00
16 3689 5.23E+01 6.05E-01 5162 8.57E+00 4.99E+00 5911 1.27E+01 3.72E+00
32 3688 6.50E+01 4.87E-01 5017 3.03E+01 1.37E+00 5909 8.66E+00 5.47E+00
64 3649 5.78E+01 5.42E-01 5326 3.94E+01 1.12E+00 6163 2.35E+01 2.10E+00
Table 8
Performance evaluation for resolution with PCG Algorithm, preconditioner with p,,,, = 50
p 1 block 16 blocks 32 blocks

Itp T, Sp It, Tp Sp It, Tp Sp
PCG Algorithm with gathering
1 2535 3.28E+01 1.00E+00 4815 5.66E+01 1.00E+00 5838 6.27E+01 1.00E+00
2 2532 1.83E+01 1.80E+00 4816 3.17E+01 1.79E+00 5881 3.54E+01 1.78E+00
4 2532 1.09E+01 3.01E+00 4836 1.97E+01 2.88E+00 5800 2.27E+01 2.74E+00
8 2529 7.91E+00 4.14E+00 4823 1.34E+01 4.24E+00 5835 1.57E+01 4.00E+00
16 2448 5.65E+00 5.61E+00 4738 1.07E+01 5.21E+00 5669 1.28E+01 4.74E+00
32 2549 5.26E+00 6.28E+00 4754 9.62E+00 5.81E+00 5799 1.17E+01 5.31E+00
64 2522 4.74E+00 6.89E+00 4739 8.93E+00 6.24E+00 5895 1.09E+01 5.83E+00
PCG Algorithm with one-sided communications
1 2535 3.31E+01 1.00E+00 4815 5.69E+01 1.00E+00 5838 6.28E+01 1.00E+00
2 2532 2.38E+01 1.39E+00 4816 3.07E+01 1.85E+00 5881 3.90E+01 1.62E+00
4 2532 3.41E+01 9.69E-01 4836 1.85E+01 3.09E+00 5800 2.62E+01 2.38E+00
8 2529 5.14E+01 6.42E-01 4823 1.26E+01 4.54E+00 5835 1.82E+01 3.45E+00
16 2448 5.31E+01 6.02E-01 4738 8.70E+00 6.43E+00 5669 1.50E+01 4.06E+00
32 2549 6.21E+01 5.35E-01 4754 3.26E+01 1.72E+00 5799 9.21E+00 6.78E+00
64 2522 6.08E+01 5.42E-01 4739 4.21E+01 1.33E+00 5895 2.43E+01 2.61E+00
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Table 9
Performance evaluation for resolution with PCG Algorithm, preconditioner with p,, = 100
p 1 block 16 blocks 32 blocks
It, Tp Sp Ity T, Sp It T, Sp
PCG Algorithm with gathering
1 1770 3.64E+01 1.00E+00 4464 7.57E+01 1.00E+00 5487 7.77E+01 1.00E+00
2 1771 1.95E+01 1.87E+00 4457 4.12E+01 1.83E+00 5700 4.44E+01 1.82E+00
4 1818 1.17E+01 3.20E+00 4487 2.48E+01 3.06E+00 5511 2.74E+01 2.85E+00
8 1769 7.02E+00 5.19E+00 4523 1.63E+01 4.70E+00 5702 1.94E+01 4.17E+00
16 1818 5.37E+00 6.97E+00 4503 1.24E+01 6.15E+00 5690 1.42E+01 5.67E+00
32 1818 4.54E+00 8.24E+00 4447 9.97E+00 7.56E+00 5699 1.26E+01 6.41E+00
64 1827 3.91E+00 9.62E+00 4355 9.11E+00 8.11E+00 5737 1.14E+01 7.12E+00
PCG Algorithm with one-sided communications
1 1770 3.65E+01 1.00E+00 4464 7.62E+01 1.00E+00 5487 7.81E+01 1.00E+00
2 1771 2.60E+01 1.41E+00 4457 4.04E+01 1.88E+00 5700 5.03E+01 1.62E+00
4 1818 3.63E+01 1.03E+00 4487 2.39E+01 3.21E+00 5511 3.19E+01 2.46E+00
8 1769 4.57E+01 7.98E-01 4523 1.51E+01 5.12E+00 5702 2.33E+01 3.49E+00
16 1818 5.48E+01 6.84E-01 4503 1.03E+01 7.46E+00 5690 1.89E+01 4.28E+00
32 1818 6.01E+01 6.24E-01 4447 3.02E+01 2.51E+00 5699 9.94E+00 8.17E+00
64 1827 5.72E+01 6.59E-01 4355 4.37E+01 1.70E+00 5737 2.46E+01 3.32E+00
Table 10
Computation time (T;6) for 16 blocks and processors
Methodology Pmax = 10 Pmax = 20 Pmax = 30 Pmax = 100
Gathering 1.13E+01 1.05E+01 1.07E+01 1.24E+01
One-sided communications 9.00E+00 8.57E+00 8.70E+00 1.03E+01
According Remark 5.4 5.82E+00 5.59E+00 5.95E+00 7.85E+00
Table 11
Computation time (T3, ) for 32 blocks and processors
MethOdOIOgy Pmax = 10 Pmax = 20 Pmax = 50 Pmax = 100
Gathering 1.20E+01 1.18E+01 1.17E+01 1.26E+01
One-sided communications 9.21E+00 8.66E+00 9.21E+00 9.94E+00
According Remark 5.4 4.75E+00 4.51E+00 5.03E+00 6.11E+00
10
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Fig. 7. Speed-up in function of #proc. Speed-up for PCG, 1 block, gathering.

5.5.2. Second matrix

Consider now the SPD test matrix af_0_k101 of order n = 503, 625 with nnz = 9,027, 150 nonzero coefficients in its upper

(or lower) part; this matrix is also obtained from http://www.cise.ufl.edu/research/sparse/matrices.

Consider the preconditioner DIAG + LS CGS (OPT) with the parameters p,,,, = 10,20,50,100, ¢ = 1.00E — 10 and s = 1 (see
Section 3). The filling obtained for Z is given in Table 12 where the quantity nnz denotes the number of nonzero coefficients

in Z.
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Table 12

Filling of preconditioner matrix

Pmax nnz

50 blocks 100 blocks 200 blocks
10 5,534,416 5,528,927 5,517,830
20 10,555,459 10,534,450 10,492,389
50 25,489,939 25,294,005 24,902,198
100 48,584,507 46,301,395 41,734,029

The numerical results are presented in Tables 13-16.
The corresponding speed-up curves are drawn in Figs. 15-20 (the number p of used processors is represented on X-coor-

dinate and the speed-up S, on the Y-coordinate).
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Table 13
Performance evaluation for resolution with PCG Algorithm, preconditioner with p,,, = 10
p 50 blocks 100 blocks 200 blocks

It, Tp So It, i Sp It, Tp Sp
PCG Algorithm with gathering
1 25,715 4.14E+03 1.00E+00 26,823 4.31E+03 1.00E+00 28,534 4.57E+03 1.00E+00
10 25,713 1.42E+03 2.91E+00 26,821 1.42E+03 3.03E+00 28,533 1.52E+03 3.00E+00
25 25,713 1.22E+03 3.40E+00 26821 1.26E+03 3.41E+00 28,531 1.34E+03 3.40E+00
50 25,714 1.25E+03 3.31E+00 26,820 1.28E+03 3.37E+00 28,532 1.39E+03 3.30E+00
100 25,714 1.24E+03 3.34E+00 26,820 1.28E+03 3.36E+00 28,532 1.36E+03 3.35E+00
200 25,712 1.25E+03 3.30E+00 26,820 1.29E+03 3.34E+00 28,532 1.41E+03 3.24E+00
PCG Algorithm with one-sided communications
1 25,715 4.14E+03 1.00E+00 26,823 4.30E+03 1.00E+00 28,534 4.56E+03 1.00E+00
10 25,713 1.31E+03 3.16E+00 26,821 1.36E+03 3.15E+00 28,533 1.36E+03 3.34E+00
25 25,713 1.10E+03 3.76E+00 26,821 1.14E+03 3.75E+00 28,531 1.22E+03 3.74E+00
50 25,714 1.04E+03 3.98E+00 26,820 1.08E+03 3.97E+00 28,532 1.16E+03 3.94E+00
100 25,714 1.35E+03 3.06E+00 26,820 1.06E+03 4.05E+00 28,532 1.14E+03 4.02E+00
200 25,712 1.41E+03 2.93E+00 26,820 1.36E+03 3.15E+00 28,532 1.10E+03 4.15E+00
Table 14
Performance evaluation for resolution with PCG Algorithm, preconditioner with p,,, = 20
p 50 blocks 100 blocks 200 blocks

It, Tp Sp It, T, Sp It, Tp Sp
PCG Algorithm with gathering
1 21,581 4.39E+03 1.00E+00 23,568 4.61E+03 1.00E+00 27,320 5.32E+03 1.00E+00
10 21,580 1.27E+03 3.44E+00 23,567 1.35E+03 3.43E+00 27,318 1.56E+03 3.42E+00
25 21,581 1.06E+03 4.13E+00 23,567 1.11E+03 4.17E+00 27,318 1.34E+03 3.98E+00
50 21,580 1.06E+03 4.13E+00 23,566 1.16E+03 3.97E+00 27,317 1.35E+03 3.94E+00
100 21,580 1.04E+03 4.21E+00 23,566 1.14E+03 4.04E+00 27,317 1.32E+03 4.04E+00
200 21,580 1.06E+03 4.13E+00 23,566 1.15E+03 4.03E+00 27,318 1.34E+03 3.96E+00
PCG Algorithm with one-sided communications
1 21,581 4.20E+03 1.00E+00 23,568 4.56E+03 1.00E+00 27,320 5.52E+03 1.00E+00
10 21,580 1.15E+03 3.65E+00 23,567 1.25E+03 3.65E+00 27,318 1.44E+03 3.83E+00
25 21,581 9.64E+02 4.36E+00 23,567 1.05E+03 4.33E+00 27,318 1.23E+03 4.48E+00
50 21,580 8.33E+02 5.04E+00 23,566 9.89E+02 4.61E+00 27,317 1.11E+03 4.97E+00
100 21,580 1.25E+03 3.34E+00 23,566 9.93E+02 4.59E+00 27,317 1.12E+03 4.93E+00
200 21,580 1.35E+03 3.12E+00 23,566 1.39E+03 3.29E+00 27,318 1.07E+03 5.17E+00
Table 15
Performance evaluation for resolution with PCG Algorithm, preconditioner with p_,,, = 50
p 50 blocks 100 blocks 200 blocks

It, Tp Sp It, 105 Sp It, i Sp
PCG Algorithm with gathering
1 15,560 4.93E+03 1.00E+00 18,703 5.89E+03 1.00E+00 24,069 7.48E+03 1.00E+00
10 15,559 1.10E+03 4.49E+00 18,702 1.51E+03 3.90E+00 24,068 1.68E+03 4.46E+00
25 15,559 8.38E+02 5.89E+00 18,702 9.49E+02 6.20E+00 24,067 1.27E+03 5.90E+00
50 15,559 8.03E+02 6.14E+00 18,702 9.65E+02 6.10E+00 24,067 1.24E+03 6.05E+00
100 15,560 7.68E+02 6.42E+00 18,702 9.24E+02 6.37E+00 24,069 1.19E+03 6.28E+00
200 15,559 7.58E+02 6.50E+00 18,702 9.16E+02 6.42E+00 24,068 1.17E+03 6.39E+00
PCG Algorithm with one-sided communications
1 15,560 4.95E+03 1.00E+00 18,703 5.90E+03 1.00E+00 24,069 7.52E+03 1.00E+00
10 15,559 1.06E+03 4.67E+00 18,702 1.28E+03 4.62E+00 24,068 1.62E+03 4.64E+00
25 15,559 7.78E+02 6.36E+00 18,702 9.48E+02 6.22E+00 24,067 1.20E+03 6.27E+00
50 15,559 6.73E+02 7.35E+00 18,702 8.46E+02 6.97E+00 24,067 1.07E+03 7.03E+00
100 15,560 1.14E+03 4.35E+00 18,702 8.23E+02 7.16E+00 24,069 1.02E+03 7.37E+00
200 15,559 1.19E+03 4.14E+00 18,702 1.20E+03 4.90E+00 24,068 9.40E+02 7.99E+00

Like for the first matrix, PCG Algorithm with gathering and PCG Algorithm with one-sided communications are compared

with p... = 100 in Figs. 21-23.

The use of one-sided communications gives better results than the gathering methodology when the numbers of proces-
sors is smaller or equal to the number of blocks. In the case of the number of blocks and the number of processors are the
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Table 16
Performance evaluation for resolution with PCG Algorithm, preconditioner with p,, = 100
p 50 blocks 100 blocks 200 blocks
It Tp Sp Ity Tp Sp It Tp Sp
PCG Algorithm with gathering
1 13,289 6.58E+03 1.00E+00 17,529 8.34E+03 1.00E+00 23,781 1.05E+04 1.00E+00
10 13,287 1.17E+03 5.63E+00 17,527 1.52E+03 5.48E+00 23,781 1.97E+03 5.31E+00
25 13,289 8.07E+02 8.16E+00 17,528 1.06E+03 7.86E+00 23,781 1.40E+03 7.49E+00
50 13,287 7.46E+02 8.82E+00 17,528 9.53E+02 8.75E+00 23,781 1.30E+03 8.05E+00
100 13,287 6.86E+02 9.59E+00 17,528 9.73E+02 8.57E+00 23,781 1.21E+03 8.65E+00
200 13,289 6.60E+02 9.97E+00 17,527 8.80E+02 9.48E+00 23,781 1.18E+03 8.89E+00
PCG Algorithm with one-sided communications
1 13,289 6.61E+03 1.00E+00 17,529 8.37E+03 1.00E+00 23,781 1.05E+04 1.00E+00
10 13,287 1.11E+03 5.93E+00 17,527 1.43E+03 5.87E+00 23,781 1.87E+03 5.62E+00
25 13,289 7.54E+02 8.76E+00 17,528 1.03E+03 8.16E+00 23,781 1.35E+03 7.76E+00
50 13,287 6.79E+02 9.73E+00 17,528 8.66E+02 9.66E+00 23,781 1.15E+03 9.10E+00
100 13,287 1.15E+03 5.75E+00 17,528 7.49E+02 1.12E+01 23,781 1.09E+03 9.63E+00
200 13,289 1.24E+03 5.32E+00 17,527 1.17E+03 7.14E+00 23,781 9.56E+02 1.10E+01
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Fig. 15. Speed-up in function of #proc. Speed-up for PCG, 50 blocks, gathering.
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Fig. 16. Speed-up in function of #proc. Speed-up for PCG, 50 blocks, one-sided.

same, the approach of Remark 5.4 allows to save computer time (like for the first matrix), see Tables 17-19 (the number of
iterations does not vary when the methodology changes).

5.5.3. Observations and conclusion
Like for the construction (Section 4), when the amount of computations increases, the quality of performance is also

increasing. The quality of performance is rather not good here. However, knowing the number of used processors, the block
methodology for the class of preconditioner (DIAG+) LS CGS (OPT) allows to get an efficient PCG Algorithm according to Re-

mark 5.4 (see Tables 10, 11, 17, 18 and 19).
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Fig. 18. Speed-up in function of #proc. Speed-up for PCG, 100 blocks, one-sided.
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Fig. 19. Speed-up in function of #proc. Speed-up for PCG, 200 blocks, gathering.
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Fig. 20. Speed-up in function of #proc. Speed-up for PCG, 200 blocks, one-sided.
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Fig. 21. Speed-up in function of #proc. Speed-up for PCG, 50 blocks, p,,.x = 100.
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Fig. 22. Speed-up in function of #proc. Speed-up for PCG, 100 blocks, p,,., = 100.
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Fig. 23. Speed-up in function of #proc. Speed-up for PCG, 200 blocks, p,,.x = 100.

Table 17

Computation time (Tso) for 50 blocks and processors

Methodology Pmax = 10 Pmax = 20 Pmax = 50 Pmax = 100
Gathering 1.25E+03 1.06E+03 8.03E+02 7.46E+02
One-sided communications 1.04E+03 8.33E+02 6.73E+02 6.79E+02
According Remark 5.4 2.98E+02 2.72E+02 2.31E+02 2.46E+02
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Table 18

Computation time (Tq0o) for 100 blocks and processors

Methodology Pmax = 10 Pmax = 20 Pmax = 50 Pmax = 100
Gathering 1.28E+03 1.14E+03 9.24E+02 9.73E+02
One-sided communications 1.06E+03 9.93E+02 8.23E+02 7.49E+02
According Remark 5.4 2.80E+02 2.59E+02 2.65E+02 2.45E+02
Table 19

Computation time (T,q0) for 200 blocks and processors

MEthOdOIOgy Pmax = 10 Pmax = 20 Pmax = 50 Pmax = 100
Gathering 1.41E+03 1.34E+03 1.17E+03 1.18E+03
One-sided communications 1.10E+03 1.07E+03 9.40E+02 9.56E+02
According Remark 5.4 3.01E+02 3.12E+02 2.84E+02 2.89E+02
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