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A B S T R A C T   

Almost all Multiple-Point Statistic (MPS) methods use internally a template matching method to select patterns 
that best match conditioning data. The purpose of this paper is to analyze the performances of ten of the most 
frequently used template matching techniques in the framework of MPS algorithms. Performance is measured in 
terms of computing efficiency, accuracy, and memory usage. The methods were tested with both categorical and 
continuous training images (TI). The analysis considers the ability of those methods to locate rapidly and with 
minimum error a data event with a specific proportion of known pixels and a certain amount of noise. 

Experiments indicate that the Coarse to Fine using Entropy (CFE) method is the fastest in all configurations. 
Skipping methods are efficient as well. In terms of accuracy, and without noise all methods except CFE and cross- 
correlation (CC) perform well. CC is the least accurate in all configurations if the TI is not normalized. This 
method performs better when normalized training images are used. The Binary Sum of Absolute Difference is the 
most robust against noise. Finally, in terms of memory usage, CFE is the worst among the ten methods that were 
tested; the other methods are not significantly different.   

1. Introduction 

Multiple-point statistics (MPS) is a flexible method for the simulation 
of complex geological patterns (Guardiano and Srivastava 1993). The 
approach overcomes some limitations of classical geostatistical simula
tion techniques based on two-point statistics (covariance or variogram). 
The principle of MPS is to employ a conceptual model described via one 
or more training data sets, often called the training image (TI), dis
playing the typical patterns that one would like to simulate and mimic. 
The approach consists of borrowing patterns from the TI to simulate 
random fields that consequently share some spatial features with the 
training data set. Many algorithms have been introduced in the last 20 
years to extend the initial method of Guardiano and Srivastava (1993) 
such as SNESIM (Strebelle 2002), FILTERSIM (Zhang et al., 2006), 
SIMPAT (Arpat and Caers 2007), Direct Sampling (Mariethoz et al., 
2010), IMPALA (Straubhaar et al., 2011; Straubhaar et al., 2013), and 
CCSIM (Tahmasebi et al., 2012). A detailed review of MPS methods is 
available in Mariethoz and Caers (2014). 

A striking feature of almost all MPS algorithms is that they all need to 
compare patterns repeatedly during the simulation or TI analysis steps. 
A pattern, also called a template, is a subset of an image (Fig. 1). In the 

field of image processing, Template Matching (TM) methods are algo
rithms designed to locate the presence of a predefined template within a 
reference image as shown in Fig. 1. It is one of the most common 
techniques used in signal and image processing (Omachi and Omachi 
2007). It is widely employed in many applications including object 
detection (Dufour et al., 2002; Pham et al., 2015), pattern recognition 
(Zeng 2011), video coding (Peng and Chen 2013), target tracking (Ipsen 
et al., 2020) and frequency response estimation (Bai et al., 2016). It is 
also used in geosciences for TI corrections (Straubhaar et al., 2019) and 
spatial machine learning algorithms based on high-order spatial statis
tics (Talebi et al., 2020). In general, the best match is found when a 
minimum distance or maximum correlation between a template and the 
reference image is identified. This requires the definition of a similarity 
measure. 

The aim of this paper is therefore to analyze the performances of ten 
of the most used TM algorithms and to evaluate if these approaches 
could be used to enhance the efficiency of MPS algorithms. The analysis 
considers the ability of those methods to locate a data event with a 
specific proportion of known pixels and amount of noise rapidly and 
with minimum error. This is different from the usual and standard 
application of TM which usually considers a fully informed template. 
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The reason for considering this situation is that often in MPS algorithms 
the simulation procedure is sequential, and templates are incomplete 
during the simulation. Noise can also occur because of possible dis
crepancies between conditioning data and the selected training data set. 
By studying the performances of different similarity measures in regis
tering a template in an image, this paper provides indications about the 
applicability of TM techniques for locating the best match. Note also that 
the performances of the TM techniques are evaluated for categorical and 
continuous TIs. All techniques are tested for the same templates. Their 
efficiency and accuracy are studied as a function of template size, 

proportion of known pixels, and proportion of noise. 
The paper is organized as follows. Section 2 describes the ten selected 

TM algorithms and the proposed method. Section 3 introduces the four 
TIs that are used, the procedures for constructing the templates, and for 
comparing the various TM algorithms. Section 4 presents all results in 
terms of computing efficiency and accuracy. Finally, the discussion and 
conclusions are in section 5. Note that notations for 2D images are used 
in the following for the sake of simplicity, however, each method can be 
straightforwardly extended to the 3D case. 

2. Template matching methods 

All TM methods are based on the definition of a (dis)similarity 
measure between a template and a part of an image. In this paper, we 
consider ten of the most frequently used TM methods. 

The following measures between two patterns are considered. First, 
three dissimilarity measures are selected: the sum of absolute difference 
(SAD), the binary SAD (BSAD), and the sum of squared difference (SSD). 
Moreover, a skipping technique is also considered for these measures; it 
consists in stopping the computation early under some conditions. 
Second, the Cross-Correlation (CC), and its normalized version (NCC) 
are used as similarity measures. Third, we consider a more sophisticated 
approach named Coarse to Fine TM using Entropy (CFE) which consists 
of preselecting candidate patterns based on their entropy. Finally, the 
nearest neighbor (NN) technique is employed to find the best match. All 
these metrics and methods are described in detail in the following sub- 
sections. 

Note that all the methods were implemented in Matlab with similar 
implementation details to allow a fair comparison of the methods and 
minimize the effect of the specific details of the implementations. 

2.1. Definition and notation 

In the presentation of the methods, we will use systematically the 
same notations. As shown in Fig. 2, T represents an m × n template. It is a 
matrix with m rows and n columns. T (x,y) represents the value of the 
pixel at location (x,y) within the template where x and y change from 1 
to m and n respectively. The TI (or training data set) is a larger matrix of 
size M× N. Within the TI, a training pattern tpi,j is a submatrix of size 
m × n such that its top-left corner is positioned at location (i, j)in the TI 
where i, j change from 1 to M-m + 1 and N-n + 1 respectively. As for the 
template, tpi,j(x, y)represents the value of the pixel at location (x,y) 

Fig. 1. Example of template matching procedure.  

Fig. 2. m × n template (T), M × N Training Image and tpi,j (a pattern at 
location (i, j) of Training Image). 

Fig. 3. The procedure of the CFE algorithm.  
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within the tpi,j. 

2.2. SAD and BSAD 

The sum of absolute distance SAD is defined as (Devijver and Kittler 
1982): 

SAD
(
T, tpi,j)=

∑m

x=1

∑n

y=1

⃒
⃒tpi,j(x, y) − T(x, y)

⃒
⃒ (1) 

Its calculation requires m × n subtractions for each search location. 
MPS simulation methods such as SIMPAT and FILTERSIM use this sim
ilarity measure to find the best match. 

A special kind of SAD named BSAD was also used in this study. BSAD 
is defined as 

BSAD
(
T, tpi,j)=

∑m

x=1

∑n

y=1

(

1 − δ

(

tpi,j(x, y) − T(x, y)

)

(2)  

where 

δ(x)=
{

1, a = 0
0, otherwise (3) 

BSAD consists in comparing two templates pixel by pixel and 
counting those that have a different value. This dissimilarity measure is 
typically used in MPS algorithms for simulating categorical variables (e. 
g., Direct Sampling). 

2.3. SSD 

SSD is defined as the sum of the squared difference between each 
pixel value of two templates (Burt 1982): 

SSD
(
T, tpi,j)=

∑m

x=1

∑n

y=1

(
tpi,j(x, y) − T(x, y)

)2 (4)  

2.4. CC and NCC 

Correlation is a measure of the degree to which two variables are 
linearly correlated. They do not necessarily have identical values but 
display similar behavior. In the signal processing scientific literature, CC 
is defined as a convolution product (Di Stefano, Mattoccia et al., 2005): 

CC
(
T, tpi,j)=

∑m

x=1

∑n

y=1
tpi,j(x, y)⋅T(x, y) (5) 

In the MPS algorithm CCSIM, Tahmasebi et al. (Tahmasebi et al., 
2012) use CC to find the best match. In statistics, the definition of the 
cross-correlation is slightly different and expressed in a normalized form 

NCC
(
T, tpi,j)=

∑m
x=1
∑n

y=1

[
tpi,j(x, y) − tp

]
⋅
[
T(x, y) − T

]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

x

[
tpi,j(x, y) − tp

]2∑n
y

[
T(x, y) − T

]2
√ (6)  

with tp the mean value of the pixels in the template tpi,j, and T the mean 
value in the searched template. 

Fig. 4. The four training images.  

Table 1 
The characteristics of all training images used in this paper.  

Training image 
name 

Type Size Stationarity 

A Categorical with 3 
categories 

320 ×
335 

stationary 

B Categorical with 5 
categories 

599 ×
598 

Non 
stationary 

C Continuous 128 ×
128 

stationary 

D Continuous 599 ×
598 

Non 
stationary  
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2.5. Standard versus skipping method 

The basic (or standard) TM algorithm consists in scanning the whole 
TI to extract the exhaustive set of training patterns tpi,j and comparing all 
of them with a reference pattern T using the dissimilarity or similarity 
measure. For SAD, BSAD, and SSD, the best match is obtained when the 
dissimilarity is minimum. For CC and NCC, it is obtained when the 
similarity is maximum. 

As the comparison of two patterns is repeated very frequently in MPS 
algorithms, the efficiency of the TM technique is crucial. A classical 
approach to accelerate the TM is to skip the comparison of the current 
pattern with the reference one, i.e., prematurely terminate the compu
tation of the dissimilarity as soon as it is found that this location cannot 
be the best match location (Kawanishi et al., 2003; Mahmood and Khan 
2012; Zhang et al., 2012). 

The method generally works as follows. First, a threshold Skip T is 
initialized. The skipping algorithm stops the calculation of the dissimi
larity measure, expressed as a sum, if the current value (a partial sum) is 
larger than the threshold. The candidate cannot be the best match and 
the algorithm jumps to the next tpi,j. In this paper, we use an adaptive 
Skip T which is discussed in section 3.4. The skipping method was 
implemented with SAD (skipping SAD), BSAD (skipping BSAD), and SSD 
(skipping SSD). 

Note that another way to accelerate an MPS algorithm is to stop the 
scan of the training patterns as soon as the best match met so far is 
considered satisfactory (as can be expressed using an acceptance 
threshold). 

2.6. CFE 

Another more advanced set of TM methods are named coarse to fine 

algorithms. They are used in TM objects (Gharavi-Alkhansari 2001; Lai 
et al., 2009; Ma et al., 2009). In this paper, a method based on entropy 
differences is applied. The entropy of a system as defined by Shannon 
gives a measure of uncertainty about its possible states. Shannon’s 
function is based on the concept that the information gained from an 
event is inversely related to its probability of occurrence. The entropy of 
an image is defined as (Gonzalez et al., 2004): 

H = −
∑G− 1

k=0
pklog2(pk) (7)  

where G is the number of gray levels in the image and pk is the proba
bility associated with gray level k. 

The CFE method works as follows. First, a threshold ent thresh is 
initialized. In this paper, ent thresh is selected by trial and error. Then 
the entropy of all training patterns tpi,j extracted from the TI is calculated 
and stored as Htp. The search process starts at a coarse resolution. The 
entropy HT of the template T is calculated and the difference between 
HT and all the values Htp is computed. If the difference satisfies equation 
(8), the corresponding tpi,j are the candidates for the best match and are 
listed (Ctpi,j). 
⃒
⃒Htp − HT

⃒
⃒ ≤ ent thresh (8) 

At the fine searching stage, SAD(Ctpi,j,T) is used to find the exact 
match among all Ctpi,j. If SAD is the same for some Ctpi,js, one of them is 
randomly selected as the best match. The procedure is illustrated in 
Fig. 3. 

2.7. NN 

The nearest neighbor algorithm assigns to a template (T) the tpi,j of its 

Fig. 5. Example of a selected template, template with PNP = 30 % and the same template with N = 20 % in addition.  

M. Sharifzadeh Lari et al.                                                                                                                                                                                                                     



Applied Computing and Geosciences 11 (2021) 100064

5

closest neighbor in TI. The aim is to find the similarity between the test 
pattern (T) and every pattern in the training set. In MPS applications, an 
N-dimensional nearest neighbor algorithm is needed while ordinary NN 
algorithms are not efficient for more than three dimensions. Zhou et al. 
present an idea called nearest neighbor convex hull (NNCH) for classi
fication (Zhou et al., 2007). The convex hull (co) of a set S⊂ Rd is the 

smallest convex set containing set S: co(S) = (
∑n

i=1
αixi ¦ xi ∈ S, αi ≥ 0,

∑n

i=1
αi = 1, i = 1, 2,…n). The convex hull of a set S is simply the set of all 

linear combinations of elements of S in which the coefficients of ele
ments of S are non-negative and sum to 1. Such constrained linear 
combinations are known as convex combinations (Zhou et al., 2007). In 
this paper, we use dsearchn function for N-dimensional nearest point 
search in Matlab to perform the NN algorithm. dsearchn is based on 
Qhull that is a general dimension code for computing convex hulls 
(Barber et al., 1996). 

3. Materials and methods 

This research aims to compare the performances of TM methods for 
MPS simulation. For this purpose, we applied the ten TM methods 
described in the previous section on four different TIs (sec. 3.1) and 
using different templates. Sensitivity to the template size (TS), the 
proportion of known pixels (PNP), and the proportion of noise (NP) in 
the template are analyzed. Two performance indicators are calculated: 
computing efficiency (CE) and accuracy which is evaluated using an 
error proportion (EP). This section provides the details of the procedure 
outlined above. 

3.1. The training images 

Four TIs have been used. They are shown in Fig. 4 and Table 1 
summarizes their properties. TI A contains 3 categories: channels, flood 
plains, and lenses in the middle of the flood plain. TI C and D are 
continuous images with integer values ranging between 0 and 255. TI D 
is a satellite image from the Lena River (from Landsat 7 image, USGS/ 
EROS, and NASA Landsat Project), one of the largest rivers in the world. 
Finally, TI B is a discretized version of TI D having five categories. Note 
that TIs A and C are essentially stationary, meaning that the same pat
terns have identical probabilities to occur in any region of the TI while 
TIs B and D are not. Finally, note also that in some tests the original 
values within the TIs are used directly while in other tests they are 
normalized or centered (Normalized TI): the average value is subtracted 
to all pixel values. 

3.2. The templates 

After selecting a TI, square templates (T) with specific sizes are 
randomly picked from the TI. The template size dimensions (TS) are 
taken as predefined proportions - 5 %, 10 %, 15 %, and 20 % - of the 
mean length (TIL) and width (TIW) of the TI: 

TS= round
(

a × (TIL + TIW)
2

)

a= 0.05, 0.10, 0.15, 0.20 (9) 

In some TIs, like B and D in Fig. 4, the TI is very large, but it contains 
small objects, so we select a = 0.025,0.05,0.10,0.15 instead. 

Because many MPS algorithms are based on a sequential simulation 
procedure, the templates that the algorithm must search are often 
incomplete. At the beginning of the simulation, only a few conditioning 
points are known. During the simulation, the number of previously 
simulated nodes is increasing. Toward the end of the simulation, most of 

Fig. 6. A 320 × 335 categorical TI with 3 categories, a 16 × 16 template from the TI, the template with PNP = 30 % and without noise, and finally, a template with 
PNP = 30 % and NP = 20 %, (purple regions are unknown). 
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the pixels are already known in the template. Therefore, we consider a 
proportion PNP of known pixels in T. It is taken systematically equal to 
10 %, 20 %, 30 %, 40 %, and 50 %. The proportion of unknown pixels is 
1 − PNP. In practice, the location of the unknown pixel is randomly 
selected in T and their values are erased. 

In addition, when we consider a sequential MPS simulation, the al
gorithms may accept some candidate values for a given pixel when the 
surrounding configurations are not exactly similar between the simu
lation grid and the TI. Therefore, some noise usually occurs in the 
simulation. As we are interested in the impact of this noise, we added 
noise to T by changing the value of some known pixels to test the 
robustness of the TM algorithms. The noise proportion NP is defined as 
the proportion of pixels whose value is perturbed. In our experiments, 
NP is taken equal to 0 %, 5 %, 10 %, 15 %, and 20 %. Given NP, we 
randomly select a proportion NP of pixels (rounded number) among the 

known ones and replace their value with a value randomly extracted 
from the TI. 

This procedure is illustrated in Fig. 5. The TI A, a selected template 
with size 16× 16, the template with PNP = 30%, and the final template 
with NP = 20% is shown in Fig. 6. 

3.3. Quality metrics 

For each TI and candidate template, the TM procedures are applied. 
For each procedure, the best template is selected. Fig. 7 shows one 
example of this procedure for TI D. We see in this figure that the best 
template may be different depending on the TM technique employed. 
The results depend on the size of the template and the level of noise. 
Some visual examples are provided in the Appendix (Figs. 16–21). But to 
obtain a global understanding of the performances of the methods, we 

Fig. 7. An Example of simulation. TS = 59, PNP = 30, NP = 15, and the original shape of the TI is used.  
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compared their numerical efficiency and the quality of their results 
systematically using the following criteria. 

EP is a measure of the quality or accuracy of the match. It quantifies 
the differences between the known reference template (REF) selected 
from the TI and the one selected by the TM method (SR). The difference 
is computed using the percentage of non-matching pixels (BSAD) as 
follow: 

EP=
BSAD(SR − REF)

TS2 × 100 (10) 

EP is expressed in percent. 
The computing time (tc) is calculated for each algorithm separately. 

To have comparable values, all the algorithms were programmed in 
Matlab using similar structures for the codes. We then compare the 
methods using CE defined as: 

CEi =
tic

min
j=1,…, 10

(
tjc
) , i = 1,…, 10 (11)  

where ti
c is the computing time in second for the method i. 

Table 2 
Summary of the main parameters used for the tests for calculating CE.  

Test case Training Image PNP NP TS S Thresh for SAD and SSD  S Thresh for BSAD  Changing parameter Training image statues 

1 A 30 % 0 16 3 2 TS original 
32 12 6 
48 28 14 
64 49 25 

2 D 30 % 0 15 292 1 TS original 
30 1161 5 
60 4644 22 
90 10,449 49 

3 C 10 % 0 30 7 2 PNP original 
20 % 14 4 
30 % 22 5 
40 % 29 7 
50 % 36 9 

4 D 30 % 0 % 30 1161 5 NP original 
5 % 
10 % 
15 % 
20 %  

Table 3 
Summary of the main parameters used for the tests for calculating accuracy.  

Test case Training Image PNP NP TS S Thresh for SAD and SSD  S Thresh for BSAD  Changing parameter Training image statues 

5 D 30 0 15 292 1 TS original 
30 1161 5 
60 4644 22 
90 10,449 49 

6 D 30 0 15 292 1 TS normalized 
30 1161 5 
60 4644 22 
90 10,449 49 

7 A 30 0 16 3 2 TS original 
32 12 6 
48 28 14 
64 49 25 

8 A 30 0 16 3 2 TS normalized 
32 12 6 
48 28 14 
64 49 25 

9 D 10 % 0 30 361 2 PNP original 
20 % 722 3 
30 % 1084 5 
40 % 1445 7 
50 % 1810 8 

10 D 10 % 0 30 361 2 PNP normalized 
20 % 722 3 
30 % 1084 5 
40 % 1445 7 
50 % 1810 8 

11 D 20 % 0 % 30 722 3 NP original 
5 % 
10 % 
15 % 
20 % 

12 D 20 % 0 % 30 722 3 NP normalized 
5 % 
10 % 
15 % 
20 %  
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Table 4 
CE for test case 1.  

Methods Template size 

16 32 48 64 Mean 

CFE 1 1 1 1 1 
Skipping BSAD 2.7 3.3 3.5 3.4 3.4 
Skipping SAD 2.7 3.4 3.5 3.4 3.4 
Skipping SSD 2.7 3.4 3.5 3.4 3.4 
NN 2.6 3.4 3.6 3.5 3.4 
CC 3.0 3.9 4.1 4.0 3.9 
BSAD 2.9 3.9 4.1 4.1 4.0 
SAD 3.0 3.9 4.1 4.1 4.0 
SSD 3.0 3.9 4.2 4.1 4.0 
NCC 3.2 4.3 4.7 4.6 4.5  

Fig. 8. Comparing the efficiency of TM methods. (a) Results of test case 1 with PNP = 30 and NP = 0, (b) Results for test case 2 with PNP = 30 and NP = 0, (c) 
Legend for figures a and b. 

Table 5 
CE for test case 3).  

Methods PNP 

10 20 30 40 50 Mean 

CFE 1.0 1.0 1.0 1.0 1.0 1.0 
Skipping BSAD 3.5 3.3 3.0 2.6 2.6 2.9 
NN 3.5 3.3 3.0 2.6 2.7 3.0 
Skipping SSD 3.6 3.3 3.0 2.6 2.7 3.0 
Skipping SAD 3.6 3.3 3.0 2.6 2.7 3.0 
CC 3.7 3.6 3.5 3.1 3.3 3.4 
SAD 3.7 3.6 3.5 3.1 3.3 3.4 
SSD 3.7 3.6 3.5 3.2 3.3 3.4 
BSAD 3.7 3.7 3.6 3.3 3.5 3.5 
NCC 3.9 3.9 3.9 3.6 3.9 3.8  

Fig. 9. The efficiency of the ten methods for test case 3.  
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For memory usage, we use the memory function in Matlab for 
comparing all methods. 

3.4. General testing procedure 

For every TI, and every template size, the TI is scanned, and all 
patterns are extracted. For the methods SAD, BSAD and SSD, the best 
match is easily identified by looking for the minimum distance between 
the searched template T and all patterns extracted from the TI. 

For the skipping methods, the skipping threshold (Skip T) must be 
set first. it is specified depending on the TIs, and the number of known 

pixels in the template. If Skip T is small, the algorithms cannot find any 
match and if it is chosen too large, the benefit compared to the non- 
skipping version can be negligible or even null. In this paper, we use 
an adaptive SkipT defined as: 

Skip T =

{
round(0.02 × (maxTI − minTI) × nnp) for skipping SAD and SSD
round(0.02 × nnp) for skipping BSAD

(12)  

where maxTI and minTI are the maximum and minimum values in TI 
respectively, and nnp is the number of known pixels in T. Like the 

Fig. 10. Efficiency of the ten methods for test case 4.  

Table 7 
Average EP in percent for CC and CFE for test case 5. EP is zero for the other 
methods.  

Methods Template size 

15 30 60 90 

CC 99.9 95.9 62.0 55.9 
CFE 43.9 0 0 0  

Fig. 11. (a) Results for test case 5 with the original TI, (b) Results for test case 6 with the normalized TI but normalized.  

Table 8 
Average EP in percent for CC and CFE for test case 6. EP is zero for the other 
methods.  

Methods Template size 

15 30 60 90 

CC 20.0 0 0 0 
CFE 6.0 0 0 0  

Table 6 
Efficiency results of test case 4.  

Methods NP 

0 % 5 % 10 % 15 % Mean 

CFE 1.0 1.0 1.0 1.0 1.0 
Skipping SSD 2.9 2.9 2.9 2.9 2.9 
Skipping BSAD 2.9 2.9 2.9 2.9 2.9 
NN 2.9 2.9 2.9 2.9 2.9 
Skipping SAD 2.9 2.9 2.9 2.9 2.9 
BSAD 3.4 3.3 3.3 3.3 3.3 
CC 3.4 3.4 3.4 3.3 3.4 
SAD 3.4 3.4 3.4 3.4 3.4 
SSD 3.4 3.4 3.4 3.4 3.4 
NCC 3.8 3.8 3.8 3.8 3.8  
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original algorithms, for the skipping methods, the best match is found 
for the minimum distance between T and all retained (i.e. not skipped) 
tp. 

In CC and NCC, the algorithm was run to find the best match. Here 
the best match is indicated by the maximum correlation between T and 
all patterns from TIs. 

For CFE, first, a threshold (ent thresh) must be determined. In this 
paper, we use a fixed number 1.1 for ent thresh which is obtained by trial 
and error. 

For NN algorithm, we use dsearchn in Matlab to find the best match. 
Firstly, all tps are reshaped as a horizontal vector and stored in a matrix 
(Mtp). Vector form of the template (VT) is calculated and finally, 
dsearchn(Mtp,VT) is used to find the best match. 

The summary of the parameters used for all the test cases is shown in 
Table 2 and Table 3. All TM methods are applied 50 times on 50 different 
and randomly selected templates for each case and then average values 
of the performance criteria are calculated. 

4. Results 

In this section, we present the raw results of the comparison and 
focus first on the efficiency of the methods, then the quality of the 
matches, and finally memory usages. 

4.1. Computing efficiency 

The values of CE are compared for all the algorithms when changing 
TS, PNP and NP. 

Fig. 12. (a) Results for test case 7 with the original TI, (b) Results for test case 8 with the normalized TI.  

Fig. 13. (a) Results for test case 9, (b) Results for test case 10.  

Table 9 
Average EP in percent for the ten methods for test case 11.  

Methods NP 

0 % 5 % 10 % 15 % 20 % 

SAD 0.0 0.0 0.0 0.0 89.9 
Skipping SAD 0.0 99.6 99.9 99.6 99.8 
BSAD 0.0 0.0 0.0 0.0 0.0 
Skipping BSAD 0.0 99.6 99.7 99.7 99.6 
SSD 0.0 0.0 4.0 79.8 99.9 
Skipping SSD 0.0 99.8 99.8 99.5 99.5 
NCC 0.0 0.0 8.0 73.9 99.9 
CC 97.8 99.9 97.9 99.9 99.9 
CFE 0.0 0.0 0.0 0.0 89.9 
NN 0.0 0.0 4.0 79.8 99.9  

Table 10 
Average EP in percent for the ten methods for test case 12.  

Methods NP 

0 % 5 % 10 % 15 % 20 % 

SAD 0.0 0.0 0.0 2.0 81.7 
Skipping SAD 0.0 99.8 99.8 99.6 99.7 
BSAD 0.0 0.0 0.0 0.0 0.0 
Skipping BSAD 0.0 99.6 99.5 99.7 99.7 
SSD 0.0 0.0 2.0 75.9 97.8 
Skipping SSD 0.0 99.7 99.7 99.7 99.7 
NCC 0.0 0.0 0.0 9.7 89.3 
CC 0.0 4.0 4.0 29.9 91.4 
CFE 0.0 0.0 0.0 2.0 81.7 
NN 0.0 0.0 2.0 75.9 97.8  
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4.1.1. CE with varying TS 
Table 4 and Fig. 8a provide the results for test case 1, Fig. 16 in the 

Appendix shows one example of template from TI A and the simulation 
results for the ten methods. 

Fig. 8 shows that the method CFE is the most efficient in all 

configurations and then skipping methods perform well. We note that 
computing time increases with TS, but not in a linear manner (Fig. 8). 
Computing time increases very slowly for CFE as compared to the other 
methods. These results showing the influence of TS on computing time 
are identical for all four TIs. For example, the results for test case 2 (non- 
stationary continuous TI) are shown in Fig. 8b. Normalizing the training 
images does not affect computing efficiency. In all the cases described in 
this part, PN is equal to zero because the purpose is to evaluate the ef
ficiency of the algorithms as a function of TS only. 

4.1.2. CE with varying PNP 
Table 5 provides the detailed results for test case 3. Once again CFE is 

the most efficient for all configurations. Fig. 9 shows the computing time 
per iteration for the ten methods for test case 3. Results are identical for 
each TI. One can observe that the computing time increases with PNP. 
This is logical since the computation of the distance involves more pixels 
and takes more time. 

4.1.3. Computing efficiency with changing NP 
Table 6 provides the detailed results of test case 4 for the ten methods 

and Fig. 10 shows the computing time per iteration for all the methods 
for test case 4. Results show that changing NP and normalizing the TIs do 
not affect the computing efficiency. Results are the same for all the TIs. 

4.2. Accuracy 

The accuracy of the algorithms, evaluated with the percentage of 
error (EP) parameter, is compared when changing TS, PNP and NP for all 
TIs with or without normalization. 

Fig. 14. (a) Results for test case 11, (b) Results for test case 12.  

Table 11 
Summary of the results obtained for all the ten methods and in all conditions.   

Criteria used to sort the TM methods from the best to the worst 

In terms of CE with 
varying TS 

In terms of CE with 
varying PNP 

In terms of Accuracy with 
varying TS and PNP 

In terms of Accuracy with 
varying NP for raw TI 

In terms of Accuracy with varying NP 
for normalized TI 

The best 
methods 

CFE CFE All methods except CC and CFE BSAD BSAD 
Skipping BSAD Skipping BSAD 
Skipping SAD NN 
Skipping SSD Skipping SSD 
NN Skipping SAD 
CC CC SAD, CFE CFE, SAD 
BSAD SAD NCC NCC 
SAD SSD SSD, NN CC 
SSD BSAD CFE Skipping methods NN, SSD 

The worst 
methods 

NCC NCC CC CC Sipping methods  

Fig. 15. Calculation of CC for finding the best match for the template. Although 
the first template is the best match, the CC algorithm selects the worst template 
as the best match. 
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4.2.1. Accuracy with varying TS 
Table 7 provides the average EP for CC and CFE for test case 5. All the 

other methods show no error at all. Fig. 11a shows that method CC is the 
least efficient in all configurations. All the other methods perform much 
better. 

If a TI is normalized, the results change. Table 8 provides the detailed 
results of test case 6 in which a normalized TI is used. Fig. 11b shows 
that all methods perform better. For CC and CFE, the error is reduced 
with the increase in TS, and then it is zero for all methods. These results 
are the same for all four TIs. Results for the categorical TI A in the 
original (test case 7) and normalized (test case 8) shape are shown in 
Fig. 12a and Fig. 12b. Simulation results for a continuous TI when the 
values are shifted to be centered around 0 are shown in Fig. 19 in the 
Appendix, in this case, all methods can find a perfect match. 

4.2.2. Accuracy with changing PNP 
Fig. 13a shows the average EP for test case 9. When the TI values are 

not normalized, the cross-correlation technique is the least accurate in 
all configurations. NCC and CFE perform better when PNP increases. 
The other methods perform much better. When a normalized TI is used, 
results are much better. Fig. 13b shows the results for test case 10. These 
results are similar for all four TIs. 

4.2.3. Accuracy with changing NP 
Table 9 and Table 10 provide the detailed results for test cases 11 and 

12. Fig. 14a shows that accuracy decreases when NP increases. But some 
methods like BSAD, SAD, and CFE (which uses the SAD criteria) are the 
most robust again noise. In this case, it is interesting to note that the 
skipping methods become less accurate than CFE even when they use the 
SAD or BSAD criteria. Fig. 14b shows that CC and NCC perform better 
when normalized TIs are used. These results are identical for all four TIs. 
An example of the results of a template search for all the ten methods for 
the original and normalized TI is shown in Fig. 7 and Fig. 21 in the 
appendix. 

4.3. Memory usage 

In terms of memory usage, CFE was the least efficient, and the other 
methods performed better. This is easily explained because, in all 
methods, the patterns with specific TSs must be extracted and saved. So, 
for all methods, the same memory was needed to store all patterns. In 
addition, CFE needs to store first the entropy values. It is one real 
number per pattern (tp) which is the entropy of tp. So, memory re
quirements are relatively small (less than 10 % differences). 

5. Discussion and conclusion 

This paper has reported the first template matching methods com
parison for MPS simulation, aiming to help researchers to select the 
method that is the most appropriate for a given application. All the re
sults are summarized in Table 11. 

In terms of computing efficiency, the coarse to fine with entropy 
method is the fastest. This is because only one parameter is used during 
the coarse searching stage to select some templates as candidates for the 
best match. This initial selection allows saving a substantial amount of 
time, at a cost of only less than 10 % of additional memory. In the final 
stage SAD is used to search only among the candidate patterns instead of 
all patterns. A possible further research direction could be to analyze 
whether the use of the entropy is the best quantity to make this initial 
selection. One could argue that other statistical descriptors could be 
more efficient. Then, all the skipping methods perform better than the 
naive searches. By terminating soon, an obviously useless computation, 
a lot of time can be saved. These types of methods are implemented for 
example in the Direct Sampling algorithm (Mariethoz et al., 2010) and 
this paper shows that it is a reasonable choice. Note that in this paper, a 
fixed threshold depending on the TI and the template is involved in the 

skipping methods, allowing a fair comparison of the methods. A more 
in-depth analysis would be to include in the comparison a skipping 
method with an automated varying threshold set to the dissimilarity 
value of the best match met so far during the scan of the TI (and 
initialized to infinity). 

We also observe that an increase in the proportion of known pixels 
causes a direct increase in computing time. When PNP increases, the 
number of known pixels increases and it directly impacts the number of 
calculations that must be done when comparing two patterns. 

In the situation without noise, the cross-correlation criterion is the 
least accurate. As shown in Fig. 15, in some situations, CC cannot find 
the best match because the criterion is incomplete and it provides a 
larger value for matches that are worse than the exact best match. This 
shows that this method should be used only with normalized training 
images. 

Concerning noise, BSAD is the most robust because when noise is 
present in a template, BSAD values are only reduced by one and the 
results are not strongly affected. The second-best techniques are SAD 
and CFE. Skipping methods are not robust against noise. The reason for 
this counterintuitive result is that sometimes the skipping threshold is 
reached wrongly because of the noise and we miss the best match. 

Finally, CFE is the method that uses the largest amount of memory. It 
is the worst among the ten TM methods but the additional memory re
quirements are relatively small (less than 10 % differences). The other 
methods have almost identical memory requirements. 

Before concluding, it is important to note that the results obtained in 
this work cannot be compared with more standard applications of TM in 
image analysis because here the templates are not completely known 
and there is often some noise in the template. 

According to our research, for stationary TIs, if NP > 5, CC cannot 
reproduce a pattern properly, but the other methods do not have any 
problem in reproducing the TI patterns even for NP as large as 15. For 
non-stationary TIs, if NP = 0, all methods do the best but if NP > 0 CC 
cannot reproduce the patterns properly and if NP > 10, skipping 
methods (skipping SAD, skipping SSD, and skipping BSAD) do not work 
properly in reproducing proper objects from the TI but the other 
methods work properly. 

The study presented in this paper deals only with univariate TIs, but 
in practice, it is frequent to employ multiple variables simultaneously 
either because one needs to simulate these variables jointly or because 
one or several variables are already known and used to constrain the 
simulation of the other variables. The study of TM efficiency should 
therefore be extended in future work to investigate the impact of the 
multivariate case. The main difference with the present work will be 
related to the way the distance between two patterns will be evaluated. 
If the distance is based on an average of the distances computed inde
pendently for each variable, the results will likely be rather close to the 
one obtained in this paper. If a more complex definition of the best 
multivariate template is used, then a detailed study will be required. 

To conclude, this paper indicates that BSAD and CFE seem to be the 
best criteria for MPS simulations because these two methods are robust 
against noise, they are fast, and they allow retrieving accurately the 
proper template. 
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Appendix 

This appendix provides a set of figures illustrating some of the results. Fig. 16 shows for example that CC is not efficient for that specific situation, 
but the other methods perform better.

Fig. 16. An Example of results for training image A, template of size 32 × 32 with PNP = 30 %, and NP = 0 %.   
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Fig. 17. An Example of results for training image A, template of size 32 × 32, with PNP = 30 %, and NP = 10 %.   

M. Sharifzadeh Lari et al.                                                                                                                                                                                                                     



Applied Computing and Geosciences 11 (2021) 100064

15

Fig. 18. An Example of results for training image B, template of size 59 × 59, with PNP = 30 %, and NP = 5 %.   
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Fig. 19. An Example of results for training image C, template of size 59 × 59, with PNP = 30 %, and NP = 0 %.   
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Fig. 20. An Example of results for training image C, template of size 59 × 59, with PNP = 30 %, and NP = 5 %.   
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Fig. 21. An Example of results for training image C, template of size 59 × 59, with PNP = 30 %, and NP = 15 %.  
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