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Abstract Sedimentary formations that compose most aquifers are difficult to model as a result of the nature
of their deposition. Their formation generally involves multiple processes (alluvial, glacial, lacustrine, etc.) that
contribute to the complex organization of these deposits. Representative models can be obtained using process‐
based or rule‐based methods. However, such methods have several drawbacks: complicated parameterization,
large computing time, and challenging, if not impossible, conditioning. To address these problems, we propose a
new simple hierarchical surface‐based algorithm, named EROSim. First, a predefined number of stochastic
surfaces are simulated in a given order (from older to younger). These surfaces are simulated independently but
interact with each other through erosion rules. Each surface is either an erosive or a deposition surface. The
deposition surfaces represent the boundaries of depositional events, whereas the erosive surfaces can remove
parts of the previously simulated deposits. Finally, these surfaces delimit sedimentary regions that are filled with
facies. The approach is quite simple, general, flexible, and can be conditioned to borehole data. The applicability
of the method is illustrated using data from fluvio‐glacial sedimentary deposits observed in the Bümberg quarry
in Switzerland.

1. Introduction
Groundwater flow and solute transport processes including dispersion, mixing, or chemical reactions are heavily
influenced by geological heterogeneity occurring at multiple scales (Bennett et al., 2017; Chiogna et al., 2015;
Kitanidis, 2015; Soltanian et al., 2020; Wallace et al., 2021). To investigate the impact of geological heterogeneity
on these processes, multiGaussian random functions are often used (Chiles & Delfiner, 2012; Dagan, 1989; Geng
et al., 2020; Rubin, 2003; Zech et al., 2021) because they provide a parsimonious but flexible mathematical
framework. To incorporate more geological concepts and knowledge in these analyses and to account for different
types of connectivity, alternative models (from process‐based to structure‐imitating approaches) have also been
developed for a wide range of geological environments (de Marsily et al., 2005; Koltermann & Gorelick, 1996).

In this paper, we propose a new simple model to represent the geological heterogeneity produced by sedimentary
processes in unconsolidated fluvio‐glacial environments. We focus on this geological setting because it contains
the most heavily exploited groundwater resources in Switzerland (and many other countries) for drinking water
supply and shallow geothermal energy use. Being close to the surface, these aquifers are also prone to anthro-
pogenic contamination, and therefore, describing their internal heterogeneity is important for the analysis of
contaminant transport.

These formations are the result of a rich and complex sedimentological history (Miall, 1996). Outcrop obser-
vations and geostatistical analysis show that fluvio‐glacial sediments are structured in a hierarchical manner
(Bayer et al., 2011; Heinz et al., 2003; Miall, 1996; Ritzi et al., 2004). Therefore modeling approaches aiming at
studying the impact of this type of heterogeneity should also include these hierarchical relationships. One way to
achieve this aim is to construct directly a hierarchical multiGaussian model (Neuman et al., 2008). To integrate
more geological concepts, Scheibe and Freyberg (1995) and Ramanathan et al. (2010), used sophisticated object‐
based methods where sedimentary structures are created hierarchically following sedimentological rules.
Webb (1994) or Pirot et al. (2015) proposed also a hierarchical approach, where multiple geomorphological
surfaces are stochastically generated and stacked together to define the major units. These units are then filled
with facies using a deformation process (Pirot et al., 2015) or based on an estimation of the Froude number
(Webb, 1994). While these methods provide models that exhibit realistic geological features, they are difficult to
constrain to field data and borehole observations. Comunian et al. (2011) or Bennett et al. (2019) decompose the
problem and model a set of surfaces that delimit volumes that can then be filled with other facies simulation
techniques. Zuffetti et al. (2020) describe in detail the limitations of the methods that do not account for the
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stratigraphical hierarchy. Following these observations, Zuffetti et al. (2020) introduced a generic framework to
overcome these limitations by defining how sub‐units should be modeled into larger units at multiple scales.
Based on these concepts, Schorpp et al. (2022) proposed the ArchPy approach that is capable of handling the
hierarchical relations when constructing a 3D geological model. This approach has been coupled with
geophysical and hydrogeological inversion and applied successfully to synthetic data (Neven, Schorpp, &
Renard, 2022) and to characterize the northern area of the upper Aare fluvio‐glacial aquifer in Switzerland (Neven
& Renard, 2023). ArchPy is also a python library for geological modeling that can integrate various geostatistical
methods such as Multiple Point Statistics (Strebelle, 2002). In this context, the development and integration of
new facies modeling methods is sought.

In this paper, we propose to go a step further and develop the EROSim method that allows filling the stratigraphic
units with detailed facies models while ensuring conditioning. The proposed method belongs to the family of
surface‐based methods (SBM) that emerged in the early 2000s (Pyrcz & Deutsch, 2014) with the pioneering work
of Xie et al. (1999, 2001). SBMs consider that the different geological features (layers, architectural elements,
facies, etc.) can be separated by surfaces (Jo et al., 2020; Pyrcz et al., 2015; Titus et al., 2021). These methods also
integrate the notion of time during which geological objects are deposited. The different surfaces are stacked on
top of each other and delimit the geological units or sediment types. The surfaces can either be deterministic or
stochastic. Compared to pixel‐based methods, SBM can maintain complex geometries such as independent re-
gions throughout the modeling process, which is an advantage when it comes to accounting for the internal
heterogeneity of these different regions.

The general idea of the proposed approach consists of generating multiple stochastic surfaces and combining
them to delimit the different rock types or lithofacies. This strategy is highly flexible and allows performing
conditional simulations even with a complex and realistic sedimentary structure. One important aspect of the
proposed model is that we aimed to keep the model parameterization as simple as possible to facilitate its practical
applications. This goes against most of the previous works which provide much more detailed representations of a
broad diversity of sedimentary architectural elements, but on the counterpart, these previous models require a
more complex parameterization and are more difficult to condition to actual borehole observations. Our modeling
decisions involve limitations in the sedimentological interpretation of the resulting facies model but the proposed
model is easier to apply.

We show in the paper how this model is capable of simulating and extending detailed sedimentary structures that
are directly observable in outcrops. We also show that this model can be used to represent heterogeneity at the
decametric to hectometric scale in aquifers and estimate their flow and transport properties more accurately than
the frequently used SIS method.

The paper is organized as follows. We first introduce the proposed simulation methodology in Section 2. Section 3
illustrates the sensitivity of the method to its parameters and shows how it compares to other facies simulation
techniques in simple cases. Then, in Section 4, we illustrate how this model can be used to represent and extend
detailed information collected on outcrops in a gravel pit in the upper Aare Valley in Switzerland. In addition,
flow and advection transport modeling is carried out to further validate the use of our methodology The relevance
of the results and the different advantages and limitations of the method are discussed in Section 5.

2. A Surface‐Based Approach to Represent Aquifer Heterogeneity
This section describes the EROSim approach and its implementation. First, the general workflow is introduced,
we then present the notations and definitions that are used in the following to describe precisely each step of the
method.

2.1. General Principle

The principle of the method is to decompose the simulation domain into multiple regions (or volumes) using
stochastic surfaces. Each region for each simulation corresponds to a single categorical value representing a li-
thology, a facies, or a unit, in a finite 2D or 3D domain. The three main steps of the method are therefore the
following.

1. Surface simulation. A set of surfaces are stochastically simulated and modified according to erosion rules.
These surfaces can either be depositional or erosional.
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2. Region delimitation. The ensemble of surfaces simulated in step 1 forms a tessellation of the simulation
domain, where each tile is individualized as a region. A graph of the spatial relationships between the regions is
constructed.

3. Facies assignment. During this step, a facies is assigned to each of the regions defined in step 2 while ac-
counting for the spatial continuity of the facies.

2.2. Notations and Definitions

The simulation domain is denoted Ω ⊂Rn where n = 2 or 3 is its spatial dimension. We then consider a finite set
of lithofacies K = {K1,K2,… ,Kk} , where k is the number of facies to simulate. The goal is to obtain a stochastic
process f that can map any location to a certain facies such that f : Ω → K.

We also consider a number of ordered stochastic surfaces St that delimit different regions Vi stored in a set V.
Each volume can only take one value in K, that is, f is constant on each volume Vi. The subscript t ∈ N in St
represents the simulation time step and can be seen as analogous to geological time. These surfaces are stochastic
processes of dimension n − 1, which means, for example, that if the simulation domain is in 3D (n = 3), St are
2D stochastic surfaces. The regions Vi are objects of dimension n each corresponding to a single connected
component, they do not intersect each other. Furthermore, the ensemble of all the Vi fills Ω. We can also refer to
the Vi as areas if n = 2 or volumes if n = 3. The boundaries St are ordered by age (from younger to older) in a list
S. The order of the surfaces is important because it represents the sedimentological history of the simulation
domain and has consequences on the interactions that can exist between the surfaces through erosion rules.

An important aspect of stochastic geological models is their ability to be conditioned by borehole data. In this
study, each borehole is assumed to be 1D and vertical. The list of boreholes is denoted B. A borehole contains a
sequence of contiguous intervals. For a simulation in 2D (resp. 3D), a borehole is located by a position x = (x)
(resp. x = (x,y)). The facies encountered along the borehole are defined with a sequence of elevations
z1 < ⋯ < zm and a sequence of facies k1,… km − 1 ∈ K. The i‐th interval between the bottom and top elevations zi
and zi+ 1, is filled with the facies ki, that is, f (x, z) = ki if zi ≤ z < zi+ 1 (and (x, z) ∈ Ω), for i = 1,… ,m. Hence, a
borehole B is expressed as B = (x, {z1,… , zm}, {k1,… ,km − 1}) or as B = (x, ([z1, z2[,k1), … , ([zm − 1, zm[,km − 1)) .

2.3. Unconditional Simulation

The unconditional simulation algorithm is summarized in Algorithm 1. The steps are described in detail below.

Algorithm 1. Unconditional Algorithm

Require: Parameters
N: integer - number of simulated depositional surfaces

γ0,…,γN − 1: covariance (or variogram) models for each surface
μ0,…,μN − 1: mean elevations for each surface

ξ: in [0,1] - proportion of eroding surfaces
pglobal: target proportions of the facies, over the whole domain

α: in [0,1] - clustering parameter
1: Order all the surfaces in S by their means (μi) ⊳ see Section 2.3.1
2: Set surface index t = 0
3: while t<N do ⊳ see Section 2.3.2
4: Determine if St is erode or onlap, given ξ
5: Unconditional simulation
6: if St is onlap then
7: t = t + 1
8: Apply erosion-deposition Rules (EDR, Equations 3 and 4)
9: Define regions Vi ⊳ see Section 2.3.3
10: Assign facies to Vi using Algorithm 2 (depending on pglobal, α)
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2.3.1. Surface Ordering

Assuming that the parameters are defined, and before generating the surfaces, the first step (line 1) consists of
checking the input parameters and ordering the surfaces by their mean elevation (from low to high).

This sorting is used to represent the evolution of geological time, with each event (a surface) occurring one after
the other. Proceeding that way, we assume that the geological processes gradually increase upward due to the
gradual accumulation of the sediments in the system.

2.3.2. Surface Simulation

The second step consists of simulating N depositional surfaces through the domain Ω. Each time a new surface is
simulated, from oldest to youngest, erosion‐deposition rules (EDR) are applied. We consider here only the
depositional surfaces because the erosion events are assumed to deposit no sediments, as explained below. Note
that this part of the methodology does not seek to represent exactly the complex process of sediment deposition
and erosion, but rather draws inspiration from it to create a tessellation of the domain.

Let St be the simulated surface at time t, before applying the EDR. In the following examples, St is modeled as a
Gaussian Random Field (GRF) following a specified mean μt and a specified covariance (or variogram) model γt.
But, the mathematical model used to simulate the surfaces could be different. We use GRFs for convenience and
simplicity. GRFs are easy to simulate (Chiles & Delfiner, 2012) and to constrain (useful for the conditional case).
They are also flexible as they can handle non‐stationary mean or covariance parameters. To generate our GRFs,
we used the Geone (http://www.github.com/randlab/geone) python library that provides a set of common geo-
statistical, Multiple Point Statistics modeling and image analysis tools.

In the following, for illustration purposes, we generally consider that all the surfaces follow the same covariance
model (all γi are identical) but differ from each other by their mean. Moreover, the stochastic processes are
assumed stationary, that is, the mean and covariance are constant spatially.

Every surface St can be expressed as a function St = St(x), defined for spatial locations x ∈ Rn − 1. Let us then
denote by S∗

t the surface at time t modified by the application of the EDR.

At time t = 0, the surface S∗
0 is initialized as

S∗
0(x))S0(x). (1)

For the following time steps (t > 0), we first determine if the event is an erosional event or a depositional event.
The decision is randomized based on the probability ξ given by the user. This probability represents the fraction of
erosive events among all the geological events (deposition and erosion) that are simulated. From a geological
point of view, this parameter can be interpreted as the frequency of occurrence of an erosive event, which varies
according to the geological setting. For example, this erosive event in alluvial and abyssal settings can be
attributed to an avulsion (Allen, 1978; Bridge & Leeder, 1979; Pirmez et al., 2000), and in a glacial setting it is
generally the result of major glacial advances or important glacial fluctuations (Solomina et al., 2015).

Then, we generate a new surface.

St = GRF(μt,γt). (2)

If the event is depositional, we apply the depositional rule:

S∗
t (x))max(St(x), S∗

t− 1(x)). (3)

and increment the value of t for the next iteration. For depositional events (Equation 3), if the simulated surface is
below a part of a previously simulated surface, there is no deposition and the elevation at that location is equal to
the latter.

Otherwise, if the event is erosive, the computed surface St erodes the previously deposited formations.
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S∗
k (x))min(St(x), S∗

k (x)), for k = 0,… , t − 1 (4)

All previously simulated surfaces that are above the simulated erosional
surfaces are updated (Equation 4). The time t is not incremented in that
situation.

A schematic representation of these rules is shown in Figures 1a and 1b. In
this example, the first three surfaces are depositional and the last (S3) is
erosive. The surfaces S0, S1, and S2 are first simulated and adjusted according
to the first two equations (Equations 1 and 3), and the surface S3 erodes them
where S3 is simulated below the others (Equation 4).

2.3.3. Region Delimitation

Once the surfaces have been simulated and the EDR applied (Algorithm 1,
lines 1 to 10), the simulation domain Ω is divided into distinct regions. All of
these regions Vi are defined by exactly two successive (in simulation time)
onlap surfaces (two depositional events), one delimiting its top and the other
its base. A region can only exist where its top surface is strictly above its
bottom surface. It does not exist where the two surfaces are exactly at the
same elevation. This implies that regions are delimited on the sides when the

top and bottom surfaces meet. If multiple distinct regions occur between two surfaces, they will be treated as
independent regions. This means that later in the simulation, different facies may be assigned to these regions,
even if they are defined by the same surfaces. This is in contrast to previous studies, where each simulated surface
delimits one sedimentological entity (Pirot et al., 2015; Pyrcz et al., 2005; Webb, 1994). This feature allows the
simulation of different types of sediments in different locations during a sedimentological event as it is expected
to occur when sediment sorting occurs. But, the method is based only on a statistical description and geometric
reasoning. It does not rely on any sedimentological rule with the aim of keeping the parameterization very simple
and parsimonious.

In practice, the individual regions are identified as the connected components of the sets
{(x, z) ∈ Ω : S∗

t (x)≤ z < S∗
t+ 1(x)} , t = 0,… ,N − 1, where N is the total number of onlap surfaces simulated.

Finally, two supplementary regions, made up of all points of Ω respectively below the surface S∗
0 and above the

last surface S∗
N − 1, are added, to cover the entire simulation domain. Alternatively, Ω can be reduced to the domain

between S∗
0 and S∗

N − 1. An example of region delimitation in 2D is illustrated in Figure 1c.

2.3.4. Facies Attribution

The aim is to assign a facies to each of the regions Vi determined in the previous step. To do so, we propose a
simple algorithm that is summarized in Algorithm 2.

Algorithm 2. Graph-Based Indicator Simulation

Require: Parameters
pglobal: global proportions of the facies, over the whole domain

α: in [0,1] - clustering parameter
V: set of regions covering the whole domain
G: a spatial graph G representing the connections of the regions

1: Vi ← select a random region in V
2: ptarget ← compute target proportions using Equation 6
3: if α<1 then
4: VJ ← get the neighbours of Vi using G
5: pneig ← compute the local proportions using Equation 7
6: else
7: pneig = 0 (unused)

Figure 1. Schematic representation of the delimitation procedure for the
regions. (a) four surfaces have been simulated: yellow, blue, pink, and gray.
The last one (gray) is eroding while the others are onlap. (b) Situation after
the application of the deposition and erosion rules. (c) distinct regions are
differentiated.
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8: pVi ← compute facies probabilities for Vi using Equation 8
9: Draw a facies in K according to pVi and assign it to Vi
10: Update the global current proportions pcur
11: Go to 1 until all regions are filled

We are assuming that based on borehole or outcrop data, the user can provide an estimate of the target global
facies proportions pglobal in the study area, for example, 50% of sand, 20% of gravel, and 30% of clay. In addition,
we want to provide a simple parameterization allowing the user to control the spatial continuity of the facies. For
this, we introduce a clustering parameter α that the user can adjust.

The attribution then follows a simple method with adaptive target proportions to respect as well as possible the
global facies proportions and spatial continuity. The idea is to sequentially populate the regions with random
facies according to a probability distribution adapted for each region. At each step, a region is randomly selected
to avoid any systematic bias in the final simulations, and the facies probabilities are updated. Before assigning the
facies, the target facies probabilities are first computed accounting for the global target proportions pglobal, the
current proportions pcur over the already simulated regions, and also the local proportions derived from the
surrounding regions.

First, target proportions ptarget are calculated such that

ϕpcur + (1 − ϕ)ptarget = pglobal, (5)

where ϕ is the ratio of the total volume of the already simulated regions over the volume of Ω. Equation 5 means
that if the entire non‐simulated volume was filled with proportions ptarget, the final proportion over Ω would be
pglobal. The target proportions are explicitly expressed as

ptarget =
pglobal − ϕpcur
(1 − ϕ)

. (6)

If ptarget for a certain facies becomes negative, it is set to 0 and the proportions for the other facies are rescaled so
that the sum of ptarget is equal to 1. This situation can occur when a current proportion is too high (ϕpcur(i) exceeds
pglobal(i) for some component i). It is important to understand that ptarget is computed before the facies attribution
of each region, and then it can vary since it depends on pcur and ϕ. Therefore, the global target proportions for the
unsimulated part of the domain are continuously corrected until the simulation is finished.

Secondly, to introduce some spatial continuity, the local proportions pneigh are computed from the regions around
the simulated one. This is done by using a spatial graph G describing the regions and their contacts. Each vertex in
G refers to a region, and an edge links two vertices if the two corresponding regions are in contact (adjacent). The
size of the contact (length if n = 2 or area if n = 3) is the weight attached to the edge. An example in 2D is shown
in Figures 2a and 2b. Note that the graph is constructed prior to the facies assignment procedure.

We consider Vi the region in which a facies has to be attributed (currently simulated region) and J the set of
indices j of the regions adjacent to Vi, that is, j ∈ J when the vertices corresponding to Vi and Vj are linked in G
by an edge, of weight wi − j. These weights correspond to the length of contact between the region Vi and Vj to
weight the neighborhood effect. This ensures that a neighbor that barely touches a region does not have as much
weight as a region that is in close contact with it. Then, the local facies probabilities pneig for Vi are defined based
on the neighbors Vj as follows:

pneig =
∑j∈Jwi− j ⋅ pVj

∑j∈Jwi− j
(7)

where pVj
is the proportions of facies in the neighbor region Vj. The vector pVj

is of length k where k is the number
of facies and it is defined as follows. If a facies Kl has already been assigned in Vj, then all the components of pVj
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are set to 0 except the l‐th component that is set to 1. If Vj is a region not yet simulated (with no assigned facies),
then pVj

is set to the target proportions ptarget computed above.

Finally, the probability distribution, pVi
, used to draw a facies in the region Vi is obtained by combining prob-

abilities ptarget and pneigh (see Equations 5 and 6) via a log‐linear pooling operator (Allard et al., 2012):

pVi
= (ptarget)

α
(pneig)

1− α
(8)

where α is a user‐defined parameter ranging from 0 to 1 that controls the clustering of the regions of identical
facies. If α = 0, the same facies are more likely to be adjacent and, in contrast, if α = 1, the facies are drawn only
according to ptarget (pneigh is ignored).

The main advantage of this method is that it is simple and requires only the global target proportion pglobal and the
parameter α as input. Note that the graph‐based approach presented here is applied to a domain divided into tiles
and then is independent of the first part of the EROSim methodology. More complex methods could be
considered, such as those using rules to guide the position of the facies (e.g., by constraining some facies to appear
more frequently in small regions).

To illustrate the procedure, let us consider the 2D case shown in Figure 2c, based on the domain delimitation in
Figure 2a. Here the facies in V5 have to be drawn from pV5

using Equation 8. First, we need to calculate ptarget
which depends on pcur and ϕ (Equation 6). We obtain ptarget = ( 43

30 , − 1
2 , 1

15) which after setting the second
probability to 0 and rescaling becomes: ptarget = ( 43

45 , 0, 2
45) ≈ (0.96, 0,0.04). Then we need to compute pneig,

which depends on the facies in the regions surrounding V5, which are V3,V4,V7 according to the graph. Applying
Equation 7 with values in Figure 2 gives: pneig = (0.08, 0.50,0.42)which is very different from ptarget. We see that
the most probable facies according to neighbors are, in fact, the green and blue facies, as they share the longest

Figure 2. Conceptual representation of a 2D simulation domain separated in seven regions (a) and its associated spatial graph
(b). The wi − j correspond to the length of contact between Vi and Vj, they are used as weights for the edges in the graph.
(c) represents a situation during the attribution of the facies (three in total) for volume 5. The facies proportions are written in
each region (note that region 3 is not defined at this point of the simulation and the modified global proportion ptarget is used).
(d) details the variables required to compute the probability mass used to draw a facies in region 5 (see text for details).
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contact length with V5. We can also note that since the facies proportion is undefined in region 3, ptarget is taken for
that region. Finally, we can apply Equation 8 and obtain pV5

that can range from pneig to ptarget, depending on the α
parameter chosen. In this particular case, α has a strong impact as if it is close to 0, priority is given to the
neighbors, and the beige facies has poor chances of being drawn. In contrast, if α is close to 1, priority is given to
the adjusted global proportions, which gives a great chance for the beige facies to be drawn. This is due to the
over‐representation of green and blue facies in Figure 2c compared to the global target proportions p0

global.

2.4. Conditional Algorithm

We now consider the problem of conditioning the simulations. The conditioning data are facies intervals in
boreholes as defined in Section 2.2. Considering any borehole,

Bi = (xi, {z1,… , zm}, {k1,… ,km− 1}), (9)

conditioning consists of ensuring that at least one surface must pass through each of the geological interfaces
(xi; zj) observed in each borehole. Then, to condition the regions Vi with the proper facies, it is sufficient to ensure
that no region covers two intervals having different facies.

The method that we propose to ensure the conditioning is described in detail in Algorithm 3. The method is direct
and requires no iteration, but it requires checking at each step that it does not create situations that will lead to a
violation of the conditioning data. This is the reason why the algorithm is complex. In the following, we explain
the main principles of the algorithm.

Algorithm 3. Conditional Algorithm

Require: Same parameters as the Algorithm 1
Require: List of boreholes B
1: Order all the surfaces in S by their means
2: ds ← attribute a surface to each borehole facies transition and store it
3: Set surface index t = 0
4: LB ← initialize lists for lower bounds conditioning
5: while t<N do ⊳ loop over the surfaces
6: if St in ds then ⊳ If the surface is attributed
7: EP,UB ← Initialize lists for conditioning points (equality points and

upper bounds)
8: Bi ← get borehole(s) and facies interval(s) associated with St
9: Check situation at Bi according to Figure 3
10: if Situation 1 then
11: Set St to onlap
12: EP ← set an equality point to top of facies interval(s)
13: UB ← set upper bounds at other near boreholes locations to prevent

connecting nonidentical facies (given Figure 3a)
14: else if Situation 2 then
15: Set St to erode
16: EP ← set an equality point to top of facies interval
17: Compute one conditional surface with conditioning points EP, UB and LB
18: Add EP to list of LB
19: Remove facies interval of ds
20: else
21: Determine if St is erode or onlap, given ξ
22: if St is onlap then
23: Set LB and UB to prevent connecting two different facies as shown in

Figure 3c
24: Conditional simulation with LB and UB
25: else

Water Resources Research 10.1029/2024WR038364

SCHORPP ET AL. 8 of 31

 19447973, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
038364 by U

niversity O
f N

euchatel, W
iley O

nline L
ibrary on [02/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



26: Conditional simulation with only LB
27: if St is onlap then
28: t = t + 1 ⊳ Increment time of deposition
29: Apply Erosion Rules (Equations 3 and 4)
30: Define regions Vi as described in section 2.3.3
31: Assign facies to Vi using Algorithm 2

The surfaces are simulated from the bottom to the top. Surfaces can be onlap deposits or erosive as for the un-
conditional algorithms and they define regions. Because of their erosional capabilities, they can remove or cut
parts of the regions that have been defined by previous depositions. The general aim of the algorithm is to ensure
that in the end, no region covers two intervals having different facies in the boreholes.

This problem can happen in two situations: if the newly simulated region covers two (or more) intervals with
different facies within the same borehole, or if the new region covers two (or more) intervals in different
boreholes.

The first situation is avoided by forcing at least one surface to pass through each of the facies interface in each
borehole as indicated above.

The second situation is more complex. It requires analyzing the position of the regions and intervals encountered
in the different boreholes. As some surfaces have the potential to remove older ones by erosion, some situations
that are compatible with the conditioning data at a certain time step may become incompatible with the data later
on. The inverse is also possible. To solve this problem, the conditioning algorithm proceeds by generating the
surfaces sequentially from oldest to youngest and uses inequality data (upper or lower bounds) to constrain the
simulation. Three rules are defined and implemented in the algorithm:

A. For each interface point along each borehole with a facies transition, attribute a surface in S that has to go
through that point; store this information in a data structure (a python dictionary) referred to as ds. Note that
one surface S can be attributed to one or several interfaces (in one or several boreholes).

B. When a facies interval is constrained (attributed to a region), we consider it untouchable and no future changes
can alter it. This is done by imposing lower bounds (LB) along the borehole when simulating future erosive
surfaces.

C. Onlap surfaces have to avoid creating (temporary) regions overlapping two different facies intervals to
prevent the apparition of conditioning errors in the following steps.

To start, we generate N values within a uniform distribution between the minimum and maximum altitudes of the
zone of interest. These values are ranked (step 1, in Algorithm 3) from minimum to maximum and will correspond
to the mean altitudes of the N surfaces delimiting the regions.

Following rule R1, one surface is attributed to each interface (step 2, in Algorithm 3): for a given interface at
elevation z, a surface St in S is chosen randomly according to a probability computed with a Gaussian distribution
φμt ,σ2

t
(z) of mean μt and variance σ2

t , with μt being the prescribed mean elevation of St and σ2
t the prescribed

variance of St. φμt ,σ2
t
(z) is the probability that the surface St takes the value z at any location. Using this approach

ensures that there is a reasonable chance that these transitions will be represented by a surface that is likely to be
present at that depth. In addition, surface allocation ensures that surfaces associated with intervals in a borehole
are of increasing index. This is to avoid the unrealistic situation where a younger interval is constrained before an
older one. To do this, surface indices are randomly drawn, as described above until they are higher than the index
previously drawn for the lower interval. At the end of the process, only a subset of the surfaces St are attributed to
the interfaces observed in the boreholes. A surface can be assigned to several intervals of identical facies (below
the interface). This is forbidden if the facies are different because there is a high risk of creating a region that
would connect them.

The surfaces are then simulated successively.

If the current surface is attributed to an interface, several situations can arise. Figure 3 shows some of these
situations. In the figure, the surfaces that have been simulated previously are represented in black and the intervals
of the borehole data that have already been constrained by the conditioning algorithm and that should therefore
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not be perturbed anymore are highlighted with a red rectangle (rule R2). The new surface to be simulated is
represented in green. In situations 1 and 2, the green rectangle highlights the current interval with a given facies
that needs to be constrained during that iteration.

In situation 1 (Figure 3a), an onlap surface has to be considered. The current simulation elevation (last surface
elevation, in black) at the well location (left well) is below the attributed interface. The green circle represents the
position of the interface attributed to that surface (during step 2). It is a conditioning data, or equality point (EP)
for the GRF simulation of this surface (step 12, in Algorithm 3). But the facies located above the already con-
strained interval in the second well (right well) is blue and therefore different from the facies in the left well
(brown). To avoid creating a region that would connect these different facies, we impose in the right well an
inequality (upper bound or UB) for the simulation of this surface (step 13, in Algorithm 3). We then use a Gibbs
sampler (Freulon & de Fouquet, 1993) to constrain the conditional GRF simulation (step 17). After applying the
erosion‐deposition rules (step 29), the new region will cover only the brown interval in the left well in that case.

In situation 2 (Figure 3b), the current simulation elevation at the left well location is above the attributed interface.
In this situation, an erosive surface has to be considered to ensure the removal of the previously simulated de-
posits. We add an EP at the interface (step 16). Then, to avoid breaking an interval that has already been con-
strained in other wells, we impose an LB constraint on the top of the intervals that were previously constrained
(see right well with red rectangle in Figure 3b). We then use the GRF simulation technique with these new

Figure 3. Three different situations can arise during the simulations of the surfaces. Situations 1 and 2 (a) and (b) concern a
case where an interval has to be constrained while situation 3 (c) concerns onlap surfaces not constrained by an interface. See
text for details. The horizontal bar of the “T” of the upper and lower bounds (UB and LB) is positioned at the altitude where
the bound is applied. Note that these symbols are slightly offset to the left or right for better visibility. But they still apply to
the borehole position.
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constraints to generate the conditional simulation and apply the erosion‐deposition rules as described above (steps
17 and 29).

The interval being now constrained, we can add the EP data to LB to prevent them being eroded by subsequent
erosive surfaces (step 18) and interface is no longer attributed (step 19).

If the current surface is not attributed to an interface, We decide with a probability ξ if it is onlap or erosive (Step
21 in Algorithm 3). To prevent to connect different facies intervals, we add several constraints to onlap surface, as
illustrated in situation 3 (Figure 3c). In this example the surface is forced to pass in the blue interval in the right
borehole while avoiding the brown interval in the left borehole. The rest of the procedure is the same as before.
Practically, this is done by randomly choosing a facies interval among the next to be constrained in each borehole
and forcing the surface to pass through it using UB and LB, while avoiding other nonidentical facies intervals by
applying UB. This prevents the connection of different facies.

The remaining steps (volume definition and facies assignment) are almost identical to the unconditional case.
Before applying Algorithm 2, we simply attribute the facies from the boreholes to the regions that intersect them.

2.5. Hierarchical Workflow

Hierarchical structures are very common in Quaternary deposits (Miall, 1996). To model these features, one can
apply EROSim within a hierarchical workflow. The hierarchical levels can be seen as the results of sedimen-
tological processes at different spatial and temporal scales (or levels).

We consider these levels as sets of surfaces that separate not only lithofacies but also distinct sedimentological
units. The basic principle is that a surface of a specific hierarchical level can only affect surfaces that have an
equal or lower hierarchical level as discussed in Zuffetti et al. (2020). For example, a specific sedimentological
body delimited by surfaces of a higher rank, cannot be eroded by a surface of a lower rank. From a computational
point of view, this implies that we can simulate these deposits sequentially by hierarchical level from higher to
lower levels.

For example, let us consider a case with two hierarchical ranks: one defined by surfaces having a large extent and
delimiting large sedimentological units (or regions), and another one defined on a smaller scale with numerous
surfaces frequently intersecting each other and producing regions of smaller sizes. To model this system, it is
possible to decompose the simulation in two steps: first, high‐order surfaces are simulated to delimit the
boundaries of the different sedimentary units. In the second step, EROSim simulations are performed inside these
units. Practically, this implies constraining the upper and lower boundaries of the simulation domain of EROSim
with the simulated surfaces of the first. This can be extended to as many hierarchical levels as needed.

Using such a hierarchical approach, it is also possible to include more constraints in the model by setting different
simulation parameters (α, ξ, N, surfaces interpolation parameters) for each unit or hierarchical level. But it implies
inferring more parameters. The usefulness of the hierarchical approach is illustrated in Section 4.

3. Parameter Sensitivity
This section illustrates the EROSim capability to simulate a range of geometrical structures. We first present some
unconditional 2D examples, as well as the effect of the different parameters (α, ξ, etc.) on the simulations (e.g.,
shape and size of the regions). We then demonstrate that the algorithm can be conditioned to well‐data. Some 3D
simulations are presented in Section 4 with a case study.

3.1. Unconditional Simulations

For most of the examples shown in this section, we consider a 2D vertical slice (x, z) of dimension 60 × 30 m2

and with a spatial resolution of 0.33 × 0.15 m2. We simulate a total of four facies (k = 4) in equal proportions.
To keep things simple, we used the same covariance for all surfaces in a single EROSim simulation. However,
there is no difficulty in using different covariance models. For example, a particular geological site may have a
certain amount of erosive events that are distinct from the depositional events. In such cases, the erosive surfaces
are likely to have a different geometry (e.g., smoother) and could therefore be modeled with an adapted
covariance structure that has a higher correlation range and/or a smoother covariance model type, such as
Gaussian covariance. In all simulations, the surface means are drawn from a uniform distribution between the top
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and bottom of the simulation domain. This allows distributing the surfaces uniformly over the domain and
obtaining stationary simulations, but this is not a fixed feature of the algorithm.

Figure 4 shows one unconditional simulation with a stationary cubic covariance with a range of 45 m and a total
variance of 5 m2. The simulation parameters are N = 100 surfaces, 10% of erosive surfaces (ξ = 0.1), and the
facies simulation being only driven by the marginal target probability (α = 1).

Figure 5 illustrates the effects of the simulation parameters. As expected, the range of the covariance controls the
geometry of the surfaces. A shorter range leads to rougher surfaces. But it also controls the size of the regions. A
shorter range creates more intersections between the surfaces and leads to smaller regions (Figure 5a–5c).
Logically, the number of regions also increases with the range. The proportion of erosional surfaces (ξ) does not
modify significantly the size of the regions, but it changes rather their shapes (Figures 5d–5f). When there is no
erosion (ξ = 0) the boundaries of the regions are mostly concave. This could correspond to a sedimentological
situation dominated by the stacking of architectural elements such as gravel beds. But as ξ increases, more and
more convex boundaries appear. This is the effect of erosion, which removes some parts of the regions that are
filled later. This could correspond to a sedimentological situation with more energy that would result in a pre-
dominance of trough‐like structures. As expected, the number of surfaces (N) influences the thickness of the
regions (Figure 5g–5i), and their numbers. This is mainly due to our choice of drawing the surface means in a
uniform distribution. The influence of the α parameter is also clearly visible (Figure 5j–5l). When α is equal to
0 (Figure 5j), the regions of the same facies tend to be clustered through the whole simulation domain, while when
α is equal to 1, they are evenly distributed.

Different covariance models can also affect the shape of the regions. For example, Figure 6b shows a simulation
with a spherical covariance model with a small range. The boundaries between the regions are rough, and they are
more individual regions than with a larger range.

Figures 6a, 6c, and 6d illustrate the possibility of using non‐stationary means or variograms through the simu-
lation domain. In Figure 6a, the means are following a sinusoidal trend. In Figure 6c the means follow linear
trends with varying slopes. And finally, in Figure 6d the sill and range of the variograms are progressively
increasing to the right. These examples, even if they are a bit theoretical, show that if some information is known
about the non‐stationarity of the sedimentary structure, EROSim is capable of handling this information.

3.2. Conditional Simulations

In this section, we illustrate the capabilities of EROSim to produce conditional simulations based on borehole
data. The number of facies is reduced to three in equal proportions. For all the examples, we used the same
simulation parameters (N = 100, ξ = 0.1, and α = 0.5). The surface means were randomly drawn from a

Figure 4. Example of an EROSim unconditional simulation with 100 surfaces. The four different colors represent four
different facies. The black lines delimit the regions.
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Figure 5. Different EROSim simulations where one parameter has been changed on each. (a–c) Simulations where the variogram range increases from 10 to 20 and then
to 50. (d–f) Simulations where the ratio of erosive layer (ξ) increases from 0% to 30% and then to 80%. (g–i) Simulations where the number of surfaces (N) is modified,
from 30 to 100 and then to 400. (J–L) Simulations where the α has been modified, from 0 to 0.5 and then to 1.

Figure 6. Realizations showing the capabilities of EROSim by varying different modeling parameters such as the mean (a), (c), the variance (d) or the covariance model
(b, spherical). The different colors of the regions are just used to distinguish them.
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uniform distribution between the minimal and maximal elevations. All surfaces are simulated with the same cubic
covariance model with a sill of 5 m2 and a range of 15 m or 55 m.

Figure 7 shows different conditional EROSim simulations using a range of 15 m (Figures 7a and 7b) or a range of
55 m (Figures 7c and 7d). The borehole intervals are correctly respected without any apparent deformation of the
regions. Note that despite using the same value for the clustering parameter α (=0.5) for both cases, the facies
regions are distributed differently. Realizations obtained with a variogram range of 15 m display more variability
in the types of contact between the regions than the ones made with a variogram range of 55 m, since using the
lower range results in a larger number of regions.

We used Sequential Indicator Simulations (SIS, Journel & Alabert, 1990) to compare EROSim capabilities
against one of the most frequently used facies modeling techniques. Indicator variograms were estimated using
EROSim simulations and used to produce SIS realizations. Four of those simulations are shown in Figure 8. SIS
respects the conditioning data, proportions, and input variograms but does not succeed in reproducing some of the
patterns (sharp contacts) proposed by EROSim. SIS produces more noisy and pixelized simulations with irregular
facies boundaries.

If we compare the probability maps obtained by averaging 100 realizations (Figure 9), we observe similarities
between the two methods. Indeed, the patterns of the facies probabilities are similar, except in the areas at depth
not reached by the second and third boreholes. This is particularly obvious when the difference between SIS and
EROSim predictions is plotted (Figures 10a and 10c).

Figure 10d highlights the differences in Shannon entropy (Shannon, 1948) between the two algorithms. The red
area indicates a region where EROSim is more certain (less uncertainty) than SIS, while the blue area indicates the
opposite (more uncertainty). This figure shows that SIS results are generally more uncertain (higher entropy)
between the boreholes than EROSim. This is visible between the second and third boreholes (between x = 25 m
and x = 55 m) which have nearly identical facies logs, implying a possible connection between the two. While
EROSim is almost certain that a continuous connection exists between the two blue facies, SIS is not. The same
comment can be made for the orange facies but the difference is not blatant. It can also be noted that the entropy
depends on the choice of geostatistical parameters, as if the range of the variograms is too small (low horizontal

Figure 7. EROSim conditional simulations based on borehole data. (a) and (b) are two equiprobable realizations using a cubic covariance model with a range of 15 m and
(c) and (d) were made with a cubic covariance with a range of 55 m.
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correlation), the models will be more uncertain (high entropy). In the comparison between SIS and EROSim in
Figures 9g and 9h we can see that between the wells the SIS simulations have a higher entropy (high uncertainty)
compared to the EROSim models. This is probably due to the difficulty in inferring correct correlation lengths for
the variograms (the basis of the SIS models) in EROSim models. If the modeler has a general idea of the un-
certainty, the Shannon entropy can be used as a constraint to properly select the geostatistical parameters.

4. Application to the Upper Aare Valley
In this last section, we illustrate the ability of EROSim to simulate structures similar to the ones observed in the
field.

4.1. Study Site and Field Data

The study site is located in the Bümberg quarry (coordinates: 46°48ʹ38.4ʺN 7°33ʹ47.4ʺE), near Thun in the canton
of Bern, in Switzerland. This site has been previously studied and described by Schlüchter (1973). Schlüchter
et al. (2021) give a general description of Quaternary deposits in Switzerland and place the sediments from the
Bümberg quarry in that broad framework.

This site has been selected because it is a suitable analog for the type of geological heterogeneity expected in the
upper Aare Valley aquifer (Neven, Christiansen, & Renard, 2022; Neven & Renard, 2023). The quarry walls show
fluvio‐glacial Quaternary sediments made up of different sand and gravel facies that show complex relationships.
This type of sedimentary architecture can be observed in many other sites in Switzerland and abroad.

To characterize its heterogeneity, the sedimentological structures, hierarchical levels, and deposits of the quarry
walls were manually interpreted based on a field survey and a high‐resolution photogrammetric UAV survey to
obtain 3D ortho‐normal images (Menga, 2021). This enabled the digitization of the delimitation and the char-
acterization of the different stratigraphic boundaries and unit extents. In this quarry, Menga (2021) analyzed two
walls, one oriented North‐South (180 m long and 13 m high) and one oriented East‐West (115 m long and 12 m
high) to characterize the possible anisotropy of the sedimentological structures.

Figure 8. SIS simulations where each indicator variogram has been inferred from the corresponding EROSim simulations. Indicator variograms used to generate (a) and
(b) were inferred on EROSim simulations with a range of 15 m (Figures 7a and 7b). Identical procedure was applied to generate (c) and (d) but on EROSim simulations
with a range of 55 m (Figures 7c and 7d).
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Several different lithofacies have been identified and described according to the classification proposed in
Wentworth (1922) that takes into account the grain size and the sedimentological structures of the deposits. The
different grain sizes are described by a capital letter: C (cobbles), P (pebbles), G (gravels), S (sands), and L (silts).
The arrangement and/or the structure of the sediments are described by a lowercase letter: o (open framework), i
(imbricated), h (horizontal stratification), n (normally graded), r (reverse graded), l (low angle stratification), p
(planar‐cross stratification), t (trough‐cross stratification), s (draping troughs), x (cross‐stratification), m
(massive).

Figure 9. Probability of occurrence for each facies (computed over 100 realizations) considering a variogram range of 55 for EROSim simulations (Figures 7c and 7d)
and SIS simulations made with variograms inferred on EROS simulations (Figures 8c and 8d). (a, c, e) are the probability maps for facies 1–3 for SIS method and (b, d, f)
are the probability maps for facies 1–3 for EROSim method. (g) and (h) are the related Shannon entropy to probability maps for SIS and EROSim, respectively.
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Menga (2021) regrouped them into seven facies groups and for each group a sedimentological origin interpre-
tation has been proposed. These groups and interpretations are shown in Table 1 and Figure 11b shows the spatial
organization of these facies on the East‐West wall of the quarry. Gravel‐dominated facies are the predominant
groups of facies, whereas sand‐dominated facies are quite dispersed and only present locally. Gravel facies are
distinguished into four groups: bedload sheet aggradation (yellow), transverse bar migration (blue), scour fills
(brown), and gravelly dunes (green), for a more comprehensive understanding of these sedimentological for-
mations, please refer to Miall (1996).

In addition, six levels of sedimentological hierarchies have also been recognized, and named Rank 1 (lowest rank)
to Rank 6 (highest rank). Figure 11a shows the interpreted surfaces on the wall of the Bümberg quarry. The
surfaces of Rank 1 to Rank 2 are likely the result of very local processes (∼1–5 m) while Rank 3 surfaces have a
larger extent (∼5–60 m). Higher‐order surfaces (Rank 4–Rank 6) exceed the size of the domain and can be treated
equally in this situation. There are a total of six of these surfaces on the two walls, which delimit five sedi-
mentological bodies (Units in Figure 11a) that differ in terms of facies proportions and structures.

4.2. Model Setup and Parameters

To account for the hierarchical relations observed on the study site, we
consider the hierarchical approach proposed in Section 2.5. At the lowest
rank, the regions are filled with facies while surfaces of higher ranks are
simulated independently to delimit stratigraphic units. For the upper Aare
valley, the aim is to produce a model of lithofacies. Based on the field ob-
servations, we consider that it is reasonable to set the lowest rank to Rank 3
surfaces (Figure 11a, yellow lines) and to fill the delimited regions with the
facies that are mostly differentiated by these surfaces. Figure 11b shows that
these are gravel‐dominated facies. The sand facies (dark green, pink, and
orange) are more dispersed and often delimited by surfaces of Rank 1 or 2.
Therefore, we must consider as well the hierarchical levels above Rank 3
(pink, blue and red surfaces). Furthermore, the regions delimited by these
higher rank surfaces have different characteristics in terms of sedimentary

Figure 10. Plots of the differences between SIS and EROSim algorithms for the case shown in Figure 9 for probability of each facies (a–c) and Shannon entropy (d).

Table 1
Facies Code and Their Interpretation in the Bümberg Quarry

Facies code Interpretation Facies color

C,P,G(h,l,n,i,m) Bedload sheet aggradation Yellow

C,P(p,t,x) Transverse bar migration Blue

C,P,G,Ss Scour fill Brown

PS,GS(p,t,x) Gravelly dunes Green

SG,S(p,t,x) Sandy‐gravelly dunes Dark Green

SG,Sh Sandy wedges Pink

SH,S(l,m) High flow regime sandy levels Orange

Note. The colors used to represent them are also given.
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body sizes and facies proportions. Finally, we only simulate the four dominating facies (mainly gravels). Orange
and pink facies have been regrouped into the yellow facies, while the dark green facies has been regrouped with
green facies.

As explained in Section 2.5, the approach is decomposed into two steps. First, the geostatistical parameters of the
higher‐rank surfaces are required to define the extent of each unit. From base to top in this quarry, Menga (2021)
recognized a first unit bounded by a surface of Rank 6 and Rank 4, a second unit bounded at the top by a Rank 5
surface, a third, fourth and fifth units, bounded at the top by Rank 4 surfaces (Figure 11a). Consequently, it is
required to simulate three Rank 4 surfaces and one Rank 5 surface. Therefore, for each wall, the variograms for
Rank 4 and Rank 5 were estimated on the available surfaces as well as the mean altitudes of each of the surfaces.
The parameters to model those surfaces are provided in Tables A1 and A2 in Appendix A. Rank 6 surface was not
modeled and was simply considered to be the bottom of the simulations.

In this phase, we undertake the simulation of Rank 3 surfaces within each distinct unit. EROSim requires that we
infer the following parameters: the number of surfaces (N), a distribution for the mean altitudes of the surfaces,
the variogram models of the surfaces (μi and γi), the proportion of erosive surfaces (ξ), the proportions of the
facies (pglobal), and lastly, the clustering parameter (α).

The γi were estimated using the interpreted surfaces, drawn by Menga (2021), by computing the experimental
variogram on each independent line (or surfaces) and by adjusting a variogram model on them. Note that we only
considered lines with a minimal length of 5 m to obtain representative statistics. The spatial statistics of these
surfaces for the EW Bümberg wall are summarized in Figure 12 for each unit. Unit 5 is not represented, as there
were not enough surfaces to infer proper variogram models. In this case, we used the mean values of the pa-
rameters, and averaged on all the variogram models. Finally, for each unit, the inferred parameters of the var-
iogram models were averaged to keep only one set of parameters.

The other parameters (N, ξ, pglobal, α) were estimated by trial and error and are given in Table A3 in Appendix A.

Figure 11. Interpretation of a part of the East‐West wall of the Bümberg quarry realized by Menga (2021). (a) is the
reconstructed image of the wall acquired by the drone as well as the sedimentological surfaces that separate the subfacies
bodies. The hierarchical rank of each surface is given by its color. The five stratigraphical units, delimited by surfaces of rank
4 or higher are also shown. (b) shows the corresponding colorized facies groups interpretation. For readability and clarity,
only half of the wall is shown. Figures and data are taken and modified from Menga (2021)).
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4.3. Heterogeneity Models in 2D

Figures 13 and 14 show EROSim simulations of the quarry walls and the observed geology for the same locations.
For comparison purposes, Table A3 gives information about the facies proportions in each unit for each different
Quarry wall. Generally, the simulations reproduce rather well the shapes of the regions as compared to the
reference. A more quantitative analysis of the results has been conducted on an ensemble of 100 realizations for
the two sections. It shows that the indicator variograms computed for each facies for each EROSim simulation are
well distributed around the reference indicator variograms, as illustrated in Figure 15a–15c for N‐S wall. The
proportions are also well respected (Figure 15d). Similar results are obtained with the E‐W wall.

To test the capabilities of the conditioning algorithm (Section 2.4), four boreholes were extracted from the
reference and used to constrain EROSim simulations (Figure 16). Compared to the unconditional simulations
(Figures 13 and 14), the conditional simulations are closer to the reference, thanks to the borehole information.

In general, the previous examples show that the 2D cross‐section models demonstrate a high degree of similarity
with the reference data set. Additionally, the models appear to have difficulty in accurately reproducing specific
patterns, such as the vertical succession of certain facies (e.g., the blue‐green sequences that are frequent in the
original data in Figure 13d). The main reason for this is the simplicity of the facies assignment step of the EROSim
approach, where facies are assigned based only on simple facies proportions and neighboring regions. More
complex approaches to calculating probabilities, such as transition probabilities, could be considered. This would
require additional work to modify the algorithm to accommodate such approaches.

4.4. Flow and Transport Simulations

To push the comparison further and assess the capability of EROSim to reproduce not only the observed sedi-
mentary structures but the features that are relevant to model groundwater flow and transport accurately, we
performed 2D flow and transport simulations within the area delimited by the red rectangle area shown in
Figure 17a. This experiment aims to evaluate the ability of EROSim to generate sedimentological structures that
have the same effect on the flow field as the observed sedimentological structures. As a reference, we use the east‐
west wall of the Bümberg quarry. SIS simulations were performed for comparison purposes as before.

Figure 12. Experimental and fitted model variograms realized on the EW wall of the Bümberg quarry for each different unit. (a) Variograms for unit 1, (b) Variograms
for unit 2, (c) Variograms for unit 3, (d) Variograms for unit 4.
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The groundwater flow model was built using MODFLOW 6 (Langevin et al., 2017), the particle transport was
computed with Modpath 7 (Pollock, 2016). Everything was coded and scripted with the FloPy python package
(Bakker et al., 2016). The model is a vertical 2D section model of 125 × 154 cells (number of layers × number of
cells in x‐direction). The cells have a constant thickness of 0.0625 m and a constant width of 0.39 m, resulting in a
model of 7.81 m × 60 m in total length and 19’250 cells. The left and right boundaries of the model were set to
constant head (0 m on the left and 1 on the right, which implies an hydraulic gradient of around 0.015), while the
upper and lower boundaries were assumed to have no flow conditions. The model is run in steady state, so only
hydraulic conductivity (K) values are considered. The mapping between the geological models (EROSim) to the
groundwater model (MODFLOW 6) was simply made by using same grid for both models and assigning hy-
draulic conductivity values to each corresponding facies. Each facies was assumed to be homogeneous and
isotropic (Kxx = Kzz). Therefore, model cells belonging to the same facies were assigned a unique K value
(Figure 17a). Fifty realizations of EROSim and SIS were generated, and the same procedure was applied to
transform the facies to continuous K fields. The realizations are conditioned on two boreholes. The SIS pa-
rameters were inferred from the reference directly. The choice of the K values is consistent with the nature of the
sediment types and was chosen to ensure a significant contrast. It is not based on actual measurements which are
unavailable for the site. The goal is to test the ability of EROSim to simulate the sedimentological structures of a
reference and to compare it with a standard method (SIS).

For the advective transport simulation, a total of 96 particles were released uniformly at the right boundary cells in
the model between layers 15 and 111. An homogeneous value of 0.3 was considered for the porosity over the

Figure 13. Three EROSim simulations of the East‐West wall of the Bümberg quarry (a–c) and the interpreted wall made by
Menga (2021) considered as the reference (d). The sedimentological lines that separate the regions are not shown.
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simulation domain. Each particle was placed in the center of each cell. Figures 17a–17c show the flow paths of the
particles in the reference, one EROSim simulation, and one SIS simulation, respectively.

The results obtained from the 50 simulations are summarized in Figure 17d. It depicts the distribution of the
cumulative number of particles that reached the left boundary of the model as a function of time for the 50 re-
alizations. This figure allows comparing the results of the EROSim and SIS simulations (shown in blue and red,
respectively) against the reference (shown in black). First of all, we observe the wide range of the predictions for
both methods, indicating a high degree of uncertainty because the heterogeneity models are conditioned only on
two wells. We also observe that the median arrival time obtained with the EROSim simulations is much closer to
the reference than the median obtained with the SIS simulations. In addition, we have calculated the Root Mean
Square Errors for each curve (compared to the reference), resulting in 50 RMSE values for SIS models and 50
RMSE values for EROSim models. The mean RMSE for EROSim simulations is 13.4 (in number of particles)
against 16.3 particles for SIS simulations. All of this seems to indicate that EROSim was able to better reproduce
the sedimentological structures of the reference that control flow and transport as compared to SIS.

4.5. Heterogeneity Models in 3D

EROSim can also be used to generate 3D heterogeneity models. Figure 18 shows such 3D simulations using the
sedimentological statistics inferred on both walls of the Bümberg quarry. Standard parameters (Table A3) have
been averaged between the two walls, as well as the altitudes of the surfaces of the higher ranks. The 1D var-
iograms were also combined to obtain 2D variograms for the surface simulations. This was done by assuming that
the spatial statistics inferred on the walls represent the statistics on the major and minor axes of anisotropy of the
2D variogram. The variogram ranges on the NS wall were assigned to the range on the Y axis of the 2D vario-
grams, and the variogram ranges on the EW wall were assigned to the range on the X axis. Sills were averaged.
The grid used for the visualization has a cell size of 0.85 × 0.85 × 0.14 m3 and contains 100 × 100 × 100 cells.

Figure 14. Three EROSim simulations of the North‐South wall of the Bümberg quarry (a–c) and the interpreted wall made by
Menga (2021) considered as the reference (d). The sedimentological lines that separate the regions are not shown.
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Figure 18 shows significant variability between the realizations because of the absence of conditioning. It also
shows that EROSim can reproduce the expected shapes of the sedimentological structures while exploring a broad
variety of plausible configurations. The sedimentological lines bounding the regions are not shown here for the
sake of visibility, but it is important to remember that this additional information is available. Regions can be
individualized and treated differently in successive modeling steps (e.g., simulation of physical properties).

A possible use of the 3D geological simulations is to link the detailed heterogeneity mapping at the outcrop scale
and the distribution of equivalent hydraulic conductivities to be used in groundwater flow models at a regional
scale. To illustrate this possibility, the hydraulic conductivity tensors have been computed for all the 3D simu-
lations presented above. There are many approaches for computing the equivalent hydraulic conductivity tensor
(Renard & Ababou, 2022). Here we use a numerical technique capable of identifying the full tensor. The flow
simulations are carried out with Modflow 6. For each flow simulation, linearly varying heads are prescribed on all
the faces of the 3D block to impose the head gradient in a given direction. Three flow simulations are performed,
one with the head gradient along the x axis, one along the y axis, and one along the z axis. For each simulation, the
three components of the Darcy flux vector are averaged within the domain and used to calculate the equivalent
conductivity tensor using Equation (94) from Renard and Ababou (2022).

The calculation is repeated for the 50 3D simulations (such as the one shown in Figure 18). To remain consistent,
the local hydraulic conductivity values are the same as those used for the 2D transport simulations. Indeed, we do
not have direct measurements of the hydraulic conductivities of the facies mapped in the quarry.

Figure 15. (d) Comparison of proportions where each colored bar represent the facies proportions in the reference and the
boxplot the distribution of these proportions among the realizations. (a–c): Indicator variograms for each facies between the
references and 100 realizations of the N‐S wall.
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To represent the results, the 50 tensors were decomposed into eigenvalues and eigenvectors shown in Figures 19a
and 19b respectively. The eigenvectors show the principal directions of anisotropy. The first and second di-
rections of anisotropy are within the horizontal plane and fluctuate slightly around the x and Y directions. The
third direction is instead very stable and is along the vertical axis. The eigenvalues (Figure 19a) show that
conductivity along the X direction is slightly larger than along the Y direction. We interpret this difference as a
result of a slight difference in the geometry of the sedimentological patterns along the X and Y directions.
However, the most important anisotropy contrast is observed when comparing the eigenvalue along the Z di-
rection and the two horizontal directions. The anisotropy contrast is larger than 10. With the hydraulic con-
ductivity values that were chosen for the different facies, the resulting anisotropy factor is consistent with values
published in literature (Bakker & Bot, 2024).

5. Discussion
In this paper, we presented EROSim, a novel surface‐based simulation method and a conditioning algorithm that
can represent sedimentological heterogeneity that is frequently observed in fluvio‐glacial systems.

5.1. Parameterization

Overall, an important advantage of the presented approach is that it can generate multi‐facies simulations with a
reduced number of parameters as compared to existing methods. Only five groups of parameters are required: the
marginal distribution of the facies (i.e., their proportions pi), the number of surfaces (N), a single variogram for all
the surfaces, the ratio of erosive layers (ξ), and the clustering parameter (α). Most of these parameters can be

Figure 16. Three conditional EROSim simulations of the East‐West wall of the Bümberg quarry (a–c) and the interpreted
wall made by Menga (2021) considered as the reference (d).
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inferred from accessible data. The facies proportions can be derived from borehole observations, as well as the
number of surfaces. The variogram can be estimated from outcrop studies. It may be difficult to estimate if only
borehole data are available but then its physical interpretation is simple (the sill of the variogram controls the
vertical span of the fluctuations of the stochastic surfaces and the correlation length controls their lateral
extension. One can therefore provide reasonable estimates based on common sense or observations in analog
sites. The ratio of erosive layers can be used to adjust the expected geometry (more superposition of sediment
structures such as gravel beds when ξ is close to zero, and more troughs when ξ is close to 1) if this information is
available. Similarly, the value of α can be adjusted depending on available information on outcrops. If no obvious
information is available to estimate these parameters, they can be estimated by conducting K‐fold cross‐validation
as shown for example, in Juda et al. (2020), and by optimizing a quality criterion such as the continuous rank
probability score (CRPS). Following this approach, data (e.g., boreholes) are separated into K different groups
(folds) and K‐1 groups are used as constraining data, while the last group is used as a test data to validate the
results. This operation is repeated K times, where each fold is successively the test data group. In the end, it is
possible to assess which set of parameters give the best predictions on the test groups. Having a reduced number
of parameters facilitates their identification.

As a point of comparison, for a simulation including four facies, the EROSim simulation method requires eight
parameters (three proportions from which four can be expressed: p1, p2, p3, p4 = 1 − p1 − p2 − p3, a variogram
type, sill, and range, ξ and α). The SIS method requires the facies proportions and four variograms. This leads also
to a total of around eight parameters depending on the complexity of the variograms. Concerning the TPROGs
software (Carle, 1999), it also requires the proportions, but in addition, it needs the probability of transitions for
each facies and for each couple of facies. The number of parameters is therefore higher than for EROSim and SIS.
If we consider an object‐based, rule‐based model, or process‐based model the number of parameters is usually

Figure 17. Flow and particle transport. (a) shows the observed (reference) facies distribution along the East‐West wall of the
Bümberg quarry and the paths of the particles obtained by assuming a gradient from right to left. The hydraulic conductivity
values assigned to the different facies are also shown. (b) and (c) show the particle flow paths on one of 50 of the EROSim
and SIS realizations, respectively. The shaded areas in (d) represent the range (10%–90% quantile) of the cumulative number
of particles reaching the left side of the model as a function of time for all realizations for both EROSim and SIS. The solid
lines represent the median, while the black solid line represents the result obtained on the reference.
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much higher because all the statistics concerning the geometry of each architectural element and the relations
between them or the underlying physical processes have to be quantified.

5.2. Application on Real Data

The application of the EROSim method for the Bümberg quarry site demonstrates that the results obtained with
this method represent reasonably well, for such a parsimonious model, the main sedimentological features
observed on the quarry walls. This is also confirmed by the flow simulation experiments (Section 4.4). The
particle transport results are closer to the reference with EROSim than SIS. In this example, the particles tend to
arrive earlier with EROSim than with SIS models (Figure 17d). This result could be explained by the noisy aspects
of the SIS models that could affect the connectivity. It is important to note that the uncertainty remains large both
for SIS and EROSim, highlighting the difficulty of reproducing precisely the complex architecture of the quarry
wall.

Some differences concerning both the shape of the regions and the distribution of the facies are visible on
Figures 13 and 14. The greatest discrepancy between the reference and the simulations is that the surfaces
delineating the regions exhibit a higher degree of variability in the reference than in the simulations. This
discrepancy is likely due to the use of a single variogram to model all internal surfaces. Indeed, Figure 12 shows a

Figure 18. Three different realizations (a–c) of EROSim 3D simulations of the Bümberg quarry. The model dimensions are
170 m × 170 m × 14 m, there is no vertical exaggeration.
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large spectrum of estimated variogram models from the field data, regardless of the unit. The use of a single
variogram model cannot capture all this variability. Modeling the interfaces with different variograms is possible
but it would make the parameterization more complex, but we consider that it would not necessarily be useful or
critical for groundwater applications. This is also suggested by the results of the flow simulations.

5.3. Link With Sedimentological Structures

As compared to other facies simulation methods, and as we discussed in Section 5.1, EROSim provides a very
parsimonious control over the geometry of the geological interfaces. The sensitivity analysis (Figure 5) shows that
depending on the value of ξ different types of architectural elements can be obtained, but the model is not
constructed to provide a strong control on these architectural elements. Compared to object‐based (Bennett
et al., 2019; Haldorsen & Lake, 1984; Rongier et al., 2017), Multiple Point Statistics (Mariethoz et al., 2010;
Strebelle, 2002), rule‐based (Pyrcz et al., 2015; Ramanathan et al., 2010; Scheibe & Freyberg, 1995), or process
based models (e.g., Koltermann & Gorelick, 1996; Koneshloo et al., 2018), the possibility to generate specific
sedimentological structures such as meanders, bars, or levees (Miall, 1996) is much weaker with EROSim. This is
a limitation of the method and therefore its domain of application is different. But, one main advantage of
EROSim is that it does not require sophisticated inputs, such as a training image for MPS or the definition of
geological objects and their spatial relations for OBM.

Another major advantage of EROSim is that it can easily be conditioned. The most sophisticated methods listed
above are difficult to condition with borehole data for two reasons. The first is the complexity of the conditioning
algorithm. Many of the advanced facies simulation methods cannot yet be fully conditioned. The second reason is
more fundamental. In many situations, the type of architectural elements that can be inferred from outcrops or
geophysical data sets (e.g., GPR) cannot be identified in boreholes (Miall, 1996). But, boreholes constitute the
vast majority of the available data. Having a sophisticated method that represents properly the architectural el-
ements but that cannot be fed with the proper conditioning data in boreholes is a limitation of these advanced
methods. With EROSim, we do not assume that detailed data about the types of sedimentological architectural
elements would be available on boreholes. We only rely on the level of information that is available (rock types).
For all these reasons, we prefer to keep the model very simple. It ensures its applicability to readily available data
sets.

Nevertheless, EROSim provides a representation of the boundaries between the elemental volumes that can help
define simple internal structures within single facies. Given the simulated surfaces, a possible extension of the
method would be to compute locally the slope of the underlying or overlying surfaces and use it to estimate
varying orientations within each region. This could be used to orient local anisotropy tensor following for
example, the method that was presented by Borghi et al. (2015). This principle could be used to represent in a

Figure 19. Summary of the eigen values decomposition of the equivalent hydraulic conductivity tensors obtained on 3D
realizations of the Bümberg quarry. Note that each color represents a specific axis. (a) Histograms of eigenvalues. (b) 3D
view of the eigenvectors.
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simplified manner cross‐bedding structures within the regions. The simulated surfaces offer also a possibility to
extend the model by defining thin and continuous structures of fine sediment deposits such as clay drapes at the
bottom of some architectural elements. This possibility has not been explored in the paper, but clay drapes are
known to have an important influence on flow and transport (Huysmans & Dassargues, 2012) and are difficult to
simulate with other approaches.

5.4. Algorithmic Limitations and Possible Extensions

Some further limitations and possible extensions of EROSim have been identified. The conditional algorithm
requires imposing rules on the simulation of surfaces. This is permitted thanks to the use of inequality data when
modeling Gaussian Random Fields, and this is one of the main novel contributions of this paper. In most cases, the
conditioning does not perturb the shape of the regions but it may distort them if the conditioning data are very
dense (high number of borehole data).

Another limitation is the absence of a mechanism controlling the cross‐correlation between successive surfaces.
These structures are observed in sedimentary environments with laminations and cross‐beds for example, (e.g.,
Miall, 1996; Siegenthaler & Huggenberger, 1993). But EROSim does not consider it for the moment, as we aim to
keep the model simple and easy to parameterize. However, the principle of the surface‐based method imple-
mented in EROSim is flexible and this type of rule could be implemented in the future if needed. Additional
complexity can also be added relatively easily by including non‐stationarity when modeling the surfaces as shown
in Figure 6. It is also possible to extend the parameterization of the facies attribution algorithm. More sophis-
ticated rules involving transition probabilities between each facies, similar to what is done in TPROGs
(Carle, 1999), could be accounted for. We could also consider the volume or shape of the region when estimating
the probability of affecting a facies to a certain region. Finally, different statistical properties could have been used
for onlap and erosive to distinguish these two different sedimentological processes. Indeed, it is expected that
since they are the result of different processes, they should be relatively different in terms of the final surfaces
produced. However, once again, we argue that the simplicity of the proposed model is probably sufficient for
many applications and we leave this possible extensions to future works.

6. Conclusion
In this paper, we presented a new approach, EROSim, to model geological heterogeneity by simulating litho‐
facies models. The method is designed to represent sedimentary structures typically present in fluvio‐glacial
Quaternary deposits which are the most frequently used aquifers in Switzerland. EROSim offers a new
perspective in the field of facies modeling by initially creating regions and subsequently populating them with
facies. Moreover, it seamlessly integrates geological principles via erosion‐deposition rules, introducing a sig-
nificant degree of flexibility into its realizations and rendering it suitable for diverse sedimentological contexts.
The litho‐facies are assigned to the regions using a graph‐based approach accounting for global proportions over
the entire domain and for local proportions derived from adjacent regions. The conditioning algorithm employs
inequality data derived from the borehole observations and the sedimentological rules.

The capacity of this model to represent different geometries and sedimentary patterns has been illustrated with
several unconditional and conditional examples. Through these examples, we show the influence of the model
parameters (e.g., α, ξ, etc.) on the resulting simulations. Furthermore, EROSim is applied to a real field site from a
gravel quarry, where the spatial statistics of the sedimentological surfaces are inferred and used to parameterize
the simulations. The resulting simulations show spatial patterns closely similar to those observed on the quarry
walls. A numerical comparison of the proportions of the facies and the indicator variograms of the facies confirms
this similarity. The results of advective transport confirm that EROSim is capable of reproducing the main
structures that control flow better than the SIS simulation method.

The main advantages of EROSim are: its simplicity for the parameterization, its capacity to generate realistic 3D
simulations from data acquired in 2D, its hierarchical structures, the possibility to condition the simulations by
borehole data, and finally the availability of the code.

Further research is still needed to pursue the analyzis of the impact of the structures generated by EROSim on flow
and solute transport and to further compare the performances of this model with other more sophisticated facies
modeling techniques.
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Appendix A

A1. Simulation Parameters

The various geostatistical parameters used in this study are listed below. We have the variograms used to generate
the stochastic surfaces used in the EROSim simulations of the NS and EW walls of the Bümberg quarry (Tables
A1 and A2). Table A3 shows the chosen EROSim parameters (number of surfaces, alpha parameter, frequency of
erosive surfaces) for the different stratigraphic unit groups.

Table A1
Covariance Models Parameters (C: Contribution (Sill) and r: Range)

Quarry wall Rank surfaces rcub1 [m] Ccub1 (m2) rcub2 [m] Ccub2 (m2)

NS 3 in unit 5 – – 32 0.35

3 in unit 4 15 0.27 30 0.39

3 in unit 3 – – 25 0.64

3 in unit 2 – – 35 1.06

3 in unit 1 28 0.41 23 0.38

4 – – 90 0.26

5 68 0.65 30 0.1

EW 3 in unit 5 – – 44 0.44

3 in unit 4 – – 29 0.77

3 in unit 3 – – 35 0.55

3 in unit 2 – – 60 1.35

3 in unit 1 70 0.51 45 0.29

4 – – 90 0.25

5 25 0.12 60 0.15

Note. Subscripts cub1 and cub2 indicate two different cubic covariance models. Contributions that were lower than 0.01 were
discarded.

Table A2
List of High‐Order Surfaces With Their Rank and Mean Altitude Used for the Simulations

Quarry wall Surface ID Rank Mean altitude [M] Bottom of … Top of …

NS 1 4 13.68 Unit 5 Unit 4

2 4 10.99 Unit 4 Unit 3

3 5 7.22 Unit 3 Unit 2

4 4 4.43 Unit 2 Unit 1

EW 1 4 10.59 Unit 5 Unit 4

2 4 8.23 Unit 4 Unit 3

3 5 5.75 Unit 3 Unit 2

4 4 3.90 Unit 2 Unit 1
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Data Availability Statement
The code and data set used in this paper are accessible online at https://zenodo.org/records/12720720.
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