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From lithological descriptions to
geological models: an example
from the Upper Aare Valley

Ludovic Schorpp*, Julien Straubhaar and Philippe Renard

Centre for Hydrogeology and Geothermics, Faculty of Science, University of Neuchâtel, Neuchâtel,

Switzerland

Introduction: Geological models provide a critical foundation for

hydrogeological models and significantly influence the spatial distribution

of key hydraulic parameters such as hydraulic conductivity, transmissivity, or

porosity. The conventional modeling workflow involves a hierarchical approach

that simulates three levels: stratigraphical units, lithologies, and finally properties.

Although lithological descriptions are often available in the data (boreholes), the

same is not true for unit descriptions, leading to potential inconsistencies in the

modeling process.

Methodology: To address this challenge, a geostatistical learning approach is

presented, which aims to predict stratigraphical units at boreholes where this

information is lacking, primarily using lithological logs as input. Various standard

machine learning algorithms have been compared and evaluated to identify the

most e�ective ones. The outputs of these algorithms are then processed and

utilized to simulate the stratigraphy in boreholes using a sequential approach.

Subsequently, these boreholes contribute to the construction of stochastic

geological models, which are then compared with models generated without

the inclusion of these supplementary boreholes.

Results: This method is useful for reducing uncertainty at certain locations and

for mitigating inconsistencies between units and lithologies.

Conclusion: This approach maximizes the use of available data and contributes

to more robust hydrogeological models.

KEYWORDS

machine learning, geostatistical learning, automated workflow, geological model,

quaternary aquifer, ArchPy

1 Introduction

The foundation of groundwater models is largely based on conceptual models and

derived geological models, as they constrain most of the key parameters such as hydraulic

conductivity (K), boundary conditions, and layer geometries [1]. Typically, the established

approach involves delineating the geometry of major stratigraphical units (unit model),

populating these units with facies (or lithologies) using suitable facies modeling methods,

and subsequently assigning physical properties to the facies (property model). Note here

that the concept of stratigraphical units is considered in its strict sense, which means that

the units are differentiated by their age, not by their lithologies that they contain or their

sedimentological setting. Although these information often provide important information

that helps in their definition and identification. Throughout these steps, various data

sources, including borehole and geophysical data, play a pivotal role. This workflow, widely

adopted in the geosciences for decades [2–5], is due to its robustness, flexibility, and ability

to replicate diverse geological contexts effectively.

One major drawback of this approach is that it generally involves different algorithms

and softwares due to the large complexity of the problem, this is particularly true for
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FIGURE 6

Schematic representation of the features and label creation of training borehole for the machine learning algorithm. For the sake of clarity, only three

data are shown, but each interval in the borehole, separated by the dashed lines, is transformed. For each interval i, there is a datum defined by seven

categorical lithological features that correspond to the three lithologies above and below the interval, as well as the lithology in the interval

(surrounded in red). If no lithology data are available above or below, the feature is set as “none." Furthermore, four additional numerical features are

considered, which are: the x and y coordinates of the borehole (Xbh and Ybh, respectively), the elevation (Zi) and depth (Di) of the interval.

Boreholes are initially segmented into intervals of uniform

thickness (e), and for each interval, a data point is constructed

using a list of lithological and spatial features that vary along

the boreholes. The spatial features consist of four elements: the

x, y, and z coordinates of the interval (Xbh, Ybh, and Zi), along

with its depth relative to the top of the borehole (Di). Regarding

lithological features, they encompass the lithology observed within

the interval (red square in Figure 6), as well as a specified number

of lithologies above (na) and below (nb). In Figure 6, three intervals

are considered above and below (na = nb = 3). If multiple

lithologies are observed within a single interval, the most dominant

one is considered (see Figure 6).

The inclusion of lithologies both above and below a given

interval serves a crucial purpose in mitigating potential errors

in predictions arising from the presence of rare or inconsistent

lithology/unit associations.To illustrate this, consider a scenario

involving an aquifer unit primarily composed of gravel and sands.

In the presence of thin sporadic clay layers (with a thickness of e),

relying solely on the lithology within the specific interval can lead to

inaccuracies in ML predictions, such as incorrectly predicting that

these intervals belong to another unit, possibly one that is more

clay rich. However, if we integrate a larger picture of the situation

by considering the lithologies above and below, this effect can be

mitigated.

e, na and nb are user inputs of the methodology that need to

be defined. e should be low enough to capture vertical variability

in terms of lithologies in the modeling area. On the contrary, na
and nb should be high enough to encompass a sufficient number of

lithological variations above and below each interval. Conceptually,

these parameters act as a viewing window through which the

algorithm can gain insight into the prediction problem. For this

study, the selected parameters are e = 20 cm, na = nb = 10,

indicating the consideration of a 2 m span above and below each

interval with a resolution of 20 cm. This roughly corresponds to

the finest level of detail that can be obtained from the geological

description of this area.

Different standard ML algorithms have been tested in order to

select the one that gives the best predictions; these include: Random

Forest (RF, [39]), adaptive boost (Adaboost, [40]), gradient boost

(Gboost, [41]), multilayer perceptron (MLP, [42]) and finally

support vector classifier (SVC, [43]). These algorithms were

implemented and used through the Pedregosa et al. [44] python

package. They are compared based on metrics including precision,

recall, F-score, and Brier score for each class (unit). Given our

focus on probability predictions, conventional machine learning

metrics such as precision, recall, and F-score might not provide the

nuanced insights we require. For these reasons, we also rely on the

Brier score, which is a metric commonly used for evaluating the

accuracy of probabilistic predictions, particularly for classification

problems.

Brier score [45] was recently proposed as a metric to validate

categorical models in geosciences [46]. It is defined as Equation 3:

BS =
1

N

N∑

i=1

M∑

j=1

(Pij − Oij)
2 (3)

where BS is the Brier Score, N is the number of data points,

M is the number of classes, Pij is the predicted probability for the

j-th class of the i-th data point, and Oij is an indicator variable (0

or 1) that represents whether the j-th class is the true class for the

i-th data point. A lower Brier score indicates better performance,

0 being a perfect score, which means that the model predicts with

precision 100%. On the contrary, a score of 1 indicates the worst

performance, where the predicted probabilities are completely

inaccurate, implying a prediction of 100% in any other class.

Brier score is useful because it has the ability to evaluate both

the correctness of the predicted class and the confidence in that

prediction. It strongly penalizes overconfident predictions that are

incorrect, in contrast to predictions that are wrong but marked by

uncertainty. This feature underlines the importance of conservative

forecasts and provides a more reliable quantification of uncertainty.
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Each ML algorithm is tuned by a set of hyperparameters

(HP). Their choice is important because an improper combination

of HP can lead to imprecise predictions and over-fitting. For

the five algorithms tested (RF, SVC, MLP, Adaboost, Gboost),

various sets of hyperparameters have been adjusted using a five-fold

cross-validation using the RandomizedSearchCV function from

the scikit-learn Python package [44]. It is also this package that

has been used to manipulate, train, and test the algorithms. The

optimized HP are given in the Supplementary material.

2.4.2 Borehole simulation step
With the inputs outlined in the previous subsection, the

algorithms predict the unit for each interval independently, rather

than considering the entire borehole as a whole. This approach can

result in predictions that do not adhere to the expected stratigraphy,

which should ideally remain consistent throughout the borehole.

To address this issue, the borehole simulation step introduces a

stochastic method to alleviate these inconsistencies.

Many ML algorithms are able to predict not only one class

per data, but they can also propose probabilities for each class.

Taking advantage of this, the idea is then to use this information

to simulate boreholes that are consistent with the stratigraphy.

Figures 7A, B show two examples of this procedure, where five

plausible boreholes are shown. The procedure is illustrated in

Figure 7C, and now we detail its different steps.

The adopted methodology follows the sequential algorithm

proposed by Journel and Alabert [35], using ML for probability

predictions. The process starts with an empty borehole, segmented

into intervals identical to those in the facies log (refer to Figure 6).

Subsequently, a random empty interval is chosen, and the trained

ML algorithm is employed to obtain the predicted probabilities.

On the basis of these probabilities, a unit is randomly drawn and

assigned to the interval. This sequence is repeated iteratively, with

additional intervals selected and filled until the entire borehole is

populated. The particularity here is that probabilities are adapted

according to the stratigraphic pile. This means that impossible to

simulated units have a probability set to 0, while the others are

rescaled. This step is shown in Figure 7C, iteration 2 where the only

possible units are pink and green due to the previously simulated

units (blue cannot be located below pink).

Note that, this simulation procedure might encounter a

deadlock when all probabilities are reduced to 0. In such instances,

the simulation is stopped and a new empty borehole is generated.

To avoid being stuck, if the number of these errors exceeds

a specified value (ne, user defined), the borehole is deemed

impractical to simulate.

Furthermore, ML predictions can exhibit significant noise,

especially when dealing with a large number of units, resulting

in numerous small probabilities assigned to a vast array of

units. This noise can adversely affect the performance of

the simulation algorithm, leading to artifacts characterized by

numerous occurrences of units with small thickness. To address

this issue, a filtering mechanism is implemented to remove

probabilities below a certain threshold (τ , user-defined). This

threshold should be set high enough to reduce noise, but a too

large value reduces the variations in the simulated boreholes and

can even lead to impossible simulations. After some trial and error,

a value of 0.15 was identified as a suitable compromise for the

boreholes within the study area.

3 Results

3.1 Machine learning

In Figure 8A, the mean metric values for different algorithms

are compared. This shows the metrics of the ML algorithms on

the test set based on the features (lithological and geographical)

described in the previous subsection. Overall, all models exhibit

reasonable performance, except Adaboost, which demonstrates

notably low precision (20%) and a high Brier score (0.9). The

remaining models show precision, recall, F-score, and Brier score

values in the range of 0.5–0.6. In particular, MLP is marginally less

accurate compared to others, exhibiting a higher Brier score that

exceeds 0.6, while RF, SVC, and Gboost maintain scores below 0.55.

This indicates that predictions made with MLP are overconfident,

compared to the others. Figures 8B–D provide a detailed summary

of the scores for each class for RF, SVC, and Gboost. It is blatant

that certain classes, such as AM, OS, AS, or HB, are not accurately

modeled. This discrepancy can be attributed to the low number

of boreholes in the test set that contain these units, making the

validation step less reliable. A similar situation is observed for IGT,

which, despite having very good results, is represented by only

one borehole in the test set. Consequently, assessing the reliability

of the predictions for these units is not feasible. Fels unit, which

represents the bedrock, has a perfect prediction for the only reason

that this unit is characterized by a single and unique “lithology,"

not integrated in the geological model, as it defines the bottom of

the geological model. The other units exhibit decent results with

precisions around 0.6 and 0.8. The Brier score is a bit more variable

and can be near 0 (for GS) but can reach 0.75 (for UBS, Figure 8D).

We can add to this analysis the results obtained on testing

ML algorithms on the training dataset, which is shown on

Supplementary Figure S10. All methods give nearly perfect results

on the training dataset, except again Adaboost and also SVC which

exhibits an accuracy around 90%. These differences could indicate a

potential over-fitting of the algorithms, despite the cross-validation,

or that the data used for the training are not representative enough

to capture all the non-linear relations between lithologies and

stratigraphies.

To go further into depth and control that the borehole

simulations produce reasonable results, Figure 9 shows the

simulations for one borehole. 20 boreholes were simulated in

each case and can be compared with the reference unit and

facies logs. Predictions are close to the reference and three out of

four methods are able to predict the reference borehole correctly.

Only MLP predicts the SUP unit base too deep as compared to

the reference. However, all methods were able to determine the

transition between the aquifer and the aquiclude (YG and LGL)

which is clear on the facies log. Note how the method is able to

consider that there is a certain variety of lithologies in the YG

aquifer unit where we find sands, clayey sands, gravels, and clayey

gravels.
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FIGURE 7

(A, B) Illustrated are examples of borehole simulation under two distinct settings. The curves depict the ML outputs, representing probabilities for

each class as a function of depth. It is important to note that simulated boreholes are purely for illustrative purposes and do not reflect equiprobable

simulations from the given curves. (C) Schematic representation of the workflow. The methodology iteratively identifies vacant intervals within the

borehole and simulates the corresponding unit based on probabilities derived from ML. Notably, probabilities are adjusted in accordance with the

existing stratigraphy, ensuring that units deemed impossible are assigned a probability of 0 (blue unit at iteration 2).

FIGURE 8

The following tables present the scores achieved by the ML algorithms on the test set. (A) Mean scores for all models. Each class was assigned the

same weight. (B–D) Detailed scores for each class for the RF, SVC and Gboost algorithms.

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2024.1441596
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Schorpp et al. 10.3389/fams.2024.1441596

FIGURE 9

Borehole simulations for a 10 m depth borehole. Reference and facies log are shown to the left while simulations are shown to the right, each

distinct bar corresponds to one simulation. The threshold used was set at 0.15, but if simulations were not feasible with this value, it was decreased

until simulations were feasible. See Figure 4 for corresponding colors for unit and facies.

Figure 10 shows less satisfactory results from another borehole.

The observations reveal that MLP and Gboost offer minimal

variations, with outputs exhibiting near-deterministic behavior, in

contrast to RF or SVC predictions. This is particularly visible on the

predicted probabilities (Figure 10B). It is also quite clear that RF

has more smooth probability transitions between different classes

compared to the othermethods. The reasons for these deterministic

predictions are unclear and could be related to a possible over-

fitting of these two methods (MLP and Gboost) and thus to the

choice of hyperparameters, and/or directly related to the structure

of these methods. For example, the sequential training of Gboost

and MLP could lead to more rigid models and overconfident

predictions, compared to parallel training of RF. The high number

of layers (4) and neurons (nearly 1,000) in the MLP could also

be the cause of over-fitting. With regard to the gradient boosting

method, it corrects errors during training in order to improve

accuracy on the training dataset [41]. However, this can cause over-

fitting, leading to overconfident predictions. In the case of RF, the

bagging (bootstrap sample of the training data) strategy for the

learning process may assist in achieving more accurate probability

predictions [47]. For SVC, it is known that it works well in high-

dimensional problems [47, 48] and is less susceptible to over-fitting.

This may account for the less certain, but more accurate probability

predictions.

None of the methods predict the reference borehole in any

simulation (Figure 10A), as well as on the ML probability outputs

(Figure 10B), but they provide reasonable results if we look at the

lithological log. All methods predict the SUP unit from the surface

to a depth of 5–7 m, similar to the reference. The lithologies, shown

in the facies log, significantly influence the prediction of this unit,

with clay, sand, and clayey sand, which is a common assemblage

of lithologies for this unit. All models predict the main aquifer

unit, young Aar gravels (YG), and a transition to late lacustrine

deposits (LGL) around 17 m in depth. RF and SVC additionally

forecast a thin layer of the LGA unit, albeit deeper than indicated by

the reference borehole. Although the predictions do not align with

the reference borehole, they make sense based on the lithological

log that shows a clear transition between sand and clay lithologies

around 17 m in depth.

For the sake of brevity, only simulations for two

boreholes are shown, but several others can be found in the

Supplementary material. For example, Supplementary Figures S12,

S13 show that algorithms can give very different results that

are completely different from each other. In the former case,

algorithms predict two distinct units for the clay-rich layer at

7 m, where Gboost and RF suggest IGT while SVC proposes

LGL (which is ultimately correct). Just above, Gboost and RF

also suggest a blend of YG and MS with occasional LGA, while

SVC predicts solely YG (which is also correct). In the case of

Supplementary Figure 13, MLP and SVC anticipate a sequence

of HB and LGL, while Gboost and RF foresee a sequence of YG

and LGL (which aligns with the correct succession, as per the

interpreted log).

In certain cases, the facies log provides limited information, as

shown in Supplementary Figure S14, where the predominance of

gravels complicates the differentiation between units. The models

anticipate a succession of MS and UBS, both predominantly

composed of gravels, with SVC even indicating some LGA at

the top. Distinguishing between these units based on lithologies

proves impractical, promptingmodels to depend on spatial features

constrained by other boreholes. The UBS predictions in all models

are likely attributed to one or more other boreholes containing a

similar succession of units and facies.

Simulations in Supplementary Figures S15, S16 show that the

algorithm is also able to predict the correct units (YG, LGA) even

when the facies log provides limited information. Determining the

transition between these two units is not straightforward as they

both globally have the same proportions of facies (Figure 5). In such

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2024.1441596
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Schorpp et al. 10.3389/fams.2024.1441596

FIGURE 10

Simulations of another borehole. (A) Simulated boreholes by the di�erent algorithms and comparison with the reference. (B) Predicted probabilities

for all of the classes by the ML algorithms at the di�erent depths of the borehole. The classes are represented by the colored squares on top of each

subplots. See Figure 4 for corresponding colors for unit and facies.

cases, the predictions are probably dictated by other boreholes that

help to find the transition between two similar units such as YG and

LGA.

It is also worth mentioning the effect of the extrapolation

on the predicted results. Based on the map showing the spatial

distribution of the test and training sets (Supplementary Figure S1),

two boreholes are particularly outside the convex hull defined by

the training boreholes. The results of these two boreholes are shown

in Figures S18, S19. Excluding the red unit (Fels unit), which is

simple to predict because it contains only one facies, the predictions

are very different between the methods. On the two boreholes,

MLP and Gboost have an accuracy of about 5%–10%, while RF has

an accuracy of 57%, which is comparable to the average accuracy

obtained on the other test data (see next section). However, SVC

has a higher accuracy, reaching 72%. However, even if the fact that

these data are outside the convex hull could partly explain some

of the poor results obtained, the results obtained with SVC and RF

show that the integration of non-spatial data (lithology) could help

to mitigate the difficulty of extrapolate. However, the number of

extrapolated wells is too small to draw any conclusions.

Despite the adoption of a flexible approach for simulating

boreholes based on probabilities, there is no guarantee that a

borehole can be successfully simulated if the predictions lack

consistency. In particular, with RF models, only one borehole from

the test set encountered this situation. In contrast, other models

exhibited less favorable outcomes, with three failed simulations

for SVC, six for Gboost, and a more substantial 15 for MLP.

The root cause of these failures can be traced to overconfident
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predictions that restrict the necessary flexibility required for

successful simulation.

Taking these findings into account, it appears that there are

no large differences between SVC, Gboost, and RF in terms

of standard metrics. However, RF shows a slightly lower Brier

score than the others (0.49 vs. 0.53), while SVC excels in

precision, recall, and F-score. Furthermore, visual inspection of the

simulated boreholes seems to allow us to show that RF proposes

better predictions with greater variability, compared to MLP and

Gboost. RF also seems to propose more accurate simulations

than SVC.

Based on these results, the preference is to continue with the

RF algorithm over SVC, despite its lower recall and F-score. This

choice aligns with the priority of favoringmodels that are not overly

confident and retain a degree of uncertainty in their predictions.

Since probability predictions are the focus rather than the most

probable ones, it is deemed more appropriate to continue with

models that demonstrate superior performance in terms of the

Brier score.

3.2 Geological models

3.2.1 Comparison
In this section, we present the geological models obtained

with and without the newly added ML boreholes, and compare

the models using the test set boreholes. Moreover, the number

of inconsistencies between facies data and simulated stratigraphic

units are also compared. Two models are developed following the

specifications detailed in Section 2.3: a basis model (ArchPy-BAS)

that relies solely on boreholes from the training set, complemented

by geological maps and cross-sections; and an ML-augmented

model (ArchPy-ML) that is enhanced through the integration of

ML-generated boreholes utilizing the tuned RF model described in

the previous section.

It is important to note that the SUP unit may unintentionally

fill the simulation grid near the surface, depending on the surface

simulations. This is due to how ArchPy defines the unit domains,

which depend on the top and bottom surfaces of each unit. For the

SUP unit, the top surface is set at DEM to prevent unsimulated cells.

However, this can result in a significant exaggeration of the SUP

unit’s thickness, depending on how the older unit surfaces (HG,

YG, etc.) have been simulated. For consistency reasons, the final

geological models excluded this unit as it was deemed irrelevant. In

such cases the SUP unit simulated cells were assigned the unit of

the nearest non-SUP unit cell.

The confusion matrix between the two models is shown in

Figures 11A, B. Most of the units are relatively well simulated,

except for AM, OS, and SUP. The main reason is the same as for

ML algorithms validation, as the poor number of boreholes in the

test set containing these units, particularly for AM andOS. Another

reason is also the scarcity of the deposits which are only located in

some part of the simulation domain. ArchPy-BAS model is slightly

better than ArchPy-ML in terms of global predictions (66% vs.

64%), primarily due to BAS’s better accuracy in reproducing the

YG unit, while ArchPy-ML is better with LGL, LGA, and SUP

units. However, ArchPy-BAS exhibits a worse Brier score (0.56 vs.

0.50), suggesting that the ML-enriched model offers less confident

simulations and enhances uncertainty quantification.

ArchPy-ML models also decrease the number of “errors" (or

inconsistencies) between facies data and simulated units as shown

in the Figure 1. Inconsistencies can arise when a stratigraphic unit

is missing from borehole logs. These errors can be quantified

by comparing the number of cells where facies data are found

within inconsistent, simulated stratigraphic units, as shown in SP

(Figure 4). This is shown in Figures 11C, D. In total, the number

of discrepancies decreases from 536 for the ArchPy-BAS model

to 374 for the ArchPy-ML model. However, errors remain after

the integration of ML boreholes. This is because the SP was

constructed with the assumption that lithologies present in <5%

proportion were absent from a unit. This can lead to errors, as a

lithology present in small proportions may cause these errors. This

is clearly visible for the YG unit, which has low proportions of

C and SC lithologies. These lithologies have not been considered

as part of the unit, but their exclusion results in a high number

of errors (Figures 11C, D), even with ML model. Therefore, these

errors are included in the data and cannot be eliminated with the

current approach. Possible causes of these occurrences include rare

lithology inclusions in specific units or misinterpretation of either

lithologies or units.

3.2.2 Final models
The previous results show that ML techniques can enhance

geological modeling. To optimize the model’s performance, the

RF model was retrained, but using all the existing borehole data

and utilized to simulate the boreholes. This subsection presents the

models (ArchPy-BAS and ArchPy-ML) integrated with all available

borehole data. A total of 50 realizations were made for each model,

for each realization, one different ML borehole simulation is made.

Figure 12 provides information on the internal structures of the

unit for the two models. In some cases, the boreholes shown on the

cross sections do not exactly match the simulated values. This is

because the boreholes shown are not exactly on the section, but at

a maximum distance of 100 m from the section. In general, both

models exhibit similar geological structures at shallower depths and

greater depths. The shallow aquifer appears closer to the surface

in the northern regions (∼5–10 m) and gradually deepens toward

the south (up to 50 m, locally reaching 100 m). Southern areas

show low variability in geology, with a shallow aquifer overlaying

LGM deposits, which in turn rest on older clay deposits (AS),

indicating the absence of a deep aquifer in the south. On the

contrary, the northern regions display more intricate stratigraphic

sequences, suggesting the presence of aquifer formations (UBS,

OS, MS) at intermediate depths, beneath the shallow aquifer (YG,

LGA). Intermediate layers typically comprise LGL and IGT units.

MS is not necessarily in contact with UBS, suggesting that the deep

heterogeneity in this area is more complex than just a two-layered

aquifer.

Although the two models share common features,

discrepancies emerge particularly in the intermediate depths

in the northern part of the area. ArchPy-ML simulations indicate

a thicker presence of IGT compared to ArchPy-ML simulations

in this region. This is more clear when observing the “most
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FIGURE 11

Comparisons metrics between ArchPy-BAS and ArchPy-ML Aar geological models. (A, B) Show the normalized confusion matrix of the predicted

classes against true (observed) classes in the test set for ArchPy-BAS and ArchPy-ML, respectively. (C, D) Depict the frequency of inconsistencies

found in terms of lithological data within each unit domain.

probable" models (Figures 12C, F for ArchPy-BAS and ArchPy-

ML, respectively) that show the most probable unit in each cell

according to the realizations. We see that the mean models are

very close except around 7,500 m of distance, where the IGT layer

is clearly thicker and present in ArchPy-BAS than in ArchPy-BAS

model. Locally, we can note differences for the transition between

YG-LGA-LGL units, but these are relatively rare.

Entropy values appear visually similar (Figures 12G, H); they

do not indicate any significant reduction or increase in uncertainty.

The only noticeable difference is that the ArchPy-ML model

entropy is higher at intermediate depth between a distance of

10,000 and 13,000 m, suggesting a wider diversity in terms of units.

Transverse cross-sections (Supplementary Figures S20A–I and

Figures 13A–I) offer more detailed insights. Similarly to previous

observations (Figure 12, the ArchPy-ML model consistently

depicts the IGT as thicker and more extensive in the northern

part, compared to the ArchPy-BAS model (Figure 13D vs.

Supplementary Figure S20D). Furthermore, small and very thin

occurrences of certain units, particularly at the interface between

two thick units (e.g., IGT vs. AS in Figure 13C), are more common

in the ArchPy-BAS simulations compared to the ArchPy-ML

model. Although only one simulation is presented per model here,

these trends are observable across other realizations as well. Both

models clearly show that the north appears to be more complex

than the south, which is mainly represented by a succession of YG-

LGA-LGL-LGM and AS, with some local deposits of OS and UBS.

On the contrary, in the north, all units can be present, according to

the models.

The two models exhibit minimal disparity in terms of

lithologies and properties, with the primary distinction

being the incorporation of unit logs. In particular, it is

difficult to visually discern between the two facies models

(see Supplementary Figure 21 and Figure 14). The 3D views

(Supplementary Figure S21K vs. Figure 14K) suggest that clay

facies (C) are more present at depth in ArchPy-ML than in

ArchPy-BAS model. Although, despite employing a relatively

straightforward facies modeling technique such as SIS, complex,

intricate, and constrained facies and property simulations can be

obtained.

Property models (see Supplementary Figure S22 and Figure 15)

offer valuable information on the potential distribution of

hydrogeological characteristics (aquifers and aquitards). The
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FIGURE 12

Longitudinal cross-section across two realizations of the ArchPy-BAS (A, B) and ArchPy-ML model (D, E). Cross-sections of highest indicator facies

value for both models are also shown [(C) for ArchPy-BAS and (F) for ArchPy-ML]. Closest boreholes of the cross-section are displayed. The Shannon

entropy is also shown for both models ((G) and (H) for ArchPy-BAS and ArchPy-ML, respectively). Location of the cross-section is illustrated in (I).

average hydraulic conductivity within the valley is∼10−5[ms ], but it

greatly varies in space, both vertically and horizontally. The shallow

aquifer is discernible near the surface with a conductivity of more

than 10−3[ms ], particularly in the southern region, where it exhibits

a greater thickness (over 50 m). The presence of an impermeable

layer between the superficial aquifer and the potential deep aquifer

is clearly visible in the north and seems to have disappeared almost

completely in the south. Although some deeper conductive lenses

are observable (e.g., Figures 15F or C), conclusive evidence of a

deep aquifer over the entire valley is lacking. In the south, the

models suggest the presence of only one shallow and thick (50 m)

aquifer. The geology in the north seemsmore complex, and possible

vertical interactions between shallow and deep water reservoirs can

be considered. It is essential to note that these models represent

only averages and do not capture the complete heterogeneity of the

subsurface. They provide information on areas that are likely to be

more conductive to groundwater flow than others.

Between the two models, ArchPy-ML models exhibit a larger

contrast, mainly due to the conductivity of the AS unit, which is

lower than for ArchPy-BAS models. The reason is the proportion

of the lithologies that are different between the two models.

The integration of new unit ML generated logs has changed the
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proportions of the facies for each units. For rare units, such as AS,

this was sufficient to provoke a reduction of the mean hydraulic

conductivity by nearly one order of magnitude.

We can also compare models based on their “mean" unit and

facies models (Supplementary Figures S23–S26). In these figures,

the unit (or facies) that is shown in each cell is the one that has

the most probability to appear according to the 50 realizations.

Unit models are very similar and only differ in

some specific locations, particularly in the Northern

part where the first cross-section with ArchPy-ML

(Supplementary Figure S24A) shows a thicker GL unit than with

BAS model (Supplementary Figure S23A). IGT unit is also thicker

and widespread in ML model (Supplementary Figurer S24D) than

in BAS model (Supplementary Figure S23D).

Mean facies models (Supplementary Figures S25, S26) are

really useful as facies with highest proportions in each unit are

presented which shows the difficulty to obtain a mean facies

model and the risk to aggregate realizations using the “most

probable" method. Nevertheless, aquifer, aquitards and aquicludes

are clearly discernible which can help to identify zones with higher

groundwater potential. Overall, the gravel facies is present close

to the surface, with clay and silts at depth. There are no notable

differences between the ML and BAS models.

4 Discussion

4.1 Geostatistical learning methodology

The methodology used to infer geological units was able

to simulate reasonable stratigraphic units based on lithology

information. Despite the complexity of the task, ML algorithms

yield relatively decent results. In particular, the use of probabilistic

ML outputs rather than deterministic predictions allowed us to

introduce a level of uncertainty and preserve it through the

modeling process.

Integration of a larger number of boreholes has improved

the geological model, allowing better capture the spatial statistics

of the surfaces that bound these units. Another interest of this

methodology is that it can help detect or correct potentially

erroneously interpreted wells, thereby improving the accuracy of

geological models.

However, there are several challenges and areas of improvement

remaining. In particular, the limited dataset size poses challenges in

performing comprehensive cross-validation to assess the method’s

viability accurately. If the number of boreholes is consequent (791

in total and 266 labeled), they are not equally distributed over

the modeling area and rarely exceed 50 m depth. This eventually

reduces the quality of ML predictions for deep boreholes and

also increases the uncertainty of geological models at intermediate

and high depths. Grouping of lithologies and units also requires

careful consideration to mitigate potential biases. It is possible

that grouping all lithologies into six groups could remove patterns

useful for predicting units. It is also important to mention that

the definition of the facies and their grouping have to be done

according to the modeling facies methods. Here we used SIS which

is flexible and makes no supposition on deposit conditions, but

if more advanced methods would have been employed such as

Object-based or Rule-based methods, it is clear that a more detailed

description of the data would be required.

In fact, the quality and homogenization of the data is another

critical consideration. It is evident that improperly homogenized

lithological logs can misguide ML algorithms. Specifically, the level

of detail in descriptions varies widely because they originate from

different companies, individuals, times, and purposes, complicating

the homogenization process. In the case of the upper Aare Valley,

these discrepancies exist and were not filtered or corrected prior to

algorithm training, likely influencing the predictions. It is crucial to

bear this in mind when interpreting the results.

Another clear limitation is that, overall, the simulation on the

boreholes does not provide satisfactory results in all cases, which

points to some limitations of the current approach. The roots

of this problem can be partly attributed to the ML predictions

that are on average quite low (around 50%–60%), with a high

variability between the predicted classes. The reason for this are

multiple. The lithologies were aggregated into six groups, which

may have impacted theML predictions, making themmore difficult

to estimate. Additionally, the approach involves a scanning window

that provides lithological information 2 m above and below each

elevation. Although this approach has the advantage of neglecting

small facies occurrences, it also provides unnecessary information

thatmakes it difficult to determine the transition between two units.

Finally, the borehole simulation approach is not very robust and has

limited global applicability. It requires the selection of a parameter

(τ ) and may generate artifacts in cases where multiple thin layers

are simulated based onML predictions. Furthermore, themethod is

predicated on the probabilistic outputs ofML algorithms, which are

taken as truth. This may misguide some parts of the workflow and

result in erroneous outcomes. A more thorough investigation into

the integration of probabilistic ML outputs with existing or similar

workflows could be beneficial.

However, it should also be noted that the prediction problem in

this case is difficult where the relations between the 13 units with

the lithologies and spatial coordinates are hard to make. It would

be interesting to use this approach or an improved version on

simpler synthetic cases to see in which situations the methodology

works best, or on the contrary when it does not and how it can

be improved. Overall, the problem addressed in this paper is of

primal importance and the results obtained, despite unsatisfactory,

are encouraging.

To address these issues, several improvements can be explored.

Alternative feature strategies, such as integrating more lithologies

above and below the target layers, adjusting layer thicknesses of

each feature, and incorporating additional features (e.g., distance

from the center of the valley, orientation data, geophysical data,

predicted units at borehole location using ArchPy), could enhance

model performance. Data augmentation, such as generating

synthetic boreholes with ArchPy, could also be an option to adhere

to stratigraphic rules and improve machine learning predictions.

Investigating the SHapley Additive exPlanations (SHAP) [49]

values could also help to investigate the impact of different

features on the final results and may be an area for future

research. In addition, instead of predicting units layer by layer,

a direct prediction of surface elevation could provide a more
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FIGURE 13

(A–I) Transversal cross-sections in one realization of the ArchPy-ML unit model. Corresponding locations are shown in (J). (K) 3D visualization of the

realization. Corresponding color for units are given in Figure 4.

efficient approach when coupled with the ArchPy borehole

preprocessing algorithm [5]. To enhance the robustness of the

borehole simulation step, a more robust and general approach

should be taken. For instance, instead of using a random path,

a deterministic path, going from the top to the bottom of the

boreholes could be used. In a similar way, a Markov process could

be employed, where transition probabilities are determined by

the machine learning predictions. Alternatively, directly predicting

the elevation of each unit’s surfaces would eliminate the need for

this step. Other ML methods could also be considered, such as

neural networks, in particular Recurrent Neural Networks (RNN)

[50], which are particularly useful for predicting a series of labels

where outputs influence subsequent predictions, as is the case in a

well log.

However, it is worth noting that the algorithm can make

reasonable predictions in a good number of cases. For example, in

the borehole depicted in Supplementary Figure S11, the transition

between YG and LGL at a depth of 10 m is characterized by the

appearance of a sand layer. However, since clays dominate the

LGL, algorithms do not predict the transition at this depth. The

same comment can be made in Supplementary Figure S12 where

the transition between YG and LGL is predicted somemeters below

the reference (∼10 m depth) because the lithological log shows

a transition between sandy deposits to clayey deposits around 10
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FIGURE 14

(A–I) Transversal cross-sections in one realization of the ArchPy-ML facies model. Corresponding locations are shown in (J). (K) 3D visualization of

the realization. Corresponding color for facies are given in Figure 4.

m depth. In such instances, the relevance of the data itself comes

into question, prompting discussions of whether it is reasonable to

pinpoint the transition at this precise depth or whether it would be

more consistent to provide a range.

4.2 Geological models

The geological models show an intermediate uncertainty but

that greatly varies in space. It is particularly high at intermediate

depths (between 30 and 100 m), as shown by the entropy

values (Figures 12G, H). This is logical because at shallow depth,

geology is well known thanks to the numerous boreholes. On the

opposite, in the deepest part, there is only one dominant unit,

the AS. In between, the other units have a certain probability

of appearing, depending on the boreholes and their covariance

model. Although this uncertainty may seem high, it should be

remembered that the geological complexity of the study area

(13 units). Moreover, models provide stochastic simulations that

consider this uncertainty and allow to propagate it through the

subsequent modeling steps.

Indeed, it is important to emphasize that the prediction of

geological units should not be viewed as an end in itself, but

rather as a means to understanding the larger geological context.

Imperfections in unit modeling are acceptable as long as they do not

compromise the accuracy of the facies model (lithologies), which
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FIGURE 15

(A–I) Transversal cross-sections in mean of all property realizations of ArchPy-ML. Corresponding locations are shown in (J). (K): 3D visualization.

exert significant control over the distribution of properties in the

subsurface. Therefore, it becomes imperative to dive deeper into

this aspect to propose facies models that more accurately reflect the

geological setting.

In this study, only the SIS method was considered for facies

modeling. However, it should be noted that the inferring

of variograms, particularly in the horizontal direction,

posed significant challenges. Variogram parameters were

determined primarily by trial and error, supplemented

with expert knowledge of lithologies in the area.

Unfortunately, such knowledge remains critically lacking

for many units, leaving uncertainties that are difficult to

address comprehensively.

As a result, the facies models can seem very uncertain, but it

should be recalled that the resolution of the model is 25 m by 25

m, and it is very likely that the lithology heterogeneity displays a

spatial range of heterogeneity below this value. Additionally, the

SIS simulations were constrained in terms of facies proportions in

each unit based on borehole data, but there is a high probability

that these proportions are wrong due to a sampling bias. Drillers

and local companies generally look for areas that have a high

conductivity to better extract the water, as a consequence, the
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borehole generally stops when they reach large and thick clay and

silty lithologies. Therefore, the proportions of sand and gravel in

low permeable units are more likely to be overestimated.

The existence of a deep aquifer has been suggested and used

as a working basis in several studies in the area [9, 24]. From the

results obtained in this study (Figures 12, 13, 14, 15), it is difficult

to assess the existence of a deep aquifer throughout the valley.

However, we can clearly see that in the northern part of the area

some conductive units (MS, UBS) seem to be present locally. YG

and LGA, which are part of the shallow aquifer, are separated

from these deeper units by LGL and IGT, suggesting that there

are little to no exchanges between these two. These units seem to

vanish as soon as the cross section in Supplementary Figure S22D.

Some other deep conductive lenses (50–70 m) can be observed,

such as the one in Supplementary Figure S22F but they are not

widespread and are not observed in the other cross sections. All

of this suggests that a second aquifer is likely to exist beneath

the shallow one, but its extent is limited to the northern area. Its

hydraulic conductivity is also expected to be lower as a result of the

presence of more clayey deposits (SC, GC) compared to those of YG

or LGA. To further characterize this lower aquifer, thresholds could

be applied to hydraulic conductivity models to identify permeable

areas. Probabilities of exceeding these thresholds could then be

calculated. Or a numerical flow model could be used to study

regional three-dimensional flows using these geological models.

In comparison of the ArchPy-BAS and ArchPy-ML models,

both exhibit similar geological features. However, a notable

difference emerges, particularly evident in property models

(Supplementary Figure S22 and Figure 15): variable hydraulic

conductivity for identical units. This discrepancy arises from the

addition of ML-generated boreholes, which altered the lithological

proportions within each unit. Consequently, certain units, such

as AS, display a nearly one-order-of-magnitude difference in the

simulated properties.

Hence, there is a great deal of room for improvement regarding

geological models, mostly on the facies modeling part. Apart

from other more complex methods (Multiple Point Statistics [51],

Surface-based [52]) that can be employed, we can also imagine

defining a more solid and complete geological conceptual model

of the area, use of analogs for each unit, consider locally varying

lithology proportions, etc. However, all of these steps would require

an important amount of work that is beyond the scope of this

research.

5 Conclusion

We presented a novel methodology for inferring stratigraphical

unit logs based on lithological data using Machine Learning (ML).

Several algorithms were tested, and it turned out that the Random

Forest (RF) and Support Vector Machine (SVC) gave the best

results in terms of accuracy and Brier score. The RF model

was used to simulate consistent boreholes in areas where local

stratigraphy data were missing. These simulated boreholes were

then integrated into a geological model (ArchPy-BAS), resulting in

an enhanced version (ArchPy-ML). The geological model operates

on three hierarchical levels: stratigraphical units, lithologies

(facies), and hydraulic conductivity properties. Although ArchPy-

BAS exhibits marginally better accuracy than ArchPy-ML, the latter

demonstrates superior performance in quantifying uncertainty, as

indicated by its improved Brier score.

Visually, both models yield similar results, albeit with ArchPy-

ML showing a greater presence of certain units, notably IGT.

Analysis of these results enabled the determination of the lateral

and vertical extent of potential deep aquifers. Our models suggest

that their lateral spatial extent is limited and that there are

uncertain connections between them. Furthermore, their hydraulic

conductivity appears to be lower than that of the shallow aquifer,

particularly in the south, where the aquifer is thicker. Exploiting

these potential aquifers requires further investigation to obtain

accurate estimates of their petrophysical properties.

This work also shows that there is room for further

improvements. Identifying consistent stratigraphic data from

lithological logs could be improved by involving probabilistic

information or by using more advanced statistical learning

techniques. It was also not possible during the timeframe of the

research to integrate completely the geophysical data acquired

by Neven et al. [33] in a large part of the valley. However, our

approach still offers valuable information on the integration of ML

with traditional geostatistical methods to improve the reliability

of geological models. Ultimately, these advances contribute to

improving the quality of groundwater models and understanding

subsurface heterogeneity.
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