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a b s t r a c t 

Very different connectivity patterns may arise from using different simulation methods or sets of pa- 

rameters, and therefore different flow properties. This paper proposes a systematic method to compare 

ensemble of categorical simulations from a static connectivity point of view. The differences of static con- 

nectivity cannot always be distinguished using two point statistics. In addition, multiple-point histograms 

only provide a statistical comparison of patterns regardless of the connectivity. Thus, we propose to char- 

acterize the static connectivity from a set of 12 indicators based on the connected components of the 

realizations. Some indicators describe the spatial repartition of the connected components, others their 

global shape or their topology through the component skeletons. We also gather all the indicators into 

dissimilarity values to easily compare hundreds of realizations. Heat maps and multidimensional scal- 

ing then facilitate the dissimilarity analysis. The application to a synthetic case highlights the impact of 

the grid size on the connectivity and the indicators. Such impact disappears when comparing samples 

of the realizations with the same sizes. The method is then able to rank realizations from a referring 

model based on their static connectivity. This application also gives rise to more practical advices. The 

multidimensional scaling appears as a powerful visualization tool, but it also induces dissimilarity mis- 

representations: it should always be interpreted cautiously with a look at the point position confidence. 

The heat map displays the real dissimilarities and is more appropriate for a detailed analysis. The com- 

parison with a multiple-point histogram method shows the benefit of the connected components: the 

large-scale connectivity seems better characterized by our indicators, especially the skeleton indicators. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Connectivity is a key aspect of a geological study for its influ-

nce on fluid circulations. From a reservoir engineering perspec-

ive, it relates to geological structures with high and low per-

eabilities. But it also relates to the spatial distribution of these

tructures and the resulting inter-connections, which define the

tatic connectivity. An incorrect connection can bias the results

f the flow simulations ( Gómez-Hernández and Wen, 1998; Jour-

el and Alabert, 1990 ). Reproducing the geological bodies together

ith their relations is so of prime importance (e.g., Deutsch and

ewett, 1996; King and Mark, 1999 ). 

Stochastic simulations aim at generating possible representa-

ions of the geological bodies with respect to the available data.

everal methods exist, with a usual separation in two main cate-

ories: 
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• Pixel-based methods simulate one cell at a time, based on a

prior model describing the structures of interest. In sequen-

tial indicator simulation (SIS) ( Deutsch and Journel, 1992 ), the

prior is a variogram built upon the two-point statistics of the

data. Hard data conditioning with such method is easy. But the

simulated structures do not look like geological bodies. This is

especially true for bodies with curvilinear geometries such as

channels, whose continuity is badly preserved. The plurigaus-

sian simulation (PGS) ( Galli et al., 1994 ) limits this difficulty

by accounting for the facies relationships. Multiple-point sim-

ulations (MPS) go a step further by borrowing multiple-point

statistics not from the data but from an external representation

of the expected geology, the training image (TI) ( Guardiano and

Srivastava, 1993 ). 
• Object-based methods rely on the definition of geometric forms

and their associated parameters. Each form represents a par-

ticular geological body (e.g., Viseur, 2001; Deutsch and Tran,

2002 ). The objects are then randomly placed in the domain

of interest with parameters drawn in statistical laws. More re-

cent approaches introduce some genetic aspects to improve the

http://dx.doi.org/10.1016/j.advwatres.2016.07.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
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object organization (e.g., Lopez, 2003; Pyrcz et al., 2009 ). They

provide more geologically consistent results. For instance chan-

nel continuity and relationships are better preserved than with

pixel-based methods. But this is at the cost of the ease of

parametrization. And object-based approaches have difficulty to

condition the objects to data. 

All these methods have advantages and drawbacks. This will

influence the choice of a method and its parameter values when

dealing with a case study. 

But few work aims at systematically analyzing the quality of a

set of realizations regarding their static connectivity. The quality

control often consists in comparing the histogram and variogram

of several realizations with those of the data, or of the training im-

age if any (e.g., Strebelle, 2002; Mariethoz et al., 2010; Tahmasebi

et al., 2012 ). If more than the first two-order statistics are nec-

essary to simulate geological bodies (e.g., Guardiano and Srivas-

tava, 1993; Journel, 2004 ), the same conclusion must apply when

comparing realizations. Some authors propose to also use the

higher-order statistics for quality analysis. Boisvert et al. (2010) and

Tan et al. (2014) propose to analyze the multiple-point histogram.

De Iaco and Maggio (2011) and De Iaco (2013) also explore the

multiple-point statistics with high-order cumulants. 

The purpose of most simulation methods is to reproduce statis-

tics from a prior. Analyzing statistics highlights the method success

in this reproduction, not if the realizations are geologically con-

sistent. To do that, the statistical analysis is often completed by

a visual evaluation of the global structures. The geological struc-

tures are compared to what is expected from the known geology,

with a focus on the further use of the realizations. This use is of-

ten related to fluid circulations, and requires an assessment of the

static connectivity, which is not directly imposed by the simula-

tion methods contrary to the statistics. But a visual analysis re-

mains subjective and limited to a few realizations, often in two-

dimensions (e.g., Yin et al., 2009; Tahmasebi et al., 2012 ). 

Yet, some studies focus on analyzing the connectivity of the

realization bodies. For instance Meerschman et al. (2012) use the

connectivity function with the histogram and variogram to ana-

lyze the simulation parameter impact for the Direct Sampling MPS

method ( Mariethoz et al., 2010 ). Deutsch (1998) uses directly the

connected components determined from lithofacies, porosity and

permeability models. He computes indicators such as the number

of connected components or their sizes to rank the realizations.

De Iaco and Maggio (2011) and De Iaco (2013) also use some mea-

sures related to the connected components, such as their number

or their mean surface and volume. Comunian et al. (2012) rely on

some of the previous indicators to analyze the quality of three-

dimensional structures simulated from two-dimensional training-

images. They also consider the equivalent hydraulic conductivity

tensor as an indicator. However, this requires to have an idea of

the hydraulic conductivities for the simulated facies. 

Connected components enable to characterize the geometry and

topology of the geological bodies, which is the purpose of the vi-

sual comparison of realizations. They also enable to study the static

connectivity of the geological bodies, while being easy to compute.

Contrary to a visual analysis of the realization, indicators from con-

nected components are unbiased and can compare many realiza-

tions. Contrary to statistical or hydraulic property indicators, they

focus on the sedimentary bodies by characterizing their connec-

tivity and are more easy to apprehend. However, current methods

based on the connected components are limited to few simple in-

dicators, often analyzed independently. 

This leads to the question of the result visualization to ana-

lyze more effectively the indicators. Scheidt and Caers (2009) and

Tan et al. (2014) both rely on the computation of dissimilarity val-

ues between the realizations. Those dissimilarities are computed
ased on the quality indicators measured on each realization. They

re then visualized based on a MultiDimensional Scaling (MDS)

e.g., Torgerson, 1952; Shepard, 1962a; 1962b ). MDS represents the

ealizations as points, with the distance between the points as

lose as possible to the dissimilarities. The global analysis of the

ealization dissimilarities is so easier. 

The present work aims at analyzing and discussing a set of in-

icators to quantify the quality of stochastic simulations from the

iewpoint of static connectivity. This method performs on cate-

orical three-dimensional images representing the facies constitut-

ng the geological bodies of interest. It can be applied on realiza-

ions from one or several stochastic simulation methods and/or pa-

ameter values. Conceptual images representing ideally the struc-

ures to simulate can also be considered. The chosen set of in-

icators relies on quantitative measurements on connected com-

onents and their skeletons ( Section 2 ). The indicators are used

n dissimilarity computations to analyze the quality more directly

 Section 3 ). Several realizations obtained with different simulation

ethods ( Section 4.1 ) are then used to test the method and com-

are it to the multiple-point histograms ( Section 4 ), and discuss

he results ( Section 5 ). 

. Indicators to measure simulation quality 

The quality analysis fits in a stochastic process implying the

imulation of many realizations in a grid. It further investigates the

ifferences of static connectivity between these realizations. 

.1. About grids and grid cells 

Many methods to simulate geological structures rely on a dis-

retized representation of the domain of interest: a grid. The grid

s a volumetric mesh composed of simple elements, hereinafter

alled cells. 

Many types of grid exist, with different cell types (e.g., tetra-

edron or hexahedron). Most of the stochastic simulation meth-

ds rely on hexahedral grids, either regular or irregular. Irregular

exahedral grids help to be as conform as possible to the geologi-

al structures such as horizons and faults. The sedimentary bod-

es are then simulated within the parametric space of the grid

e.g., Shtuka et al., 1996 ). The parametric space mimics a depo-

ition space to get rid of the deformation and faulting occurring

fter deposition and materialized in the grid geometry. 

Consequently, the indicators are computed on hexahedral grids,

oth regular and irregular. Similarly to the simulation, the indicator

omputation is done in the parametric space of the grid. Thus, the

ndicators based on volumes or surfaces are rather computed using

umber of cells and number of faces. This avoids biases related

o different grid geometries, which give different indicator values

ven if the objects are the same when transferred in the same grid.

Within a grid, the cells are connected one to another by their

aces, their edges and/or their corners ( Renard and Allard, 2013 ).

n the case of the hexahedral grids used for this work, one cell has

hree possible neighborhoods ( Fig. 1 ): 

1. One neighborhood composed of six face-connected cells. 

2. One neighborhood composed of eighteen face- and edge-

connected cells. 

3. One neighborhood composed of twenty-six face-, edge- and

corner-connected cells. 

This definition of the connectivity between a cell and its neigh-

orhood can be extended to form connected components. 

.2. Basic element: the connected component 

The connected components result from the widening of the

eighborhoods. They rely on the following definition of the con-
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Fig. 1. Possible neighborhoods for a given central cell in a regular grid (modified 

from Deutsch (1998) ). 

Fig. 2. Connected components of a given facies in a two-dimensional structured 

grid. The cells a and b are connected and belong to the same connected body. 

There is no possible connected path between those cells and c , which belongs to 

another connected body. The cell d constitutes a third connected body in the case of 

a face-connected neighborhood. In the case of an edge- or corner-connected neigh- 

borhood, d belongs to the connected body 1. 
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Fig. 3. Example of skeletons for the connected components of the Fig. 2 . Here the 

nodes connected to only one segment – the nodes of degree 1 – are all along a 

grid border. Two nodes of degree three highlight the local disconnections between 

the channels at the bottom. The connected component at the top has no node of 

degree higher than two, which shows the complete connectivity of all its cells, even 

locally. 
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ectivity between two cells: two cells belonging to the same facies

re connected if a path of neighboring cells remaining within the

ame facies exists ( Fig. 2 ). Applying this definition to all the cells

f a facies gives the connected components of this facies. 

This leads to a distinction between the geological objects, such

s a channel or a crevasse splay, and the connected components.

ndeed, the geological objects often tend to cross each others, giv-

ng one connected body where there is in fact several geological

bjects ( Fig. 2 ). The range of possible shapes is larger for the con-

ected components than for the individual object. This aspect com-

licates the comparison between images. But determining the con-

ected components is far easier than trying to retrieve the geo-

ogical objects. This is also close to the functioning of pixel-based

ethods, which do not try to reproduce geological objects but

roups of cells, and therefore connected components. 

.3. Basic element: the skeleton 

A curve-skeleton – simply called here skeleton – is a thin

ne-dimensional representation of a three-dimensional shape. It

s composed of nodes linked together by one or more segments
 Fig. 3 ). The degree of a node is the number of segments connected

o that node. Skeletons are often used to study some geometrical

nd topological features of a shape. Here the skeletons are those

f the connected components. They enable to further characterize

he global shape of the connected components, while giving more

etails about their topology than indicators directly computed on

he components. 

Several methods exist to compute skeletons (e.g., Serra, 1983;

ain, 1989; Brandt and Algazi, 1992 ). The method considered for

his work is based on slicing the grid along a given axis. The grid

s subdivided into parallel slices of a given thickness. On each slice

he connected components are computed and one node is assigned

o each component. The nodes are then linked by computing the

onnected components over two adjacent slices. If two compo-

ents from two slices form one connected component when the

lices are combined, their nodes are linked. If they form several

omponents, their nodes are not linked. 

.4. Indicators 

The indicators studied in this paper focus on analyzing the con-

ectivity of the geological bodies within a three-dimensional im-

ge. This static connectivity analysis is possible thanks to the con-

ected components. All the indicators are quite simple and each

ne gives only partial information about the connectivity and its

tructure. But their combination provides a more detailed charac-

erization. 

Appendix A defines in detail all the indicators. Table 1 summa-

izes the indicator definition, by focusing on their relationship with

he connected components. 

We distinguish three categories of indicators: 

Global indicators: The global indicators characterize a facies

and not necessarily an individual connected component.

Among them, the facies proportion is a classical indicator to

compare realizations. Some others, such as the facies con-

nection probability ( Renard and Allard, 2013 ), the connected

component density or the traversing component proportion

give an idea of the global connectivity. 

Shape indicators: Global measures such as facies proportions

are not sufficient to characterize precisely the impact of the
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Table 1 

The set of indicators with their definitions. The indicator definitions is given by a numerator and a denominator because the majority of the indicators comes from a ratio. 

Some ratios are computed on a single connected component, and their values are combined to obtain one indicator value per facies. We use the term “component” instead 

of “connected component” for the sake of simplicity. 

Category Indicator Symbol Numerator Denominator Value for a facies 

Global indicators Facies proportion p Number of component cells Number of cells of the grid Sum of all the component 

values 

Facies adjacency 

proportions 

p a Number of component cells 

adjacent to a cell of a 

given other facies 

Number of cells of the 

facies adjacent to a cell 

of any other facies 

Sum of all the component 

values 

Facies connection 

probability 

� Squared number of 

component cells 

Squared number of cells of 

the facies 

Sum of all the component 

values 

Connected component 

density 

ε Number of components Number of cells of the grid –

Unit component proportion p u Number of components of 

one cell 

Number of components –

Traversing component 

proportion 

p c Number of components 

linking two opposite 

borders of the grid 

Number of components –

Shape indicators Number of component cells n Number of component cells – Average of the 

non-unit-component 

values 

Box ratio β Number of cells of a 

component 

Number of cells of the 

axis-aligned bounding 

box of the component 

Average of the 

non-unit-component 

values 

Faces/cells ratio ζ Number of faces composing 

a component surface 

Number of cells of a 

component 

Average of the 

non-unit-component 

values 

Sphericity φ Surface area of a sphere Surface area of the 

connected component 

Average of the 

non-unit-component 

values 

Skeleton indicators Inverse branch tortuosity t Distance between the 

extremities of a branch 

Branch curvilinear length Average of all the branch 

values 

Node degree proportions p n Number of node connected 

to n segments 

Total number of node for 

all the skeletons 

Sum of all the skeleton 

values 
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related facies on the flow (e.g., Western et al., 2001; Mari-

ethoz, 2009 ). In particular, Oriani and Renard (2014) showed

the influence of the connected component geometry – i.e.,

their shape – on the equivalent hydraulic conductivity, and

therefore on the flow behavior. The shape indicators charac-

terize the connected component shape through simple sur-

face and volumetric measures. They all give one value per

component. The arithmetic mean of those values provides a

value of the indicator for a given facies. This makes the in-

dicator comparison easier. 

Skeleton indicators: The skeletons help to better characterize

the topology and global geometry of their connected compo-

nents: their one-dimensional representation is easier to ana-

lyze. Here two indicators are introduced. The inverse branch

tortuosity characterizes the geometry of the skeleton. Its val-

ues for all the branches of all the skeletons related to a

facies are averaged to obtain a single value for the facies.

It completes the shape indicators in the characterization of

the connected component shape. The node degree propor-

tion depicts the topology of the skeletons. It helps to analyze

the connectivity more precisely. 

3. Quality analysis considerations 

The final purpose of this work is to easily and objectively com-

pare several realizations. The indicators are thus computed on

large sets of realizations, which may come from different methods

and/or parameters. Then dissimilarity values based on the indica-

tors help to compare the realizations. 

3.1. Influence of different grid dimensions 

Some cases imply to compare realizations on different grids,

and the grids may have different dimensions. For instance in MPS,
he training image is often larger than the simulation grid to max-

mize pattern repeatability. 

The grid dimensions influence the size of the traversing con-

ected components, such as channels. This impacts in particular

he connected component density and the number of component

ells. When the grid size varies along the channel direction, the

umber of cells for the channels also varies. And even though the

umber of channels does not necessarily change, the grid volume

oes, impacting the density. These indicators highlight expected

ifferences in such cases. Their direct use is then detrimental to

he quality analysis. 

We propose two workarounds to compensate for different grid

izes: 

• Either sampling the images from the different grids so that all

the samples have the same dimensions. The sample size are the

largest dimensions common to all the grids. Each sample is ran-

domly extracted and each image may be sampled several times

to still catch the characteristics of the whole image. 
• Or correcting the indicators of the difference between the grid

dimensions. The smallest grid dimensions among all the grids

form a hypothetical reference grid. The indicators are corrected

to their expected value in such reference grid. Appendix B de-

tails this correction. 

The sampling exempts from correcting the indicators, but it

dds a step and requires the analysis of more images, which could

low down the process. If they are valid, the corrections should

ive similar results than the sampling in a more efficient process. 

.2. Indicator rescaling 

The rescaling ensures that the differences between the ranges

f indicator values will not affect the comparison. The histogram-

ased indicators – facies proportion, facies adjacency proportion
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nd node-degree proportion – are not rescaled, to preserve their

istogram behavior for the dissimilarity computation ( Section 3.3 ).

wo methods can be used for rescaling: normalization and stan-

ardization. 

The normalization method consists in rescaling linearly the in-

icators values between 0 and 1. The indicator I i is the i th indica-

or of the set previously defined. When computed for the facies f

f the realization r , we will denote the computed indicator I r 
i f 

. The

ormalization is then obtained by rescaling it between its mini-

um and maximum values: 

orm (I r i f ) = 

I r 
i f 

− m i f 

M i f − m i f 

(1) 

ith M if the maximum value for the same indicator and facies

mong all the images and m if the minimal value for the same in-

icator and facies among all the images. 

The standardization method consists in using reduced-centered

ndicator values. For an indicator i the standardized value for a fa-

ies f of a realization r is obtained using the following formula: 

tand (I r i f ) = 

I r 
i f 

− μi f 

σi f 

(2) 

ith μif the mean for the same indicator and facies among all the

mages and σ if the standard deviation for the same indicator and

acies among all the images. Standardization is an interesting op-

ion to focus on the indicator variance. The normalization on the

ther hand decreases the influence of outliers and gives precise

imits to the indicator values. 

.3. Dissimilarity calculation 

The principle of comparing two images is to determine how

issimilar these images are. The indicators can be seen as coordi-

ates of the compared images. These indicators are heterogeneous:

hey are either based on histograms or on continuous values. The

omputation of a dissimilarity value between two images requires

 heterogeneous metric. 

Following the example of Wilson and Martinez (1997) ,

wo different metrics are combined into a heterogeneous

uclidean/Jensen–Shannon metric. It uses the Jensen–Shannon dis-

ance, square root of the Jensen–Shannon divergence ( Lin, 1991;

ao, 1987 ), for the histogram-based indicators – facies proportion,

acies adjacency proportion and node-degree proportion – and the

uclidean distance for all the other indicators. The distance be-

ween two images r and s for a given indicator i of a given facies f

s given by: 

(I r i f , I 
s 
i f ) = 

{
d JS (I r 

i f 
, I s 

i f 
) if I r 

i f 
and I s 

i f 
are histograms 

d E (I r 
i f 

, I s 
i f 
) if I r 

i f 
and I s 

i f 
are continuous values 

(3)

ith I the indicator values. d JS represents the Jensen–Shannon dis-

ance: 

 JS (H 

r 
i , H 

s 
i ) 

 

√ √ √ √ √ 

1 

2 

n ∑ 

j=1 

⎡ 

⎣ H 

r 
i j 

log 

⎛ 

⎝ 

H 

r 
i j 

1 

2 

(H 

r 
i j 

+ H 

s 
i j 
) 

⎞ 

⎠ + H 

s 
i j 

log 

⎛ 

⎝ 

H 

s 
i j 

1 

2 

(H 

r 
i j 

+ H 

s 
i j 
) 

⎞ 

⎠ 

⎤ 

⎦ 

(4) 

ith H 

r 
i 

and H 

s 
i 

the histograms of the indicator i for respectively

he images r and s , n the number of classes for each histogram, H 

r 
i j 

nd H 

s 
i j 

the proportions for the class j in the corresponding his-

ograms. d E represents the Euclidean distance used with rescaled

ndicators: 

 E (I r i f , I 
s 
i f ) = 

√ 

( resc (I r 
i f 
) − resc (I s 

i f 
)) 2 (5)
ith I r 
i f 

and I s 
i f 

the values of the indicator i for the facies f of re-

pectively the images r and s and resc either norm (formula 1 ) or

tand (formula 2 ). The final dissimilarity δ between two images r

nd s given their respective sets of indicators I r and I s is: 

(I r , I s , ω, ν) = 

√ √ √ √ ω 1 d JS (I r 
1 
, I s 

1 
, ν) 2 + 

12 ∑ 

i =2 

n ∑ 

f=1 

ω i ν f d(I r 
i f 

, I s 
i f 
) 2 (6)

ith I r 
1 

and I s 
1 

the facies proportion histogram for the two images,

 

r 
i f 

and I s 
i f 

all the other indicator values depending on the indicator

nd the facies and n the number of facies. ω represents the set of

eights ω i that control the impact of each indicator. ν represents

he set of weights ν f that control the impact of each facies. Note

hat the facies proportion histograms are the only indicators with

ne result for all the facies. Thus the facies proportions are treated

ifferently from all the other indicators. The Jensen–Shannon dis-

ance used in that case is slightly modified: 

 JS (H 

r 
i , H 

s 
i , ν) 

 

√ √ √ √ √ 

1 

2 

n ∑ 

f=1 

ν f 

⎡ 

⎣ H 

r 
i f 

log 

⎛ 

⎝ 

H 

r 
i f 

1 

2 

(H 

r 
i f 

+ H 

s 
i f 
) 

⎞ 

⎠ + H 

s 
i f 

log 

⎛ 

⎝ 

H 

s 
i f 

1 

2 

(H 

r 
i f 

+ H 

s 
i f 
) 

⎞ 

⎠ 

⎤ 

⎦ 

(7) 

The dissimilarity values computed by formula 6 between all the

mages constitute a non-negative symmetric matrix. This matrix

as a zero diagonal corresponding to the dissimilarity between an

mage and itself. The dissimilarity matrix can be directly visualized

ith a heat map or treated by multidimensional scaling to get a

ore practical visualization. 

.4. Heat map 

The heat map is a simple graphical representation of a matrix

here the matrix values correspond to colors. In our case, the heat

ap is a two-dimensional representation. This colored representa-

ion highlights patterns in the dissimilarity matrix, either between

ealizations or between simulation methods. The main advantage

f the heat map is to show the real dissimilarity values, contrary

o the multidimensional scaling described in the next subsection. 

The heat map also enables to classify the images and/or to ap-

ly clustering methods on it. A simple yet informative classification

s the ranking according to the dissimilarities of the images toward

ne particular image. When using more advanced clustering meth-

ds, the matrix rows and columns are permuted to gather close

alues into the same cluster. 

.5. Multidimensional scaling 

Multidimensional scaling (MDS) [e.g., Torgerson, 1952; 1958 ,

ee Cox and Cox, 1994 for a review] is a set of data visualization

ethods to explore dissimilarities between objects – represented

y a dissimilarity matrix – through a dimensionality reduction: it

ims at producing a configuration of the objects as optimal as pos-

ible in a lower dimensional representation. 

.5.1. Principle and method used 

Finding the configuration of the images in a k dimensional rep-

esentation consists in locating a set of points representing the ob-

ects in a k -dimensional Euclidean space – with k being at most

qual to the number of images minus one. The point positioning is

one so that the Euclidean distance d between two points matches
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as closely as possible the dissimilarities between the images: 

d r,s = 

√ 

k ∑ 

i =1 

(x ri − x si ) 2 (8)

with r and s two images, k the dimension number of the Euclidean

space, x ri and x si the coordinates of respectively r and s in the i th

dimension. The number of dimension k for the MDS representation

is an input parameter. When equal to the number of images minus

one, the distances are normally equal to the dissimilarities. When

k is lower, the MDS misrepresents more or less the dissimilarities. 

Several multidimensional scaling methods have been proposed

(e.g., Cox and Cox, 1994 ), depending on the type of dissimilarities

and on the way to match the dissimilarities with the distances.

The classical scaling ( Gower, 1966; Torgerson, 1952; 1958 ) is the

usual method for multidimensional scaling (e.g., Scheidt and Caers,

2009; Tan et al., 2014 ). It assumes that the dissimilarities already

are Euclidean distances. If this assumption can be relaxed to a met-

ric assumption, i.e., the dissimilarities are distances, Euclidean or

not, the classical scaling may further misrepresents dissimilarities

based on a heterogeneous metric. 

Here we use a different method: the Scaling by MAjorizing a

COmplicated Function (SMACOF) ( De Leeuw, 1977; De Leeuw and

Heiser, 1977; 1980 ). Its goal is to get distances as close as possible

from the dissimilarities using a majorization, i.e., the optimization

of a given objective function called stress, through an iterative pro-

cess. The stress derives from the squared difference between the

dissimilarities and the distances. It is positively defined and equals

to 0 only when the distances are equal to the dissimilarities. The

optimization process corresponds to a minimization of the stress.

The final stress value helps to assess the choice of the number of

dimensions: the lower the stress is, the better is that choice. 

3.5.2. Validation of the number of dimensions 

Following the chosen number of dimensions for the representa-

tion, the point configuration matches more or less the dissimilarity

values. Verifying that the dimension number is enough for a good

match between the dissimilarities and the distances is so of prime

importance. Two approaches allow testing the chosen dimension

number: 

The scree plot: It represents the stress of the SMACOF against

the dimension number. The stress follows a globally convex

decreasing function that tends toward 0 when the dimen-

sion number increases. A stress close or equal to zero means

that the higher dimensions are unnecessary to represent the

dissimilarities. The best number of dimensions is between

the point with the highest flexion of the curve and the be-

ginning of the sill at zero. The dimension value right after

the point with the highest flexion is generally enough for a

decent representation. 

The Shepard diagram: It represents the distances against the

dissimilarities. The better the correlation, the better the

choice of dimension number. 

Two-dimensions are more practical for an analysis purpose. A

three-dimensional representation remains a possibility if the im-

provement is significant enough from a two-dimensional represen-

tation. 

3.5.3. Estimation of the point position confidence 

The point position confidence is another way to assess the MDS

ability to represent the dissimilarities. For each point r , an error

e highlights the mismatch between the dissimilarities δ and the

distances d with all the other points s : 

e r = 

∑ 

s 

| (aδr,s + b) − d r,s | (9)
ith a and b the linear regression coefficients found on the Shep-

rd diagram. This measure gives a more local representation of the

iss-representation than the scree plot or the Shepard diagram. 

For visualization purpose, that error is then normalized, giving

he confidence c for a given image r : 

 r = 1 − e r − e min 

e max − e min 

(10)

ith e max and e min respectively the greatest and the lowest error

alues amongst the errors of all the images. This confidence can

hen be attributed to its corresponding point in the MDS repre-

entation through the point transparency: the less transparent the

oint is, the best the dissimilarities related to this point with all

he other points are represented. 

. Example of method application 

The method, as described in the previous sections, consists in

hree steps: 

1. Indicator computation. 

2. Dissimilarity computation in a matrix. 

3. Dissimilarity visualization and analysis, especially with multidi-

mensional scaling. 

The first two steps were implemented in a C++ plugin for

he SKUA-GOCAD geomodeling software ( Paradigm, 2015 ). The

ast step was realized using the software environment for sta-

istical computing R ( R Core Team, 2012 ) with the addition of

he R packages SMACOF ( De Leeuw and Mair, 2009 ) and ggplot2

 Wickham, 2009 ). 

.1. Dataset 

The dataset falls within the simulation of a channelized sys-

em. It contains several realizations representing the same sedi-

entary environment simulated with different methods. The anal-

sis aims at highlighting the indicator ability to capture the differ-

nces of static connectivity between the realizations, and especially

etween the realizations from different methods. As it concerns a

ole case, it would be inappropriate to draw general conclusions

n the simulation methods themselves. 

The channelized system is composed of sandy channels with

evees into a mudstone environment. A conceptual model, called

he training image (TI) ( Fig. 4 , image at the top), provides an ideal

epresentation of this system. The case study falls within the scope

f a MPS study: several simulation methods are used to reproduce

he sedimentary bodies observed in the training image. MPS per-

orms better when the training image is larger than the realiza-

ions, to ensure enough pattern repeatability. It involves two grids:

he first one for the training image ( Fig. 4 , image at the top) and

he second one for the realizations ( Fig. 4 , images at the bottom). 

The training grid contains two sets of images: 

TI: One object-based realization simulated using the object-

based method of the software Petrel ( Schlumberger, 2015 )

(see Appendix C, Table C.6 , for the simulation parameters). 

Analog: 100 object-based realizations simulated with the same

method and parameters used to simulate the TI ( Appendix C,

Table C.6 ). 

The simulation grid contains four sets of images: 

DeeSse: 100 MPS realizations simulated with the DeeSse imple-

mentation ( Straubhaar, 2011 ) of the direct sampling method

( Mariethoz et al., 2010 ). Contrary to more traditional MPS

methods, the direct sampling bypasses the conditional prob-

ability computation and resamples randomly the training
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Fig. 4. Training image and examples of realizations for each category. 
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Table 2 

Set of indicators used for the case study. The indicator definitions are summarized 

in Table 1 and more detailed descriptions are in Appendix A . 

Category Indicator Symbol Weight 

Global indicators Facies proportion p 1 

Facies adjacency proportion p a 1 

Facies connection probability � 1 

Connected component density ε 1 

Unit connected component 

proportion 

p u 1 

Traversing connected 

component proportion 

p c 1 

Sh ape indicators Number of connected 

component cells 

n 1 

Box ratio β 1 

Faces/cells ratio ζ 1 

Sphericity φ 1 

Skel eton indicators Node degree proportions p n 1 

Inverse branch tortuosity t 1 

r  

i  

t  

t  

A  

6  
image. It relies on the compatibility measured with a

distance between the conditioning data and the patterns

scanned in the training image. The resampling step selects

the first pattern with a distance lower than a given thresh-

old. The training image is the TI and the set of parameters

is given in Table C.4 ) in the appendix. 

IMPALA: 100 MPS realizations simulated with the method IM-

PALA ( Straubhaar et al., 2011, 2013 ). Contrary to the DeeSse,

IMPALA still computes the conditional probabilities during

the simulation. To improve the efficiency of this computa-

tion, the method stores the training image patterns in a list.

The training image is scanned once at the beginning and the

list is used instead during the simulation. The training image

is the TI and the set of parameters is given in Table C.5 ) in

the appendix. 

OBS: 100 object-based realizations simulated with the same

method and parameters used to simulate the TI ( Appendix C,

Table C.6 ). 

SIS: 100 sequential indicator simulation realizations simulated

using variograms based on the facies in the TI ( Appendix C,

Table C.7 ). 

.2. Analysis setting 

The purpose here is to compare the realizations with the TI. It

hould lead to retain the method and associated parameters that
eproduce at best the static connectivity of the TI for the stud-

ed case. The indicators used in this case study ( Table 2 ) rely on

he face-connected components, because the face-connectivity be-

ween cells is the most frequently used ( Renard and Allard, 2013 ).

ll the indicators are equally considered ( ω i = 1 for all i in formula

 ). This avoids any subjective bias that could arise from favoring a
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Fig. 5. View of all the channel connected components within the TI and examples of realizations for each categories. The number in parentheses are the number of connected 

components of each image. 
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given indicator. The mudstone environment is the resultant of the

channels and levees placement. It has so no precise shape by itself

and may blur the analysis. It gets a weight of 0 while channels and

levees both get each a weight of 1 ( νmudstone = 0 , νchannel = 1 and

νle v ee = 1 ). Channels and levees are considered equally important

to reproduce, but this aspect is related to the case study and could

be further discussed. The indicators are normalized to cancel the

differences of different indicator ranges. Slices of 17 cells along the

grid axis with the same orientation than the channels are used for

the skeletonization. 

Several samples are also randomly extracted from the grids to

evaluate the suitability of correcting the indicators when dealing

with different grid sizes. The training grid having 500 × 500 ×
20 cells and the simulation grid 100 × 150 × 30 cells, the com-

mon largest dimensions for the samples are 100 × 150 × 20. The

training grid is almost 10 times larger than the simulation grid.

Therefore, 20 samples are extracted from the TI and each analog,

whereas 2 samples are extracted from each DeeSse, IMPALA, OBS

and SIS realization. 

4.3. Visual inspection of the realizations 

Looking at the connected components ( Fig. 5 ) highlights some

expectations for the dissimilarity analysis. Two aspects must be an-
lyzed: the reproduction of the sedimentary body shapes and the

eproduction of their connectivity, especially concerning the chan-

els. In the studied case, the reproduction of the shape is pretty

asy to analyze visually. The SIS realizations do not display any

bjects similar to channel/levee systems and are so far dissimi-

ar from the TI. The OBS realizations look similar to the TI, which

s what is expected considering that they come from the same

ethod and parameters. DeeSse realizations have objects similar to

hannels, even if some continuity issues appear. They also seem to

ave an insufficient number of channels. IMPALA realizations have

uite linear objects but which poorly reproduce channel and levee

hapes. 

Estimating the static connectivity in three-dimensional images

s more difficult. The TI channels seem highly connected. The ob-

ects in the SIS realizations do not locally intersect like channels

o and are far too connected. DeeSse realizations contain less ob-

ects and seem under-connected compared to the TI. The distinc-

ion between OBS and IMPALA realizations is difficult concerning

he connectivity. Looking at the skeletons of the connected compo-

ents ( Fig. 6 ) corroborates those observations. DeeSse realizations

re clearly under-connected compared with the other categories.

IS ones are over-connected. IMPALA realizations seem a bit more

onnected than OBS ones. The static connectivity within the train-

ng image is clearly heterogeneous. 
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Fig. 6. View of all the skeletons of the connected components for the TI and for a realization of each category. 
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.4. Effect of different grid dimensions on the analysis 

The TI, analogs and OBS realizations come from the same

ethod with the same parameter values. The grid size is the only

ifference between all these images: the grid of the TI and analogs

the training grid – is larger than that of the OBS realizations –

he simulation grid. 

This difference of grid dimensions directly impacts the con-

ected component density and the number of connected compo-

ent cells, which are corrected to take into account such difference

 Appendix B ). But the realizations coming from the same method

till differ when looking at the dissimilarities ( Fig. 7 , MDS repre-

entation from the original images). The OBS realizations within

he simulation grid stand out from the TI and the analogs within

he training grid. Such difference is absent from the samples,

here all the images have the same size ( Fig. 7 , MDS represen-

ation from the image samples). The grid size seems to clearly im-

act the dissimilarity values. 

However, both MDS representations ( Fig. 7 ) have high stress

alues with two dimensions and can not be fully trusted. The heat

aps ( Fig. 8 ) clarify that situation. 

The heat map from the original images ( Fig. 8 , bottom left) ap-

ear non-homogeneous. A red square symbolizes the significant

issimilarities between the TI and analogs on one side and the OBS

ealizations on the other side. The heat map from the samples if far
ore homogeneous, without red square. They confirm the impact

f the grid size observable on the MDS representations. 

Thus, correcting the connected component density and the

umber of connected component cells is not adequate, and other

ndicators are impacted by the grid dimensions. The TI, the analogs

nd the OBS realizations have all similar channel and levee pro-

ortions ( Fig. 9 ). The channels and levees occupy the same vol-

me inside the two grids. But the facies connection probabilities

or both channels and levees differ between the realizations in the

wo grids ( Fig. 9 ). The probability that two cells of the same facies

elong to the same connected component is higher in the train-

ng grid than in the simulation grid. This is consistent with the

ifference of grid dimensions. When the grid dimension along the

hannel direction increases, the probability that two channels cross

ach other to form a single connected component increases too,

specially here with sinuous channels. In such case, the grid size

mpacts the characteristics of the connected components and the

ssociated indicator values. 

Comparing samples appear to be essential with grids of differ-

nt dimensions. And using samples reveals other aspects of the im-

ges. For instances, the different samples coming from the TI are

ighly dissimilar. This illustrates the non-stationarity of the TI con-

erning the connectivity: some areas contain only one connected

omponent as the channels are all connected, whereas other areas

ontain more connected bodies. 
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Fig. 7. MDS representations of the dissimilarity matrices for the original images (with corrections of the indicators to cancel the effect of the grid dimensions) and samples 

(of same size). The scree plot for the original images only displays the stress values up to 10 dimensions on 200 possible. The scree plot for the samples only displays the 

stress values up to 10 dimensions on 2220 possible. 
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4.5. Comparing the connectivity of the training image and of the 

realizations 

The purpose is now to compare the training image to all the

realizations. These realizations come from different methods, but

all borrow their input from the training image and have to repro-

duce the sedimentary bodies of the training image. All the follow-
 b  
ng analysis relies on the image samples and not on the original

mages to avoid any bias due to the difference of size between the

raining image and the realizations. 

.5.1. Analysis of the dissimilarities 

The dissimilarities give a first insight on the relationships

etween the different realizations ( Fig. 10 ). The training image
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Fig. 8. Heat map representations of the dissimilarity matrices for the original images (with corrections of the indicators to cancel the effect of the grid dimensions) and 

samples (of same size). Only one triangle of the symmetric matrices is represented. 
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amples fall within the OBS samples, highlighting the similarity

f these images. The samples from the multiple-point methods,

eeSse and IMPALA, are close to the OBS samples, but they do

ot mix up much. All these images are so not completely sim-

lar. Furthermore, the DeeSse and IMPALA samples remain away

rom the TI samples. The SIS samples are clearly distinct from

ll the other samples, and are the most distant from the TI

amples. 

If the confidence of the two-dimensional MDS representation

s not high, the heat map confirms those observations ( Fig. 11 ).

he first row shows the dissimilarities between the training im-

ge samples and the realization samples. The whitest samples, the

BS ones, are the closest to the TI. The reddest samples, the SIS

nes, are the furthest from the TI samples. The DeeSse and IMPALA

amples fall in between, and seem equally close to the TI samples.

lobally, the differences between all the methods are significant,

s highlighted on the MDS. 

As observed in the previous section, the training image sam-

les are dissimilar one from the other. It shows the heterogene-

ty of static connectivity within the training image. Concerning the

ealizations, the OBS realizations are also dissimilar one from the

ther, whereas the SIS realizations are all really close. Both DeeSse

nd IMPALA realizations are more spaced than the SIS ones, but

ot as much as the OBS realizations. All this tends toward a vari-

ble diversity concerning the static connectivity for the different

ethods in that case study. Going back to the indicators helps to

urther analyze such behavior. 
t  
.5.2. Analysis of the indicators 

The indicator values for the channels ( Figs. 12 and 14 ) and lev-

es ( Figs. 13 and 15 ) differ depending on the category. The differ-

nces are more or less clear depending on the indicator, whose

ehavior differs between the two sedimentary body types. 

The OBS samples being similar to the training image samples

ppear also on the indicator values. These values are close – and

or many indicators the closest – to the TI values for the channels.

hat trend is less obvious with the levees, with less close values.

ut the levee density is the only indicator to be really away from

he TI values. All this confirms the close relationship between the

raining image and the OBS realizations concerning the static con-

ectivity. It also confirms the visual observations. This is consistent

ith the use of the same method and parameters to simulate the

raining image and the OBS realizations. 

Similarly, the significant dissimilarity between the SIS samples

nd the TI samples also appears on the indicator values. This is

bvious on the traversing component proportion or the compo-

ent density. The high component density means a higher number

f connected components compared to the other samples. On the

ther side, the average number of component cells is quite low,

eaning that most of these numerous components are small. The

ow traversing component proportion signifies that most of these

omponents are not continuous enough to represent channels nor

evees. Concerning channels, the significant difference between the

IS and TI samples for the shape indicators – number of compo-

ent cells, box ratio, faces/cells ratio and sphericity – implies that

he SIS components do not look like channels. This different shape
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Fig. 9. Box-plots comparing the facies proportions and facies connection probability 

for the TI, some TI analogs and the OBS realizations. 
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also appears on the node degrees, with far higher node degree

values than for the other categories, implying a less linear shape.

Despite numerous and small components, the channel connection

probability remains high. This means that these samples must con-

tain one large component. This component must be traversing, as

the traversing component proportion is not equal to zero. All those

observations are consistent with the visual inspection of the real-

ization, and confirm a significant difference of static connectivity

between the training image and the SIS realizations. Many indica-

tors also display a narrow range of values. This confirms the low

variability between the SIS samples concerning the connectivity, as

seen with the dissimilarities. 

DeeSse and IMPALA samples have similarities with the SIS sam-

ples, especially more, and smaller, connected components than in

the training image, as visible on the component density and the

number of component cells. Similarly, the shape indicators show a

significant difference between the TI samples and both the DeeSse

and IMPALA samples. The higher sphericity implies in particular

less linear shapes for the channels. Despite being equally dissimilar

to the TI samples, the other indicators show significant differences

between the DeeSse and IMPALA samples and the TI samples. The

DeeSse samples have far lower channel and levee proportions. This

impacts the facies adjacency, with channels and levees being more

adjacent to the mudstone. But the most relevant difference be-

tween the DeeSse and IMPALA samples comes from the channel

connection probability: the connection probability of the DeeSse

samples is lower than that of the TI samples, whereas the connec-

tion probability of the IMPALA samples is higher than that of the

TI samples. The IMPALA samples have a behavior similar to that of

the SIS, with a few large component among smaller ones. But these
omponent connectivity is not completely similar to that of the

IS. This is especially visible on the node degree proportions, with

he IMPALA samples having an intermediary behavior between

he TI and the SIS samples. On the other side, the DeeSse sam-

le connectivity seems lower. The higher degree two proportion

f the DeeSse samples implies few intersections between chan-

els. The higher degree one proportion also implies more discon-

inuous components. Again, all of this is consistent with the vi-

ual observations: DeeSse channels are clearly identifiable but dis-

ontinuous, whereas IMPALA channels are less visible, with many

ntersections. 

In this case, the indicators confirm what comes from the dis-

imilarities: the OBS realizations are the most similar to the train-

ng image from a static connectivity perspective. This is consistent

ith the visual observations, and with the use of the same method

o simulate the TI and the OBS realizations. The next section en-

eavors to compare those results from what can be obtained with

ultiple-point histograms. 

.6. Comparison with multiple-point histograms 

Multiple-point histograms or pattern histograms have made

heir way as indicators of a realization quality with MPS methods

e.g., Boisvert et al., 2010; Tan et al., 2014 ). We propose here to

ompare the results obtained with those histograms to the pre-

ious results. The histograms are based on a 3 × 3 × 3 pattern

nd are computed on three levels of multi-grids ( Tran, 1994 ), giv-

ng three histograms per image. The dissimilarity δ between two

mages r and s is adapted from the work of Tan et al. (2014) : 

(H 

r , H 

s ) = 

3 ∑ 

l=1 

1 

2 

l 
D JS (H 

r 
l , H 

s 
l ) (11)

ith H 

r and H 

s the sets of three histograms for each image, l the

ulti-grid level and D JS the Jensen–Shannon divergence, which is

he squared Jensen–Shannon distance. A multi-grid level l of 1 cor-

esponds to the finest level and here 3 is the coarsest level. The

oarser levels characterize the large-scale behavior of the sedimen-

ary bodies. But they induce a loss of information. This justifies the

ecreasing weights when the multi-grid level increases. Similarly

o the work using multiple-point histograms, the comparison is di-

ectly made on the original images, not on samples. 

The observations about the category relationships made with

he previous indicators ( Fig. 10 ) remain valid on the MDS repre-

entation from the multiple-point histogram ( Fig. 16 ). The training

mage falls within the OBS realizations. The DeeSse and IMPALA re-

lizations are close from the OBS ones, but with a clear separation.

hey all remain separated from the TI. Again, the SIS realizations

re far away from all the other images, including the TI. The main

ifference with the previous indicators comes from the variability

ithin a category. This is especially noticeable with the SIS realiza-

ions, which seem to have a significant pattern variability. 

The two-dimensional MDS representation is here again a poor

epresentation of the dissimilarities, with a high stress. Only

he dissimilarities with the training image are kept to directly

tudy them and compare the ranking between different indicators

 Fig. 17 ). Looking at all the connected component indicators – i.e.,

ll the indicators described in Table 1 – points out the conclusions

oming from Fig. 10 : the OBS realizations are the closest to the TI,

he SIS ones the furthest, and the DeeSse and IMPALA realizations

tand in between. Similar rankings come from the shape indicators

i.e., number of component cells, box ratio, faces/cells ratio and

phericity – and the skeleton indicators – i.e., node degree propor-

ions and inverse branch tortuosity. 

The multiple-point histograms have also a similar ranking, with

 clearer separation between the SIS realizations and the other re-
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Fig. 10. MDS representation of the dissimilarities between the samples of the case study generated using SMACOF and validation graphs. The scree plot only displays the 

stress values up to 10 dimensions on 820 possible. 

Fig. 11. Heat map representation of the dissimilarity matrix computed based on the 

samples of the case study. 
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lizations ( Fig. 17 , All the multi-grid levels). However, the dissim-

larities between the training image and the DeeSse realizations

ary significantly between the multi-grid levels. The largest multi-

rid level even places the DeeSse realizations closer to the TI than

he OBS realizations. This level characterizes the large-scale behav-

or of the sedimentary bodies. Such ranking is then particularly

urprising due ot the presence of discontinuous bodies within the
eeSse realizations, but neither within the OBS ones nor within

he TI. These continuity differences are confirmed by the skeletons,

specially the higher proportion of node of degree one inside the

rid for the DeeSse than for the OBS realizations. 

. Discussion 

The previous section highlights the ability of the method to dis-

inguish realizations by focusing on the static connectivity through

he connected components. This section discusses some aspects of

he analysis process. 

.1. About the indicators 

All the indicators proposed here rely more or less directly on

he connected components. Some of them are classical, such as

he facies proportion, but as highlighted on Fig. 9 the facies pro-

ortion is not enough to characterize the static connectivity. New

ndicators are introduced here compared to previous studies on

onnected components ( De Iaco and Maggio, 2011; Deutsch, 1998 ).

ome indicators lead to better characterize the component organi-

ation, such as the traversing component proportion or the compo-

ent density. Other indicators aim to better characterize the com-

onent shape, such as the sphericity. Using skeletons is also a new

eature to compare realizations. The node degree proportion ap-

ears to give many details about the connectivity. The branch tor-

uosity has been less useful for the studied case, with a poorer dis-

rimination of the realizations. This is due to the parameterization

f the skeletonization, which favor the topology at the cost of the

eometry of the skeletons. 
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Fig. 12. Box-plots comparing the range of indicators computed on the channels for the different categories, except the node degree proportions. 
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The use of multiple-point histograms as indicators in a method

similar to Tan et al. (2014) shows a ranking close to that with the

connected component indicators. However, they do not character-

ize the realizations in the same way. The multiple-point histograms

of the finest multi-grid or multi-resolution level characterize in de-

tails the shape of the sedimentary bodies. The shape indicators are

global measures over a whole connected component. As connected

components can have variable shapes due to the sedimentary bod-

ies intersections, being able to characterize more finely the com-

ponent shape is an interesting asset. From this point of view, the
ultiple-point histograms could bring further information on the

onnected component shape. 

However, the multiple-point histograms do not measure the

tatic connectivity: they compare the patterns between the images,

ut not really the relationships between the patterns. The study of

he coarsest multi-grid or multi-resolution levels attempts to look

t the large scale behavior of the sedimentary bodies. But many

etails are lost in the process, what justifies the lower weights

or these levels in the dissimilarity from multiple-point histograms

 Tan et al., 2014 ). And it still not characterizes the static connectiv-
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Fig. 13. Box-plots comparing the range of indicators computed on the levees for the different categories, except the node degree proportions. 
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ty. From this point of view, the skeletons describe more precisely

he large-scale behavior of the components and their connectivity. 

.2. About indicator comparison 

As stated in the previous section, a single indicator is not

nough to fully characterize the static connectivity. Comparing sev-

ral indicators lead to more relevant information about the realiza-

ions and how much they differ from the viewpoint of connectivity.

omparing realizations on grid of different dimensions leads to is-

ues non-addressed by previous studies ( De Iaco and Maggio, 2011 ;
eutsch, 1998 ). A correction on the two most affected indicators

s not sufficient to compensate for different grid dimensions. Sam-

ling the images appears to be more efficient, and also helps to an-

lyze the connectivity heterogeneity within the images. The ques-

ion of the sampling representativeness remains to be explored. 

Using a metric is very useful, because it gathers all the indicator

alues into one dissimilarity value and facilitates the comparison

f the realizations and the analysis. Tan et al. (2014) already used

uch process with multiple-point histograms. We have applied a

imilar principle to connected components, gathering many indi-
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Fig. 14. Mean node degree proportions of the channel skeletons for each category. 

The error bars display the minimum and maximum proportions. The first node de- 

gree 1 corresponds to the nodes of degree one along a grid border. The second node 

degree 1 corresponds to the nodes of degree one inside the grid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Mean node degree proportions of the levee skeletons for each category. The 

error bars display the minimum and maximum proportions. The first node degree 

1 corresponds to the nodes of degree one along a grid border. The second node 

degree 1 corresponds to the nodes of degree one inside the grid. 
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cators into values easier to analyze. The introduction of a hetero-

geneous metric gives the opportunity to gather indicators of dif-

ferent types and further improves the method ability to character-

ize the realization static connectivity. At the end, the dissimilarities

distinguish the realizations from different methods and parameter

values, but also characterize the static connectivity variability be-

tween the realizations of a given method and parameter values. 

Adding weights to the indicators in the metric computation

means more flexibility for the user. Indeed, not all the indicators

are significant to all the applications. For instance with a flow sim-

ulation purpose, the unit component proportion is not necessarily

significant due to a fewer impact of the unit-volume component on

the flow than channels. But such weights remain optional. In the

case study, we did not discriminate the indicators with weights,

because we wanted to study the information provided by all the

indicators on the realizations. Studying the indicator values after

the dissimilarities remains essential to better understand the static

connectivity of the realizations. 

5.3. About the skeletonization method 

Skeletons enable to better characterize both the geometry and

the topology of connected components. However, the skeletoniza-

tion method influences both the geometry and the topology of

the resulting skeletons. Among all the skeletonization methods,

Cornea et al. (2007) distinguish the thinning-based method as the

method with the best control on the skeleton connectivity. This

section aims at comparing the result of a thinning-based method
ith the method introduced in Section 2.3 based on slicing the

rid and computing the connected components, denoted as the

licing-based method. The slicing-based method used hereafter

s the algorithm defined by Lee et al. (1994) and implemented

n the geomodeling software Gocad by Barthélemy and Collon-

rouaillet (2013) . 

The thinning-based method appears to perform better in two

imensions than the slicing-based method. But in three dimen-

ions it tends to generate many small-scale loops ( Fig. 18 ) which

erturb both the topology and the geometry of the skeletons. The

rimary goal of the skeletons is to better characterize the large-

cale topology – and possibly the geometry – of the connected

omponents. The skeletons from the thinning-based method seem

oo perturbed to help in that characterization. The slicing-based

ethod on the other side does not necessarily capture those small-

cale elements due to the slice size. A large slice size may not cap-

ure the small components or all the component irregularities, but

his is compensated in some way by the other indicators, in par-

icular the shape indicators. Moreover, the thinning-based method

ends to generate skeletons with many nodes, which are heavy to

anipulate. The slicing-based method does not have the same is-

ue when using quite high slice thicknesses. This aspect can be es-

ential when dealing with several hundreds of images. 

All this leads to favor the slicing-based method in this work.

ome aspects still need to be explored, such as the impact of the

lice size. But many more skeletonization methods exist, even if

keletonizing three-dimensional shapes is an open debate. Further
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Fig. 16. MDS representation of the dissimilarities between the images of the case study generated using SMACOF and validation graphs. The dissimilarities are based on the 

multiple-point (MP) histograms of the images. The scree plot only displays the stress values up to 10 dimensions on 400 possible. 
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Table 3 

Comparison of dissimilarities and distances between the TI and DeeSse realization 

12 and 76 for to MDS methods. 

Compared images Dissimilarity Classical 

scaling 

distance 

SMACOF 

distance 

TI - DeeSse 12 1 .579 0 .596 1 .414 

TI - DeeSse 76 1 .358 0 .854 1 .265 

DeeSse 12 - DeeSse 76 0 .905 0 .259 0 .203 

a  

r

 

c  

d  

t  

c  

a  

m  

o  

o  

o  

o

 

i  

M  

v  

t  

s

ork could be done to study other methods and the topology and

eometry of resulting skeletons. 

.4. About MDS methods and accuracy 

We rely on the Scaling by MAjorizing a COmplicated Function

s multidimensional scaling method to represent the dissimilari-

ies. The SMACOF significantly facilitates the dissimilarity analysis.

owever, the dimensionality reduction makes the MDS represen-

ations imprecise, and the distances between the points tend to

iffer from the dissimilarities. 

Thus, the MDS is not a simple visualization tool and can im-

act the analysis. This can be illustrated by comparing the MDS

epresentation from the classical scaling ( Fig. 19 ) and that from

he SMACOF ( Fig. 20 ) to analyze the dissimilarities between the

riginal realizations and the original training image (and not the

amples). Normally, the TI should stand from the realizations (see

ig. 7 ). But the classical scaling puts the TI close from the OBS and

MPALA realizations. Only the point position confidence shows that

he TI position is wrong on the representation. The SMACOF repre-

entation separates more clearly the TI from the other images. 

Moreover, if the global relationships between the realization

ategories are similar between the two representations, the rela-

ive position of the images can be significantly different. This is

lear with the TI, but also with other images ( Table 3 ). This appears

ore largely on the Shepard diagram, with a better coefficient of

etermination r 2 for the SMACOF than for the classical scaling. The

lassical scaling tends here to decrease the dissimilarities. As a re-

ult, the realization ranking can differ between the dissimilarities
nd the MDS distance ( Table 3 ). Thus, analyzing the sole MDS rep-

esentation can lead to erroneous interpretations. 

The choice of the MDS method is significant, so as the

hoice of the number of dimensions. We have privileged two-

imensional MDS representations for the sake of visibility, but

hree-dimensional representations would be worth testing. In any

ase, the MDS representation should always be cautiously studied

nd its misrepresentation of the dissimilarities should be kept in

ind. From this point of view, the heat map facilitates the analysis

f the real dissimilarity values. Analyzing a single row or column

f the dissimilarity matrix – so comparing an image with all the

thers – is as easy to analyze as a MDS representation, but only

n a subset of the images. 

As the MDS facilitates the dissimilarity analysis, the dissimilar-

ty simply makes the indicator analysis easier. After looking the

DS representation, it is essential to go back to the dissimilarity

alues to validate the observations. Similarly, studying the indica-

or values validates the observations and helps to further under-

tand the difference of connectivity between the images. 
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Fig. 17. Box-plots comparing the realizations of each method with the TI. The dissimilarities depend on different indicators in each box-plot. Only the multiple-point 

histograms compare the original image directly, with one dissimilarity value with the TI per image. The other categories are based on image samples, and have several 

dissimilarity values with the TI per image. These values are averaged to obtain a single dissimilarity value with the TI. 
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5.5. Impact of the connected components on the flow 

Facies heterogeneity shapes the fluid flow in subsurface. Thus,

the petrophysical property simulation, directly correlated to the fa-

cies modeling, constitutes a preliminary step to further simulate

flows. Being able to assess the static connectivity at the begin-

ning of the workflow could constitute a real advantage in term

of resources and time. It is also a way to ensure a better geo-

logical consistency, which in itself allows a better integration of

field observations and measurements (seismic information, well

data, etc.). 

It would be interesting to apply the method on more de-

tailed facies models than those of the case study. For instance,

both channel and levee deposits are often heterogeneous, regard-

less of the sedimentary environment, with porous deposits more

or less nested between flow barriers (e.g., Hubbard et al., 2011;

Hansen et al., 2015 ). Such flow barriers take the shape of mud-

stone drapes along the channel margins, of margin failure de-

posits, of channel abandonment deposits, etc. They can have a sig-

nificant impact of the fluid flow (e.g., Labourdette et al., 2006;

Pranter et al., 2007; Alpak et al., 2013; Issautier et al., 2013 )

and on the aquifer compartmentalization, with sometimes im-

portant consequences when they are ignored (see for instance

Gainski et al., 2010 , in a oil exploitation context). Our method

could clearly help to distinguish between several images from their

differences in static connectivity such images including realiza-

tions from different methods and/or parameter values or referring

models. From this perspective, the case study shows the method
bility to identify the simulation methods that produce subsur-

ace models consistent with the static connectivity of a referring

odel. 

Such approach is particularly adapted for fluvial and turbiditic

hannelized environments where channels tend to form high con-

ectivity corridors, leading to channelized flow path. However, the

tatic connectivity of a sedimentary body is not always repre-

entative of the flow behavior. For example, flow channeling can

lso emerge from non-channelized but highly heterogeneous bod-

es (e.g., Park et al., 2008; Fiori and Jankovic, 2012 ). It highlights

he dependence of the hydrodynamic connectivity on many param-

ters: the permeability contrasts between the different media, the

nternal heterogeneity of each media, etc. Flow simulations then

equire to assign the petrophysical properties to each facies – usu-

lly with geostatistical methods (e.g., Deutsch and Journel, 1992 ).

ur metrics obviously do not anticipate the results of such proce-

ures and, thus, just measure the consistency of the facies simula-

ions in term of static connectivity. 

Depending on the studied environment, the reproduction of the

tatic connectivity could be secondary and one could directly work

n hydraulic connectivity through the corresponding properties. If

eproducing the static connectivity does not guarantee to repro-

uce the exact hydraulic connectivity, it remains a step toward a

etter integration of geological information and knowledge in the

hysical description of the media. Our method provides a simple

nd objective basis for the comparison of large sets of realizations

rom this static connectivity point of view. 



G. Rongier et al. / Advances in Water Resources 96 (2016) 145–169 163 

Fig. 18. Skeletons from the channels of the realization DeeSse 30 generated with 

two methods: the slicing method used in the case study and the thinning method. 
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. Conclusions and perspectives 

This work develops an analysis process to compare several cat-

gorical images in terms of static connectivity. The process relies

n the computation of dissimilarities from a given set of indica-

ors. The indicators rely on connected components. They cover var-

ous aspect of the realizations, from their facies proportions to the

ize of their components. Their analysis in the presented case high-

ights their ability to distinguish between realizations simulated

ith different methods. 

The multidimensional scaling summarizes all this information

hrough low-dimensional representations of the dissimilarities. It

s a powerful and practical visualization tool to get a first idea

f the relationships between the images. But it should be kept

n mind that MDS representations provide only a partial view of

he dissimilarities. Moreover, the representation and its quality are

ethod-dependent. The MDS representation should so always be

nterpreted cautiously. Analyzing the dissimilarity matrix shall al-

ays be favored rather than analyzing the MDS representations.

he heat map helps to have an easier check on the MDS inter-
retation. Then an analysis should be done on particular rows or

olumn of the matrix depending on the studied cases. This gives

ccess to simple but powerful visualization tools that work on the

eal dissimilarities. 

A detailed analysis shows the consistency of the indicator be-

aviors. Indicators of the connected component shape are inter-

sting for their simplicity. But their sensitivity to the grid size is

 real issue. A correction is proposed here, but it does not re-

ove completely the error, and analyzing image samples is a bet-

er choice. Multiple-point histograms also seem a valid option to

nalyze more locally the component shape. Skeleton-based indica-

ors appear to be promising. The node degree proportions provide

 simple way to compare connectivity structures. Further work

hould be done on the skeletons to better characterize both the

onnected component topology and geometry. 

Thus, the present work shows that analyzing the behavior of

arious indicators needs to be continued. More case studies should

e considered. Channels are known to have a heterogeneous filling,

ith shale acting as a flow barrier. It could be interesting to model

nd work on the component formed by the reservoir facies rather

han by the sedimentary objects they belong to. Starting with real

ata would also be beneficial. If the proposed indicators focus on

he static connectivity, an interesting perspective would be to ex-

lore their link with the dynamic connectivity. 
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ppendix A. Detailed definitions of the indicators 

The following appendix describes more precisely all the indica-

ors, starting with the indicators computed on the connected com-

onents and ending with those computed on the skeletons. 

1. Global indicators 

The global indicators do not characterize a particular connected

omponent but an ensemble of connected components. They pro-

ide one value per facies. 

1.1. Facies proportion 

The facies proportion is of major importance in reservoir mod-

ling considering its influence on porosity and permeability simu-

ation. The proportion p of a facies f is defined as: 

p f = 

n f 

n t 
(A.1) 

ith n f the number of cells of facies f and n t the total number of

ells. 

1.2. Facies adjacency proportion 

The adjacency proportion between the facies quantifies the spa-

ial relationships between those facies. The proportion p a of a fa-

ies f adjacent to a facies j is defined as: 

p a f, j = 

n f, j 

n f,t 

(A.2) 

ith n f, j the number of cells of facies f adjacent to the facies j

nd n f, t the total number of cells of f adjacent to a facies different

rom f . 
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Fig. 1 9. MDS representation of the dissimilarities between the images of the case study generated using classical scaling and validation graphs. The scree plot only displays 

the eigenvalues up to 10 dimensions on 400 possible. 
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A1.3. Facies connection probability 

The connection probability � quantifies the global connectivity

of a given facies f . It is calculated as the proportion of pairs of

connected cells among all the pairs of cells of the considered facies

( Renard and Allard, 2013 ): 

� f = 

1 

n 

2 
f 

N f ∑ 

i =1 

(n 

i 
f ) 

2 (A.3)

with n f the total number of cells of facies f, N f the number of con-

nected components of the facies f and n i 
f 

the number of cells of

the connected component i associated to facies f . 

A1.4. Connected component density 

The density ε of connected components for a facies f expresses

the number of components per image cells: 

ε f = 

N f 

n t 
(A.4)

with N f the number of connected components of the facies f and

n t the total number of cells. 

A1.5. Unit connected component proportion 

The unit connected component proportion quantifies the num-

ber of connected components constituted by only one cell. The cre-

ation of such bodies may correspond to some erroneous and un-

wanted small scale noise. In that case, it is better to avoid them

for the shape indicator computation (see Section A.2 ). The propor-

tion p u of unit volume connected components of a facies f is: 

p u f = 

N 

u 
f 

N f 

(A.5)
ith N 

u 
f 

the number of unit volume connected components of the

acies f and N f the number of connected components for the same

acies. 

1.6. Traversing connected component proportion 

Connected components can have various behaviors against the

rid: they can be in the middle of the grid without contact with

 border ( Fig. 2 , connected component 3), along one border, along

wo adjacent borders ( Fig. 2 , connected component 2) or traversing

he grid completely from one border to the opposite border ( Fig. 2 ,

onnected component 1). These last components having a main

mpact on the flow, their reproduction is of prime importance. The

roportion p c of traversing connected components of facies f is de-

ned as the proportion of connected components that connect one

order to the opposite one: 

p c f = 

N 

c 
f 

N f − N 

u 
f 

(A.6)

ith N 

c 
f 

the number of traversing components for the facies f, N f 

he total number of components for the facies f and N 

u 
f 

the number

f unit components for the facies f . 

2. Shape indicators 

Shape indicators all give one value per component. The arith-

etic mean of those values provides a value of the indicator for

 given facies. This makes the indicator comparison easier. The

nit-volume connected components (see Section A.1.5 ) give little

nformation on the shape of the most important connected bod-

es considering flow circulation: the channels. But they can have a
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Fig. 2 0. MDS representation of the dissimilarities between the images of the case study generated using SMACOF and validation graphs. The scree plot only displays the 

stress values up to 10 dimensions on 400 possible. 

Fig. A.21. Connected components of Fig. 2 represented with their bounding boxes (image 1). Image 2 is another image in a different grid. The two grids have different 

dimensions along the x axis, which can influence both the number of connected components and the number of grid cells. But they also have different dimensions along the 

y axis, along which the channels are oriented. Changes along the y axis influence the number of grid cells, but not the number of channels. In that case, the comparison of 

the density of the two images is biased. The same principle stands for the number of cells of each components. Differences between the number of cells for the component 

1 of each image mainly come from the difference in grid dimension along y , not from real differences of connectivity. n x 1 and n y 
1 

represent the number of cells along the 

axis x and y for image 1, n x 2 and n y 
2 

the number of cells along the axis x and y for image 2 and n x 
b 1 

and n y 
b 1 

the number of cells along the axis x and y for the axis-aligned 

bounding box b of the connected component 1. m 

x and m 

y are the lower sizes between the two grids for the axis x and y (see Appendix B for more details). 
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Fig. A.22. Example of skeletons for the connected components of the Fig. A.21 . If 

image 2 has no connection with a degree higher than 3, such as image 1, it displays 

some dead-ends highlighted by nodes with a degree one in the middle of the grid. 

This difference em phasize mis-reproductions of the channel connectivity. In image 

1, l represents the curvilinear length of the branch and d the distance between its 

extremities. Those measures are used to compute the tortuosity, which can also 

differ between the images. 
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significant influence on the averaged shape indicators ( Section A.2 ).

They are so ignored in the average computation. 

A2.1. Number of connected component cells 

The number of cells n 
g 

f 
within a connected component g of a

facies f represents the size of a connected component. 

A2.2. Box ratio 

The box ratio is based on the axis-aligned bounding boxes of

the components ( Fig. A.21 ). It is related to the tortuosity of a com-

ponent and to its orientation relative to the grid axis. The box ra-

tio β of the connected component g of the facies f is expressed

between 0 and 1 using the following formula: 

βg 

f 
= 

n 

g 

f 

n 

b 
f 

(A.7)

with n 
g 

f 
the number of cells of the connected component g of the

facies f and n b 
f 

the number of cells occupied by its axis-aligned

bounding box. 

A2.3. Faces/cells ratio 

The faces/cells ratio is equivalent to the surface/volume ratio,

which compares the surface area of a component with its volume.

Deutsch (1998) uses it as a measure of the tortuosity of the com-

ponents, but it is also affected by their roughness. The faces/cells

ratio ζ of the connected component g of the facies f is expressed

as: 

ζ g 

f 
= 

m 

g 

f 

n 

g 

f 

(A.8)

with m 

g 

f 
the number of faces along the surface of the connected

component g of the facies f and n 
g 

f 
its number of cells. 

A2.4. Sphericity 

The sphericity φ compares the shape of a connected component

g for a facies f with a sphere ( Wadell, 1935 ). It ranges between 0

and 1, where 1 corresponds to a sphere, and is expressed as: 

φg 

f 
= 36 π

(n 

g 

f 
) 2 

(m 

g 

f 
) 3 

(A.9)

with n 
g 

f 
the number of cells of the connected component g of the

facies f and m 

g 

f 
its number of faces along its surface. 

A2.5. Skeleton indicators 

Skeletons are one-dimensional representations of the connected

components, on which measures of geometry and topology are

done. 

A2.6. Node degree proportion 

The node degree proportion is based on the number of seg-

ments connected to a given node ( Fig. A.22 ). It is related to the

topology of the skeleton and gives access to a deeper study of

the connectivity of the structures of interest. The proportion p n of

nodes of degree n over all the skeletons for a given facies f is ex-

pressed as: 

p n f = 

o n 
f 

o f 
(A.10)

with o n 
f 

the number of nodes of degree n for all the skeletons of

the connected components of the facies f and o f the total num-

ber of nodes of the skeletons of the connected components for the

facies f . Here we separate into two different classes the nodes of

degree one along a border of an image and those in the middle of
he image. The first ones relate to component terminations due to

he limited size of the image. The other ones may relate to a bad

ody reproduction, for instance with channels that should be con-

inuous and without dead-ends. The proportions for the different

egrees give a histogram of node degrees. 

2.7. Inverse branch tortuosity 

A branch is a part of a skeleton defined as an ensemble of seg-

ents that link nodes of degree 2 and delimited by two nodes of

egree different from 2 ( Fig. A.22 ). The inverse tortuosity t quanti-

es how twisted a branch b is, with values ranged between 0 and

. This measure is related to the geometry of the skeleton. It is ex-

ressed for a branch b belonging to a skeleton s of a component of

 given facies as: 

 

b 
s = 

d b s 

l b s 

(A.11)

ith l b s the curvilinear length of the branch b of the skeleton s and

 

b 
s the Euclidean distance between the two extremity nodes of the

ame branch. The values for all the branches of all the skeletons

elated to an image are averaged to obtain one indicator value for

hat image. 

ppendix B. Indicator correction for different grid dimensions 

The following appendix describes the corrections applied to the

onnected component density and the number of component cells

hen the analysis implies different grid dimensions. 
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1. Correction for the connected component density 

When some connected components of a facies are traversing

see Section A.1.6 ), reducing the grid dimension along the compo-

ent traversing extension can change the component size but not

ecessarily their number. For instance changing the grid size along

he channel orientation does not change the number of channels.

ut it changes the grid volume and so does the density. Comparing

wo images of different sizes can affect the density whereas there

s nothing wrong about the quality. 

To overcome this aspect, the connected component density (for-

ula A.4 ) is replaced by: 

f = 

N f 

ϑ t 
(B.1) 

ith N f the number of connected components of the facies f and ϑt 

s a corrected number of grid cells corresponding to a mix between

he dimensions of each compared images: 

 t = ϑ 

x × ϑ 

y × ϑ 

z (B.2)

ith ϑx , ϑy and ϑz respectively the corrected number of cells along

he axis x, y or z . Those corrected numbers of cells are chosen de-

ending on the smallest axis size among all the compared images

nd the size of the connected components. For an ensemble S of

mages to be compared, we note m 

i the minimal size along the

xis i over the images in S : 

 

i = min 

s ∈ S 
(n 

i 
s ) i ∈ { x, y, z } (B.3)

ith n i s the number of cells along the axis i for the image s . Deter-

ining the corrected numbers of axis cells for a given image r of

 depends on the size of its connected components: 

 

i = 

{
m 

i if ∃ g ∈ r, n 

i 
g ≥ m 

i 

n 

i 
r otherwise 

i ∈ { x, y, z } (B.4) 

ith g a connected component of r , n i r the number of cells along

he axis i for the image r and n i g the number of cells along the axis

 for the component g . 

For instance in ( Fig. A.21 ), the component 1 of image 1 is larger

han image 2 along the y axis. On the other hand, no component

f that facies is larger than image 2 along the other axes. The cor-

ected volumes for the image 1 ϑt , 1 and for the image 2 ϑt , 2 are

o: 

 t, 1 = n 

x 
1 × n 

y 
2 

× n 

z 
1 

 t, 2 = n 

x 
2 × n 

y 
2 

× n 

z 
2 

(B.5) 

ith n x 
1 
, n 

y 
1 

and n z 
1 

the number of cells along the axis x, y and z

or image 1 and n x 
2 
, n 

y 
2 

and n z 
2 

the number of cells along the axis x,

 and z for image 2. Image 1 is so considered as truncated to limit

he effect of the traversing bodies on the density. 

2. Correction of the number of connected component cells 

The objects are expected to have roughly the same range of

izes in all the images. But this expectation is no longer relevant

n the case of traversing structures (see Section A.1.6 ), whose di-

ensions must vary following the size of the supporting grid. As

or the connected geobody density, the possible difference of im-

ge sizes imposes to rescale the number of cells of a connected

omponent. 

The rescaling is based on the estimation of the component

ounding box size if this component was transfered within the

rid of the smallest size. That bounding box size can be defined

ollowing a number of cells ϑb : 

 = ϑ 

x × ϑ 

y × ϑ 

z (B.6)
b 
ith ϑx , ϑy and ϑz respectively the corrected numbers of cells of

he bounding box along the axis x, y or z . Those corrected num-

ers of cells are following the same principles as to find the cor-

ected number of cells for the density. Determining the corrected

umbers of axis cells requires the same parameter m 

i (formula

.3 ): 

 

i = 

{ 

m 

i if n 

i 
b 

≥ m 

i 

n 

i 
b 

otherwise i ∈ { x, y, z } (B.7) 

ith n i 
b 

the number of cells along the axis i for the bounding box

f the component. Finally the corrected number of cells ϑ 

g 

f 
for the

omponent g of the facies f is proportional to the ratio between the

umber of cells of its corrected bounding box ϑb and the number

f cells of its actual bounding box n b : 

 

g 

f 
= n 

g 

f 
× ϑ b 

n b 

(B.8) 

For instance the component 1 on image 1 of Fig. A.21 has a

orrected number of cells ϑ1 of: 

 1 = n 1 ×
n 

x 
b 1 

× n 

y 
2 

× n 

z 
b 1 

n 

x 
b 1 

× n 

y 

b 1 
× n 

z 
b 1 

= n 1 ×
n 

y 
2 

n 

y 

b 1 

(B.9)

ith n 1 the number of cells of component 1, n x 
b 1 

, n 
y 

b 1 
and n z 

b 1 
the

umbers of cells of its axis-aligned bounding box along the axis x,

 or z and n x 
2 
, n 

y 
2 

and n z 
2 

the numbers of cells of image 2 along the

xis x, y or z . This reflects the impossibility to make that compo-

ent fit into image 2. Its size needs so to be rescaled to be com-

ared with objects of image 2. 

ppendix C. Simulation parameters for the realizations 

able C.4 

arameters used to simulate the channelized environment with DeeSse. 

Parameters Values 

Maximum number of neighbors 64 

Acceptance threshold 0 .05 

Maximal scan fraction of the TI 0 .33 

able C.5 

arameters used to simulate the channelized environment with IMPALA. 

Parameters Values 

Number of multi-grids 4 

Number of multi-grid levels in each direction 4 × 4 × 1 

Search template type Elliptic 

Size of the search template (radii in m) 7 × 7 × 4 

Maximal number of neighbors in the template 64 

able C.6 

arameters used to simulate the channelized environment with the object-based

ethod of Petrel. The distributions used are all triangular. 

Simulation parameters Min Mode Max 

Channels 

Proportion (in %) 21 .21 21 .21 21 .21 

Orientation (in °) 0 0 0 

Amplitude (in m) 10 15 40 

Wavelength (in m) 60 70 100 

Width (in m) 7 10 13 

Thickness (in m) 1 .5 2 4 

Levees 

Proportion (in %) 8 .79 8 .79 8 .79 

Width (in m) 4 7 11 

Thickness (relative to channel thickness) 0 .25 0 .35 0 .6 
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Table C.7 

Variogram parameters used to simulate the channelized environment with SIS. 

Variogram parameters Channels Levees Mudstone environment 

Azimuth (in °) 0 0 0 

Dip (in °) 0 0 0 

Sill 0 .145 0 .109 0 .210 

Nugget 0 0 0 

Range 1 (in m) 23 26 70 

Range 2 (in m) 12 14 34 

Range 3 (in m) 3 1 2 .5 

Type Spherical Exponential Exponential 
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