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Abstract A new methodology is presented for the conditioning of categorical multiple-point statistics
(MPS) simulations to dynamic data with an iterative ensemble smoother (ES-MDA). The methodology
relies on a novel multiresolution parameterization of the categorical MPS simulation. The ensemble of
latent parameters is initially defined on the basis of the coarsest-resolution simulations of an ensemble of
multiresolution MPS simulations. Because this ensemble is non-multi-Gaussian, additional steps prior
to the computation of the first update are proposed. In particular, the parameters are updated at
predefined locations at the coarsest scale and integrated as hard data to generate a new multiresolution
MPS simulation. The performance of the methodology was assessed on a synthetic groundwater flow
problem inspired from a real situation. The results illustrate that the method converges towards a set of
final categorical realizations that are consistent with the initial categorical ensemble. The convergence is
reliable in the sense that it is fully controlled by the integration of the ES-MDA update into the new
conditional multiresolution MPS simulations. Thanks to a massively reduced number of parameters
compared to the size of the categorical simulation, the identification of the geological structures during
the data assimilation is particularly efficient for this example. The comparison between the estimated
uncertainty and a reference estimate obtained with a Monte Carlo method shows that the uncertainty
is not severely reduced during the assimilation as is often the case. The connectivity is successfully
reproduced during the iterative procedure despite the rather large distance between the observation points.

1. Introduction
The characterization of rock properties is necessary to make reliable numerical predictions of flow and mass
transport in the subsurface. Given the sparsity of measurements, geostatistical simulation techniques can be
used to obtain multiple realizations of the value of one or more properties over the whole discretized domain
while honoring the available measurements. The ensemble of realizations can then be used to quantify the
uncertainty of the property, assuming that the variability between the realizations is sufficiently well cap-
tured by the ensemble. When these realizations are conditioned to static data only, many realizations often
do not reproduce the dynamic flow data. At this stage of the property characterization, the motivation for
applying stochastic inverse approaches is to use the available state observations to condition the generated
ensemble of geostatistical realizations and thereby reduce the uncertainty. However, as the current trend in
hydrogeology is to increase the complexity of the conceptual models with the development of advanced geo-
statistical techniques, the parameter identification problem using stochastic inverse methods has in parallel
also become more challenging.

As underlined by Zhou et al. (2014) for initial non-Gaussian realizations, one drawback of a number of
existing inverse approaches is that the reproduced states after the inversion, although in agreement with
the observations, are obtained with a loss of consistency: The final realizations depart far too much from
the prior geological model. The ensemble Kalman filter (EnKF) introduced by Evensen (1994) and its vari-
ants are data assimilation methods, which have drawn particular attention because of their computational
efficiency in high-dimensional and nonlinear state and/or parameter estimation problems (Evensen, 2009).
However, due to their strong assumption of linearity between the observations and the variables to estimate,
these types of algorithms fail to preserve the non-Gaussian structures if they are applied directly to condition
a non-multi-Gaussian distribution.
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Thanks to an appropriate parameterization, Liu and Oliver (2005) showed that ensemble Kalman methods
could be successfully applied even in the more challenging case of categorical simulations generated by
truncated Gaussian-based methods. By updating the underlying multi-Gaussian variables instead of the
non-Gaussian categorical ones directly, the multi-Gaussian assumption on the variables to update could still
be fulfilled, allowing in this way an acceptable performance of the method both in terms of the consistency
of the structures characterized and the quality of the data fit achieved.

Among approaches proposed to condition multiple-point statistics (MPS) simulations to dynamic data with
ensemble-based Kalman methods, a probability conditioning method was introduced by Jafarpour and
Khodabakhshi (2011) in order to derive at each update of EnKF a facies probability map from the ensem-
ble of updated log hydraulic conductivity values, which initially populated categorical MPS realizations of
facies. Originally, Jafarpour and Khodabakhshi (2011) proposed to map the mean value computed at each
grid block from the ensemble of updated log hydraulic conductivity fields to a probability value by using a
linear transformation. Recently, Ma and Jafarpour (2019) proposed an improved approach to derive these
probability values by also taking into account the ensemble variance. Either way, the resulting facies proba-
bility map was then used as soft conditioning data for the next conditional multiple-point simulation using
the MPS algorithm SNESIM (Strebelle, 2002). An interesting outcome of the proposed methodology was
that each regeneration of soft-data-conditioned multiple-point simulations following an iteration of EnKF
allowed the introduction of some variability in the facies distribution due to the stochastic nature of the MPS
method.

The probability conditioning method (Jafarpour and Khodabakhshi, 2011), however, does not attempt to
mitigate the effects of the non-multi-Gaussian distribution of log hydraulic conductivities before each update
of EnKF. Zhou et al. (2011) proposed a normal-score (NS) transform prior to each computation of the EnKF
update so that the ensemble of initial or updated parameter variables is marginally Gaussian in order to
reduce the consequences of violating the multi-Gaussianity assumption from the beginning. For their syn-
thetic case, they concluded that such NS transform prior to the update allowed to outperform EnKF without
any transformation in terms of the structures that could be retrieved by the end of the data assimilation. It
is worth mentioning that their application of the ensemble method was based on an ensemble of 1,000 real-
izations, which is quite large compared to the standard ensemble sizes of around a hundred of members,
and also on an important number of observation points for the hydraulic head data used in the assimilation.

Similarly to the strategy of Liu and Oliver (2005) to condition categorical truncated Gaussian simulations
with EnKF via their underlying multi-Gaussian variables, Hu et al. (2013) proposed to apply EnKF to update
either the uniform fields underlying the ensemble of categorical MPS realizations generated with SNESIM
(Strebelle, 2002) or the coefficients of combination of those underlying uniform fields. Both proposed param-
eterizations of the MPS simulations have the advantage of allowing the conditioned categorical fields to
remain consistent with the prior geological model. Although both allow to deal with continuous instead of
discrete parameters, the resulting increased nonlinearity between the parameters to update and the dynamic
response ultimately prevented EnKF from reaching a sufficient data match in either case (Hu et al., 2013).
Heidari et al. (2013) had also observed a similar lack of flexibility in terms of the final data match achieved
when updating gradual deformation parameters with EnKF to perturb an ensemble of multi-Gaussian
realizations of a petrophysical property.

Keeping this idea of a parameterization reducing the number of adjustable parameters, Gardet et al. (2014)
proposed a multiscale parameterization on the basis of a multi-Gaussian simulation method. The goal was to
allow to adapt the scale of the conditioning of parameters according to the data used. Knowing that the finer
realizations would be conditioned to the realizations simulated at the coarse scale, an interesting perspective
was the possibility of applying at this coarser scale the update from an inverse method. The potential of such
strategy was illustrated with the gradual deformation technique.

Mainly motivated by the results of the forementioned studies, this paper introduces a new methodology to
condition categorical MPS simulations of facies to dynamic data with an ensemble Kalman method. The
workflow relies on a multiresolution parameterization based on generated multiresolution training images
(TIs) which allow MPS simulations at coarser resolutions than that of the original TI. The performance of the
proposed approach is evaluated using a synthetic 2-D vertical groundwater model and transient hydraulic
data at particularly sparse locations in the horizontal direction, as would be the case in many real problems.
In this work, the code DeeSse (Straubhaar, 2017), which offers a multiscale parameterization of the direct
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sampling (DS) algorithm (Straubhaar et al., 2020) was used. Among existing ensemble Kalman methods, the
ensemble smoother with multiple data assimilation (ES-MDA) algorithm (Emerick and Reynolds, 2012) was
chosen for its simple formulation and demonstrated efficiency in a real reservoir history-matching problem
(Emerick, 2016).

In the next two sections, we first introduce the concepts that are at the heart of the proposed methodology.
Section 2 aims to give some background on how the multiresolution MPS simulations are performed in
DeeSse. The update algorithm ES-MDA is then presented in section 3. We finally give a walkthrough of
the proposed methodology in section 4 based on the previously introduced concepts. The synthetic case
including the model setup, the definition of the DeeSse parameters, and the performance criteria is presented
in section 5. Finally, the results of the synthetic case are presented and discussed in section 6.

2. Multiresolution Multiple-Point Geostatistical Simulations With DeeSse
Since a few decades, the interest for MPS simulations has grown considerably with applications in various
fields of geosciences (Mariethoz and Caers, 2015). Given a “TI,” an image provided by the user as the con-
ceptual model of the variable to simulate, the goal of MPS is to generate random fields that reproduce the
spatial statistics of the TI. Depending on the TI, MPS can render a large variety of geological heterogeneities,
including complex connectivity patterns. Among existing MPS algorithms, the DS method (Mariethoz et al.,
2010) consists in simulating the nodes of a simulation grid sequentially by directly sampling the TI. For
each node to be simulated, the pattern formed by a number of neighboring nodes, either informed by data
or which have been previously simulated, is searched in the TI. As soon as the distance measuring the mis-
match between the conditioning pattern and the one being currently scanned in the TI is below a given
threshold, the corresponding TI value is pasted at the simulation grid location. If no compatible pattern is
found after a certain fraction of the TI has been scanned, the search is stopped and the best candidate found
so far is used. Hence, the maximal number of neighbors, the distance threshold, and the maximal scanned
fraction are the key parameters of an MPS simulation with DS. Besides being computationally efficient, DS
offers two advantages of general interest: (1) the ability of handling categorical and continuous variables
and (2) the possibility of performing simulations of multiple properties given the multiple-point dependence
between given properties (Mariethoz et al., 2012).

DeeSse (Straubhaar, 2017) is an implementation of the DS algorithm with some features allowing to improve
the quality of the MPS simulations. Among the recently added features, the “Gaussian pyramid” technique
allows to control the simulation at multiple resolutions. The motivation behind this feature was originally to
better capture the different scales of heterogeneities that might be present in the TI (Straubhaar et al., 2020).
The technique consists in computing coarser versions of a given TI. The resulting set of multiresolution TIs
can then be used to perform a series of MPS simulations at different scales, starting from the coarsest scale
up to the original scale of the TIs. Those multiresolution MPS simulations establish the multiresolution
framework of our proposed data assimilation approach to condition categorical MPS simulations with an
ensemble Kalman method presented in section 4. We provide here some background on how such multiscale
MPS simulations are performed by DeeSse in the case of a categorical TI.

For a given categorical TI with N categories, the Gaussian pyramid technique creates a pyramid of mul-
tiresolution TIs for N − 1 indicator functions of the different categories. The remaining category is deduced
from all the previously simulated ones. Starting from the provided TI, the upscaled images result from the
recursive application of a reduce operator on the last image created. As currently implemented in DeeSse,
this reduce operator corresponds to the convolution product of the image with a set of Gaussian-like ker-
nels of either 5-pixel width distributed every two nodes in each direction or 7-pixel width distributed every
three nodes or a combination of both of these possibilities. Consequently, the spacing of two or three nodes
between each kernel will correspond to the reduction factor applied in each direction to the image. By iter-
atively applying this reduce operator to the last reduced image, one thereby obtains a so-called “Gaussian
pyramid” of images. In addition, each reduced image is expanded onto the grid of the next finer scale by
assigning first the values in the grid nodes corresponding to the center nodes of the kernel that was used
for the reduce operator (one node over two or three depending on the kernel width), and then by comput-
ing a moving average, in every node, by using the same kernel with weights normalized over the informed
nodes (and ignoring uninformed locations) (Burt and Adelson, 1983). As will be described further below,
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Figure 1. Example of a set of multiresolution training images with two additional coarse levels obtained with the
Gaussian pyramid technique. A reduction factor of 2 between each level was applied in each direction. Given a
categorical training image (a), a first reduced image (b) is obtained. A second reduced image (c) is then obtained from
(b). Finally, the images (e) and (d) are created based on the expansion of (c) and (b), respectively.

each pair of expanded and reduced TIs of the same level will allow to perform multivariate MPS simula-
tions (Mariethoz et al., 2012) which are guided by the expansion of the simulation result in the previous
coarser-scale grid.

For example, Figure 1 shows for a binary TI the complete set of multiresolution TIs, which will be used at
some stage of a series of multiscale MPS simulations performed by DeeSse. As illustrated, this set includes
the Gaussian pyramid of TIs obtained for the indicator function of the category of value 1, that is, the
channel facies, with two levels of coarse resolutions with a reduction factor of 2 applied in each direction
between each level, as well as the pyramid formed by the two expanded images resulting from the respec-
tive expansion of the two reduced images. Hence, given both these pyramids of reduced and expanded TIs,
an unconditional univariate MPS simulation can first be performed at the coarsest level of the TI pyramid
by using the corresponding TI. Then, iteratively, the last coarse simulation is expanded to the next finer

Figure 2. Illustration of the multiresolution MPS simulation procedure in DeeSse using the training data set of
Figure 1. At the coarsest resolution, a first univariate MPS simulation is generated (a). The simulation is then expanded
to the next finer scale of the TI pyramid (b) to guide the next MPS simulation at the finer scale (c) using the
corresponding bivariate TI. Again, the last simulation is expanded to the next finer scale (d) and used to guide the
categorical MPS simulation (e) using the corresponding bivariate TI.
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scale in order to guide, by way of a bivariate MPS simulation, the MPS simulation at that new fine scale
using the bivariate TI composed of both the reduced and expanded images of the corresponding level. Based
on the multiresolution TIs shown in Figure 1, Figure 2 shows an example of pyramids of multiscale MPS
simulations obtained, as well as the expanded images resulting from the coarser-scale simulations, which
were used. It is also worth noting that the additional MPS simulations at the coarse scales required with this
pyramid option are not necessarily much more time consuming, considering that the number of pixels is
reduced from one level of the pyramid to the next coarser one and also as they are guided by the expanded
image from the coarser level in the next finer-scale MPS simulation (Straubhaar et al., 2020).

3. Ensemble Data Assimilation With ES-MDA
The purpose of this section is to provide some background on the ensemble Kalman method, which was
used for the proposed methodology although another variant could be considered. The data assimilation
algorithm will allow to update the previously introduced multiresolution MPS simulations and ultimately
to condition the categorical facies fields to the observed dynamic data.

3.1. General Background
The ES-MDA developed by Emerick and Reynolds (2012) is currently one of the most used ensemble
Kalman algorithms for parameter estimation in reservoir applications (Evensen, 2018; Abadpour et al.,
2018). The algorithm consists in repeating the ES update equation, for each parameter realization mi where
i = 1, 2, ...,N with N the ensemble size, a predefined number of times k

mk+1
i = mk

i + Ck
MD(C

k
DD + 𝛼k+1Cerr)−1(dk

obs,i − g(mk
i )), (1)

where Ck
MD, the cross-covariance matrix between the parameter vector mi and the vector of predicted data

g(mi), and Ck
DD, the autocovariance matrix of predicted data, are approximated from the ensemble at iteration

k. Compared to ES, the covariance matrix of the measurement errors Cerr is in ES-MDA purposely inflated
by a factor 𝛼 > 1 to limit the confidence given to the data as they will be assimilated multiple times. As
a result, the observed data dk

obs,i used to compute the residuals in the update equation (1) are the actual
measurements dobs, which have been perturbed with a Gaussian noise sampled at each iteration from an
inflated covariance of measurement errors 𝛼k+1Cerr as follows:

dk
obs,i = dobs +

√
𝛼k+1C1∕2

err zi, (2)

where zi is a vector of standard normal deviates; that is, zi ∼ N(0, I). Hence, at each new iteration k + 1,
each updated realization mk+1

i is computed as the linear combination of the updated realization mk
i of the

previous iteration k and each component of the vector of residuals between dk
obs,i, the vector of observed data

to assimilate, and g(mk
i ), the vector of corresponding predicted data from the nonlinear forward model g.

For each component of the ensemble of parameter vector realizations mk
i , each residual is then weighted on

the basis of the Kalman gain matrix K computed from the ensemble of realizations mi as

K = Ck
MD(C

k
DD + 𝛼k+1Cerr)−1. (3)

Iterative ES algorithms such as ES-MDA aim to handle iteratively potential nonlinearities between the
parameters and the assimilated data, so that ultimately a better fit of the data can be achieved than when
using noniterative methods. ES-MDA was in fact developed so that it would be comparable to several itera-
tions of the Gauss-Newton optimization procedure (Emerick and Reynolds, 2012). Since the use of multiple
iterations in such a procedure allows to compute smaller and more accurate updates than one single poten-
tially large and less accurate iteration, a more efficient reduction of the objective function being minimized is
expected after the iterations of ES-MDA than after the single iteration of ES in nonlinear problems (Evensen,
2018).

To test the proposed methodology to condition categorical MPS realizations presented in section 4, we will
use the standard implementation of ES-MDA (Emerick and Reynolds, 2012) and set, for simplicity, constant
inflation coefficients equal to the predefined number of assimilations. Indeed, no matter the implementation
of ES-MDA used, all the factors 𝛼k used to inflate the observations assimilated by ES-MDA should satisfy
the following condition:
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Na∑
k=1

1
𝛼k

= 1, (4)

where Na is the number of times we repeat the data assimilation. This condition was derived to ensure the
equivalence between the single ES update and the iterative ES-MDA for a linear Gaussian case (Emerick
and Reynolds, 2012).

3.2. Localization and NS Transform
Ensemble Kalman methods are generally implemented along with ad hoc methods designed to mitigate their
intrinsic deficiencies, thereby getting the best possible performance out of them. Hereinafter, the purpose
of two mitigation methods is stated since they will both play a significant role in the proposed methodology
to condition categorical multiple-point realizations presented in section 4.

A major limitation of EnKF and other variants such as ES-MDA is that the finite size of the ensemble can
introduce undersampling errors in the covariance matrices approximated from the ensemble (Houtekamer
and Mitchell, 2006). In particular, “spurious” long-range correlations between components of the parame-
ter vector and the predicted data can occur and bring an undesirable response in both the updated mean
and covariance. At worst, they can reduce the parameter variance to the point where the covariance of the
updated ensemble can collapse, thereby wrongly increasing the confidence in certain parameters and, as
a result, preventing the successful assimilation of data that could contribute significantly to the parameter
identification.

The tapering of the sample covariances, also referred as “covariance localization,” is a method widely used to
filter out those undesirable correlations. For our application of ES-MDA, we will apply a standard approach,
which consists in restricting the magnitude of the update computed close to the observation locations by
using a tapering function. The Kalman gain matrix (3) will be attenuated by multiplying each one of its
entries by a localization factor between 0 and 1. This localization is often defined as a function of the physical
distance between each couple of parameter and data variables. An example of common forms used for this
function is the fifth-order correlation function with compact support as defined by Gaspari and Cohn (1999).
We will use this function since it has been used for many applications where localization in the horizontal
direction is important (Anderson, 2012), as in our synthetic case presented in section 5. Note that to evaluate
this function, a “critical length” that corresponds to the distance beyond which the localization factor will
rapidly decrease to 0 needs to be defined initially.

Another important and more general limitation of ensemble Kalman methods is their underlying assump-
tion of multivariate normal distributions. Because the Kalman gain is based only on the evaluation of
covariance matrices, the update performed by all these types of methods will only be able to take into con-
sideration the linear dependence between the variables. As a result, the statistics of order higher than 2 of
an initial ensemble of realizations generated by MPS, for example, would not be preserved after the update,
and neither the potential initial non-Gaussian structures.

To deal with non-multi-Gaussian ensembles, Zhou et al. (2011) proposed to perform the update in such a
way that every marginal distribution is Gaussian. As illustrated in Zhou et al. (2011), for each parameter
variable at every location, a NS transform function is defined such that the p-quantile of the ensemble dis-
tribution of original values is mapped to the p-quantile of a standard normal distribution. After the update
is performed on these transformed parameter variables, they need to be back-transformed to be able to run
the forward model and predict the corresponding new observations. Although this approach has shown to
improve the estimates of the ensemble Kalman method if supported by enough spatially distributed data
(Li et al., 2012; Zovi et al., 2017), it is important to note that this parameter transformation only mitigates
and hence does not completely solve the problem related to updating non-multi-Gaussian variables. Indeed,
dealing with Gaussian marginal distributions does not necessarily imply a joint Gaussian distribution for
all the variables. It is also worth reminding that the NS transform approach could be applied until now, in
the context of conditioning of MPS simulations with ensemble Kalman methods, because the parameters
were values of a continuous property, such as log hydraulic conductivities, and not categorical values, such
as for geological facies. For categorical variables, it would not be possible to define such NS transform. As
the proposed methodology presented in the next section aims to condition categorical MPS simulations, the
idea will be to update, in the same manner as Zhou et al. (2011), continuous parameters. As will be fur-
ther explained, those continuous parameters will be defined at a coarser resolution than the resolution of
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Figure 3. Overview of the procedure to condition categorical multiple-point simulations with ES-MDA using a
multiresolution parameterization. For each ensemble member, (I) a multiresolution MPS simulation is generated and
the image of the coarsest level (i.e., with the smallest size) is extracted. (II) The coarsest-resolution parameters are used
to condition the categorical MPS simulation. Both the ensemble of coarsest-resolution parameters and categorical fields
are involved in the computation of the update for the current iteration.

the categorical MPS simulation. Moreover, those parameters will be more directly related to the categorical
variables thanks to the multiscale framework for data assimilation established by the multiresolution MPS
simulations.

4. ES-MDA With Multiresolution MPS Simulations
This section aims to describe how the multiresolution MPS simulations with DeeSse and the ES-MDA
algorithm are combined together to yield the proposed methodology.

4.1. Obtaining the Latent Variable
As previously introduced in section 2, a multiresolution MPS simulation provides a straightforward way
to relate the categorical MPS simulation to a latent continuous variable at a coarse scale. The ES-MDA
update can then be applied on the latent continuous variable instead of the categorical variable. Therefore,
the first step of the proposed methodology consists in extracting the coarsest-resolution MPS simulation
for each member of an ensemble of multiresolution MPS simulations performed with DeeSse. It is worth
mentioning that if hard conditioning data are provided for the categorical MPS simulation, these data would
first be propagated through the different coarse levels of the pyramid before performing the series of MPS
simulations (Straubhaar et al., 2020).

An immediate consequence of choosing the coarse image for the parameterization is a massive reduction
of the number of parameters to update with ES-MDA. The number of parameters will ultimately depend on
the number of pyramid levels and the size of the Gaussian kernels applied in each direction for each level.
A second consequence of the proposed parameterization comes from the process of the TI reduction itself.
The coarse MPS simulation will be a coarse version of the fine categorical MPS simulation, even though the
former is simulated first as described in section 2. As shown in Figure 2, the coarse simulation will present
smooth instead of sharp transitions between the facies. Considering that ensemble Kalman methods such
as ES-MDA are not suitable for directly updating fields containing discrete features, it is expected that the
blurring effect affecting the simulated structures at coarse resolutions will benefit the performance of the
method.

4.2. Conditioning the Categorical Field
To assimilate the state variable observations, the computation of the ES-MDA update requires to compute
the flow model response associated to the parameters, which are going to be, or are already, updated. For
this purpose, the same hard conditioning procedure, which is at the heart of the multiresolution MPS sim-
ulation, as described in section 4.5, can be employed to derive a categorical MPS simulation conditioned to
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Figure 4. Distribution of values at a random location from an ensemble of coarsest-resolution MPS simulations for four
different resolutions (a)–(d). For all cases, the size of the original (finest) binary simulation is 50×500 pixels. (a) 25×250
(reduced once with a factor 2 in each direction), (b) 13 × 125 (reduced twice with a factor 2 in each direction), (c) 9 × 84
(reduced first with a factor 2 in each direction, reduced again with a factor 3 in each direction), and (d) 6 × 56 (reduced
twice with a factor 3 in each direction). The distribution becomes increasingly smoother as the resolution decreases.

the coarsest resolution parameters. The categorical field can then be conveniently used for the flow simula-
tion, after assigning petrophysical property values to each category of facies. Once all the flow simulations
of the ensemble are completed, the update of the coarsest-resolution variables can be computed based on
the covariance matrices estimated from both the ensembles of coarse parameters and simulated flow data.
An overview of the conditioning procedure is illustrated in Figure 3.

Note that, although they are not shown in Figure 3, two additional preprocessing steps are included in the
final methodology proposed and are described in the next sections. They aim to mitigate the limitations
which inevitably arise when the multi-Gaussian requirement on the initial ensemble is not met.

4.3. NS Transform
We compute a NS transform function for each pixel of the coarsest resolution fields of the initial ensemble.
Indeed, Figure 4 shows that the distribution for the ensembles of coarsest-scale MPS simulations generated
using different settings of pyramid parameters have marginal distributions that are not Gaussian. This figure
also shows that the local distributions are getting closer to normal when the number of levels increases.
By applying each NS transform locally, we ensure that every marginal distribution becomes Gaussian. The
ES-MDA update will then be applied on the transformed variable rather than on the images coming directly
from the pyramid of MPS simulations, as illustrated in Figure 5. Note that the computation of local NS
transforms is performed only once before the whole iterative process with ES-MDA.

As mentioned in the previous section, the conditioned categorical fields will be obtained from the coarsest
resolution according to the same hard conditioning procedure allowing to generate a multiresolution MPS
simulation. Therefore, the updated transformed variables will need to be back-transformed in order for the
values to be consistent with those of the coarsest-resolution TI, that is, between 0 and 1. For this reason,
we will apply on the ensemble, after each update, a back NS transform function at every location. This
function corresponds to the inverse function of the NS function previously used. When applying the back NS
function, we also ensure that the back-transformed values will be bounded between 0 and 1 by not allowing
extrapolation for values falling outside the domain of the function.

4.4. Sampling and Final Parameterization of the Multiresolution MPS Simulations
Given that ensemble Kalman methods are known to break the prior structures after an update, we
do not fully inform the coarsest resolution of the multiresolution MPS simulation with the com-
plete back-transformed image as hard data. Instead, only a set of values at selected locations of the
back-transformed image will be considered as hard conditioning points. Those locations should be as dis-
tributed as possible over the whole model domain so that DeeSse can still simulate in between them and in
this way recover more consistent structures. The highest the number of nonadjacent locations, the better in
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Figure 5. Illustration of the normal-score transform step performed for each member of an initial ensemble of
multiresolution MPS simulations before the conditioning.

order to efficiently constrain the data match. Ultimately, DeeSse will simulate a complete pyramid starting
by a conditional simulation at the coarsest scale.

As can be observed in Figure 6, using conditioning points instead of a conditioning image will effectively
prevent DeeSse to pass on the finer-scale MPS simulations the degraded structures of the whole updated
field. Therefore, the update of ES-MDA is integrated only locally at the coarsest resolution of the MPS sim-
ulation and then indirectly to the subsequent finer ones via the expansion of the last MPS simulation and
its use as a fully informed hard conditioning image for the following scale. Figure 6 illustrates the benefit of
the sampling process and its integration at the coarsest scale of the multiresolution MPS simulation.

Figure 6. Conditioning a categorical MPS realization (bottom image) from the updated normal-scored image at the
coarsest pyramid scale (Ensemble Member No. 11) at iteration 8 out of 16 of ES-MDA (top image) via the fixedly
sampled back-transformed image used initially as hard conditioning points for the multiresolution MPS simulation.
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In addition, the sampled hard conditioning points over the whole domain offers a way to prevent expected
discontinuous transitions at every scale of the MPS simulations when localizing the update of the parameters
close to the observations. This is in fact illustrated in Figure 6 where only the region located up to around
x = 1, 600 m from the western boundary is being updated due to the locations of the observations only in
this region of the model. As can be observed, the structures simulated by MPS after each update, first at the
coarsest and ultimately at the original scale, remain continuous at the transition between the updated and
nonupdated parameters at x = 1, 600 m.

The conditioning of the categorical field in the proposed methodology relies on a series of MPS simulations
performed at every scale of a generated set of multiresolution TIs. This implies that a high degree of ran-
domness will be introduced in the relationship between the coarse parameters and the flow data calculated
from the conditioned categorical field.

For the application of the ensemble Kalman method, it is critical to establish a forward operator that ensures
(1) the derivation of a unique categorical field given a set of coarse parameters and (2) a derivation which
is obtained in a systematic manner for all members of the ensemble. Otherwise, the estimated covariance
matrices will not be reliable for the computation of the updates. For both these above-mentioned reasons, an
important first prerequisite is that the hard conditioning points should be sampled from the same locations
for all ensemble members and for all iterations of ES-MDA. Then, the second and most decisive prerequisite
is that the same seed number for the multiresolution MPS simulations should be used for all iterations and
for all ensemble members.

For one ensemble member and given the same locations of hard conditioning points for all iterations, a
same seed value allows the reproducibility of the multiresolution MPS simulation if the values at the hard
conditioning points are the same. By extending for all ensemble members and for all iterations, both these
conditions on the same locations of the hard conditioning points and the same seed value, we allow the
ensemble of multiresolution MPS simulations to be performed in a systematic manner. Indeed, provided
that the locations of the hard conditioning points at the coarsest scale are the same for all members, using
the same seed will make DeeSse simulate the ensemble of coarsest-scale MPS simulations by using the
same randomly generated simulation path. A same path for all ensemble members will also be used for the
subsequent ensemble of finer-scale simulations. In this manner, the forward operator established will be
sufficiently systematic for the ensemble Kalman method to capture and exploit the relationship between
the parameters and the data, and this in spite of the intrinsic randomness of the parameterization with
multiresolution MPS simulations.

Moreover, the use of the same seed value for all the ensemble members means that the variability between
the ensemble members will entirely be controlled by the variability of the values at hard conditioning points
which are updated by ES-MDA. Therefore, we will be certain that a successful convergence of the pro-
posed methodology will be mostly on account of the performance of the update algorithm rather than the
randomness of the DeeSse simulations.

The question of the number of hard conditioning points to use is case dependent, and hence, we cannot draw
general conclusions based only on our synthetic case study. However, the optimal number will depend on
the multiresolution parameterization defined, that is, the number of pyramid levels and the reduction fac-
tor applied in each direction of the TI for each level. In general, the pyramid parameters should depend on
the largest size of the structures we wish to simulate. In the context of the proposed methodology, the idea
is to ensure that the structures at the coarsest scale will be discernible with the lowest resolution possible
so as to mitigate the expected discontinuities after each ES-MDA update of a non-multi-Gaussian distri-
bution. Indeed, such a multiresolution parameterization, alone, will allow to alleviate those consequences
thanks to the resulting more continuous distribution at the coarsest scale. Since the continuity of the struc-
tures will be, in this manner, less compromised after an ES-MDA update, the optimal number of points will
be allowed to be significantly higher than in a case without such a multiresolution parameterization. How-
ever, it is important that the hard conditioning points are distributed evenly instead of being clustered. This
way, DeeSse can play its role of retrieving the connectivity between the points according to the compatible
patterns found in the TI, as shown in Figure 6. We will further address the benefit of the multiresolution
parameterization on the number of hard conditioning points when discussing the results obtained on our
synthetic case in section 6.
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Figure 7. Workflow for each ensemble member to condition the categorical MPS simulations with ES-MDA. The
multiresolution simulations are regenerated based on updated parameters at the coarsest scale.

4.5. Complete Procedure
To summarize, the proposed algorithm proceeds as follows. We start from the NS transformed variables
obtained from the initial ensemble of coarsest-resolution MPS simulations, as illustrated in Figure 5. Then,
Figure 7 illustrates the complete conditioning procedure for each ensemble member. The method includes
the back-transform and sampling steps before the local integration of the ES-MDA update at the coarsest
scale of the multiresolution MPS simulation.

It is worth noting that the sampled hard conditioning points are ultimately the only points affecting the
simulated categorical fields. Therefore, the sampling could be in fact performed before the NS transform step.
In this manner, only the sampled transformed variables would be updated before being back-transformed
as hard data for the multiresolution MPS simulation. However, for the sake of illustrating the motivation
behind the sampling step, we purposely kept the description of the complete algorithm in this order.

5. Synthetic Test Case
A synthetic numerical experiment is conducted to evaluate the performance of the proposed method.
The model is inspired by the artificially induced flow resulting from the excavation of vertical shafts.
The hydraulic impact of such perturbation has, for example, been monitored and studied at the Andra's
Meuse/Haute-Marne since the operation of the Underground Research Laboratory (Benabderrahmane
et al., 2014; Deman et al., 2015; Kerrou et al., 2017).

5.1. Model Setup
The domain is two-dimensional and covers a vertical section of rectangular shape of 5,000 m along the
east-west direction and 500 m in depth. It represents a section of the Oxfordian limestone multilay-
ered aquifer above the Callovo-Oxfordian clay host formation, which is not included in the model. For
groundwater flow computation, the domain is discretized by 50 × 500 square elements of 10 m wide.

Along the top boundary, constant heads are imposed. The head values vary linearly between 267.5 m on
the west side and 284 m on the east side. At depth, between 150 and 500 m, a prescribed head of 280 m
is imposed on the east side to maintain a continuous east-west flow in the system (Figure 8). In order to

Figure 8. The two-dimensional vertical domain modelled of 5,000-m length and 500-m depth. The thin rectangles
indicates the location of nodes with a boundary condition applied. The dots indicates the head observation nodes. Not
shown here, the left boundary is divided into five zones where the flow rates are observed.
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Figure 9. Binary training image of size 1, 000 × 100 pixels used to generate the multiple-point simulations with DeeSse.
It is the same categorical TI for which an example of set of multiresolution training images was shown previously in
Figure 1.

mimic the type of hydraulic perturbation created by a vertical shaft, a subsequent transient flow simulation
is calculated by adding from time zero, in addition to the boundary conditions previously listed, a seepage
condition over the nodes corresponding to the first 300 m of the western boundary starting from the bottom
(Figure 8). We assume that the nodes over the remaining 200 m towards the surface are not affected as we
suppose that they are associated to an isolated upper part of the shaft. Note that in exploratory simulations,
a sensitivity analysis was carried out on different levels of the finite element mesh refinement and the solver
parameters, as well as on various types of flow boundary conditions and hydraulic property values. This was
done in order to ensure robust numerical solutions and also to avoid bias from boundary effects.

For simplicity, the groundwater flow equation was solved numerically under saturated conditions. All the
groundwater flow simulations in the framework of this study were performed with the simulator Ground-
Water (Cornaton, 2014). This numerical code uses the standard Galerkin finite element and the control
volume finite element methods and has been validated on the basis of a series of standard benchmarks by
comparison with analytical solutions as well as with commercial numerical simulators.

5.2. Synthetic Data Set
The reference parameter field is a categorical MPS realization generated with DeeSse using the 100 × 1, 000
pixel binary TI shown in Figure 9. It represents the distribution of two geological facies in the domain. The TI
was obtained using the 2, 500×2, 500 hand drawn image by Zahner et al. (2016) inspired by Strebelle (2002).
Before extracting our 100×1, 000 TI from this forementioned image, we first resized its first dimension so to
have more than one channel simulated on the vertical direction of our 50 × 500 simulation grid. The TI for
our test case was chosen 4 times bigger than the size of the simulation grid used to simulate the categorical
MPS realizations in order to ensure sufficient variability between the initial unconditional realizations.

To simulate the groundwater flow, each category of facies was populated with hydraulic properties. An initial
steady state flow before the activation of the seepage boundary condition was first computed by assuming
constant values of hydraulic conductivity of 10−4 m/s for the channels and of 10−6 m/s for the less permeable
matrix. For the subsequent transient groundwater flow simulation, the specific storage was set to a constant
value of 10−6 m−1 over the whole domain. The transient flow was computed over a duration of 43,200 s so
that the expected decrease of hydraulic heads at the observation locations shown in Figure 8 can be well
captured. Hence, the drawdown is locally monitored in 10 locations at five different depths every 100 m. The
first points are located along the seepage vertical boundary and the second ones at 1,000 m from the first.
The simulated heads were collected every 1,200 s from t = 0 s to t = 43, 200 s, hence at 37 time steps. The
resulting flow rates produced at the seepage western boundary were also measured, but at a smaller constant
time step of 300 s for five zones of nodes spread along the boundary. To test the methodology proposed in
section 4, we will consider the ten time series of simulated hydraulic head as the data for the assimilation.
The five flow rate data time series will then be used in addition in order to test the flow predictions obtained.
For this inverse problem, we assume that the uncertainty related to the built groundwater flow model is
negligible compared to the uncertainty on the facies distribution.

Figure 10. Reference Field A of size 50 × 500 pixels corresponding to a multiple-point realization of the training image.
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Figure 11. Reference Field B size 50 × 500 pixels corresponding to a multiple-point realization of the training image.

To test the performance of the methodology, we considered in this study two different reference fields of the
facies distribution named “A” (Figure 10) and “B” (Figure 11). They differ by the extent of the drawdown
region obtained by the end of the transient flow simulation (t = 43, 200 s) as illustrated in Figures 12 and
13. Indeed, the drawdown simulated in the Case B goes around a hundred of meters further away from
the western seepage boundary than the drawdown simulated with the Reference A. This implies that the
synthetic data set relative to the Reference B is sensitive to a broader region of parameters as compared to
the Reference A.

5.3. Generation of the Multiresolution TIs With DeeSse
To generate the multiresolution TIs, the parameters of the Gaussian pyramid technique, that is, the number
of levels and the number of nodes between each Gaussian-like kernel applications, were defined in such a
way that the edges of the structures at the coarsest resolution of the pyramid would be as much blurred as
possible while still being discernible. As shown by Figure 4, the almost uniform marginal distribution of the
MPS simulations below a certain coarse resolution prevents to still detect the structures.

For the categorical TI in our synthetic case, if the most reduced image is only 4 times smaller than the original
scale, as shown by the first level in Figure 1b, the image still appears more discrete than continuous. As a
result of this still high resolution compared to the size of the structures in the resulting coarse simulations,
the strong deviation from the multi-Gaussian assumption (Figure 4a) will likely cause the ES-MDA update
to break the initial structures even after having applied beforehand the NS transform. In contrast, if the
reduced image is 36 or 81 times smaller, the size of the pixels becomes too large to still detect the structures.
In the end, a TI pyramid with two coarse levels and Gaussian-like kernels applied every two nodes was
generated (Figure 1). The coarsest scale of the multiresolution MPS simulations is 13× 125 pixels, hence 16
times smaller than the original size of 50 × 500.

5.4. Initial Ensemble of Parameters and Assumptions for the ES-MDA Update
The initial ensemble of NS transformed parameters was obtained from the coarsest-scale simulations of
an ensemble of 100 multiresolution MPS simulations. Since only a subset of the 1,625 grid blocks at the
coarsest resolution will be taken into account to condition the multiresolution MPS simulation for each
ensemble member, using an ensemble of 100 members seems acceptable to approximate the covariance
matrices involved in the computation the ES-MDA update. Even though a categorical MPS simulation was
initially obtained from the coarsest-resolution MPS simulation, we remind that this categorical field is not
the one used to compute the first update of ES-MDA. It is the one simulated from the initial member of
parameters according to the forward operator established in the conditioning procedure (Figure 7) that will
be used to ensure a consistency between all the updates.

Figure 12. Drawdown (m) computed at the end of the transient groundwater flow simulation (t = 43, 200 s) using the
Reference Field A.
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Figure 13. Drawdown (m) computed at the end of the transient groundwater flow simulation (t = 43, 200 s) using the
Reference Field B.

A diagonal covariance matrix of independent measurement errors of 0.05 m2 for every head observation
was defined. A critical length of 1,600 m, hence almost twice the distance between the two series of obser-
vation points at x = 0 m and x = 1000 m, was defined to localize the Kalman gain matrix on the basis
of the Gaspari-Cohn function. By doing that, we are assuming that the estimated covariance between one
parameter and an observation located beyond the defined critical length is too noisy to be trusted for the
computation of the parameter update. As mentioned in section 3.2, the contribution from these observations
will not be considered in the parameter update by applying the forementioned distance-based localization.
As a matter of fact, we defined this distance in such a way that the parameters located outside the perturbed
area would not be updated (Figure 12). Note that this perturbed area is known precisely here only because
we could simulate the flow over the whole domain knowing the reference field. In a real application, we
would expect to have a similar knowledge of the extent of the hydraulic perturbation, but with much higher
uncertainty.

5.5. DeeSse Parameters for the Multiresolution MPS Simulations
We show in Table 1 the parameters of DeeSse used to generate the multiresolution MPS simulations for
our synthetic case. For the “Initialization” step, that is, when the initial ensemble of multiresolution MPS
simulations is created, the seed value was set to be different for each ensemble member. This way, the MPS
simulations are ensured to be different from each other. The maximal scan fraction was also set to 0.25 in
order to ensure a sufficient variability in the initial ensemble of coarsest-resolution MPS simulations before
the data assimilation. During the conditioning with ES-MDA, the seed was set to be the same value for all
ensemble members and for all iterations in order to have a properly defined forward operator especially
during the multiresolution MPS simulation as explained in section 4. As a matter of fact, it is possible to
adjust the key parameters of DS, that is, number of neighbors, distance threshold, and maximal scan frac-
tion, according to the level of the pyramid in a multiresolution MPS simulation. For every level, we set the
number of neighbors to 64 and the distance threshold to 0.05, both of which being in agreement with rec-
ommended parameters for MPS simulations with DeeSse (Meerschman et al., 2013). As for the maximal
scanned fraction, knowing that the size of coarser simulation grids is much smaller, we could afford to set at
both coarse levels a high value of 0.8, hence 3 to 4 times greater than the more standard value of 0.25 defined
for the original-scale MPS simulations.

Table 1
DeeSse Parameters Used for Multiscale MPS Simulations in the Proposed Conditioning Approach for Categorical MPS
Realizations With ES-MDA

DeeSse parameters for multiscale MPS simulations Initialization Conditioning loop
Seed From 777 to 876 999
Number of neighbors 64 64
Distance threshold 0.05 0.05
Maximal scan fraction at Level 2 (coarsest scale) 0.25 0.8
Maximal scan fraction at Level 1 (intermediate coarse scale) 0.25 0.8
Maximal scan fraction at Level 0 (original scale) 0.25 0.25
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5.6. Performance Assessment Criteria
In this section, we present the quantitative criteria used for assessing the performance of the pro-
posed methodology on our synthetic case. In particular, these criteria aim to inform about how the
approach deals with the issues often encountered when applying ensemble Kalman methods to condition
non-multi-Gaussian realizations. They will allow us to address the quality of the data fit achieved, the
plausibility of the categorical fields, and the accuracy of the estimated uncertainty.

Considering that the multiresolution parameterization involves the regeneration of a multiresolution MPS
simulation after each iteration of ES-MDA (Figure 3), it is expected that the variability introduced by the
MPS simulations at every scale will make the iterative reduction of the data mismatch more challenging.
Checking the convergence of the reduction of the data mismatch over the ES-MDA iterations should there-
fore be the first indication as to the success of the proposed methodology. To evaluate the mismatch between
the simulated and observed data, we will compute the sum of the squared deviations between the simulated
data and observations normalized by the measurement error standard deviation.

D(mi) = (g(mi) − dobs,i)TC−1
err(g(mi) − d obs,i). (5)

Even if the reduction of the data mismatch over the iterations turns out to converge to a sufficiently low
final value for every final conditioned categorical MPS realization, the geological realism of the facies
fields is not guaranteed throughout the inversion procedure using ES-MDA. Given their assumption of
multi-Gaussianity, ensemble Kalman methods are indeed expected to “Gaussianize” any type of prior distri-
bution. For this reason, perhaps the most important performance criteria for the assessment of the approach
will be those checking the consistency of the final categorical MPS realizations of facies in comparison to the
ones obtained initially before the conditioning. For this purpose, we will compute the connectivity function
(Renard and Allard, 2013) of the facies of value si, noted 𝜋i(h),

𝜋i(h) = Prob{x ↔ x + h|s(x) = s(x + h) = si}, (6)

which describes the probability that two points separated by a distance h of the same facies of value si are
connected (6). We will compute it before and after the data assimilation for the facies of value 1, which
represents the channels in our case.

In most applications, ensemble Kalman methods may significantly underestimate the true uncertainty of the
estimated variables (Chen and Zhang, 2006). We assume that this underestimation would be even greater if
the prior distribution is not multi-Gaussian. A main concern when applying an ensemble Kalman method is
therefore to obtain a proper estimate of the reduced uncertainty, or in other words, one which is not too much
overreduced. Based on the initial and updated ensembles of facies realizations, the uncertainty reduction can
be quantified for each facies by observing the variability of the ensemble of facies indicator fields during the
assimilation. This variability can be measured by calculating the spatially averaged uncertainty estimated
from the ensemble of indicator fields, also known as the “ensemble spread” as follows:

Sens =

√√√√ 1
Nm

Nm∑
i=1

𝜎2
ens,i, (7)

where 𝜎2
ens,i denotes the variance at one grid block i from the ensemble of indicator realizations.

To check the accuracy of the uncertainty reduction estimated by ES-MDA in the proposed methodology, we
will compare the ensemble spread to the root-mean-square error (RMSE), which measures the discrepancy
between the ensemble mean of the facies indicator realizations and the reference facies indicator field as
follows:

RMSE =

√√√√ 1
Nm

Nm∑
𝑗=1

(m𝑗

true − m𝑗

e)2, (8)

where Nm is the number of grid blocks, m𝑗

true is the value at node 𝑗 in the reference facies indicator field,
and m𝑗

e is the value at node 𝑗 of the mean of the ensemble of facies realizations. The RMSE can then be
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Figure 14. Evolution with the iterations of the decimal logarithm of the data mismatch for the test case with Reference
A. The solid blue curve is the median, the blue area corresponds to the region between the Percentiles P5 and P95 of
the ensemble of values, and the dashed black curve is the values computed for the Ensemble Member No. 99.

calculated based on the initial ensemble of facies realizations generated initially and based on the ensembles
of conditioned categorical fields obtained after each ES-MDA update. If the uncertainty is properly estimated
during the data assimilation, the ensemble spread should be close to the RMSE (Chen and Zhang, 2006).
Indeed, an uncertainty reduction estimated by the ensemble should normally translate into a reduction, of
the same magnitude, of the discrepancy between the ensemble mean of facies indicator realizations and the
reference. Note that both the ensemble spread and RMSE are both unitless since we are considering either
the indicator variables, their mean, or their variance.

Assuming that the amount of information provided by the data is sufficient, the performance of the proposed
methodology could also be assessed by its ability to obtain facies realizations that are closer to the reference
than before the assimilation. To measure this, we can consider a RMSE defined differently from previously,
noted RMSE2, which would here consider the discrepancy, on average, of the reference with each facies
indicator realization as follows:

RMSE2 =
Nm∑
i=1

√√√√ 1
N

N∑
𝑗=1

(mi
true − mi

𝑗
)2, (9)

where N is the ensemble size, Nm is the number of grid blocks, mi
true is the value at node i in the reference

field, and mi
𝑗

is the value at node i in the 𝑗th facies indicator realization of the ensemble.

6. Results and Discussion
6.1. Evolution of the Data Mismatch
The proposed conditioning approach was first tested by assimilating the transient hydraulic head data gen-
erated from the Reference “A” (Figure 10) at the 10 observation points (Figure 8). Based on 6 × 41 hard
conditioning points located approximately every two cells in the vertical direction and every three cells hor-
izontally, hence a sampling rate of 15% at the coarsest level, a convergence of the reduction of the head
data mismatch was observed (Figure 14). Figure 15 confirms that the data match at every head observation
point was effectively improved after 16 ES-MDA iterations. In addition, the flow rate observations were well
predicted by the final categorical fields although they were not considered for the assimilation.

As explained in section 2, the same seed value and same hard conditioning locations for all ensemble mem-
bers during the conditioning loop ensure that the convergence can be fully attributed to the integration of
the ES-MDA update at those points. We also repeated the test using other unique seed values than the one
indicated in Table 1 and observed each time a convergence of the approach.

In comparison to applications of ensemble Kalman methods in the multi-Gaussian case or in MPS cases
without facies resimulation within the update procedure, it is worth mentioning that the decrease of the
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Figure 15. Predicted hydraulic head and flow rate data at the observation locations, before (in gray) and after (in blue)
the assimilation of the hydraulic heads only. The red dots are the observed data; the ensemble size is 100.

data mismatch observed here is not as smooth. Similarly to the updating of truncated Gaussian realiza-
tions via the underlying multi-Gaussian variables, the oscillations during the reduction of the mismatch are
indicative of nonlinearities in the forward operator relating the parameter variables and the dynamic data
to assimilate. In this categorical MPS case by using the proposed approach, the oscillations can be large
because the process allowing to obtain the categorical field from the coarsest-scale parameters; that is, the
multiresolution MPS simulation is nonlinear in the same manner as the truncation step is nonlinear in the
truncated Gaussian case (Liu and Oliver, 2005).

6.2. Sensitivity to DeeSse Parameters of the Integration of the ES-MDA Update
As shown in Table 1, we allowed in the tests to further scan the TI at both coarse levels including the one
where the ES-MDA update is integrated. In the context of the proposed methodology, the maximal scanned
fraction at the coarse scales can indeed influence the convergence of the algorithm. It makes sense since
by increasing the scanned fraction of the coarsest TI, the more likely a more compatible pattern, which
include the hard data derived from the ES-MDA update will be found, and hence the better the integration
of the ES-MDA update will be. It is worth noting that this constraint on the maximal scanned fraction at the
coarse levels should be computationally affordable. Indeed, given the significant reduction by a factor 4 of
the simulation grid at each coarse level, the search for patterns in the corresponding TI will also be faster.

By testing several distance thresholds, we observed that a value lower than 0.01 or greater than 0.1 would
result in a less efficient convergence and an insufficient data match. Even if the history match had turned
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Figure 16. Connectivity function of the channel facies computed for the ensemble of categorical MPS simulations: (a)
before the update (b) after all the ES-MDA updates. The gray and blue regions correspond to the values between the
Percentiles P5 and P95. The red curve is the connectivity function calculated with Reference A and the blue curve is
the median of the ensembles of values taken by the connectivity function.

out to be acceptable, the biggest issue was the fact that these tested values did not allow the retrieval of
the expected structures after the data assimilation. After some tuning, we found that a value around 0.05
was a good compromise to obtain simultaneously both a good history match and plausible structures. The
consistency of the retrieved structures is confirmed by evaluating the connectivity function of the channel
facies for each final categorical MPS realization. Figure 16 shows that the range of final connectivity values
obtained is consistent with the range obtained with the initial facies fields generated before the conditioning.
The median values before and after the assimilation indicate a global increase of the connectivity of the
channel facies.

It is important to keep in mind that in the proposed approach, the hard conditioning points used at the
coarsest scale of the multiscale MPS simulations do not represent actual data but are only the result of the
back transformed parameters updated with ES-MDA at those points. Since ES-MDA updates the parameters
iteratively and in doing so improves the estimates over the iterations, it also means that the values at the
sampled hard conditioning points will correspond to less good estimates at the first iterations of ES-MDA.
This is especially true in a non-multi-Gaussian case with the degradation of the structures as soon as the first
ES-MDA update is applied. As a result, in order for our conditioning approach to be successful, DeeSse must
take on the critical role of helping retrieve the structures especially during the early iterations of ES-MDA
by not giving too much weight to the first estimates of the hard conditioning points. That is why defining
a too low distance threshold value, such as 0.01, does not make sense here because DeeSse should not too
rigorously search for matching patterns given the inaccurate first ES-MDA estimates as hard data. Instead,
the threshold should be defined in order to allow some flexibility when accommodating the less reliable
estimates of the first iterations. In this way, DeeSse will give preference to the simulation of patterns that
are as consistent as possible to the TI given the hard conditioning points, rather than try to exactly honor
them at the beginning of the data assimilation and simulate inconsistent structures. However, if this distance
threshold is too large, for example, 0.1, the ES-MDA updates at the later iterations will be on the contrary
not sufficiently integrated into the multiresolution MPS simulations, thereby compromising the efficient
convergence of the conditioning approach. Even though it was not tested, one may consider to adapt the
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Figure 17. Conditioned categorical MPS simulations obtained after certain iterations of ES-MDA out of 16 in total, for
four ensemble members. The image at the bottom is the Reference Field A.

threshold in a decreasing manner from one iteration to another to improve the integration of the update and
hence the robustness of the convergence.

6.3. Identification of the Categorical Fields
Figure 17 shows the categorical realizations obtained at different stages of the conditioning procedure for
four ensemble members. As expected, the simulated structures become more and more consistent over the
ES-MDA iterations. Although not shown here for brevity, the RMSE2 calculated in the updated region has
decreased, thereby confirming that the conditioned fields resemble the reference. The probability maps of
the channel facies, calculated before and during the conditioning (Figure 18), shows the progressive identifi-
cation of the structures and retrieval of the connectivity during the assimilation. In between the two columns
of observation points, the channels are characterized with a very low uncertainty and they look very much
like the channels of the Reference A in the same region. Upstream to the last locations informed by data, at
around x = 2, 500 m, a progressive increase of uncertainty can also be observed. Overall, the identification
of the parameters is consistent with the distribution of the data points and the distance-based localization
that was applied to restrain the update to the vicinity of the data points.

As shown in Figure 19, the ensemble spread calculated from the facies realizations significantly decreased
in the updated region during the data assimilation. In our case, this ensemble spread represents on average,
in the updated region, the spread around the probability of the channel facies.
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Figure 18. Probability map for the channelized facies calculated from the ensemble of categorical MPS simulations
before conditioning and after every two iterations of ES-MDA using the hydraulic head observations from Reference A
(shown at the bottom).

In the non-multi-Gaussian bimodal case of log hydraulic conductivity fields, Zhou et al. (2011) illustrated
the influence of the ensemble size on the accuracy of the estimated uncertainty with the NS-EnKF approach.
They concluded that using an ensemble size of the order of 100, such as in our example, led to a severe
uncertainty underestimation as quantified by the very large discrepancy between the ensemble spread and
the RMSE at the end of the data assimilation.

While the RMSE is an appropriate measure of the true uncertainty in the multi-Gaussian case, we note that
it is not a rigorous one in the discrete case. In the multi-Gaussian case, it is assumed that the reference
field is the mean of a multi-Gaussian distribution of realizations, which are all conditioned to the data. It
therefore makes sense to calculate in that case the distance between the ensemble mean and the reference in
order to obtain an estimation of the true error. In the discrete case, however, the reference field is a random
sample from a distribution, which can be much more complex. Hence, the RMSE that measures the distance
between this reference sample and the ensemble mean could ultimately result in a large underestimation of
the true uncertainty. Therefore, although it can be observed in Figure 19 that both the ensemble spread and
RMSE decrease to a same value after all the updates thanks to the proposed methodology, this convergence
ultimately does not tell us how accurate the estimated uncertainty is.

To test the uncertainty estimated with our approach, we used the rejection sampling method to generate
samples from the posterior distribution and used it as the reference distribution. Rejection sampling con-
sists in sampling from the prior distribution of unconditional categorical realizations and accepting each
sample with a probability calculated based on the ratio between the likelihood of the sample and the highest
likelihood value, which can be obtained (Tarantola, 2005). The ensemble of accepted samples follows the
posterior distribution. Figure 20a shows the probability map obtained based on 108 samples, which have
been accepted out of 185,000 unconditional realizations generated with DeeSse. By visually comparing this
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Figure 19. Evolution of the RMSE and the ensemble spread (both unitless) before and during the conditioning of the
categorical MPS realizations in the updated region (up to 1,600 m from the seepage boundary) for the ES-MDA update
with the synthetic data of Reference A.

map to the one calculated based on the ensemble of 100 conditioned categorical fields obtained by data
assimilation using our proposed methodology (Figure 20b), we can see clearly that the posterior distribution
obtained by rejection sampling also identifies with very low uncertainty the location of the channels in the
same region, which was updated by data assimilation using our proposed approach, that is, up to x = 1, 600 m
from the western boundary. Moreover, the structures identified by both approaches in this region are very
similar to each other. To measure quantitatively how one distribution is different from another distribu-
tion, one could, for example, calculate the Kullback-Leibler divergence (Kullback & Leibler, 1951). For this
case, a low value close to 0 was calculated and indicates that the two distributions are indeed very similar.
Therefore, we can finally conclude that the uncertainty reduction, which led to the identification of the cat-
egorical fields with very low uncertainty using our proposed methodology is mostly the result of an efficient
assimilation of the data rather than to a suboptimal application of the ensemble Kalman method due to an
insufficient ensemble size as pointed out for example in Zhou et al. (2011) or Chen and Zhang (2006).

Despite the use here of a small ensemble size of 100, we assume that the efficiency of the proposed data
assimilation methodology results from the combined effect of (1) the reduction of the number of parameters
via the multiresolution parameterization and the sampling and (2) the role of DeeSse in finding consis-
tent patterns. Indeed, although the whole coarsest-resolution field was updated in our case, the number of
effective parameters was ultimately the number of sampled hard conditioning points, hence 246. Given the

Figure 20. (a) Probability map obtained by rejection sampling. (b) Probability map obtained after the final update at
iteration 16 with the proposed methodology. (c) Reference field.
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Figure 21. Probability map for the channelized facies calculated from the ensemble of categorical MPS simulations
before conditioning and after every two iterations of ES-MDA using the hydraulic head observations from Reference B
(shown at the bottom).

ensemble size of 100, we can assume that the covariance matrices were more correctly approximated from
the ensemble.

6.4. Analysis of Case B
To further assess the performance of the proposed methodology, we also performed tests using the synthetic
set of head data generated from the Reference Field B (Figure 11). A longer critical length of 2,600 m was
defined in this case to take into account the larger extent of the drawdown at the last time step of the synthetic
data set (Figure 13). Therefore, the region of parameters to update by data assimilation in this case was also
larger.

Using a similar density of sampled hard conditioning points as in the previous case with Reference A,
the approach converged successfully and towards a good final match of the transient head and flow rate
data. (We do not illustrate those results here for the sake of brevity.) However, we note from Figure 21 that
upstream from the second set of data points, between approximately x = 1, 600 m and x = 2, 600 m, the
very low uncertainty on the updated channel locations is clearly inaccurate given how very few channels
were identified and how the channels seem less connected compared to our prior knowledge from the TI.
We can therefore conclude that the uncertainty in this area, which is less informed by data, is significantly
underestimated. Figure 22 shows a much larger reduction of the ensemble spread compared to the RMSE in
the updated region up to 2,600 m from the seepage boundary, confirming that those very low probabilities
of channels between 1,600 and 2,600 m after the data assimilation in Figure 21 should not be relied upon.

Although we do not show it here for brevity, the RMSE actually decreases in the same manner as the ensem-
ble spread if only the region up to 1,600 m from the seepage boundary is considered. This indicates that
the uncertainty is better estimated in this more informed area of the updated region. Also, the decrease of
the RMSE suggests that the data assimilation was especially efficient with probabilities of channels getting
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Figure 22. Evolution of the RMSE and the ensemble spread (both unitless) before and during the conditioning of the
categorical MPS realizations in the updated region (up to 2,600 m from the seepage boundary) for the ES-MDA update
with the synthetic data of Reference B.

closer to the reference which represents here the indicator values of the channel facies. Figure 21 shows
clearly the much more consistent structures before x = 1, 600 m and also that the identified structures look
very much like those from the reference in the same region.

Considering that the number of parameters to update in this Case B is larger than in the previous Case A,
we assume that the severe underestimation of the uncertainty observed beyond x = 1, 600 m in the update
region is related to spurious correlations affecting the computed parameter updates. Indeed, the observation
points at x = 0 m and x = 1, 000 m may be too distant from the parameters located in that region to inform
them with sufficient accuracy by ensemble data assimilation. As mentioned in section 3.2, the performance
of ensemble Kalman methods can be severely reduced by an excessive underestimation of the uncertainty
due to spurious correlations between parameters and observations far apart.

To avoid those inaccurate estimations and resulting inconsistencies in the conditional categorical fields,
a solution could be to sample the predefined hard conditioning points only at locations of the updated
region which are sufficiently informed by nearby observations. In this manner, locations that are likely to be
affected by spurious correlations can be simulated with DeeSse instead, thereby preventing the unreliable
updates from being taken into account in the multiresolution MPS simulation. Although this strategy is ad
hoc, it is somewhat very similar to the way the widely used and also ad hoc covariance inflation method must
be implemented in practice. As pointed out by Hamill and Whitaker (2005), inflating the ensemble spread
uniformly over the whole model domain will lead to an undesirable unbounded growth of the ensemble
variance at locations with nearly nonexistent data. Hence, while covariance inflation should be performed
only in areas experiencing a significant uncertainty reduction, that is, near the observation locations, the
sampling of the updated conditioning points in our proposed methodology should be performed similarly
only near the observation locations since those sampled points will not be affected too negatively by the
unavoidable long range spurious correlations. Figure 23 illustrates this sampling strategy close to the obser-
vations located at x = 0 m and x = 1, 000 m, hence leaving out the uninformed part between x = 1, 600 m
and x = 2, 600 m of the updated region.

As can be observed in Figure 23, it is important for the stability of the results to also have hard conditioning
points sampled from the nonupdated region, that is, beyond x = 2, 600 m. Indeed, those invariant samples
will ensure that the simulated structures do not noticeably change from one iteration to the other in this area,
thereby allowing approximately the same contribution from this region to affect the predicted flow obser-
vations. We assume that such invariant contribution throughout the iterations affect positively the related
covariance matrices by making the parameter estimation more tractable for the proposed methodology. As
suggested by the probability maps obtained using this adaptive sampling strategy (Figure 24), the consis-
tency of the identified structures is this time preserved during the data assimilation no matter the locations
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Figure 23. Conditioning a categorical MPS realization (bottom image) from the updated normal-scored image at the
coarsest pyramid scale (Ensemble Member No. 11) at iteration 8 out of 16 of ES-MDA (top image) via fixed
conditioning points sampled from the back-transformed image near the observation observations for the
multiresolution MPS simulation.

of the observations in the updated region. Moreover, despite the larger role given to DeeSse here in the unin-
formed regions, the proposed methodology still converged successfully towards a good final match of the
transient head and flow rate data (Figure 25).

Ultimately, the Case B illustrates the broader applicability of the proposed methodology in more realistic sit-
uations where the observation points may not be evenly distributed in the region of interest for the parameter
identification.

6.5. Comparison With Other Approaches
We consider that the greatest advantage of the proposed methodology is the nature of the link between the
continuous latent variables updated by the ensemble Kalman method and the conditioned facies fields. The
Gaussian pyramid technique relates directly the value of the latent variable at a coarse resolution with the
categorical patterns for a given realization at a finer scale. It allows a reduction of the dimension of the
problem and gives a direct relation between the continuous values and the facies field.

Among the previously published methods, a classical technique is to use the local hydraulic properties as a
latent variable and avoid using the facies during the update. For example, the NS EnKF (Zhou et al., 2011)
updates the continuous hydraulic conductivities populating an initial ensemble of facies distribution in a
full postprocessing procedure. We note that for such approach to work, the hydraulic conductivities must be
defined in a continuous manner otherwise the NS transform function will not be defined. In the proposed
approach, although the exact same NS transform is used, the advantage is that the latent variable is by
construction necessarily continuous at every location of the coarsest resolution level (Figure 4).

Cao et al. (2018) proposed to update only the conductivity values at randomly selected pilot points. The
updated values are then used as hard data for a conditional MPS simulation with a TI representing contin-
uous log hydraulic conductivities that populate a categorical facies field. Their motivation for using pilot
points was actually the same as ours. Indeed, they noticed that updating the whole field of log hydraulic
conductivities with iterative ensemble smoothing do not allow to preserve the prior non-Gaussian spatial
patterns. Following the same strategy, we do not update the complete coarsest resolution. But unlike Cao
et al. (2018) who apply the updates at the fine resolution, our approach will better preserve the structures
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Figure 24. Probability map for the channelized facies calculated from the ensemble of categorical MPS simulations
before conditioning and after every two iterations of ES-MDA using the hydraulic head data generated from Reference
B (bottom image). The hard conditioning point locations as shown in Figure 23 were used.

even if the updates are applied on the complete field at the coarsest scale because of the multiresolution
strategy.

Still considering the use of hydraulic conductivities as primary variables for the EnKF update is possible
when the TI is continuous as used for example in Cao et al. (2018). Although it is beyond the scope of
this study, it is worth mentioning that multiresolution simulations with DeeSse based on a continuous TI
originally can also be performed. Therefore, the proposed methodology is not limited to the categorical case
described in the synthetic example treated in this paper but could also be applied in the continuous case. As
compared to previous work, the gain would again be the reduction of problem dimensions through the use
of the pyramids.

Ultimately, comparing the NS-EnKF to our approach, we note that the reduction of the data mismatch seems
to be more efficient for all members of the final ensemble with our proposed method. This could be attributed
to the randomness of the conditional MPS simulations, which is probably not sufficiently constrained as
in our proposed methodology with both the use of the same seed and the same fixed hard conditioning
points for all ensemble members. Another reason for the mismatch could be related to the fact that no other
mitigation strategies than the pilot points are employed to reduce the loss of consistency of the simulated
structures. Indeed, we believe that the multiresolution parameterization alone in our approach allows to
alleviate this problem and will ultimately positively influence the correction applied at the hard conditioning
points.

Another interesting approach is the probability conditioning method of Jafarpour and Khodabakhshi (2011).
It also uses the hydraulic conductivity as a continuous variable to update the fields, but here the link with the
categorical MPS simulations is controlled using a probability map. The updated variables are related to the
facies distribution in an indirect manner. At each iteration, the hydraulic conductivities are updated, and a
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Figure 25. Predicted hydraulic head and flow rate data at the observation locations, before (in gray) and after (in blue)
the assimilation of the hydraulic heads only. The red dots are the observed data; the ensemble size is 100. The hard
conditioning point locations as shown in Figure 23 were used.

probability map is derived from the mean of the ensemble of updated log hydraulic conductivity field using
some assumed triangular probability density functions. Once the corrected probability map is obtained, a
new set of MPS simulations is generated. All these simulations are conditioned to this unique probability
map using SNESIM and the 𝜏 model. Although this step allows to control the conditional facies MPS real-
izations, the derived probability maps are prone to significant noise due to the initial non-multi-Gaussian
distribution of hydraulic conductivities, and the structures are not well preserved.

Ma and Jafarpour (2018) proposed recently a pilot point parameterization for the hard conditioning of cat-
egorical MPS simulations with an ensemble Kalman approach. Similarly to Cao et al. (2018), an ensemble
of log hydraulic conductivities is updated without prior NS transform. Also, in the same manner as in the
probability conditioning method, the values estimated at the pilot points are converted to facies probabil-
ities. These probabilities are then used to sample a facies type, thereby allowing a conditioned categorical
MPS simulation using the updated facies as hard data. However, unlike Cao et al. (2018) or in our proposed
approach, they select the hard conditioning points based on the combined information of the sensitivity
of the model response to the parameters and the variance of the parameters based on the ensemble of
log hydraulic conductivity fields. As a result, one main difference with our approach is that when using
ES-MDA, the locations of the pilot points may change from one iteration to another according to the updated
sensitivity and parameter variance. As observed by the less efficient reduction of the data mismatch com-
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pared to our proposed methodology, the randomness introduced by each conditional MPS simulation with
the proposed selection of pilot points may lead to a less tractable and hence less robust convergence.

Finally, as illustrated in our case with the Reference A, provided that the ES-MDA update is applied with
care to avoid underestimating the uncertainty in insufficiently informed areas, it is conceptually simpler to
rely on ES-MDA to compute proper estimates of the parameter and variance no matter the location. In this
way, we can consider that every location can potentially be a hard conditioning point. Then, the choice of
only a subset of locations can be done in a simple, uniform manner enabling DeeSse to properly retrieve
the structures inferred by ES-MDA in between the same fixed locations and by using the same seed for all
ensemble members.

As an alternative to the standard EnKF, Zhou et al. (2012) also proposed the Ensemble PATtern matching
method which was then further applied and extended (Li et al., 2014; Lochbühler et al., 2014). Unlike the
proposed methodology, which still relies on the linear update step of ensemble Kalman methods, the update
step in Ensemble PATtern is fully replaced by the search of matching conditional patterns composed of both
model parameters and state observations. Although this method ensures by construction the reproduction
of curvilinear patterns at multiple scales, a main drawback, however, is the very large number of realizations
required for the matches to be found (Li et al., 2014).

7. Conclusions
In this paper, a new approach to condition categorical MPS realizations with an iterative ensemble Kalman
method was introduced. The methodology uses a multiresolution parameterization with the code DeeSse
based on the Gaussian pyramid technique, which massively reduces the number of parameters to update.
Initially, these parameters correspond to the NS transformed values of the coarsest level of a multiresolution
MPS simulation. After each update, the parameters can be integrated at the coarsest level of a multiresolu-
tion MPS simulation to finally condition the categorical simulation performed at the scale of the original
categorical TI. Although it was not in the scope of this study, it is worth pointing out the applicability of the
same multiresolution parameterization to originally continuous cases as well.

At the coarsest scale of the multiresolution MPS simulation, only a subset of locations are updated with
ES-MDA. As a result, the methodology also heavily relies on the ability of DeeSse to recover the structures
by the integration, as hard data, of the result of each data assimilation. The more the number of hard condi-
tioning points considered, the more control over the data match, but the less control over the consistency of
the simulated structures. However, our results obtained for two synthetic examples show that the proposed
multiresolution parameterization has the potential to satisfy simultaneously both the requirements on the
quality of the data match and the consistency of the updated fields with the prior geological information.
Because the locations of the hard conditioning points are chosen to be fixed, and identical for all ensemble
members throughout the assimilation, our specified parameterization of the ensemble of multiresolution
MPS simulations effectively ensures the stability of the proposed algorithm. Indeed, the robust convergence
observed in our synthetic case, for any of the two tested references, can unambiguously be attributed to the
improved estimated values at the hard conditioning points throughout the assimilation.

Our numerical experiments tend to show that both the multiresolution framework and the sampled hard
conditioning points contribute to mitigate the limitations resulting from the ensemble Kalman method in
our non-multi-Gaussian case. As long as the amount of information given by the synthetic data is sufficient
to identify the region of interest, our results show that the proposed methodology can successfully condition
facies realizations that both honor the dynamic observations and are consistent with the prior conceptual
model.

Moreover, the important uncertainty reduction during the conditioning procedure has been shown to be the
consequence of a particularly efficient parameter identification, rather than an underestimation related to
a suboptimal application of the ensemble Kalman method. We can assume that the improved performance
of the ensemble Kalman method is mainly related to the massive parameter reduction, which ultimately
allowed to reduce the discrepancy with the limited ensemble size used and hence to obtain more accurate
updates. In addition, DeeSse plays an undeniable role in the significant observed decrease of the RMSE
considering that its goal, ultimately, is to find compatible patterns in a TI that was used to simulate the
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reference fields of this synthetic case. The use of a unique TI to generate both the reference and the MPS
simulations involved during the conditioning procedure is indeed a simplification made to evaluate the
proposed approach in the situation where the conceptual geological model is consistent with the reality. For
real cases, different TIs should be tested during the conditioning procedure.

In conclusion, although the results presented in this paper illustrate the performance of our methodology
in a synthetic case with only two simulated facies, the same methodology can be applied to any number of
simulated facies. The pyramid of TIs has indeed been shown to work in the multicategorical case (Straubhaar
et al., 2020). The ensemble Kalman method would then be applied to update the values of not only one initial
coarse MPS simulation generated for each ensemble member but several initial coarse MPS simulations
generated from each facies indicator field. Since the number of grid blocks at the coarsest level is significantly
reduced, and because only a subset of locations will be considered for the update ultimately, the increased
number of parameters when considering a large number of facies could in practice still be much lower than
the number of unknown in the categorical simulation.
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