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A B S T R A C T   

Multiple-point statistics algorithms allow modeling spatial variability from training images. Among these tech
niques, the Direct Sampling (DS) algorithm has advanced capabilities, such as multivariate simulations, treat
ment of non-stationarity, multi-resolution capabilities, conditioning by inequality or connectivity data. However, 
finding the right trade-off between computing time and simulation quality requires tuning three main param
eters, which can be complicated since simulation time and quality are affected by these parameters in a complex 
manner. To facilitate the parameter selection, we propose the Direct Sampling Best Candidate (DSBC) parame
trization approach. It consists in setting the distance threshold to 0. The two other parameters are kept (the 
number of neighbors and the scan fraction) as well as all the advantages of DS. We present three test cases that 
prove that the DSBC approach allows to identify efficiently parameters leading to comparable or better quality 
and computational time than the standard DS parametrization. We conclude that the DSBC approach could be 
used as a default mode when using DS, and that the standard parametrization should only be used when the 
DSBC approach is not sufficient.   

1. Introduction 

Many different Multiple-Point Statistics (MPS) methods exist and are 
used to model discrete or continuous fields for a broad range of appli
cations (Mariethoz and Caers, 2015). These methods are able to repre
sent complex spatial or temporal patterns and use analog data (in the 
form of training images) to learn the patterns that should be simulated 
for a given problem. Among the MPS methods, the Direct Sampling (DS) 
is often employed since it is very flexible and computationally efficient 
(Mariethoz et al., 2010). DS is capable of simulating non-stationary 
fields, accounting for continuous maps of rotations or affinity ratios 
(Mariethoz and Kelly, 2011), accounting for trends expressed as sec
ondary variables to guide the patterns in the simulation grid. It has been 
recently extended for the simulation of multi-resolution patterns 
(Straubhaar et al., 2020), or for handling complex conditioning data 
such as inequality constraints (Straubhaar and Renard, 2021). DS is 
parallelized (Mariethoz, 2010) to simulate efficiently large simulation 
grids. DS has been used for example for hydrogeological applications 

(Jäggli et al., 2018; Dall’Alba et al., 2020; Lam et al., 2020), ore reserve 
estimation (Dagasan et al., 2018), or geomorphological simulations 
(Neven et al., 2021). 

As with any geostatistical algorithm, DS has several computational 
parameters which govern the simulation quality and computation time. 
The three main parameters requiring tuning are: the distance threshold 
(t), the maximal scan fraction (f), and the number of nearest neighbors 
(n). The distance threshold controls the acceptable level of similarity 
between patterns when searching for good patterns, the maximal scan 
fraction limits the search in the TI, and the number of nearest neighbors 
controls the size of the patterns. The quality of the simulations and the 
computation time depend on the choice of these parameters in a com
plex manner. While some rules of thumb have been proposed for 
choosing the parameters (Meerschman et al., 2013), the choice of an 
optimal set can be difficult and not intuitive for new DS users. Therefore 
an extensive search in parameter space is often the only solution to avoid 
a trial-and-error search but the systematic search can have a significant 
computational cost (Dagasan et al., 2018). 
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To address these points, we show in this paper that a simplified 
parametrization of DS could facilitate its use. The key idea is to set the 
distance threshold t to 0. This way to parameterize the DS algorithm will 
be denoted DSBC in the following of this paper, it stands for Direct 
Sampling Best Candidate (DSBC). Three test cases are presented to test 
and illustrate the DSBC approach: a categorical unconditional simula
tion, a continuous simulation with conditioning data and a categorical 
simulation with trend and orientations. 

The paper is structured as follows. First, we review the Direct Sam
pling method and explain the DSBC special case. Second, quality metrics 
are introduced to compare the performance of DS and DSBC. Third, the 
test cases are presented. Fourth, results and comparison of the DS vs 
DSBC are given. Finally, we wrap up with conclusions. 

2. Direct Sampling and new parametrization 

This section reviews first the key elements of the Direct Sampling 
(DS) algorithm. More details are available in the original publication 
(Mariethoz et al., 2010). We then introduce the new Direct Sampling 
Best Candidate (DSBC) parametrization. Note that we use different no
tations as compared to the original paper. 

The aim of DS is to simulate a random field Z(x) on a simulation grid 
(SG). The different locations (pixels, nodes) on the grid will be denoted 
with x. All the non-informed locations x in SG will be iteratively visited 
and simulated by the algorithm. The SG can be partially filled with 
conditioning data. DS uses a training image (TI) as an analog random 

field Z(y) to model Z(x). The TI is one of the input parameters. We 
denote by y the nodes of the TI. The conditioning data are a set of pairs 
{(xHD

1 ,z1),(xHD
2 ,z2),…,(xHD

NHD
,zNHD )}, where xHD

i denotes the position of the 
ith conditioning data, zi its corresponding value, and NHD is the number 
of conditioning data points. 

After assigning the conditioning data to SG, the remaining points are 
ordered {x1, x2, …, xN}, where N = NSG − NHD, and NSG is the number of 
nodes in the simulation grid. This ordering is called a simulation path, 
and it is usually random. If no conditioning was used, the value of the 
first simulated point in SG is taken randomly from the TI: Z(x1) = Z(y), 
where y is a random point in the TI. 

DS fills the SG node by node. Let i be the index of the next node to be 
filled. First, the n closest neighbors of xi are found. The neighbors are the 
nodes which are informed, already simulated or in the conditioning data 
set. In the early iterations (i small), it might happen that fewer than n 
neighbors can be found. Then, all of them are considered, and for 
simplicity the number of neighbors is still noted n in this situation and 
they are denoted with: 

𝒳 i = {x1
i , x2

i ,…, xn
i }. (1)  

Second, the set ℒi of lag vectors is found: 

ℒi =
{

hj : hj = xj
i − xi, j = 1,…, n

}
. (2)  

Before we proceed to the third step, we need definitions of the neigh
borhood, data event, the search window, and the distance function. The 
neighborhood 𝒩 of the node x given the lag vectors ℒ is defined by: 

𝒩(x;ℒ) = {x+ h1, x+h2,…x+hn}, (3)  

and data event at the node x given the neighborhood ℒ: 

𝒟(x;ℒ) = {Z(x+ h1), Z(x+h2),…,Z(x+hn)}. (4)  

The search window 𝒴 is the set of points in the TI, which can be visited to 
look for the matching pattern: 

𝒴(ℒ) = {y∈ TI : 𝒩(y,ℒ)⊂ TI}. (5)  

The distance between two data events can be defined in various man
ners. Different metrics are used for categorical and continuous variables. 
The distance only makes sense, when the same lag vectors are used. The 
default categorical distance reads: 

d(𝒟(x),𝒟(y);ℒ) = d(𝒟(x;ℒ),𝒟(y;ℒ)) =
1
n
∑n

i=1

[
1 − 1Z(x+hi)(Z(y+hi))

]

(6)  

with the indicator variable: 1x(y) = 1 if x = y and 0 otherwise. The 
default continuous distance reads: 

d(𝒟(x),𝒟(y);ℒ) = 1
n
∑n

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[Z(x + hi) − (Z(y + hi))]
2

d2
max

√

, (7)  

with dmax = maxy∈TIZ(y) − miny∈TIZ(y). 
The third step of the algorithm consists in finding the search window 

𝒴(ℒi), traversing it (again using a random path) and testing the 
consecutive points y by computing the distance d(𝒟(xi),𝒟(y);ℒi). If the 
distance is lower than the predefined threshold t, then we set Z(xi) = Z 
(y), otherwise a new point is tested. This step is repeated until a point 
with a sufficiently small distance is found or the maximal number of 
points (fNTI) have been visited (NTI stands for the number of nodes in the 
TI). In the latter case, the Z(y) value corresponding to y yielding the 
smallest distance is used. 

The distance threshold parameter t allows stopping immediately the 
search if a suitable candidate has been found. However, it also in
troduces a slight inconsistency, as it is not guaranteed that such a point 
exists. Therefore, a second condition is applied in the DS algorithm: 

Fig. 1. Categorical fluvial training image (Jäggli et al., 2018). The dimensions 
are indicated in pixels, and different categories (facies) are labeled with 1, 2, 
3, 4. 

Table 1 
DSBC parameters for Case 1. The Cartesian product of the two lists gives the 
complete parameter sets.  

n f 

8, 16, 24, 32, 64 1/256, 1/128, 1/64, 1/32, 1/16, 1/8  

Table 2 
DS parameters for Case 1. The union of the Cartesian products of the two lists in 
each row gives all the parameter sets.  

n t f 

8 1/8, 2/8 0.25 
16 1/16, 2/16, 3/16, 4/16 0.25 
32 1/32, 2/32, …, 8/32 0.25 
64 1/64, 2/64, …, 16/64 0.25  
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when the maximal number of nodes have been scanned and no candi
date satisfying the threshold has been found, the algorithm selects the 
best candidate found so far. 

The proposed DSBC parametrization simplifies the workflow: the 
parameter t is set to 0. Only two parameters are kept: n and f. The 
parameter n has the same role in DS and DSBC. But the maximal scan 
fraction f becomes more important. When scanning the TI for a pattern, 
the algorithm always scans a fixed portion f and accepts the pattern with 

the smallest distance among all visited pixels (unless a perfect match is 
found — then it can be immediately accepted for saving computation 
time). The scan fraction f takes over a part of the role of t in the standard 
application of DS. When f is decreased, the scan is stopped earlier, and 
often an approximate pattern is accepted. When f is increased, a larger 
portion of TI is scanned in search of a better match, and then it is likely 
that a nearly perfect match is accepted. Therefore, increasing f with the 
DSBC approach corresponds to decreasing t in DS, but f has the 

Fig. 2. Example DS realizations ordered by descending score (increasing error). Figure titles show n and t. For the color scale refer to Fig. 1.  
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advantage of producing a more intuitive response of the algorithm than 
t. For example, when choosing t in DS, one should note that in case of 
categorical simulations and standard distance function (6), distance 
takes discrete values and changing t might not change the algorithm 
behavior. In such a case, setting t to whatever value below 1/n would be 
equivalent to setting it to 0. 

3. Quality metrics 

To compare the quality of simulations obtained with different 
parameter sets, we used the following indicators. 

The connectivity function τs(h) for category s is defined as the 
probability that two points of the same category s, away from each other 
by distance h are connected (in the sense of belonging to the same 
connected component): 

Fig. 3. Example DSBC realizations ordered by descending score (increasing error). Figure titles show n and f. For the color scale refer to Fig. 1.  
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τs(h) = Prob{x⟺x + h : category(x) = s, category(x + h) = s} (8)  

where CATEGORY is a function returning category (facies) of the argument. 
The indicator variogram is a variogram of the indicator variable and is 
computed for each category s. It represents half the probability that for 
two points separated by h, one belongs to the category s and the other 
does not: 

γs(h) =
1
2

E
[
(1s(x + h) − 1s(x))2]

=
1
2

Prob{1s(x+h)∕= 1s(x)}. (9)  

For the sake of simplicity, in our setting where channels go from left to 
right, we consider only the x direction (i.e. h parallel to x axis) for the 
connectivity functions and indicator variograms. 

The statistics of the ensemble of simulations are usually compared 
with the TI as the reference, for example Meerschman et al. (2013) used 
connectivity functions and indicator variograms to compare how DS 
performed with different parameter sets in unconditional simulation 
case. However, due to grid size effects, the statistics of the TI differ from 
the statistics derived from sub-images of different sizes extracted from 
the TI. Therefore, we propose to compare two ensembles: a set of 
sub-images of the TI and a set of simulations. The comparison is ach
ieved using the Wasserstein distance (or earth mover distance). The first 
Wasserstein distance between two probability distributions u and v can 
be computed as: 

l1(u, v) =
∫ +∞

− ∞
|U(x) − V(x)|dx, (10)  

where U and V are the cumulative distribution functions (CDF) of u and v 
respectively. 

If the true category values are known, it is possible to use scoring 
rules to assess the probabilistic forecasts (Gneiting et al., 2007). For 
example, when conditioning data are available, a cross-validation 
approach can be used (Juda et al., 2020) and quadratic score applied: 

S(p, i) = −
∑M

j=1
(δij − pj)

2
, (11)  

where p is the predictive probability vector, i is the true category and δij 
is the Kronecker symbol. The cross-validation score is a mean score over 
multiple cross-validation runs. 

If true values of a continuous variable are known, continuous ranked 
probability score (CRPS) can be used (Gneiting et al., 2007; Gneiting and 

Table 3 
5 best parameter sets according to the total error for DS and DSBC.   

n t f time (s) εc εv ϵc ϵv ϵc + ϵv 

DS 64 1/32 0.25 40 0.032 0.012 0.186 0.094 0.279 
DS 64 3/64 0.25 37 0.033 0.012 0.194 0.092 0.285 
DS 64 1/64 0.25 43 0.036 0.010 0.211 0.077 0.289 
DS 64 1/16 0.25 33 0.043 0.009 0.252 0.069 0.321 
DS 32 1/16 0.25 17 0.043 0.009 0.251 0.072 0.323 

DSBC 32 0 1/8 26 0.034 0.019 0.200 0.146 0.347 
DSBC 64 0 1/16 30 0.041 0.020 0.241 0.156 0.397 
DSBC 64 0 1/8 44 0.047 0.018 0.271 0.139 0.410 
DSBC 24 0 1/8 23 0.046 0.019 0.266 0.153 0.419 
DSBC 16 0 1/8 18 0.044 0.021 0.257 0.166 0.423  

Fig. 4. Simulation time of a single realization versus the total error ϵt (A). Histogram of time × ϵt (B).  

Fig. 5. Continuous topography training image (Neven et al., 2021). The di
mensions are indicated in pixels, and elevation in m. 

Table 4 
DS and DSBC parameters for Case 2. The Cartesian product of the two lists for 
each algorithm gives all the parameter sets.  

(A) DS parameters 

n t f 

8, 16, 32, 64 0.001, 0.002, 0.005, 0.01 0.005  

(B) DSBC parameters 

n f 

8, 16, 32, 64 0.001, 0.0005, 0.0002, 0.0001  
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Raftery, 2007): 

CRPS(F, x) =
∫ +∞

− ∞
(F(y) − 1(y > x))2dy, (12)  

where F(y) is the CDF of predictive distribution and x the true value. 

4. Numerical experiments and results 

Three test cases are presented. They are designed to test the DSBC 
parametrization in three situations frequently encountered when using 
DS. The first test case is a categorical unconditional simulation study of a 
fluvial system. The second test case is a conditional continuous simu
lation of a topography with non-stationarities. And finally, the third case 

Fig. 6. An example area to be cut out (A), corresponding conditioning data (B), example simulation by DS (C), example simulation by DSBC (D), pixelwise CRPS 
score map for DS ensemble (E), pixelwise CRPS score for DSBC ensemble (F). 

Fig. 7. Simulation time for Case 2 of a single realization versus the total error MVE + MPE (A). Histogram of time × (MVE + MPE) (B).  

P. Juda et al.                                                                                                                                                                                                                                    



Applied Computing and Geosciences 16 (2022) 100091

7

Fig. 8. Simulation area with defined trend (A), orientation (B), and training image (C) with its trend (D).  

Fig. 9. Conditioning data for the Roussillon case.  

Table 5 
DS parameters for Case 3. The union of the Cartesian products of the two lists in 
each row gives all the parameter sets.  

n t f 

8 1/8, 2/8 0.1, 0.2, 0.4, 0.8 
16 2/16, 3/16, 4/16 .1, 0.2, 0.4, 0.8 
32 1/16, 2/16, 3/16, 4/16 .1, 0.2, 0.4, 0.8 
64 1/32, 1/16, 2/16, 3/16, 4/16 .1, 0.2, 0.4, 0.8  

Table 6 
DSBC parameters for Case 3. The Cartesian product of the two lists gives all the 
parameter sets.  

n f 

8, 16, 32, 64 .001, .002, .004, .006, .008, .01, .02, .04, .06, .08, .1, .2, .4, .6  

Table 7 
5 best DS parameter sets according to CV score.  

n t f time (s) CV-score CV-σ 

32 0.06251 0.1 4.6 − 0.31 0.05 
32 0.06251 0.2 4.5 − 0.32 0.03 
32 0.06251 0.8 7.4 − 0.32 0.03 
64 0.03126 0.1 4.8 − 0.33 0.03 
32 0.06251 0.4 4.3 − 0.33 0.03  
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is a categorical conditional simulation of an alluvial plain with trends 
and rotations. 

4.1. Test case 1. Categorical unconditional with pyramids 

In this test case, the TI represents a fluvial system with four cate
gories, its size is 800 × 1000 pixels (Fig. 1). It was first presented by 
Jäggli et al. (2018), who used it in an inversion set-up. The aim is to test 
how the standard DS and DSBC parametrizations influence the quality of 
the simulations. For each simulation method, 30 parameter configura
tions are considered. The DSBC parameter sets were obtained by 
applying the Cartesian product of the list of n and f values (Table 1). The 
DS parameter sets were obtained as union of the Cartesian products 
corresponding to the different rows of Table 2. The maximal scan frac
tion f equals to 0.25 for all simulations. The reason for setting individual 
ranges for different n values is that below a certain threshold value, 
diminishing further this parameter has no effect, as it corresponds to 
setting threshold to 0, and thus running DS in DSBC mode. 

For each parameter set, an ensemble of 40 realizations is generated. 
The simulation grid has a size of 200 by 200 pixels. The realizations are 
unconditional. The multi-resolution mode of DS (Straubhaar et al., 
2020) is applied with 2 levels and a reduction factor of 2 in both 

directions in each level. The connectivity functions and the indicator 
variograms are computed only in x directions. Let h be the lag distance, 
and M the total number of categories. The connectivity error is given by: 

εc =
1
M

1
nx

∑M

s=1

∑nx

h=1
l1(uτ

s(x; h), vτ
s(x; h)), (13)  

with uτ
s(x; h) is the distribution of values τs(h) deduced from the simu

lated ensemble, and vτ
s(x; h) the distribution deduced from the ensemble 

of images of the same size nx × ny but extracted from the TI. The indi
cator variogram error is computed in the same manner, but the indicator 
variograms γs are considered in place of τs: 

εv =
1
M

1
nx

∑M

s=1

∑nx

h=1
l1(uγ

s(x; h), vγ
s(x; h)). (14)  

These errors are then normalized: ϵc = εc/max εc, ϵv = εv/max εv, and the 
total error is computed: ϵt = ϵc + ϵv. The maxima are computed over all 
parameter sets and over both simulation methods. 

For each parameter set, an example realization is shown in Fig. 2 for 
DS and in Fig. 3 for DSBC. They are ordered by increasing total error. 
Table 3 shows the five best parameter sets in terms of the total error for 
DS and DSBC. In general, DS has achieved lower errors, a slightly better 
performance than DSBC. The time per simulation versus the total error 
are shown in Fig. 4A and the histogram of time × ϵt in Fig. 4B. The DS 
results are also more diverse, they include some excellent simulations 
(with a good time-quality trade off) but also some mediocre ones. The 
ideal simulations lie in the lower left corner of Fig. 4A and the poor ones 
in the upper right corner. The DSBC results are generally more 
concentrated and generally good. This less dispersed results of DSBC are 
confirmed by the histogram of time × ϵt values (Fig. 4B) that shows that 
the distribution of DS results is wider. All these results suggest that 
choosing a good parameter set is easier with the DSBC parametrization, 

Table 8 
5 best DSBC parameter sets according to CV score.  

n f time (s) CV-score CV-σ 

16 0.02 4.3 − 0.29 0.04 
16 0.06 4.3 − 0.29 0.03 
16 0.04 4.2 − 0.29 0.03 
16 0.20 4.1 − 0.29 0.03 
16 0.08 4.2 − 0.29 0.03  

Fig. 10. Example of DS (A) and DSBC (B) simulations.  

Fig. 11. Simulation time for Case 3 of a single realization versus the CV loss (A). Histogram of time × CV loss (B).  
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especially when only a few sets of parameters can be tested. 

4.2. Test case 2. Continuous conditional simulations 

This test case uses the methodology presented by Neven et al. (2021), 
which was employed to tune the DS parameters for simulating the 
Tsanfleuron glacier bedrock geometry in the Swiss Alps. The training 
image is the topography of Tsanfleuron glacier and the exposed bedrock 
after glacier retreat (Fig. 5) taken from Neven et al. (2021). 

An area of 200 × 200 pixels is cut out from the TI, except for two 
perpendicular crossing lines which constitute the conditioning data (as 
an analog for ground penetrating radar (GPR) data). DS and the DSBC 
approach are used to reconstruct the missing area (by generating an 
ensemble of 40 realizations), different parameter sets are used (Table 4A 
for DS and Table 4B for DSBC). This procedure is repeated for 10 loca
tions of bottom left corner (Table A.9). 

An example area from the TI is depicted in Fig. 6A and the condi
tioning data in Fig. 6B. One DS and DSBC realizations out of 40 are 
shown in Fig. 6C and D, respectively. The pointwise CRPS errors are 
shown as a map Fig. 6E and F for DS and DSBC respectively. 

The pointwise CRPS describes for each point in the simulation 
domain the CRPS score between the true elevation and the ensemble of 
simulated elevations for this point. When these scores are averaged over 
all locations, the mean pointwise error (MPE) is formed. The mean 
volume error (MVE) describes the error of the estimation of the glacier 
volume. When the bedrock elevations are first averaged over all loca
tions for single realizations, and this distribution is compared to aver
aged true elevation, and then CRPS score computed; the MVE score is 
formed. More details about these scores were described in Neven et al. 
(2021). 

Fig. 7A shows that DSBC achieved lower total error (MVE + MPE) 
values and therefore performed better in terms of simulation quality. As 
for the previous example, the scatter-plot and Fig. 7B show that the 
DSBC results are less dispersed than the DS results which show in 
particular more variability in terms of computing time. The detailed 
results are given in Tables A.10 and A.11 in the appendix. 

4.3. Test case 3. Categorical multivariate simulation with cross-validation 

The last test case is a synthetic, simplified, but realistic case, inspired 
from the model of the Roussillon aquifer in the South of France (Dal
l’Alba et al., 2020; Juda et al., 2020). In this example, conditioning data 
are available and can be used to tune the parameters of the geostatistical 
method. As in a real situation, we consider that the reality is unknown, 
and the only information are the conditioning data. In such a scenario, a 
K-fold cross-validation can be used to identify the best parameters (Juda 
et al., 2020). 

The TI (Fig. 8C) is multivariate and has a trend (Fig. 8D) as a sec
ondary variable. The simulation grid has also a trend attached to it 
(Fig. 8A) and the orientation of the patterns is guided by a rotation map 
(Fig. 8B). The TI has four categories: river bed (rb), crevasse splay (s), 
flood plain (fp) and alluvial fan (af). 

We consider that 600 observation points are available (correspond
ing to borehole locations, Fig. 9). The 5-fold cross-validation approach 
with quadratic score (Juda et al., 2020) is used to compute the CV scores 
and their standard deviations for different parameters of DS and DSBC. 
The quadratic score lies between − 2 and 0, with 0 corresponding to the 
ideal forecast. The quadratic (aka Brier) loss is the negative score, hence 
the lower, the better. The DS parameter sets (Table 5) and the DSBC 
parameter sets (Table 6) are very numerous, therefore only the 5 best 
results according to CV-score are reported for each method (Tables 7 and 
8). Example simulations are shown in Fig. 10A and B for DS and DSBC 
respectively. The simulation plot versus CV loss (the lower, the better) 
and histogram of time × CV loss are shown in Fig. 11. 

For this test case, DSBC yielded slightly higher cross-validation 
scores (Tables 7 and 8). Fig. 11A shows that the DSBC parametrization 

allows obtaining results that are in general better in terms of loss. 
Moreover, the distribution of the performance indicator is clearly better 
for DSBC with good performances being more common than for DS 
(Fig. 11B). 

5. Summary and conclusion 

This paper introduces a novel type of parametrization for the Direct 
Sampling algorithm and shows that this approach can help identify 
efficiently good parameter sets. We call this approach DSBC for Direct 
Sampling Best Candidate. DSBC can be considered as a simplified 
version or parametrization of the DS algorithm. Indeed, DSBC has only 
two major algorithmic parameters: the number of neighbors and the 
scan fraction, as compared to three for the DS method. This strategy 
facilitates parameter tuning, while retaining all the advantages and 
flexibility of the DS algorithm. As one could expect, since DSBC is a 
special case of DS, the three test cases that we studied confirmed that the 
quality and performance of DSBC is similar to DS. But what is important 
is that we show that DSBC is more likely to produce good simulations 
when the number of parameter sets that can be tested is limited by 
computational constraints. In two of the test cases, we could obtain 
better quality results with DSBC, and in one example the quality was 
similar between DS and DSBC. We consider that this is possible because 
when one has a limited computing resource available to test different 
parameter sets (as we did in the three examples), it is easier and faster to 
search in a two-dimensional space than in a three-dimensional space. 
DSBC can therefore be implemented as a simple and efficient default 
parameter tuning strategy for the existing DS implementations. 
Following these results, our recommendation is to start by applying the 
DSBC strategy and if the results are not satisfactory, then one can adjust 
more parameters using the complete DS algorithm as it has more tuning 
capabilities. 

Finally, a possible direction for further research could be to use the 
DSBC idea to optimize the implementation of the algorithm using GPUs. 
The fact that the loop corresponding to the scan in the TI is simplified 
might lead to an optimal implementation tailored specifically for DSBC. 
A similar idea of performing full TI scan (removing distance threshold 
parameter and fraction scan, but introducing k parameter for “k-sam
pling”) and specializing its implementation using FFT was proposed by 
Gravey and Mariethoz (2020). Their QuickSampling algorithm is sta
tistically similar to DSBC (with f = 1/k) and computationally efficient, 
but it is not clear how it could include advanced DS features. Therefore, 
combining the flexibility of DSBC and computational advantages of 
QuickSampling could be very interesting. 

Credit author statement 

Przemysław Juda: Conceptualization, Methodology, Software, 
Investigation, Visualization, Writing – Original Draft. Philippe Renard: 
Conceptualization, Methodology, Writing – Review & Editing, Super
vision. Julien Straubhaar: Conceptualization, Methodology, Software. 

Code and data availability 

The code and data documenting test cases are available in the 
following repository: https://github.com/randlab/simplified-ds. For the 
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Appendix A. Additional information and results 

In this appendix, we provide some additional information and results related to the tests of the DSBC method.  

Table A.9 
Bottom left positions extracted images.  

x y 

1200 500 
800 500 
1700 600 
2600 800 
1900 900 
2200 700 
1000 900 
500 800 
2700 1200 
1500 1000   

Table A.10 
All the tested DS parameter sets in Case 2 with corresponding scores sorted according to MVE score.  

n f t MPE MVE time (s) 

8 0.005 0.002 1.76 0.64 1.2 
8 0.005 0.010 1.77 0.65 1.1 
8 0.005 0.005 1.80 0.67 1.1 
32 0.005 0.001 1.70 0.67 2.9 
16 0.005 0.005 1.77 0.68 1.2 
16 0.005 0.001 1.72 0.68 1.8 
8 0.005 0.001 1.79 0.69 1.3 
64 0.005 0.001 1.75 0.72 5.8 
16 0.005 0.010 1.84 0.73 1.1 
16 0.005 0.002 1.78 0.74 1.5 
32 0.005 0.002 1.79 0.77 2.1 
32 0.005 0.005 1.90 0.81 1.4 
64 0.005 0.002 1.85 0.82 3.8 
32 0.005 0.010 1.96 0.83 1.1 
64 0.005 0.005 2.04 0.97 1.9 
64 0.005 0.010 2.12 1.01 1.1   

Table A.11 
All the tested DSBC parameter sets in Case 2 with corresponding scores sorted according to MVE 
score.  

n f MPE MVE time (s) 

16 0.0005 1.58 0.58 2.2 
16 0.0002 1.59 0.58 2.2 
16 0.0010 1.58 0.59 2.9 
32 0.0010 1.61 0.61 3.2 
8 0.0010 1.66 0.61 2.6 
32 0.0005 1.62 0.63 2.2 
8 0.0002 1.68 0.65 2.2 
32 0.0002 1.65 0.65 2.1 
8 0.0001 1.71 0.66 2.3 
8 0.0005 1.69 0.66 2.0 
16 0.0001 1.61 0.66 2.3 
32 0.0001 1.68 0.67 2.3 
64 0.0002 1.82 0.73 2.2 
64 0.0010 1.76 0.73 4.1 
64 0.0005 1.78 0.73 2.7 
64 0.0001 1.88 0.78 2.5  
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