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Abstract The mapping of subsurface parameters and the quantification of spatial uncertainty requires
selecting adequate models and their parameters. Cross‐validation techniques have been widely used for
geostatistical model selection for continuous variables, but the situation is different for categorical variables.
In these cases, cross‐validation is seldom applied, and there is no clear consensus on which method to
employ. Therefore, this paper proposes a systematic framework for the cross‐validation of geostatistical
simulations of categorical variables such as geological facies. The method is based on K‐fold cross‐validation
combined with a proper scoring rule. It can be applied whenever an observation data set is available. At
each cross‐validation iteration, the training set becomes conditioning data for the tested geostatistical model,
and the ensemble of simulations is compared to true values. The proposed framework is generic. Its
application is illustrated with two examples using multiple‐point statistics simulations. In the first test case,
the aim is to identify a training image from a given data set. In the second test case, the aim is to identify the
parameters in a situation including nonstationarity for a coastal alluvial aquifer in the south of France.
Cross‐validation scores are used as metrics of model performance and quadratic scoring rule, zero‐one score,
and balanced linear score are compared. The study shows that the proposed fivefold stratified
cross‐validation with the quadratic scoring rule allows ranking the geostatistical models and helps to identify
the proper parameters.

1. Introduction

Whenmodeling heterogeneous media, the choice of a suitable geostatistical approach is often a challenge. In
the case of categorical fields (e.g., geological facies), many approaches are available, such as sequential indi-
cator simulations (SIS), T‐Progs, truncated gaussian and pluri‐gaussian simulations, multiple‐point statistics
(MPS), object‐based models, and genetic and pseudogenetic approaches (see, e.g., Chiles & Delfiner, 2012;
Pyrcz & Deutsch, 2014, for a broad presentation of the methods).

Moreover, results obtained by all estimation or simulationmethods depend on themodel and computational
parameters in a complex manner. A simple and powerful tool for statistical model selection is cross‐
validation: It consists of removing some data and comparing them to the predictions generated by themodel.
The first rigorous treatment of cross‐validation was developed by Stone (1974) and Geisser (1974) simulta-
neously. In the former work, the term “cross‐validation” appeared for the first time and was presented as
the leave‐one‐out technique, where one data point is left out at a time and compared to the prediction;
the procedure is then repeated for all points. Geisser (1975) generalized the idea of cross‐validation to leaving
out several points at a time. This variant of cross‐validation has been later also called “multifold” (e.g., by
Zhang, 1993), and currently some refer to it as “v‐fold” (see, e.g., Arlot & Celisse, 2010), but the most com-
monly used term is “K‐fold cross‐validation” (Hastie et al., 2009). It consists in partitioning the data into K
subsets, one subset used for testing at a time. Another simpler technique is random subsampling, also called
hold‐out sampling. In this method, a random subset of the data, the hold‐out test set, is removed from the
data set. The model is trained on the remaining part and its performance measured with the test set.

Currently, K‐fold cross‐validation is the technique most often used for model selection in classification pro-
blems. One of the early examples includes the work of Breiman et al. (1984). Breiman and Spector (1992)
showed that leave‐one‐out performs worse than fivefold for model selection, which is comparable to boot-
strap but less expensive computationally. Kohavi (1995) provided some more insight into different
cross‐validation techniques by comparing performance with the different number of folds, leave‐one‐out,
and bootstrap methods. He found that tenfold cross‐validation is a better choice even if the leave‐one‐out

©2020. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

RESEARCH ARTICLE
10.1029/2020EA001152

Key Points:
• Cross‐validation framework is

developed for testing simulations of
categorical variables

• The methodology is generic, and
competing models are based on a
single score

• It requires a set of observation points
and can be used with any spatial
simulation method

Correspondence to:
P. Juda,
przemyslaw.juda@unine.ch

Citation:
Juda, P., Renard, P., & Straubhaar, J.
(2020). A framework for the
cross‐validation of categorical
geostatistical simulations. Earth and
Space Science, 7, e2020EA001152.
https://doi.org/10.1029/2020EA001152

Received 24 FEB 2020
Accepted 28 JUN 2020
Accepted article online 15 JUL 2020

JUDA ET AL. 1 of 17

https://orcid.org/0000-0002-5037-5893
https://orcid.org/0000-0003-4504-435X
https://orcid.org/0000-0003-2718-4332
https://doi.org/10.1029/2020EA001152
https://doi.org/10.1029/2020EA001152
mailto:przemyslaw.juda@unine.ch
https://doi.org/10.1029/2020EA001152
http://publications.agu.org/journals/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020EA001152&domain=pdf&date_stamp=2020-08-17


technique is computationally available, with fivefold found performing nearly as good as tenfold. He also
suggested the use of stratified cross‐validation: Each of the subsets should have roughly the same proportion
of classes as the whole data set. Rodriguez et al. (2010) performed a study of the sensitivity of K‐fold and con-
cluded that fivefold or tenfold should be used. The goal of cross‐validation is to estimate prediction error on
unknown data (Hastie et al., 2009). That is why it repeats the train test split and averages the obtained errors:
It strives to measure prediction error when using the whole available data set. For measuring the error,
either a loss function is used, penalizing wrong predictions (the lower loss the better), or a scoring function
is used, rewarding correct predictions (the higher the better). Typically, a loss function compares a single
predicted value with a single true value and averages the mismatch over for multiple samples.

In a probabilistic framework, predictions take the form of predictive probability distributions, and therefore
they need appropriate scoring rules which assign a score based on the predictive distribution and single true
value (Gneiting & Raftery, 2007). Scoring rules assess two important features of probabilistic forecasts:
sharpness and calibration. Sharpness is related to the concentration of the predictive distribution and quan-
tifies if probabilities are spread to different values or concentrated on few values. Calibration describes sta-
tistical consistency between the distributions and observed values.

Proper and strictly proper scoring rules are an important class of the scoring rules. Let P(X) be the predictive
distribution and x the true (observed) value. We suppose that Q(X) is the true distribution from which sam-
ple x was drawn. A reward of a forecaster is given by the score S(P,x). Let us use S(P,Q) for expected value of
S(P,·) under Q. The strictly proper scoring rule is such that S(Q,Q)≥ S(P,Q) with equality if and only if P = Q.
A proper scoring rule satisfies S(Q,Q)≥ S(P,Q) for all P and Q. Proper scoring rules encourage honest predic-
tions: When the best estimate of P predicted by a forecaster isQ, the strategy to achieve the best score is to use
the distribution Q. The forecaster has no interest in modifying Q, as it will not result in a better score.

In geostatistics, the first applications of cross‐validationwerementioned byDavid (1976) andDelfiner (1976).
Although Dubrule (1983) generalized cross‐validation for kriging in the unique neighborhood case for large
data sets, the cross‐validation term has been used as a synonym of the leave‐one‐out technique. An interest-
ing alternative cross‐validation technique is the orthonormal residuals as introduced by Kitanidis (1991).
In this technique, the data are ordered, and starting with one point, the consecutive points are predicted
one by one and then added to the conditioning data set. The standardized residuals (residuals divided by
kriging variances) are computed at each step, and their statistics are investigated to validate the model.

Cross‐validation methods have been well established and extensively used for continuous variables and
variogram‐based methods (see, e.g., textbooks of Chiles & Delfiner, 2012; Cressie, 1993), but there is no simi-
lar consensus yet for the methods that should be used for categorical variables even if different applications
ofmodel testing techniques in the categorical case have been published (e.g., Allard et al., 2012;Madani et al.,
2018).

In the framework of multiple‐point statistics (MPS), the question of the training image (TI) selection and
parameter identification has been treated using a wide range of methods mainly designed to compare some
characteristics of the training image with the simulations. The question of the quality check of MPS simula-
tions is discussed in detail in Chapter 8 of Mariethoz and Caers (2015). For example, Boisvert et al. (2007)
compared the distribution of runs between the training image and the simulations. Pérez et al. (2014) focused
on the frequency of patterns found in the conditioning data and the training image. Tan et al. (2014) com-
pared the patterns of the training image with those of the simulations at different scales. Rongier et al.
(2016) quantified the mismatch of connectivity and geometrical metrics between the TI and the simulations.
Feng et al. (2017) used a minimal distance between the data event found in the TI and in the conditioning
data. Based on any of these metrics, one can derive automated parameter selectionmethods (Baninajar et al.,
2019; Dagasan et al., 2018). However, in real case applications the problem is not necessarily to reproduce
accurately the patterns found in a training image because this image is not known precisely and is itself a
parameter to be identified from the conditioning data. Al‐Mudhafar (2018) mentions that he uses leave‐
one‐out and split‐sample approaches for different MPS realizations of a fluvial environment. The methods
of Pérez et al. (2014) and Feng et al. (2017) are the only ones allowing to identify the training image.
However, they assume that the simulation is stationary, while this is rarely the case for practical applications
in which there are different trends, for example, in orientations, proportions of the facies, or even types of
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patterns. We, therefore, argue that a more realistic strategy is to apply a generic cross‐validation technique to
identify the training image and all the other parameters when using an MPS model.

To address the issues described above, this paper aims to present a generic methodology based on K‐fold
cross‐validation for the categorical case. It allows ranking spatial simulation methods given some observa-
tion points. The technique is based on the mean quadratic score (also called Brier score) and is especially
suitable for assessing probabilistic outcomes of a simulation method. The application of the methodology
is illustrated in an MPS framework, but the approach can be used with any categorical simulation method
honoring conditioning data. For demonstrating the performance of the method, we show a benchmark
example of training image selection and parameter selection (including the TI as one of the parameters)
in a realistic nonstationary case.

2. Cross‐Validation Methodology

This section presents a cross‐validationmethodology for geostatistical simulations. We suppose that with the
simulationmethod,N observations are available: They are pairs of (xn, yn), n = 1,…,N, where xn are vectors of
spatial coordinates of the nth observation and yn∈ {1,…,M} is the facies index observed at point xn.
M is the number of possible facies. Let us denote with K the set of all available observations, K¼ f
ðxn; ynÞ; n¼ 1…Ng.
In this section, scoring rules for probabilistic forecasts will be introduced. They allow quantifying the perfor-
mance of a stochastic method when resimulating known values. Then, K‐fold cross‐validation methodology
will be reviewed and adapted to spatial data sets.

2.1. Scoring Rules

Scoring rules aim to quantify the quality of a probabilistic forecast by comparing it with a single true value.
In our setting, repeating stochastic geostatistical simulations yields a probabilistic forecast of a geological
facies for each point in the simulation domain. Some points in the simulation domain can be compared with
the true, observed facies value. The observed facies value is a value from the set {1,…,M}, and the probabilistic
forecast is a probability vector p = (p1,…,pM), where each vector element pj, j = 1,…,M describes probabilities
of different facies.

We consider scoring rules S in the form of a collection of M functions:

S · ; ið Þ:PM ↦R; i¼ 1; …; M; (1)

where PM ¼ fp¼ ðp1; …; pMÞ:p1; …; pM ≥ 0; p1 þ …þpM ¼ 1g is the probability forecasts space where pj,
j = 1,…,M is the forecast probability of the outcome j and i is the index of the observed value (facies).

The scoring rules apply to a single observation, but in practice they are aggregated, and forecasts are ranked
using average scores:

sðSÞ ¼ 1
jSj

∑
s∈S

s; (2)

where S is the set of scores, and jSj is the cardinal of S.
It is also possible to compute the average class score or balanced mean score. Such a balanced score gener-
alizes average class accuracy (Kelleher et al., 2015), also called balanced accuracy (Brodersen et al., 2010),
used in machine learning for assessing a classifier's performance. It helps correct too optimistic estimates
of classifier performance given by average accuracy and is especially useful when dealing with imbalanced
data sets.

LetMbe the set of observed facies (classes) used to compute the set of scoresS. Now let us denoteSm,m ∈ M

, the subset of scores where the observed facies was m: Sm ¼ fs ∈ S; observed value is mg. The balanced
mean score gives the same importance to each facies in the data set and is defined as the arithmetic mean of
the average class scores, that is,
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ŝðS; MÞ ¼ 1
jMj

∑
m∈M

1
jSmj

∑
s∈Sm s: (3)

2.1.1. Quadratic Score
The quadratic (or Brier) score was first introduced as ameasure of quality for meteorological forecasts (Brier,
1950). It is a strictly proper scoring rule (Gneiting & Raftery, 2007) given by

Sðp; iÞ ¼− ∑
M

j ¼ 1
ðδij − pjÞ2 ¼ 2pi − ∑

M

j ¼ 1
p2j − 1;

with δij = 1 if i = j and δij = 0 otherwise. The quadratic score values are between −2 and 0, the higher the
better. An ideal forecaster, the one predicting the correct outcome with the probability of 1 would score 0.
The worst forecaster is the one attributing probability of 1 to a wrong class and scores −2. A better fore-
caster which makes fewer systematic errors, for example, spreads probability equally to wrong classes,
would have a better score than the one who prefers one wrong class to the others.

As Brier (1950) pointed out, the score encourages the forecaster to get the prediction exactly right. A sharp
and correct prediction would score close to 0. On the other hand, the forecaster should state unbiased esti-
mates of probability when not able to forecast perfectly. The strategy to predict the most frequent facies with
certainty is penalized in comparison to unbiased strategy (referred to as climatological in weather forecast-
ing), which just learns the probabilities from the training set. In this way, the quadratic score encourages
calibrated forecasts.
2.1.2. Zero‐One Score
Zero‐one score is a proper but not a strictly proper scoring rule (Gneiting & Raftery, 2007) given by

Sðp; iÞ ¼ 1= jmodesðpÞj if i ∈ modesðpÞ
0 otherwise;

�

wheremodesðpÞ ¼ fi:pi ¼maxj ¼ 1; …;Mpjg is the set of modes of p. Mean zero‐one score values are between

0 and 1 and are easily interpreted: The mean zero‐one score gives a fraction of observed points (geological
facies), which were given the highest probability by the simulation method.
2.1.3. Linear Score
A generalization of balanced accuracy for probabilistic forecasts is the balanced mean linear score with the
linear score given by

Sðp; iÞ ¼ pi:

This score simply attributes the probability of the true value. The advantage of the mean linear score is its
intuitive interpretation: It indicates how frequently simulations predict the correct value. It corresponds to
the proportion of the correct forecast and is often used in machine learning to compare several methods.
However, the linear score has some undesirable properties (Selten, 1998): It does not encourage fair predic-
tions and is neither proper nor strictly proper. While the balanced linear score is still not proper, it forces the
forecaster to try to represent rare facies (by increasing their share in the score) and remains easy to interpret.
2.1.4. Unbiased Classifier
It is often useful to compare scores of geostatistical simulations with scores of a simple reference method. As
alreadymentionedwhen discussing the quadratic score, in the field of weather forecasting, the climatological
forecaster serves often as a reference. It takes into account averaged historical values. In a broader sense, cli-
matological forecasts are calibrated forecasts but lack sharpness (Gneiting & Raftery, 2007). Such a reference
simulation method for spatial data would be the unbiased classifier, which looks at the proportions of facies
in the complete training set and uses them to estimate the vector of probabilities (which is constant over the
whole domain). The score obtained by the unbiased classifier will be referred to as the reference score.

If stratified K‐fold is used (explained in the next subsection), the reference balanced mean linear score is
equal to 1/M. It is another property of the balanced mean linear score that makes it intuitive. For the mean
quadratic score and mean zero‐one score, the reference score will not only depend on the number of differ-
ent facies M but also on the proportions of the facies in the data set.
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2.2. K‐Fold Cross‐Validation

K‐fold cross‐validation consists of dividing the data set K into K subsets of equal sizes and performing K
iterations: In each iteration, one subset is removed from K and becomes the validation set, while the com-
plementary set (rest of the data) forms the training set used as conditioning data for the geostatistical
method. To describe the split, we can define the partition function

κð · Þ:f1; …; Ng↦f1; …; Kg

that maps each point's index n to subset (iteration) index κ(n)∈{1,…,K}, n = 1,…,N. We define K disjoint
sets K1; …; KK :

Kk ¼ fðxn; ynÞ:κðnÞ ¼ k; n¼ 1; …; Ng; k¼ 1…K:

The union of these sets is the data set K. The partition should be made in such a way that jK1j ¼…¼ j
KK j. Since geological data sets are often imbalanced (e.g., proportions of facies are strongly different, rare
facies are present), it is important to use stratified cross‐validation. In stratified cross‐validation, the data
set is split into subsets that have the same proportion of classes (facies). This translates to the following
condition: jKm

1 j ¼…¼ jKm
K j, m = 1,…,M, where Km

k denotes the subset of Kk containing only samples
of category m:

Km
k ¼ fðxn; ynÞ:κðnÞ ¼ k; yn ¼m; n¼ 1; …; Ng; k¼ 1; …; K:

Moreover, if observation points are not spatially correlated, the split should be made in a random way, for
instance by shuffling (randomly reordering) the data first, as depicted in Figure 1.

The training data set is the complementary data set:

Kk ¼ fðxn; ynÞ:κðnÞ ≠ k; n¼ 1; …; Ng; k¼ 1; …; K;

and it becomes the conditioning data for the geostatistical method (Figure 2). For each iteration k = 1,…,K,

the geostatistical method produces probability vectors for each point in the validation setKk and usesKk

as conditioning data. Let f̂ be the geostatistical estimator f̂ ð · ; KkÞ:R3→PM mapping a coordinate vector

to a probability vector, given Kk as the conditioning set. We define the prediction pn at the nth point:

pn ¼ f̂ ðxn; KκðnÞÞ; n¼ 1; …; N : (4)

We note here that in the case of stochastic simulation methods, it will be necessary to repeat the simulations
at each iteration with the same conditioning data to obtain probabilities of categorical variables (geological
facies) at each validation point (Figure 3).

Then a scoring function S as defined in Equation 1 is applied to all points in the validation set, and the mean
score is computed either using mean (Equation 2) or balanced mean (Equation 3). The procedure is repeated
for each of the K iterations so that each subset becomes a validation set once. The mean cross‐validation
score CV is the average of the mean scores over all iterations. If standard mean is used,

CV ¼ 1
K

∑
K

k ¼ 1

1
jKkj

∑
ðx; yÞ ∈Kk

Sðf̂ ðx; KkÞ; yÞ;

and in the case of balanced mean it becomes

CV ¼ 1
K

∑
K

k ¼ 1

1
Mk

∑
Mk

m¼ 1
jKm

k j ≠ 0

1
jKm

k j
∑

ðx; yÞ ∈Km
k
Sðf̂ ðx; KkÞ; yÞ;

with Mk number of different facies in Kk .
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We can now summarize the K‐fold cross‐validation framework in the form of an algorithm. It takes the fol-
lowing as input: K—number of cross‐validation iterations; K—data set of pairs (x,y); S—scoring rule; bal-
ance—TRUE or FALSE indicating whether the balanced mean should be used; nr—number of stochastic
simulation runs needed to construct the probability vector p (Equation 4). The algorithm is as follows:

We used ŝ to refer to mean balanced score (Equation 3) and s to mean score (Equation 2). The cross‐validation
requires nr geostatistical model runs per iteration, thus Knr model runs in total.

3. Case Studies

The proposed cross‐validation methodology can be used with any stochastic simulation method, but it will
be tested on two MPS cases. Therefore, we also introduce the basic notions of MPS and the Direct Sampling

Figure 1. Example of shuffled fivefold stratified split of data (K) in a regular grid belonging to three classes (light blue, dark blue, and green).

Figure 2. The split of the example data (K) in a regular grid in the first cross‐validation iteration. The first subset (K1)
becomes the validation set, and the complementary data set (training set, K1) becomes the conditioning data for the
geostatistical model.
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algorithm. The two examples are as follows: a training image selection problem and a parameter selection
problem. Both are 2‐D categorical synthetic setups.

3.1. Direct Sampling

MPS algorithms use a conceptual geological model, provided as a training image (TI). The TI is an implicit
database of patterns and an example of how the simulated field should look like. Direct Sampling (Mariethoz
et al., 2010) is a point‐basedmethod and constructs fields by filling the regular simulation grid point by point.
It honors the conditioning data by simply putting them in the simulation grid, It can perform multivariate
simulations and supports transformations, such as field rotations or affinities (Mariethoz & Kelly, 2011).
In this work, DeeSse implementation of Direct Sampling is used (Straubhaar et al., 2020).

Direct Sampling is controlled by threemain parameters: number of nearest neighbors (n), distance threshold
(t), and maximal fraction scan (f). These parameters are crucial for the quality of simulated fields and the
computing time. Their tuning may be challenging, since the results depend on the complexity of the TI as
well as the interaction between the parameters and the patterns in a complicated manner (Meerschman
et al., 2013). The number of nearest neighbors limits how many pixels are included in a pattern during
the pattern search. Typical values range from several to 100 or more. As a rule of thumb, the more neighbors,
the better the quality of simulations but also the higher the computational cost. The distance threshold spe-
cifies the maximum acceptable dissimilarity between the conditioning pattern and patterns found in the TI.
It can range from 0 to 1. The value 0 means that only a perfect match is accepted, while with the value of 1,
every pattern is suitable. This parameter typically ranges from 0.01 to 0.1. The maximal scan fraction indi-
cates what fraction of the training image can be potentially scanned before the search is stopped (which
can happen if no sufficiently good match was found: In such a case the best candidate found so far is
accepted). The value of 1 means that the whole TI can be scanned, and a value close to 0 would mean that
the scan is stopped after scanning only one node. The scan fraction helps avoid the verbatim copy of the TI
and limit the computation time.

3.2. Benchmark Setup for Training Image Selection

The first example is a benchmark training image selection problem, which was first published by Pérez et al.
(2014) and also used in the work of Feng et al. (2017). In this setup, there are three training images with dif-
ferent features: ellipsoids, sine waves, and vertical stripes (Figure 4). Pérez et al. (2014) used the same train-
ing image generator tool to construct both the reference training images and synthetic realities. In our setup
a different approach for constructing synthetic realities was used. To allow more pattern variability, we first
performed one unconditional DeeSse simulation with each of the TI and the following parameters: n = 60,
t = 0.05, and f = 0.25 (Figure 5). Then, we sampled points from the synthetic realities with 10 different sam-
pling rates ranging from 0.0025 to 0.16. In this way, we created 30 synthetic observation sets: 3 TI and 10

Figure 3. Example of one cross‐validation iteration. The domain is simulated nr times with conditioning data (ensemble
of simulations is obtained). Each point in the validation set is compared with vector p constructed by aggregating
realizations in the ensemble.
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numbers of points ranging from 25 to 1,600. Figure 6 shows examples of such observation sets containing
1,600 points each. The sets corresponding to the different number of samples are sampled independently.

3.3. Roussillon Plain Synthetic Example

In the second example, an alluvial aquifer located in the Roussillon plain near Perpignan (France) is consid-
ered. It is a simplified 2‐D version of the model build by Dall'Alba et al. (2020). The area is modeled consider-
ing four geological facies: river bed, crevasse splays, flood plains, and alluvial fans. The position of the facies
in the basin is guided using a trend defined over the area (Figure 7a) as well as in the TI (Figure 8). The geo-
logical features are oriented according to the paleotopography of the region (Figure 7b). In order to test the
methodology with a known reference, a synthetic reality was constructed by performing an unconditional
DeeSse simulation with the following parameters: n = 50, f = 0.5, and t = 0.05. Then 50, 150, and 600 ran-
dom samples were drawn from the area to form three synthetic observation sets (Figure 9). These numbers
correspond to the number of pumping wells (50), wells with lithology information (150), and all wells (600)
in the area. The example consists in selecting the best DeeSse parameters (including the TI) for each of the
observations sets. Two candidate training images will be considered: the training image used to construct the
observation set (reference TI, “true TI”) and the analog training image (Figure 10).

4. Results

The higher the cross‐validation score, the better the predictive power of the method. In our setting, the
higher cross‐validation score points to better simulation parameters or a more compatible training image.
The results in this section were obtained using the stratified fivefold cross‐validation. Three scores were com-
pared for each run: quadratic (Brier) score, zero‐one score, and balanced linear score. Since at each
cross‐validation iteration, simulations are repeated to construct the probability vector p, the technique has

Figure 4. Three training images of type (a) ellipsoids, (b) waves, and (c) stripes used in the benchmark of training image selection (data from Pérez et al., 2014).

Figure 5. Three synthetic realities, each obtained by means of DeeSse simulation using training images (a, b, c).
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one hyperparameter, which was adjusted in the first test case: the number of realizations per experiment. It
defines how many times a simulation is repeated to approximate the probability distribution of facies. The
minimal number is 1, and it would correspond to a deterministic approach.

4.1. Training Image Selection

For each observation set, we performed the cross‐validation using the original DeeSse parameters (n = 60,
t = 0.05, and f = 0.25) and compared the cross‐validation scores for each of the TI.

First, to check the influence of the number of realizations per experiment, we fixed the sampling rate to 0.005
and thus used the data sets of the three types with 50 samples each. For each of the data sets, we varied the
number of realizations per iteration (ranging from 1 to 49) and recorded cross‐validation scores using each of
the Training Images a, b, and c and different scores: the mean quadratic score, the mean zero‐one score, and
themean balanced linear score (Figure 11). The figure also reports reference scores. Even for a small number
of realizations, the highest cross‐validation scores are attributed to the correct training image, except for the
Case b. For the quadratic scoring rule, a small number of realizations results in generally lower scores. This
is expected since a small number of realizations implies that the probability densities p are estimated from a
small sample and can result in a low score if predictions are incorrect. Adding more realizations gives more
samples to estimate more accurately the spread of the probability distribution and the uncertainty resulting
in a better quadratic score. In the case of the balanced linear score there is no such effect; in Case b we see an
inverse trend: Score values slightly decrease with the number of realizations. This is probably related to the
nature of the score, not sufficiently penalizing wrong predictions with high probabilities. The mean zero‐one

Figure 6. Example of synthetic observation sets obtained by sampling from each of the synthetic realities (a, b, c). Here each synthetic observation set contains
1,600 samples.

Figure 7. Area of the multivariate simulation with defined trend (a) and orientation (b).
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score seems to be the most sensitive to the number of realizations among the three scoring methods. It pro-
vides scores that are less robust than the other methods and fluctuates erratically when the number of rea-
lizations is modified. This is not surprising because it accounts only for the maximum probability value and
not for the complete probability density. Scores obtained using quadratic rule suggest that 30 realizations per
iteration are sufficient to obtain robust results. Therefore, we fixed this parameter to this value for the
remaining tests.

The Observation Sets a and c are characterized by a large difference between the best training image and the
other training images. The most compatible TI has also a significantly higher score than the reference score.
However, it does not apply to Case b. The mean quadratic score using the corresponding training image is
around the reference value. Similar behavior is seen in the case of the zero‐one score. The mean balanced
score gives more optimistic results, higher values than the reference. While the mean quadratic score and
the mean balanced linear score have correctly identified the most compatible training image in Case b,
the low values (compared to the reference score) and the small difference between the different TIs suggest
that the data set is too small for a reliable choice of the best training image.

Figure 8. The reference training image (a) with the defined trend (b). The training image contains four geological facies.

Figure 9. The synthetic reality obtained by DeeSse simulation using the reference TI and samples locations: (a) 50 wells, (b) 150 wells, and (c) 600 wells,
representing synthetic observation data sets.
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Second, with the fixed number of realizations, cross‐validation was run for each observation set. Figure 12
shows the mean quadratic scores, the mean zero‐one scores, and the mean balanced linear scores for differ-
ent numbers of samples in observation sets. The higher score corresponds to better TI compatibility. In all
cases, the original (“true”) training image was correctly identified by the mean quadratic score and the mean
balanced linear score except for one data set: that of Type b with 25 samples. The mean zero‐one score was
not able to correctly identify the most compatible TI in the case of Type b with 25 and 50 samples. These
results suggest that this sparse data set is not sufficient to identify the synthetic reality, and the mean quad-
ratic scores close to the reference seem to confirm this statement. The mean zero‐one and linear balanced
scores attributed much higher values to the training image c for this observation set.

For larger observation sets, all scores tend to improve irrespectively of the TI. It might seem surprising at first
but can be explained by the fact that all structures have some short‐range continuity. Direct Sampling (and
all interpolation or simulationmethods in general) respects this short‐range continuity. This results in better
predictions for points in the vicinity of observed data, and there are more such points in larger observation
sets and therefore the predictions are better.

4.2. Parameter Selection

To make the example closer to a real scenario, we consider the simulation parameters as unknown. The
cross‐validation scores were therefore computed with two candidate training images: the reference one
(Figure 8) and the analog one (Figure 10) and for all combinations of the Direct Sampling parameters in
Table 1. The number of realizations per iteration was fixed to 30. We note that the parameter set used to gen-
erate the synthetic reality is not present in the proposed set of combinations.

For each synthetic observation set (with 50, 150, and 600 points), cross‐validation scores were obtained using
three scoring methods: mean quadratic score, mean zero‐one score, and mean balanced linear score. Table 2
presents the best scores for each observation set, for each TI and for each scoring method. Corresponding
DeeSse parameters are also reported along with reference scores. The example DeeSse simulations with
the corresponding best parameters are shown in Figure 13 (reference TI) and Figure 14 (analog TI).

In the case of 50 wells, the reference and the analog TIs received similar scores, only slightly better than the
reference score (except for the optimistic balanced linear score). It suggests that this data set is too sparse to
let us reliably choose the best DeeSse parameters. In the case of 150 wells, all the scores attributed the higher
value to the reference training image. The mean quadratic score also is higher than in the case with 50 wells.
In the case of 600 wells, all scores point to the reference training image and are significantly better than the
reference score.

When looking at the example simulations with the reference training image with 50 and 150 wells
(Figure 13), we observe that the parameters found by using the quadratic score and the zero‐one rules result
in realizations that better represent crevasse splays than those found by using the balanced linear scores.

Figure 10. The analog training image (a) with its corresponding trend (b). The training image contains four geological
facies.
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In the case of simulations with the analog training image (Figure 14), the resulting simulations are charac-
terized by a poor reproduction of the structures of the TI. The parameters obtained from the cross‐validation
(a small scan fraction and a small number of neighbors) permit a high variability between the simulations
but sacrifice the quality of the TI reproduction. Indeed, honoring the conditioning data requires departing
from the TI which is not the one used to generate the synthetic reference.

These observations are confirmed by the analysis of Table 2. It shows that the best parameters for the simu-
lation with the analog (wrong) training image and with a large conditioning data set correspond to values
that typically provide simulations that do not reproduce precisely the patterns of the training image (e.g.,
the small number of neighbors). It results in more variability and uncertainty in the predictions which is
favored by the quadratic score.

Figure 11. Sensitivity study with respect to the number of realizations per fold for each of the different types of observation sets (a, b, c). Each of the samples
contained 50 observations. Mean quadratic score, mean zero‐one score, and mean balanced linear score were used.
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5. Discussion

The first test case shows that the methodology is able to identify correctly a training image if the amount of
conditioning data is sufficient. Moreover, using the second test case, we demonstrated that the proposed
methodology accounts properly for nonstationarity because it is only based on the conditioning data and
the simulated values. The main novelty of our approach is that it does not compare the patterns of the train-
ing image directly with the observed data. Often the uncertainty in the training image can be important, and
the best prediction can then require departing from the TI. This was already shown by Dagasan et al. (2018)
but in a specific configuration, where observations were spaced regularly on a cartesian grid. The method

Figure 12. Cross‐validation scores for synthetic observations with respect to the number of samples in the data set for each of the different types of observation
sets (a, b, c). Thirty realizations per fold were generated. Mean quadratic score, mean zero‐one score, and mean balanced linear score were used.
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proposed in this paper is more general. It not only tunes the parameters
with respect to the data and not the training image (as in Baninajar et al.,
2019) but also treats the pattern reproduction implicitly. Respecting the
patterns in the data and allowing sufficient variability is essential to pro-
duce correct predictions. Recent developments (Abdollahifard et al.,
2019) aim to quantify variability and pattern consistency but with respect
to the TI, not to the data. The advantage of our approach is that we no
longer need to compare realizations with the training image and define
quality indicators as in the works of Meerschman et al. (2013) or
Rongier et al. (2016). We can see that in the second test case when using

the reference training image, the simulations obtained with optimal parameters are visually comparable
to the synthetic reality, and patterns of the training image (like channels continuity) are well represented.

The computation time is easy to predict; the framework requires nrK model runs. For complex geological
models, this cost can be significant. In such cases, cross‐validation iterations should be parallelized, as they
are independent. It is also possible to parallelize the computation of realizations per iteration. To further
reduce computing time, a smaller number of realizations per iteration, nr, can be chosen. It might be possible
to rank models with nr in the range from 1 to 5, but for reliable results, at least 10 realizations per iteration
should be obtained. In this work, we used 30 realizations per fold, as models were relatively cheap to com-
pute. It is widely accepted that fivefold or tenfold approach are the best choice (Kohavi, 1995; Rodriguez
et al., 2010). It is possible that for sparse geological data sets otherK are preferable, but we found in this paper
that the fivefold approach performs reasonably well. Another way to reduce computing time is to simulate
only points in the validation set (e.g., avoid generating the entire field). In such a case, additional tests should
bemade to assess the robustness of themethod, since most of the geostatistical methods depend on the simu-
lation path. Moreover, if a method can directly estimate the probability vector, without repeating the simu-
lation, it will reduce computational time.

The same cross‐validation strategy could be applied to continuous variables; in that case, the scoring func-
tion needs to be adapted. The continuous ranked probability score (CRPS) is a proper scoring rule and a
counterpart of the quadratic (Brier) score for continuous variables (Gneiting et al., 2007). In the second test
case, we used the grid search to evaluate all parameter combinations to find the optimal ones. Since the

cross‐validation score is a single value, it can be used as an objective
function in any optimization algorithm, which could more efficiently
explore the parameter space to find the best parameters of a geostatistical
method.

6. Conclusion

In this paper, we propose a cross‐validation framework that can be
applied for ranking geostatistical stochastic simulation methods of catego-
rical variables when an observation data set is available. The method can
be used for various purposes, such as selecting the best parameter set, or
the best training image, even when the simulation is not stationary. It
can also be employed to compare the performances of different geostatis-
tical algorithms.

We used a stratified fivefold approach with shuffling; our observation
points were assumed to be not strongly correlated. In the case of strong
correlations (e.g., a data set with many consecutive points along wells),
it should be considered to group the points (e.g., per well) and then split
the whole groups into cross‐validation iterations.

The mean quadratic score should be used as the most reliable indicator of
method performance. The mean zero‐one score and balanced linear score
are more intuitive, but only the mean quadratic score can correctly assess
the sharpness and calibration of the model. It can also be compared to the
reference score obtained by using the marginal proportions of the facies as

Table 2
Best Cross‐Validation Scores and Corresponding DeeSse Parameters for
Each Observation Set (With Different Number of Wells), Each Candidate
TI, and Each Scoring Method

Wells
Scoring
Rule TI Score Reference t f n

50 quadratic reference −0.47 −0.50 0.05 0.200 40
50 quadratic analog −0.46 −0.50 0.05 0.200 40
50 zero‐one reference 0.72 0.68 0.05 0.400 40
50 zero‐one analog 0.72 0.68 0.05 0.020 40
50 linear reference 0.48 0.27 0.05 0.020 40
50 linear analog 0.48 0.27 0.05 0.005 40
150 quadratic reference −0.40 −0.51 0.05 0.400 40
150 quadratic analog −0.44 −0.51 0.01 0.400 20
150 zero‐one reference 0.73 0.67 0.05 0.800 40
150 zero‐one analog 0.71 0.67 0.01 0.050 10
150 linear reference 0.53 0.25 0.10 0.200 40
150 linear analog 0.48 0.25 0.10 0.020 5
600 quadratic reference −0.28 −0.58 0.01 0.400 20
600 quadratic analog −0.38 −0.58 0.01 0.050 10
600 zero‐one reference 0.82 0.60 0.01 0.400 20
600 zero‐one analog 0.74 0.60 0.01 0.050 10
600 linear reference 0.63 0.25 0.05 0.400 20
600 linear analog 0.55 0.25 0.01 0.050 10

Note. Corresponding best scores for optimal parameters are given.

Table 1
DeeSse Parameters, Which Were Tested in the Parameter Selection for the
Multivariate Simulation Example

Parameter Values

f 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.8
n 40, 20, 10, 5
t 0.01, 0.05, 0.1, 0.2

Note. For each combination of these parameters with both training
images a cross‐validation score was computed.
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a predictor for all locations without accounting for the spatial correlation. A score lower than this reference
indicates that the probabilities estimated by the model are biased.

The K‐fold cross‐validation framework is parsimonious in parameters. The number of realizations per itera-
tion, nr, controls the precision of results and the computation time; a value of nr between 10 and 30 is sug-
gested for generating a robust score.

The methodology can be applied to any stochastic simulation tool. While our examples used a regular
cartesian grid, the cross‐validation method can be applied to any grid: Only a set of spatial observations is
required and an interface with a conditional simulation tool which returns the simulated value at given
coordinates.

Figure 13. Example simulations with the reference TI, the best DeeSse parameters found with cross‐validation for each
observation set (50, 150, and 600 wells), and different scoring methods (quadratic score, zero‐one score, and balanced
linear score).
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Data Availability Statement

All input data, the results, and the code used to generate them are available in the repository (https://doi.
org/10.5281/zenodo.3901494).
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