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Abstract Solving inverse problems in a complex, geologically realistic, and discrete model space and
from a sparse set of observations is a very challenging task. Extensive exploration by Markov chain Monte
Carlo (McMC) methods often results in considerable computational efforts. Most optimization methods, on
the other hand, are limited to linear (continuous) model spaces and the minimization of an objective
function, what often proves to be insufficient. To overcome these problems, we propose a new ensemble-
based exploration scheme for geostatistical prior models generated by a multiple-point statistics (MPS) tool.
The principle of our method is to expand an existing set of models by using posterior facies information for
conditioning new MPS realizations. The algorithm is independent of the physical parametrization. It is tested
on a simple synthetic inverse problem. When compared to two existing McMC methods (iterative spatial
resampling (ISR) and Interrupted Markov chain Monte Carlo (IMcMC)), the required number of forward
model runs was divided by a factor of 8–12.

1. Introduction

Since the early days of groundwater modeling, inverse methods play a key role in hydrogeology [de Marsily
et al., 2000; Zhou et al., 2014]. They allow inferring the spatial distribution of aquifer parameters (e.g., hydraulic
conductivities) from indirect measurements (e.g., piezometric records or the concentration of natural tracers in
groundwater). Furthermore, they can also be used to constrain recharge rates or boundary conditions. Inverse
modeling is therefore a fundamental step in most quantitative studies since the identification of the parame-
ters is a prerequisite for any site-specific model. However, despite its importance and despite more than 50
years of research on this topic, solving the inverse problem still remains one of the hardest challenge. Ground-
water flow and transport are often controlled by physical structures that present a high degree of heterogenei-
ty. In particular, the underground may contain discrete structures with sharp contrasts of hydraulic properties,
such as channels, faults, karst conduits, or lenses. In this case, it can be essential to identify their location very
precisely [G�omez-Hern�andez and Wen, 1998; Feyen and Caers, 2006; Linde et al., 2015]. On the other hand, when
inverse methods are specifically designed to consider such geologically realistic and highly complex features,
their computational effort often becomes extremely demanding. This problem and the inherited limitations are
not specific to the field of hydrogeology, but are present in most geophysical applications [Linde et al., 2015].

The aim of this paper is to present a new method named PoPEx to overcome a part of those difficulties. But
before entering into the description of this method, let us introduce first the general context. The modeling
of any geophysical system often requires a complete mathematical description and full parametrization.
Solving those equations is referred to solving the forward problem. The solution exists and is unique if the
boundary conditions and initial conditions are known. However, in hydrogeology and geophysics, most
often the parameters are only known partially and an exhaustive knowledge of their values is lacking.
Inverse problems start from a sparse set of observations of the state variables and aim to find the underly-
ing set of physical parameter values. Neither existence nor uniqueness of a solution is guaranteed and
therefore, inverse problems are ill posed. The general theory presented by Mosegaard and Tarantola [2002]
and Tarantola [2005] characterizes the solution of an inverse problem as a conjunction of states of informa-
tion. More precisely, the solution is defined as a measure function over a given model space. If this posterior
measure function describes a probability distribution, their formulation reduces to the commonly used
Bayesian approach [e.g., Tarantola, 2005, section 1.5; Box and Tiao, 1973]. In this paper, we only consider
problems where both approaches are equivalent. In general, it is very hard or even impossible to find an
analytical expression for the solution of an inverse problem.
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A possibility for characterizing the posterior probability distribution is to perform an extensive exploration
of the model space. One family of pseudorandom exploration schemes is formed by the Markov chain Mon-
te Carlo (McMC) methods. The mathematical theory for McMC methods is widely developed and it can be
shown that they are asymptotically ergodic [Robert and Casella, 2004; Bena€ım and Karoui, 2005; Winkler,
2012]. Although they are extensively investigated [Oliver et al., 1997; Fu and G�omez-Hern�andez, 2008; Hansen
et al., 2008; Tonkin and Doherty, 2009; Mariethoz et al., 2010a; Hansen et al., 2012; Valakas and Modis, 2016],
it is very challenging to design efficient McMC schemes. In short, they are general but their applicability is
often drastically restricted by the computational costs. Among the alternative families for solving inverse
problems, a very prominent one uses gradient-based optimization of an objective function that may be for-
mulated within a Maximum Likelihood (ML) framework. This family of approaches is often used for address-
ing groundwater [Doherty, 2003; Alcolea et al., 2006; Zhou et al., 2011; Li et al., 2012; Xu et al., 2013] or
petroleum engineering problems [Gu and Oliver, 2007; Chen and Oliver, 2013; Melnikova et al., 2015]. These
methods are very efficient to generate models that match observed data [Chen and Zhang, 2006; Zhou
et al., 2011; Xu et al., 2013]. Unfortunately, they require a linear (continuous) model space. Furthermore, the
solution strongly depends on the model parametrization [Mosegaard and Tarantola, 2002; Tarantola, 2005].
This becomes most important whenever a system under study is described by a Jeffrey parametrization. Jef-
frey’s parameters are strictly positive physical quantities, as, for example, permeability, speed, and frequen-
cy. They are equivalent to their inverses, i.e., resistivity, slowness, and period. It is important that the choice
of a specific parametrization for a given inverse problem (e.g., permeability or resistivity, speed or slowness,
and frequency or period) must not affect the solution. For a detailed discussion of Jeffrey’s parameters see
Mosegaard and Tarantola [2002].

In this paper, we propose a new ensemble-based method, named posterior population expansion (PoPEx)
that explores a geologically realistic discrete model space and accounts for an efficient and accurate solu-
tion of inverse problems. The discrete random fields are obtained by a multiple-point statistics (MPS) tech-
nique. In general, MPS stands for a pixel-based [Strebelle, 2002; Mariethoz et al., 2010b; Straubhaar et al.,
2011] or pattern-based [Zhang et al., 2006; Arpat and Caers, 2007; Honarkhah and Caers, 2010; Hezarkhani
and Sahimi, 2012; Mahmud et al., 2014] modeling of complex spatial structures derived from a training
image (TI). It allows to generate geological patterns that honor imposed data information. The main idea of
PoPEx is to expand iteratively an existing set of geological models by using randomly sampled posterior
pattern information. In each iteration, the ensemble of models is used to learn, in a statistical sense, the rela-
tion between model parameters and state variables. From this point of view, it is inspired by the ensemble
Kalman filter (EnKF) [Burgers et al., 1998; Evensen, 2003, 2006; Chen and Zhang, 2006] but the method neither
computes covariances nor any derivatives of some operator. Both computations can be problematic when
working with discrete model parameters [Linde et al., 2015]. PoPEx is independent of any parametrization
and applicable with any conditional geostatistical simulation tool. It is tested in this paper on a synthetic
groundwater flow problem that allows the comparison with a proper reference solution. Comparing the
performance to the one of the McMC schemes presented in Mariethoz et al. [2010a], we show that our algo-
rithm provides a slightly better representation of the posterior information while reducing the number of
forward model runs by a factor of 8–12. As a counterpart, the property of ergodicity is lost, which means
that some region of the model space may not be sampled. Additional tests show that this becomes most
important whenever the real spatial structures are poorly captured by the TI.

The paper is organized as follows. Section 2 recalls the formulation of an inverse problem and presents the
methodology of our algorithm. An illustrative example is presented in section 3. It aims to highlight the
workflow and to show the evolution of the posterior ensemble for the PoPEx algorithm. Then, we empirical-
ly analyze the impact of the input parameters and compare the performance of the method with two exist-
ing McMC schemes. Section 4 finally discusses the advantages and limitations of the methodology and
provides some conclusions.

2. Methodology

In this section, we present the new ensemble-based method, that explores a complex geological model
space and accounts for an efficient and accurate characterization of a given posterior density function. Let
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us start with some definitions of the terminologies used in this work (section 2.1), before we explain the
general concepts (section 2.2) and the details of the new algorithm (section 2.3).

2.1. Inverse Problem Formulation
Solving an inverse problem usually aims to infer information from a given set of observations d5fd1; . . . ;

dmg called data. Usually, these data represent measurements of state variables such as hydraulic heads, pro-
duction data, contaminant concentration, and may include some measurement errors. Mosegaard and
Tarantola [2002] and Tarantola [2005] formulate the inverse problem as the characterization of the posterior
probability distribution

rMðmÞ5c qMðmÞLðmÞ; (1)

where

c is a normalization constant;

qMð�Þ denotes the prior probability distribution;

Lð�Þ is the likelihood function.

In this context, the model m5fm1; . . . ;mng is a finite set of parameters that fully describes the physical sys-
tem under study. Usually the choice of a finite parametrization requires a ‘‘simplification of reality.’’ Such
parameters can cover boundary conditions, hydraulic conductivity (or resistivity) fields, specific storage,
recharge time series, etc. Each model m is a point in a measurable model spaceM. The conceptual choice
of the parameters mi corresponds to the definition of a parametrization ofM. It is clear that this parametri-
zation (i.e., the coordinate system) is not necessarily unique. By definition, the prior probability distribution
qM in equation (1) describes any available information on the model parameters, that is independent of the
observations d. The likelihood function, on the other hand, describes the correlations between model
parameters and data. It is understood as an indicator of how good a model explains the data and usually
involves physical theories that allow to predict the outcome of physical experiments. We assume that the
observable set of data corresponding to a model m can be predicted through the so called forward opera-
tor d5gðmÞ5fg1ðmÞ; . . . ; gmðmÞg. It is possible that the data set d5fd1; . . . ; dmg includes direct measure-
ments of some model parameters in m5fm1; . . . ;mng. Although, the proposed method in this paper does
not include this kind of data, it is straightforward to extend it to cases where such observations are avail-
able. The remaining components can be predicted by solving a set of partial differential equations (describ-
ing for example groundwater flow) that is fully defined through the model parameters in m. Therefore, the
components gi usually include numerical schemes for the solution of differential problems. These numerical
approximations together with the finite parametrization of the system can be a critical source of error.
Moreover, due to imperfect measuring devices, the data set itself suffers from uncertainties. It is important
that the likelihood function L in equation (1) encloses both modeling uncertainties and observational uncer-
tainties. Since the PoPEx algorithm is presented for the first time, we consider a case where the modeling
uncertainties are negligible and assume the space of observable data to be linear such that the likelihood
function becomes [Tarantola, 2005]:

LðmÞ5qDðgðmÞÞ: (2)

The probability distribution qD describes any uncertainties and error sources resulting from the act of
observing d5fd1; . . . ; dmg.

2.2. General Concepts
This section provides an overview of the general concepts and assumptions used for defining our algorithm.
We assume in this paper that the model m describes spatial petrophysical properties and can be modeled
by a pixel-based MPS algorithm. However, the proposed algorithm is not restricted to MPS and can be
applied with many other types of geostatistical models. Pixel-based algorithms require a spatial division of
the computational domain into a finite number of n 2 N homogeneous grid elements (pixels) within which
the petrophysical properties are constant. Each pixel j 2 f1; . . . ; ng will be referred to by its center position
xj . A model m5fm1; . . . ;mng is a set of n parameters where mj denotes a constant petrophysical property
associated to the element xj . The set of all pixels is called the simulation grid. The MPS algorithm allows to
generate realizations of a random variable Z5ZðxjÞ by reproducing spatial patterns contained in a training
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image. It is possible to condition MPS realizations at a given set of positions fxi1 ; . . . ; xiNg to a set of values
fz1; . . . ; zNg such that Zðxij Þ5zj for all j51; . . . ;N. In the literature, the collection HD5fðxi1 ; z1Þ ; . . . ; ðxiN ; zNÞg
is commonly called hard conditioning data.

In this work, we assume that the random variable Z is discrete, i.e., the set of possible values for ZðxjÞ is con-
tained in a finite subset of real values F5ff1; . . . ; fsg. The values fk for k51; . . . ; s are called facies values or
simply facies. Realizations of the random variable Z are linked to the model parameters such that there is a
bijection between the model spaceM and the set of all possible MPS realizations. For j51; . . . ; n, the mod-
el parameter mj denotes then the petrophysical property that corresponds to the facies value of Z at xj .
Figure 1 shows the training image of Strebelle [2002] defined on a grid of 250 3 250 pixels and two possible
MPS realizations for a grid of 100 3 100 pixels. The facies values are represented by two different colors
(blue for f1 and red for f2) and can be associated to two different values of some petrophysical properties
(e.g., permeability, specific storage, and porosity). If, for example, we want to use this two-facies setup
for modeling spatial groundwater permeability maps, we choose a set of two different permeability values
fK1; K2g and define the one-to-one correspondence

Ki $ fi; i51; 2:

Thanks to this bijection between model parameters and facies values, the petrophysical model m is unique-
ly defined by the facies map of an MPS realization and vice versa. It is for this reason that in the following,
we will interchangeably use the terminologies ‘‘realization’’ and ‘‘model’’ by referring to their spatial map
defined in the simulation grid. The concept of a pixel-based indicator function for each facies value will be
important. Thus, for any model m, we define the characteristic indicator function 1fi at each pixel xj such
that

1fi ðm; xjÞ5
1 if mj $ fi

0 otherwise :

(
(3)

Henceforth, the explicit notation of the pixel position xj will be omitted. Therefore, the indicator functions
in equation (3) and any inherited quantity can be interpreted as maps that are defined on the simulation
grid and are constant within each pixel.

The main idea of the posterior population expansion (PoPEx) algorithm is to expand an existing set of mod-
els Mk5fm1; . . . ;mkg by using facies information that is weighted by the posterior measure function in
equation (1). For each model mj in Mk , we compute the corresponding posterior information rMðmjÞ and
form the set ~R

k
5f~rMðm1Þ; . . . ; ~rMðmkÞg where

Figure 1. Training image for the MPS simulations together with two different realizations.
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~rMðmjÞ5
rMðmjÞXk

r51
rMðmrÞ

; j51; . . . ; k

are the normalized values of the posterior information. For a facies value fi, we define its posterior probabili-
ty map pk

i by

pk
i 5
Xk

j51

1fi ðmjÞ~rMðmjÞ: (4)

Similarly, for each facies type fi, we suppose to know prior probability maps qi. Usually it is possible to
approximate the prior probability maps from a sufficiently large number of unconditioned (i.e., without any
hard-conditioning data) and independent MPS realizations. The key is then to compare the two probability
distributions Pk5fpk

1; . . . ; pk
sg and Q5fq1; . . . ; qsg by means of the Kullback-Leibler divergence (KLD) [Kull-

back and Leibler, 1951], denoted by DðPk jjQÞ and reading

DðPk jjQÞ5
Xs

i51

pk
i log

pk
i

qi

� �
: (5)

Remember that pk
i , qi, and therefore DðPk jjQÞ are maps defined on each pixel in the simulation grid. Rough-

ly speaking, the Kullback-Leibler divergence of Pk from Q provides a measure of how different or ‘‘surpris-
ing’’ the posterior facies probabilities in Pk are with respect to the prior probabilities in Q. The idea is then to
deduce a set of NC hard conditioning data from which one new MPS realization will be generated. First, the
conditioning locations xij are sampled from a probability density function that is proportional to the KLD
map DðPk jjQÞ. Then, for each location, we sample a conditioning value zj from the restricted posterior prob-
abilities pk

i ðxij Þ. After the generation of a new realization conditioned to the collection
HD5fðxi1 ; z1Þ ; . . . ; ðxiN ; zNÞg, it is added to the existing set of modelsMk and the posterior measure rM is
computed. Then, the entire procedure is restarted. An illustrative example of the workflow is presented in
section 3.4 in Figure 3.

2.3. Posterior Population Expansion (PoPEx)
The approach described above assumes to know an existing set of models fm1; . . . ;mkg. Therefore, at the
very beginning, we have to generate at least one initial realization. But it is clear that it can be advanta-
geous to start from a larger number of NI > 1 unconditioned and independent initial models. We will see in
section 3 that not only NI but also the number of conditioning data NC play an important role. Both parame-
ters are predefined by the user and stay unchanged during the whole procedure.

Let us now define the PoPEx algorithm:

1: Input: NI 2 Nnf0g and NC 2 N

2: Initialization: Generate NI unconditioned models
3: Set: k5NI and Mk5fm1; . . . ;mkg
4: Compute: ~R

k
, Pk and DðPk jjQÞ

5: while stopping condition 5= false do
6: Choose NC conditioning data pairs from Pk and DðPk jjQÞ
7: Generate one conditioned realization mk11

8: Set Mk115Mk [ fmk11g
9: Compute ~R

k11
; Pk11 and DðPk11jjQÞ

10: Update stopping condition
11: k5k11
12: end while

Note that ~R
k

is the normalized posterior information inMk and therefore, this algorithm is independent of
the normalization constant c in equation (1). For this reason, the posterior information rMðmÞ can be com-
puted by simply setting c 5 1. Furthermore, the Kullback-Leibler divergence in equation (5) is well defined
for qi > 0 for all i51; . . . ; s. If there is i 2 f1; . . . ; sg and a pixel xj such that qiðxjÞ50, then the prior measure
of the set fm : Zðm; xjÞ5fig is equal to zero and therefore pk

i ðxjÞ must vanish as well. In this case, the
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corresponding terms in equation (5) are put to zero. For an illustration of the workflow applied to the syn-
thetic problem introduced in the section 3, consult Figure 3.

Let us look in more detail at the most important steps. The two main inputs of this algorithm are the
number of unconditioned initial models NI and the number of conditioning data NC. [2] Initially, NI uncon-
ditioned and independent models are generated. Note that at this point we suppose to know the prior
facies probability maps in Q5fq1; . . . ; qsg. If such maps are unavailable and NI is large enough, they may
be approximated from the initial set of unconditioned realizations. Then, with the posterior information of
each model, we compute the probability map Pk and update the corresponding Kullback-Leibler diver-
gence DðPk jjQÞ (cf. equations (4) and (5)). [6] The central point of the PoPEx algorithm is the way of fixing
a hard-conditioning data set HD5f ðxi1 ; z1Þ ; . . . ; ðxiNC

; zNC Þ g that guides the generation of a new model.
For this purpose, we choose the locations xij randomly from a probability distribution proportional to
DðPk jjQÞ. This preferentially selects conditioning locations where the posterior probability Pk has a high
information content with respect to the prior probability Q. The values zj that are imposed at xij are then
picked according to the probability values of Pk at xij . Large values of the KLD map DðPk jjQÞ show loca-
tions where the approximated posterior facies distribution diverges a lot from its prior counterpart. By
imposing facies values within such pixels, we expect to increase the probability of generating models
with high posterior measure. In steps [8] and [9], the model space Mk is expanded to Mk11 before
the posterior information set ~R

k11
, the facies probability map Pk11 and the Kullback-Leibler divergence

DðPk11jjQÞ are computed. [10] There are different possible stopping criteria, each of which has its justifi-
cations and can be chosen according to the needs. As the forward operator, and therefore the computa-
tion of the posterior information, can be very expensive in terms of computational cost, we may want
to restrict the runtime of the algorithm. Thus, an obvious stopping condition is to set a maximum size
of the final population. Sometimes, one may want to use an acceptance/rejection criterion based on the
value of the likelihood function LðmÞ to generate a fixed number of accepted models. A third criterion
is the convergence of the posterior facies probability distribution map Pk. In this case, at every step
k > NI , the distribution Pk is compared to Pk2j , for a j � 1, and the algorithm is stopped as soon as the
difference is small enough.

A very important feature of this algorithm is its independence of any physical parametrization. The only ran-
dom variables involved are characteristic indicator functions, and therefore, the algorithm is independent of
the facies values and all the physical parameters they are associated with. As every new model is depending
on all the previous ones, however, there is a risk of exploring only a restricted subregion of the model space.
But, we can increase the research area in the model space by increasing the number of unconditioned initial
realizations and/or lower the number of conditioning data. An empirical analysis of the choice of NI and NC

is provided in the section 3.4.

3. Synthetic Case Study

As this paper introduces the PoPEx algorithm for the first time, it is a prerequisite to test it under simple and
well-defined conditions where a reference solutions can be computed. This is why we borrowed the two-
dimensional groundwater flow problem from Mariethoz et al. [2010a]. This small problem is briefly explained
in the following section.

3.1. Problem Setting
The mathematical model of a two-dimensional (stationary) groundwater flow problem is described by the
Poisson equation:

2divðkrhÞ5f : (6)

The solution h : D! R is usually defined in a bounded, open, and Lipschitz domain D � R2, and
describes the hydraulic head level of the groundwater. Together with reasonable boundary conditions,
the problem (6) is well posed. As in Mariethoz et al. [2010a], the spatial models were defined by channel-
ized structures simulated from the training image in Figure 1a. The two facies types represent uniform
transmissivity (k) values of 1022 (m2/s) (channel) and 1024 (m2/s) (matrix), respectively. For modeling the
spatial structures, we used the DeeSse implementation [Straubhaar, 2011] of the MPS direct sampling (DS)
method [Mariethoz et al., 2010b]. The realizations were generated on a two-dimensional simulation grid
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containing 100 by 100 pixels and rep-
resenting a 100 m by 100 m computa-
tional domain. The model space was
set to be the space of all possible
models generated by the DS method.
On the upper and lower boundaries,
no-flow boundary conditions applied,
while fixed head values of 1 m (left)
and 0 m (right) were imposed on the
lateral boundary parts. One realization
with an arbitrary seed has been gener-
ated and considered to be the refer-
ence domain (cf. Figure 2a). A pumping

well extracting 3 L/s was placed in the center of the domain (square), while at nine locations (crosses), we
extracted the hydraulic head values of the numerical reference solution (cf. Figure 2b); these measurements
of the groundwater level were the only data constraints used for conditioning the inverse problem. We set
the prior distribution qM in equation (1) to be uniform. As in this case, the prior information is constant for
any model m, the PoPEx algorithm only depends on the value of the likelihood function L. Using again the
fact that the posterior information in equation (1) can be multiplied by any positive constant without chang-
ing the behavior of the algorithm, the likelihood function can be rewritten such that

LðmÞ5exp 2
RMSEðmÞ2

2r2

 !
; (7)

where RMSEðmÞ denotes the root-mean-square error between the predictions and the reference values.
The standard deviation is set to r50:05 m, what reasonably matches measurement errors met in practice.

3.2. Illustration of the PoPEx Algorithm
Before starting the analysis of the algorithm let us use the previously defined problem for illustrating the
key steps of our algorithm. We fix the input parameters to NI 5 200 and NC 5 15. Figure 3 shows the evolu-
tion of the different maps. It is separated into multiple parts. The two figures in the top row are the fixed pri-
or probabilities for each facies type. For this synthetic example, the maps q1 and q2 take constant values of
0.72 and 0.28, respectively. Then, the first two columns of the matrix on the bottom illustrate the posterior
probability maps p1 and p2 at the iterations k 5 200, 500, and 2000. The third column is the normalized
Kullback-Leibler divergence ~DðPk jjQÞ. During each iteration, we use the probability density ~DðPk jjQÞ for
sampling NC hard conditioning locations. Red dots are used to indicate the locations that have been picked
at iteration k 5 200, 500, and 2000, respectively. After having fixed the conditioning locations fxi1 ; . . . ; xiNC

g,
conditioning facies values zj are sampled from the localized facies probability maps Pkðxij Þ5fpk

1ðxij Þ;
pk

2ðxij Þg, for j51; . . . ;NC . The last column shows the new model mk11 that was generated from the hard-
conditioning data set fðxi1 ; z1Þ; . . . ; xiNC

; zNCg (indicated by the black dots). Note that, due to the definition
of the prior probability maps, high probability values in the map p2 contain more information in the sense
that they are more surprising with respect to the prior probability distribution than high probability values
in p1. As mentioned earlier, ~DðPk jjQÞ can be interpreted as a measure of information contained in Pk with
respect to Q.

3.3. Description of the Test Procedures
The synthetic test problem described above has been chosen because it allows to compute an empirical ref-
erence set of 300,000 models that represents a good approximation of the entire model space. From this
large set of models, any quantity of interest can be computed and will be considered as the exact solution.
If, for instance, we are interested in the true posterior expectation of a quantity represented by a function
f ðmÞ, we use this set of models and compute the reference solution such that

X300;000

i51

f ðmiÞ~rMðmiÞ: (8)

Figure 2. Reference domain Ref. 1 and the hydraulic head values.
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Again, ~rM denotes the normalized posterior information. For an evaluation of the PoPEx algorithm, we formu-
lated four different test procedures. Before presenting some results let us explain each experiment in detail.
3.3.1. Test I: Influence of the Input Parameters NI and NC

The goal of this first test is to empirically analyze the influence of the number of unconstrained initial mod-
els NI and the number of conditioning data NC. We were interested in the diversity of the generated models
and therefore on how well the algorithm is able to explore the model space. Equation (8) together with
equation (3) are used for computing the reference posterior probability maps Pref5fpref

1 ; pref
2 g. Then, for dif-

ferent numbers NI and NC, we run the PoPEx algorithm until 4000 conditioned realizations have been gener-
ated. As a measure of the exploration capability, we computed the mean value of the KLD map DðPk jjPrefÞ.
In other words, if this mean value is low, the posterior facies probabilities in Pk are close to the reference
ones and therefore, the algorithm reasonably sampled the most ‘‘important subregions’’ of the model space.
In this context, ‘‘important’’ stands for areas where the posterior measure rM is sufficiently large. We were
mostly interested in the regions explored by the conditioned realizations (i.e., for k > NI), and therefore, Pk

was computed without the NI initial models.

The next two tests are dedicated to compare the PoPEx algorithm with two existing Markov Chain Monte
Carlo (McMC) schemes.

Figure 3. Workflow of the PoPEx algorithm applied to a synthetic two-facies problem. The prior and posterior facies probability maps
together with the resulting Kullback-Leibler divergence map ~DðPk11jjQÞ are shown for the iterations k 5 200, 500, and 2000. The last col-
umn to the right shows the new realization that has been conditioned at the locations indicated by dots.
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3.3.2. Test II: Comparing the Exploration Capabilities
There are different McMC techniques available for solving inverse problems in a geostatistical prior model
space. The ones presented in Mariethoz et al. [2010a] were entitled iterative spatial resampling (ISR) and
interrupted Markov chain Monte Carlo (IMcMC). Central for both algorithms is the definition of a likelihood
function L as in equation (7). The ISR method uses an MPS technique for the generation of a chain of models
ðm1; . . . ;mn; . . .Þ. At every instance n> 0, it extracts facies values from mn and uses them as hard condition-
ing data for the generation of a candidate model m�. This model is then accepted with a probability of
min f1; Lðm�Þ=LðmnÞg. Conversely, the IMcMC method accepts a new model whenever Lðm�Þ � LðmnÞ and
interrupts and restarts the chain according to a suitable stopping condition. For both McMC methods, Mar-
iethoz et al. [2010a] fixed a number of 100 conditioning points. As suggested, the burn in period in the ISR
method was set to be the first 200 accepted realizations, while the IMcMC chain was interrupted whenever

RMSEðmiÞ � 0:07 m: (9)

This corresponds to the 95% confidence interval of the data distribution defined by nine independent
observations with Gaussian errors.

For comparing the exploring skills, we considered the first 4000 realizations generated by ISR after the burn
in time. There is no particular initial stage in the IMcMC method, so we took all the realizations into account.
As in the first test, for k51; . . . ; 4000 and for each algorithm, we form the weighted facies probability map
Pk and compare it to Pref by the KLD map DðPk jjPrefÞ. Again, a low mean value of the latter is interpreted as
a good exploration of the important regions in the model space.
3.3.3. Test III: Comparing the Efficiency and Data Predictions
Depending on the computational cost of a prediction, it can be very expensive to compute the correspond-
ing random variable for a large number of models. Therefore, we often evaluate it only on a representative
subset of models. Using Markov chain Monte Carlo methods, one usually fixes the size of a characteristic
(representative) set and stops the algorithm as soon as enough models have been accepted. For analyzing
the efficiencies of the methods, we generated a representative set of 200 models satisfying the condition in
equation (9) and compared the total numbers of forward simulations needed.

Groundwater production problems often involve the prediction of the capture zone within a given time
T> 0. Therefore, we defined the random variable ZT 5ZT ðm; xjÞ to be a characteristic indicator function
such that ZT ðm; xjÞ51, if a water particle starting at xj reached the pumping well in a time no longer than T,
and ZT ðm; xjÞ50 otherwise. The posterior pumping area was defined as

AT 5
X

m

ZT ðmÞ~rMðmÞ:

For T 5 20 h and based on 300,000 unconditioned realizations, we computed Aref
T and compared it to the

posterior pumping areas computed for the representative sets of 200 models satisfying equation (9).

The last test aims to discover the applicability and some limitations of the method.
3.3.4. Test IV: PoPEx Solutions for Different Reference Domains
The performance of an inverse method can depend very much on the unknown geology. Therefore, it is
important to run the algorithm with data sets (observations) coming from different reference domains. To
this end, we generated four additional reference maps and kept the differential problem and the observa-
tion locations unchanged. The performances are mainly compared by the number of forward simulations
needed in order to generate a representative set of 200 models satisfying equation (9).

3.4. Results
This section presents the results obtained from the four tests described above. Note that the results have
been obtained by running each experiment 5 times, starting from five different initial sets. We then show
their average performances.
3.4.1. Test I
When we fix the number of conditioning data NC and vary the number of unconstrained initial models
NI 2 f100; 200; 500; 1000g, we clearly observe a better examination of the model space for higher values of
NI (cf. Figures 4a and 4b). Comparing the two figures we conclude also that in general we had better perfor-
mance for the weaker conditioning (i.e., for NC 5 30). This becomes even clearer when considering Figures
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4c and 4d, where the number of unconditioned initial models NI was fixed and we changed the number of
conditioning data NC 2 f15; 30; 45; 60g. However, a higher number of conditioning points resulted in a
faster convergence in the beginning and the posterior probability maps became stationary after a smaller
number of iterations. We finally suggest that for a fast convergence we should not choose less than 30 con-
ditioning points, but in order to reasonably examine the model space, we should start with at least 200
unconditioned initial realizations.
3.4.2. Test II
According to the previous test, a reasonable choice for the PoPEx algorithm was NC 5 30 and
NI 2 f200; 500g. The PoPEx and the ISR methods showed very similar behavior in approximating Pref, while
the IMcMC took slightly more time to converge to a stationary level (Figure 5). Although all the interrupted
chains in the IMcMC method are independent of each other, this method was not able to reach the approxi-
mation level of the PoPEx algorithm. When we computed the reference posterior probability of the channel
facies (pref

2 ) and compared it to the maps pk
2 obtained after 4000 simulations, we observed significant differ-

ences (Figure 6). The sharp contrasts of the reference map (Figure 6a) were almost entirely missing in the
IMcMC map (Figure 6d). The ISR picture (Figure 6c)
mainly shows three parallel downward structures. The
lesser contrasted small bifurcations in the right part of
the figure could only be discovered by the PoPEx algo-
rithm (NI 5 500, cf. Figure 6b). Therefore, although the
differences in Figure 5 seemed to be small, it was easy
to see that the PoPEx algorithm clearly generated the
best approximation of the reference facies probability
map.
3.4.3. Test III
Setting again NC 5 30, we observe that in average the
two PoPEx algorithms only needed 1705 (NI 5 500) resp.
1935 (NI 5 200) simulations, while the McMC methods
required 15,698 (ISR) and 21,052 (IMcMC) forward

Figure 4. Approximation of the posterior facies probability map for (top) variable NC and fixed NI, resp. and (bottom) fixed NI and variable
NC.

Figure 5. KLD convergence during 4000 realizations for
two different settings of the PoPEx algorithm compared to
ISR and IMcMC.
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simulations, respectively (cf. Figure 7). The generation of unconditioned realizations can be interpreted as a
simple rejection sampler and required 42,136 simulations. As suggested by Mariethoz et al. [2010a] in the
Markov chains, we only considered realizations that are at a distance of at least 12 accepted models. The
results in this section showed that for generating a slightly better approximation of the posterior facies
probabilities (cf. Figures 5 and 6), the PoPEx algorithms were roughly 8–9 (resp. 11–12) times more efficient
than ISR (resp. IMcMC) and more than 20 times faster than rejection sampling (cf. Figure 7). The overall
acceptance rates of the PoPEx algorithms were 1 : 8:5 (NI 5 500) resp. 1 : 9:7 (NI 5 200), while they reached
1 : 6:1 and 1 : 8:7, when considering only the conditioned realizations.

As all of the three algorithms (PoPEx, ISR, and IMcMC) generated characteristic sets with sufficient variability
of the models, they all produced accurate predictions of the reference regions and the true capture zone
(cf. Figure 8). Nevertheless, we still observe some differences. The predictions of the PoPEx and the ISR algo-
rithm most differ in the 5% region but both were sufficiently close to the reference map. The 5% and 25%
regions of the IMcMC method were slightly too broad. Recalling the results obtained in the previous test,
this was not surprising, as IMcMC showed the worst approximation of the posterior facies probabilities.
3.4.4. Test IV
The structures in the first two additional domains (Ref. 2 and Ref. 3 in Figures 9a and 9b) correspond
well to the ones in the training image (cf. Figure 1a). The third (Ref. 4 in Figure 9c) shows two inter-
rupted channels near the pumping well. As the training image does not contain any disconnected chan-
nels, it was very unlikely to generate such models by an MPS method. In the fourth domain (Ref. 5 in
Figure 9d), no channel pass through the pumping location. From a physical point of view, this means
that 3 L of water are extracted every second from a low-permeable material, which would be absurd. As
before we use the hydraulic head values extracted from the reference solution as data constraints for
solving the inverse problems. According to the previous analysis, we generated NI 5 500 unconditioned
initial models and used NC 5 30 conditioning points, until 200 models satisfied (9). The structures in the
reference domains 1 and 2 (Figures 2a and 9a) show comparable geological patterns. Both are dominat-
ed by three interconnected and bifurcated main channels, linking the left to the right boundary part.
For solving the inverse problems, comparable numbers of forward simulations (1705, resp. 2087) were
needed (cf. Table 1). It turned out that the problem corresponding to the third reference domain (Ref. 3

in Figure 9b) was relatively easy to solve. The sepa-
rated and mostly parallel channels match the struc-
tures of the training image quite well. It follows that,
after only 1206 models, the algorithm was able to
find 200 satisfying models. Also, the minimum and
the median RMSE values are considerably low (cf.
Table 1). Both of the posterior channel probability
maps pk

2 (Figures 9e and 9f) describe fairly well the
main structures of the corresponding reference
domains (Ref. 2 and Ref. 3) but still show sufficient
variability in other regions of the computational
domain (where the posterior probabilities are close
to the prior probabilities).

Figure 6. Posterior probability maps pk
2 obtained after 4000 realizations.

Figure 7. Comparison of the efficiencies for generating a set
of 200 accepted models.
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For revealing some limits of the PoPEx algorithm, we chose the uncommon reference domains Ref. 4 and
Ref. 5. The large number of simulations (Table 1) needed for solving the inverse problem resulting from Ref.
4 (Figure 9c) was directly related to its interrupted channel structures. As there are no such patterns con-
tained in the training image, it is very unlikely to generate good candidate models. Although the method
was able to detect this unusual structure (Figure 9g), the number of total simulations and the acceptance
rate were unacceptable (Table 1). This highlighted the importance of a reliable training image that repre-
sents well the geological features. On the other hand, extracting 3 L of groundwater per second from a low-
permeable region (Figure 9d) is physically not very plausible. The hydraulic head of the reference solution
at the pumping well is 219.1 m, from what follows that the range of the head values is significantly larger.
Working with the same (absolute) acceptance tolerance (equation (9)) leads to accept only small relative
errors and therefore explains the slower acceptance rate in Table 1 (Ref. 5) and the smaller variability of the
posterior models (Figure 9h). The high values of the corresponding minimum and median RMSE also indi-
cate the difficulties to reach the same (absolute) approximation level for a larger range of head values. A
stopping criterion based on a minimum number of accepted realizations can require a large number of for-
ward simulations and therefore, significantly grows the computational costs for solving an inverse problem.
We conclude that the PoPEx algorithm was very efficient and accurate in solving inverse problems with
facies-type prior models. However, unreasonable stopping conditions and/or a nonrepresentative training
image result in unacceptable high computational costs.

Figure 8. Posterior predictions of the capture zone after 20 h of pumping. The contours are understood as the percentage coverage of a
certain region by the 200 representative models.

Figure 9. Reference domains 2–5 and their corresponding posterior channel probability maps of 200 accepted models (using PoPEx with
NI 5 500 and NC 5 30).
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4. Discussion and Conclusions

In this paper, a new ensemble-based method, entitled posterior population expansion (PoPEx), is proposed.
We show on a simple and synthetic example that it efficiently sampled the most important regions (with
respect to the posterior information) of a complex and discrete model space. Comparing our method to
two existing McMC schemes, we showed that PoPEx explored the posterior probability distribution more
accurately and considerably reduced the computational costs. The small number of input parameters and
their intuitive influence on the behavior of the method makes its usage very easy. The entire procedure is
independent of any model parametrization. However, we showed also that the quality of the training image
and the stopping condition are very important.

A broad range of existing methods for solving inverse problems that are based on the minimization of a
misfit function are particularly efficient if three main assumptions are fulfilled: the model space and the
data space are linear, their uncertainty is described by a Gaussian probability distribution and they are con-
nected through a linear forward operator [Arulampalam et al., 2002; Mosegaard and Tarantola, 2002; Taran-
tola, 2005]. In the hydrogeological framework, however, usually none of the assumptions are satisfied. In
order to overcome these requirements, nonlinear transformations into Gaussian spaces [Zhou et al., 2011; Li
et al., 2012; Xu et al., 2013; Xu and G�omez-Hern�andez, 2015], linear approximations of the forward operator
[Chen et al., 2009] and simplified parametrizations from Gaussian subspaces [Doherty, 2003; Alcolea et al.,
2006; Tonkin and Doherty, 2009] have been extensively investigated. Unfortunately, it is not possible in gen-
eral to meet all of the three assumptions. The core of the PoPEx algorithm however, has been designed for
cases in which the model space is discrete and well adapted to account for prior geological knowledge
which can be expressed via an MPS or any other conditional geostatistical simulation tool. MPS methods
were chosen because they have proven to be a very powerful tool for modeling complex and heteroge-
neous geological environments in real applications [Caers et al., 2003; Liu et al., 2004; Okabe and Blunt, 2007;
Ronayne et al., 2008]. Overall, the proposed algorithm is potentially able to solve sophisticated inverse prob-
lems. In this work, we only considered spatial uncertainties that represented different rock types. Neverthe-
less, it is possible to acknowledge any kind of uncertainties that can be modeled by conditional simulations.
The same complexity of the model space can be covered by McMC methods [Alcolea and Renard, 2010; Mar-
iethoz et al., 2010a; Hansen et al., 2012; Laloy et al., 2016]. The ergodicity of Markov chains ensures an asymp-
totic exploration of the true posterior information. In practice, however, the convergence of McMC methods
is slow.

The PoPEx algorithm, on the other hand, does not fulfill the property of ergodicity. Assume thatMk5fm1;

. . . ;mkg is a sufficiently large subset of the model space M sampled from a probability measure function
rM :M! R. An unbiased estimator [Durrett, 2010] of the first moment (with respect to rM) of a random
variable f :M! R is given by

l̂5
1
k

Xk

i51

f ðmiÞ: (10)

Likewise, ifMk represents an uniformly distributed subset ofM, the first moment can be approximated by
the weighted sum [Robert and Casella, 2004]

l̂5
Xk

i51

f ðmiÞ~rMðmiÞ: (11)

In the PoPEx algorithm, the equation (4) used for computing the posterior probability maps are of the form
of expression (11) above. The distribution of the PoPEx realizations, however, is clearly not uniform for

Table 1. Performances of the PoPEx Algorithm With NI 5 500 and NC 5 30 for Different Reference Domains

Ref. Min RMSE Median RMSE Max RMSE Acc. Rate (After NI) Simulations

1 0.0316 0.0580 0.0699 1 : 6:1 1,705
2 0.0328 0.0604 0.0700 1 : 8:1 2,087
3 0.0215 0.0560 0.0699 1 : 3:7 1,206
4 0.0318 0.0595 0.0697 1 : 150:4 30,182
5 0.0482 0.0623 0.0697 1 : 55:3 11,560

Water Resources Research 10.1002/2016WR019550

J€AGGLI ET AL. POSTERIOR POPULATION EXP. 13



k > NI . If a large number of conditioned realizations has been generated, we expect that the models inMk

are distributed according to a density that is close (in some sense) to the posterior measure rM. Therefore,
using weighted sums as in equations (4) and (11) overestimates regions of high posterior information (see
e.g., fundamental identity of importance sampling in Robert and Casella [2004]). In the early iterations of the
PoPEx method, the number of conditioned models is small and the slight overestimation helps to accelerate
the algorithm. In the long term, however, it results in a reduced variability of the posterior models (cf. Fig-
ures 6a and 6b).

Let us briefly comment on our choice of the prior probability measure function. The sequential construction
of the spatial models by a DS technique depends on the uniformly distributed random paths that run
through the pixels. If N denotes the number of pixels and s the number of facies types, there are N! different
paths but no more than sN different models. Therefore, for large N, the map sending a path onto the corre-
sponding model is not injective (as N! > sN). It follows that there are different paths that produce the same
realization. By defining an appropriate distance between the models and the training image, we may
observe that models with ‘‘common’’ structures are ‘‘closer’’ than others. We expect that such ‘‘common’’
realizations have a higher probability of occurrence. Thus, the MPS algorithm does not produce different
models with uniform probability. A distance between the TI and the models could be used for the definition
of a suitable prior distribution. However, defining a reasonable distance for facies-type models is far from
being trivial. This is why, for this work, we assumed uniformity of the prior distribution.

Although the presented algorithm showed promising behavior on a synthetic problem, let us remark that a
complete analysis should involve a more complex field study (with a number of model parameters on the
order of 1062108. In such cases, modeling uncertainties and nonuniformity of the prior distribution usually
can no longer be neglected. Both are matters that should be further investigated.
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