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Abstract
Resource estimation of mineral deposits requires spatial modelling of orebody boundaries based on a set of exploration

borehole data. Given lateritic bauxite deposits, the spacing between the boreholes is often determined based on the grade

continuity. As a result, the selected drill spacing might not capture the underlying (true) lateral variability apparent in the

orebody boundaries. The purpose of this study is to investigate and address the limitations imposed by such problems in

lateritic metal deposits through multiple-point statistics (MPS) framework. Rather than relying on a semivariogram model,

we obtain the required structural information from the footwall topographies exposed after previous mining operations. The

investigation utilising the MPS was carried out using the Direct Sampling (DS) MPS algorithm. Two historical mine areas

along with their mined-out surfaces and ground penetrating radar surveys were incorporated as a bivariate training image to

perform the MPS simulations. In addition, geostatistical simulations using the Turning Bands method were also performed

to make the comparison against the MPS results. The performances were assessed using several statistical indicators

including higher-order spatial cumulants. The results have shown that the DS can satisfactorily simulate the orebody

boundaries by using prior information from the previously mined-out areas.

Keywords Multiple-point statistics � Direct sampling � Bauxite mining � Stratified � Laterite � Geostatistics �
Resource estimation

1 Introduction

The ultimate goal of resource estimation practice is to

accurately predict the grades and tonnages of a mineral

deposit that will be exploited during a specified time frame

(Rossi and Deutsch 2013; Bardossy et al. 2003). Such a

goal requires one to define the geological boundaries

within which block models are constructed to estimate the

orebody attributes (i.e., thickness, grade). A traditional

practice to achieve this is to explicitly draw the boundaries

using the borehole data (Osterholt and Dimitrakopoulos

2018). This method can be rather subjective and results in

an over-smoothed interpretation of the geology. Alternative

means to model the geological domains include geostatis-

tical estimation techniques, such as kriging (de Fre-

itas Silva and Dimitrakopoulos 2016). However, there

exists several drawbacks of incorporating geostatistical

interpolation techniques in orebody modelling. As for the

kriging method, such drawbacks comprise the smoothing

effect and failure to reproduce complex non-linear geo-

logical structures (Rezaee et al. 2015). In addition, kriging

estimates cannot be used for the uncertainty assessment, as

they do not reflect the true variability (variogram). Due to

the issues pointed out, use of kriging to delineate the ore-

body boundaries may pose risks in resource estimations

and mine planning (Bastante et al. 2008).

Conditional simulation techniques address the above-

mentioned issues by generating equi-probable realisations

of the orebody variability (Dimitrakopoulos 1998). Each
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orebody realisation reproduces the original statistical

properties and the variogram inferred from the borehole

observations. In other words, these realisations do not

undergo any smoothing effect as in kriging. Moreover,

when taken together, they can serve as a measure of

uncertainty associated with the orebody boundaries. How-

ever, the geostatistical simulation techniques rely on a

variogram or a covariance model, which fails to capture

non-linear complex physical realities (Journel 2005;

Mariethoz and Caers 2014; De Iaco and Maggio 2011).

Besides, since the structural information to perform the

simulations is often derived from the borehole data, the

spatial continuity cannot always be accurately inferred in

the case of a limited data set, which is the case mostly seen

in reservoir modelling studies.

Multiple-point statistics (MPS) offers a variety of tools

to perform stochastic reconstruction of spatial data. It

provides a framework to go beyond the two-point statistics

through the Training Image (TI) concept. A TI can be

considered as an analogue of a variogram model in tradi-

tional geostatistics. It serves as a conceptual geological

model containing spatial patterns which are thought to exist

in the simulation domain (Mariethoz and Caers 2014).

MPS simulations utilise the patterns from the TI to perform

the simulations through a number of MPS simulation

algorithms (Guardiano and Srivastava 1992; Strebelle

2002; Zhang et al. 2006; Arpat and Caers 2007; Gloaguen

and Dimitrakopoulos 2009; Dimitrakopoulos et al. 2010;

Honarkhah and Caers 2010; Mariethoz et al. 2010;

Straubhaar et al. 2011; Tahmasebi et al. 2012).

The use of TIs in orebody modelling can provide some

benefits. For instance, a chosen TI contains high-order

structural information that cannot be adequately expressed

in terms of second-order statistics. Therefore, borrowing

the structural information from a TI allows reproducing

realistic and complex orebody structures. Secondly, utili-

sation of a TI as structural information alleviates the issues

associated with the limited conditioning data sets. Rather

than relying on the borehole data to derive the structural

information, such spatial information is borrowed from the

TI containing rich spatial patterns. Lastly, since a TI is a

non-mathematical definition of the structural information,

it is rather user-friendly (Mariethoz and Caers 2014).

Although MPS has frequently been used in the oil and

gas industry, its applications in mineral deposits are still

not as widespread (Pasti et al. 2012). One of the major

causes is the challenge faced when deriving an appropriate

TI which is representative of the geology of interest (Mery

et al. 2017). Nevertheless, some approaches have previ-

ously been adopted to construct a TI for mineral deposits.

An example of these is the utilisation of the exploration or

blasthole drills to interpret the geology (Jones et al. 2013).

Furthermore, deterministic orebody models which are

created by utilising drill holes are also used as training

images (van der Grijp and Minnitt 2015; Goodfellow et al.

2012; Pérez et al. 2014; Robles-Stefoni and Dimi-

trakopoulos 2016). Another approach is to derive the

geological model from the previously mined-out areas

(Rezaee et al. 2013; Osterholt and Dimitrakopoulos 2018).

Lastly, if the characteristics of the geological structures are

known, conceptual geological models generated by TI

generator software can also be used (Pasti et al. 2012;

Bastante et al. 2008).

This study investigates the applicability of MPS to

model the footwall topography, which delineates the ore/

waste interface in a lateritic bauxite deposit. The main

difference between our MPS application and the ones

presented above is the source of the TI used. As contrary to

the previous mining MPS applications, we do not utilise an

interpreted, modelled or generated TI. Instead, we obtain

the TI directly from the mined-out surface exposed after

the extraction of a certain portion of an analogue mining

area in the same mine site. Since the bauxite extraction is

carried out by tracing the footwall topography at the time

of mining, the resulting mined-out floor can be deemed

representative of the spatial variations seen in a future

mining area. In other words, we exploit and test one of the

fundamental ideas of MPS; which is to use data from

analogue sites that can be considered as ex-situ prior.

Another difference in our application is the type of the

variables used. Most of the MPS applications in mining

consider categorical variables. We, instead, work with two

continuous variables representing the elevation of the

footwall topography and its estimation by ground pene-

trating radar in a multivariate framework. Therefore, this

study presents a new approach to simulate the orebody

boundaries using MPS. The overall workflow is presented

on a case study using a dataset from a lateritic bauxite

deposit. The step-by-step description of the methodology

comprises the stages from data preparation to simulation.

The resulting MPS simulations are compared with more

classical geostatistical simulations in terms of spatial sta-

tistical indicators.

2 Laterite-type bauxite mining
and motivation to use MPS

Resource estimation of a lateritic bauxite deposit is usually

performed using sparsely-spaced boreholes drilled on a

regular grid within the modelling domain (Abzalov and

Bower 2014; Erten 2012). The selected drill spacing

between these drill holes is based predominantly on the

variation and continuity in grades (Hartman and Mutman-

sky 2002). Hence, the defined drill spacing is sufficient to

model the alumina Al2O3% grade within the bauxite unit.
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However, as the geological interface between the bauxite

and ironstone units varies more than the grade, the chosen

drill spacing fails to adequately infer the lateral variability

in the footwall contact topography (Dagasan 2018; Erten

2012; Dagasan et al. 2018a; Erten et al. 2013, 2015).

Therefore, contact models created using interpolation

techniques, such as the ones offered by geostatistics,

become less detailed and smoother than the reality. An

example of orebody boundaries created using such bore-

holes can be seen in Fig. 1.

Due to the reasons mentioned above, the orebody

boundaries cannot be accurately defined. As a result, the

mining equipment operator becomes unable to rely on a

predefined ore boundary when extracting the deposit.

Instead, the operator utilises the hardness and colour dif-

ferences between successive geological units to track the

ore boundaries. After extracting the bauxite ore, a mined-

out surface is exposed for each mining area within the mine

site. An example of such an exposed mined-out topography

can be seen in Fig. 2.

Although the shape of the resulting topography is

influenced by the mining equipment selectivity and the

operator’s skills, it is thought to reflect the actual lateral

variability of the geological contact between the bauxite

and the underlying ferricrete unit. Motivated by this fact, a

mine floor exposed from a previously mined-out area can

be used as a TI to model the footwall topography of another

mining area with a similar geology.

3 Methodology

The overall methodology is composed of several steps,

which can be seen in Fig. 3. The details of the steps are

given in the below sections.

3.1 Data description and pre-processing

Two lateritic bauxite mine areas located within the same

mine site, namely Oak and Kumbur, were used to inves-

tigate the implementation of MPS for the lateritic metal

mines in this research. Prior to the extraction of the bauxite

ore, several types of exploration data sets were collected to

model the deposits. These data sets include (1) exploration

boreholes, (2) production control boreholes (PCB) and (3)

dense ground penetrating radar (GPR) survey data to help

locate the ore boundaries.

GPR surveys provide a non-invasive means of subsur-

face imaging by utilising the differences between the

bauxite and the underlying ferricrete layer (Davis and

Annan 1989). The GPR device used in this study had

antennas with 80 MHz central frequency. The data was

collected in the north–south and east–west parallel con-

tinuous profiles, as can also be seen in Fig. 4. The spacing

Kaolinite

Pisolitic Bauxite

Ferricrete

Top Soil

Estimated surface

Boreholes

Actual surface

Lithologies

Top Soil

Pisolitic
Bauxite

Transition

Ferricrete

Red Soil

Fig. 1 Orebody boundaries created using sparse borehole data set. After Erten (2012)

Ferricrete Unit

Bauxite Unit

Bauxite/ferricrete interface

Fig. 2 An example mined-out topography exposed following the

extraction of the bauxite ore. After Erten (2012)
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between the profiles was 15 m and the sampling density

was 1 m. The collected raw GPR data has been through a

processing stage which included GPR conversion, data

editing, basic processing and advanced processing (i.e.,

zero-time correction, de-wow, gaining, filtering and time to

depth conversion). The resolution of the data processed had

± 3 cm vertical resolution. After the data processing stage,

the GPR readings were converted to the elevation values of

the interface, as metre being the unit.

The exploration boreholes were drilled on a regular grid

of 76:2� 76:2 m in both the Oak and Kumbur mine areas.

These boreholes contain a variety of information including

grades and lithologies defined in three-dimensional space.

An example of these units intersected by a borehole can be

seen in Fig. 1. For the sake of simplicity, the lithologies are

grouped into three layers based on their Al2O3% and

SiO2% grades (Erten 2012). These layers comprise the top-

soil, bauxite and the ferricrete units.

The number of boreholes drilled for the Oak mine is 33,

and it is 13 for the Kumbur mine. In addition to the

exploration boreholes, 218 saturation boreholes, also called

production control boreholes (PCB) data, were drilled in

the Kumbur mine area. The square grid spacings between

these holes were 19.05 m, and they were only analysed for

the lithologies to aid delineation of the ore boundaries.

Therefore, PCB data contain only the elevation values

corresponding to the bauxite/ferricrete interface. Lastly,

following the extraction of the bauxite ore, the resulting

Data Collection
•GPR 

•PCB 

Pre-Processing for the 
MPS Simulations

•Construction of the simulation and TI grids

•Structural analysis and trend detection

•Migrating the data points to the grid nodes

•Informing the uninformed nodes using sGs

•Removal of the trends to get the residuals

Setting up the 
MPS Simulations

•Choosing the bivariate TI variables

• Primary Variable: Mined Out Floor

• Secondary Variable: GPR Survey

•Choosing the simulation variables

• Primary variable: PCB+Borehole

• Secondary Variable: GPR Survey

•Choosing the DS hyper parameters

• GPR as the external drift

• PCB+Borehole as the conditioning data

• Variogram Modelling

Setting up the Turning-Bands 
Simulations

Comparison

Simulations and adding  the trendsSimulations

•Uncertainties (IQR)

•Cumulant Errors

•Borehole 

•Floor Survey

•MAE with the Actual Floor

•Variogram Reproduction

Fig. 3 Flowchart of the overall

methodology
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mined-out surfaces were also surveyed to measure the

variability in the footwall of the bauxite seam. Location

maps of all the available data can be seen in Fig. 4.

3.2 Structural analysis and trend detection

In order to perform the structural analysis of the elevation

variables, omnidirectional variograms were computed for

both the Oak and Kumbur mine areas as shown in Fig. 5.

The experimental variogram computed for the Oak mine

indicates the existence of a spatial trend, as the variogram

is not bounded and does not have a finite sill. Therefore, the

geological interface between the bauxite/ferricrete units

must be modelled by a non-stationary random function. As

for the Kumbur mine, the variograms also exhibit a non-

stationary behaviour. However, the non-stationarity for this

mine seems to be not strong and the rise in the variogram

values tends to stop and drop down after a lag distance of

450 m. Therefore, the intrinsic hypothesis can still be used

in this case.

Optimal determination of the trends was performed

using the non-stationary modelling tool of the ISATIS

software (Bourassi et al. 2016). The three types of trends

that were tested were the universality condition (no trend),

the linear trend (1, x, y) and the quadratic trend (1, x, y, x2,

y2, xy). For the Oak mine variables, the linear trend was

found to be optimal whereas for Kumbur, a quadratic trend

was the most appropriate. The trend coefficients, which

were estimated by the method of least squares, are pre-

sented in the supplementary material. These coefficients

are used to construct the trend surfaces to obtain the

residuals for the MPS simulations.

Oak Borehole Oak GPR Oak Floor

Kumbur Borehole+PCB Kumbur GPR Kumbur Floor

Easting (m)

)
m(

gnihtro
N

)
m(

gnihtro
N

Fig. 4 Location maps of the

data collected from the Oak and

Kumbur mine areas. Circles in

the borehole maps represent the

exploration borehole locations

whereas ‘‘?’’ signs in the

Kumbur mine represent the

saturation drill hole locations
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3.3 Migration of the data points to the grid
nodes

To be able to use the data in the MPS simulations, the

secondary variable and the selected TI should be defined on

predefined grid nodes. Given that the collected raw data is

in the form of punctual data, they should be migrated to the

nodes of a defined grid. For this purpose, two grids for both

mine areas were created. The single cell size (pixel) of the

created grid was chosen as 2:38� 2:38m. The size of the

constructed grids were 180� 400 for the Oak mine and

97� 214 for the Kumbur mine.

Although the GPR pick-points and the floor survey

points were densely sampled in both mine areas, they were

collected at irregular finite locations. Hence, once the data

points are migrated to the closest grids nodes, some of the

nodes may still be uninformed. To create a complete TI out

of the GPR and floor survey data, these nodes should be

informed. This task can be achieved by interpolating the

elevation values at the uninformed grid node locations.

However, interpolation techniques such as kriging leads to

a smoothing effect and the resulting statistical properties of

the re-constructed images would be different to those of the

raw data used. Geostatistical simulation techniques, such as

the sequential Gaussian simulation (sGs), on the other

hand, can successfully be used to assign the elevation

values to the uninformed grid nodes. An illustration of the

re-construction process can be seen in Fig. 6.

The benefit of using a geostatistical simulation tech-

nique is that the variogram and the statistical properties of

the resulting realisation are preserved. A drawback could

be the loss of multiple-point statistical information while

simulating the values using a variogram model. However,

since the original data set is rather dense, it is thought that

the majority of the grid nodes are informed by the raw data

points prior to the simulations. Hence, the degree of mul-

tiple-point statistical loss that can occur is considered

negligible, and the created realisations are still believed to

retain the inherent higher-order statistics.

A significant factor that can have an impact on the

simulated values could be the trends apparent in the data-

sets. Nevertheless, since the GPR and floor surveys data

points are dense, the raw data points used to simulate the

uninformed nodes always stay within the close proximity.

Therefore, the influence of trend on the assigned values is

not critical. This has also been confirmed by the study in

which the the elevation variable from GPR data was

reproduced using both stationary and non-stationary geo-

statistical modelling techniques (ordinary kriging, univer-

sal kriging and IRF-k) (Dagasan et al. 2018a). The results

of the study demonstrate that all the techniques yielded

rather similar performances due to the abundance of data

points. Hence, the variograms to perform the sGs simula-

tions in this study were obtained by fitting a model to the

experimental variograms computed along the trend-free

directions.

Identification of the trend-free directions was performed

by first computing the variogram maps of the raw data

points. The variogram map illustrated in Fig. 7b, for

instance, was computed for the GPR Kumbur variable and

pointed out the trend-free direction as N130�. The experi-

mental variogram calculated along the trend-free direction

can also be seen in Fig. 7a. The model fitted to this vari-

ogram is composed of two spherical structures, the ranges

of which were 19.33 m and 306.05 m, respectively. The

sills of the variogram, on the other hand, were 0.065 m2
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Fig. 5 Omnidirectional variograms computed for the Oak and Kumbur mine areas
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and 0.056 m2, respectively. The procedure described here

was utilised for the reconstruction of the Kumbur floor

survey, Oak GPR and floor surveys as well, which are

provided in the supplementary material.

4 Setting up the MPS simulations

MPS simulations in this study were carried out using the

Direct Sampling (DS) algorithm (Mariethoz et al. 2010).

The benefit of using the DS algorithm is that it does not

store the patterns to retrieve the conditional probabilities as

in other algorithms. It instead scans the TI until a com-

patible pattern is found. Therefore, the simulations are

performed rather fast. Another useful feature of DS is that

it allows multivariate simulations utilising the multiple-

point dependence between given variables. Readers are

referred to Mariethoz et al. (2010) for the details of the

algorithm and Meerschman et al. (2013) for a guide on

selecting the algorithm input parameters.

4.1 Choosing the simulation variables

Two types of exploration data were utilised to model the

orebody boundaries. The first one of these was the PCB

data collected on a regular grid. The second one was the

GPR survey, which was originally collected in the form of

two-way travel time (the unit is in m/ns). However, during

the processing stage, the unit was converted into metres,

which represents the elevation variable of the footwall

1
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point data Created grid

Collected point data
(GPR or floor survey)

Assign the data to the
closest grid nodes

Choose an uninformed node and 
perform the simulation

Perform the simulations 
until all the nodes are informed

2

3 4

Fig. 6 Process used to both

convert the point data into the

gridded type and reconstruct the

images
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(b)(a)Fig. 7 a Experimental

variogram calculated along the
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the variogram model fitted for
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b variogram map of the Kumbur

GPR variable
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contact. The GPR data originally indicated the depth from

the surface to the geological interface. Having subtracted

the GPR depths from the surface elevations, the elevation

variable of the geological interface was obtained.

Of the available exploration data collected from both

mine areas, GPR has been used as an auxiliary variable to

guide the simulations. It acts as a soft data and is consid-

ered to be useful to improve the estimations and deal with

the non-stationarity (Rezaee and Marcotte 2017; Zhang

et al. 2015). On the other hand, the borehole and the PCB

data were used as hard data to condition the simulations.

Migrating the conditioning data to the grid nodes was

performed internally by the DS algorithm prior to the

simulations. Since the borehole and PCB data were drilled

on a regular grid (equally spaced), they are co-located with

the created grid nodes. Therefore, no shift in the locations

took place while migrating the points.

Simulations were planned to be of two types: (1) uni-

variate and (2) bivariate. For the univariate case, the

mined-out surveys of both mines are used as TIs. As for the

bivariate simulations, bivariate TIs were constructed to

utilise the multiple-point dependence between the vari-

ables. The mined-out survey data was selected for the

primary variable of the TI and the GPR data was selected

for the secondary component of the TI. Components that

make up the bivariate simulations can be seen in Fig. 8.

4.2 Algorithmic input parameter selection

In addition to the simulation and TI variables, the DS

requires the specification of some algorithm input param-

eters to perform the simulations. Although the latest ver-

sion of the DS, which is DeeSse, is comprised of numerous

features and parameters, only the parameters utilised in this

research are explained here. Other parameters were,

therefore, kept as their default values.

Five parameters were chosen to perform the preliminary

sensitivity analysis for the bivariate simulations. These

parameters were the weight factor whd attached to the

conditioning data, acceptance threshold (thd and tGPR), and

the number of neighbours (nhd and nGPR) of the DS algo-

rithm. The weighting factor wGPR of the GPR data was not

selected for the sensitivity analysis, as the simulation grid

SGGPR of the GPR data was already exhaustively informed

and therefore any change in wGPR would not affect the

simulations. In addition, the scan fraction f, being one of

the main parameters of the DS, was also not considered for

the sensitivity analysis as the initial tests had shown that it

has an insignificant effect on the simulation quality for this

case. Therefore, f was kept equal to 0.5 throughout the

simulations. The chosen value is also consistent with the

suggested values presented in Meerschman et al. (2013) for

continuous simulations.

Based on the sensitivity analysis performed with a set of

input parameter combinations, the best simulation param-

eters were determined. Further automatic tuning of the

GPR Survey

Simulation grid
(SG)

GPR Survey

Mined out 
floor topography

Multiple-point 
dependenceData from the 

Future Mining Area
Data From Previously 

Mined-Out AreaDS

Borehole data
conditioning the SG

Multiple-point 
dependence

Bivariate Simulation Variables Bivariate TI Variables

Realisa�ons for the 
footwall topography 

Input Parameters

Fig. 8 Inputs and outputs of the

bivariate DS simulations
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parameters was performed using the approach presented in

Dagasan et al. (2018b). The method first computes the

multiple-point statistics of the patterns retrieved from the

conditioning data and compares the statistics of the

resulting realisation after each iteration of the parameter

set. After several hundreds of parameter trials, the method

gives the set of chosen parameter values yielding least

dissimilarity value. Table 1 illustrates the tuned input

parameters. Parameters that are used to perform the uni-

variate and bivariate simulations for both mine areas can be

seen in Table 2.

5 Results and discussion

5.1 Results

Results of the MPS simulations were analysed using 40

univariate and bivariate realisations generated for each

mining area. In addition, produced MPS simulations were

also compared with the classical geostatistical simulations

performed using the Turning Bands method (TB) (Math-

eron 1973). Due to space limitations, only the bivariate

simulation results for the Kumbur mine were presented in

the paper. The remaining analyses can be found in the

supplementary material attached to the online version of

this document.

The MPS simulations were performed using the resid-

uals of the simulation and TI variables. First, each of the

trend surfaces was subtracted from the original dataset.

These residuals were then used as the simulation and TI

variables to perform the MPS simulations. The TI and the

simulation variables used can be seen in Fig. 9. Following

the generation of 40 realisations, the trend surface of the

PCB data was added back to each of the realisations.

Geostatistical simulations, on the other hand, were

performed using TB with the external drift kriging method

in the RGeostats package (Renard et al. 2017). Having

defined the GPR variable as an external drift, the residuals

of the PCB data were obtained to fit a variogram model.

The experimental variogram computed along different

directions revealed the existence of a geometric anisotropy.

The main anisotropy directions were identified as N0� and
N90�. The fitted models comprised of two nested expo-

nential and spherical structures, as can be seen in Fig. 10.

The spherical component has a sill value of 0.137 m2 and

has a range of 112 m in the N0� direction and 237 m in the

N90� direction. The sill value of the exponential compo-

nent, on the other hand, is 0.2 m2 and the ranges are 38 and

35 m in N0� and N90� directions, respectively. For the

simulations, the number of turning bands used was 400. 40

TB realisations were generated using this set-up. The first

three realisations of the DS and TB simulations can be seen

in Fig. 11. The average of 40 realisations along with their

variograms are given in Fig. 12.

Assessment and performance comparison of the two

methods have been carried out using several statistical

indicators. The first and perhaps the most interesting one is

the reproduction of two-point statistics of the conditioning

data used. Omnidirectional variograms presented earlier in

Fig. 9 show that the variograms of the residual TI and the

simulation variables are noticeably different. Therefore, it

would be fair to expect that the TI and the simulation

variables were not very compatible. However, despite such

a difference observed in Fig. 9, variograms of the realisa-

tions shown in Fig. 12 reveal that the DS was able to

reproduce the two-point statistics of the PCB data with

success.

In order to visually observe the differences between the

simulations, the average of the simulations and the fluc-

tuation of the simulated values around the mean value at

each grid node were analysed. Given all the created L

realisations, the E-type maps were calculated by averaging

all the simulated values at each x grid node location, as in

the following:

z�EðxÞ ¼
1

L

XL

l¼1

zlðxÞ ð1Þ

where z�EðxÞ represents the expected elevation values at x

locations and zlðxÞ represents those for the lth realisation.

As far as these maps for the DS and TB simulations are

concerned, there exists a slight difference between them.

Table 1 Optimised DS parameters used for the Kumbur simulations (Dagasan et al. 2018b)

Parameters whd nhd nGPR thd tGPR

Tuned Kumbur bivariate simulations 13.08 14 45 0.009 0.305

Table 2 DS parameters for the Oak and Kumbur mine areas

Parameters whd nhd nGPR thd tGPR

Kumbur bivariate 13.08 14 45 0.009 0.305

Kumbur univariate 13.08 14 – 0.009 –

Bivariate Oak 10.00 20 21 0.001 0.01

Univariate Oak 10.00 6 – 0.001 –
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Therefore, it can be concluded that the average of the

simulations are rather similar.

The fluctuations around the mean were used to assess

the resulting model of uncertainty. To quantify this, the

interquartile-range (IQR) of the simulated values at each

grid node was calculated. This was simply performed by

taking the difference between the upper and lower quartiles

of the simulated values as in the following:

qRðxÞ ¼ q0:75ðxÞ � q0:25ðxÞ ð2Þ

Unlike the E-type maps, the difference in the IQR maps is

rather obvious, as can be seen in Fig. 12. These maps and

the distribution of the IQR values at each grid node show

that the DS produces less uncertainty. The averages of the

IQR values are 0.426 for the DS and 0.501 for the TB

simulations.

Another comparison has been made using the repro-

duction of the higher-order statistics through spatial

cumulants. In order to perform this comparison, the

experimental higher-order statistics were computed using

the hosc software (Dimitrakopoulos et al. 2010). An L-

shaped template was constructed along the N0� and N90�

directions to calculate the third-order cumulants. The lag

separations in each direction were chosen as 2.38 and the

cumulants were calculated for 50 lag distances in each

direction. The cumulant maps constructed for both the

simulations and the reference mined-out surface of the

Kumbur mine can be seen in Fig. 13.

Computed cumulant maps appear to be different and do

not seem to provide an insight into the similarity between
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the reference image and the generated realisations. There-

fore, a measure is needed to be used to quantify the simi-

larities between the images. Calculation of such a

similarity was performed by pixel-by-pixel subtraction of

the cumulant map of the mined-out surface from those of

40 realisations as in the following equation:

errorlC ¼ 1

N

XN

j¼1

clðjÞ � cðref ÞðjÞ
�� �� ð3Þ

where clðjÞ and cðref ÞðjÞ represent cumulant values at the jth

pixel of the cumulant maps and N represents the total

number of pixels in the cumulant maps.

The means of the calculated cumulant errors of 40

realisations are both 5� 10�7, hence the same. Therefore,

simulations produced by both methods yield rather similar

multiple-point statistics of the mined-out area. A more

direct similarity between the realisations and the reference

mined-out surface was calculated by subtracting the reali-

sations from the reference image pixel-by-pixel for K

number of grids and averaging the differences:

errorRef ¼
1

LK

XL

l¼1

XK

i¼1

ZlðiÞ � Zðref ÞðiÞ
�� �� ð4Þ

ZlðiÞ and Zðref ÞðiÞ represent the elevation variable of the lth

realisation and the reference mined-out surface. The mean

absolute error found in such a calculation is 0.534 for the

TB and 0.528 for the DS simulations. This measure also

shows that there is not a significant difference between the

DS and the TB simulations for this specific case.

Analyses presented above have also been performed for

univariate Kumbur, Bivariate Oak and Univariate Oak

simulations. Although the detailed result can be found in

the supplementary material, a summary of the important

points are given in Table 3. The results show that the DS

tends to yield less uncertainty. For the cumulant errors, the

DS gives smaller cumulant errors in three out of four

comparisons. This is an expected outcome as the DS

reproduces multiple-point statistical information. Con-

cerning the direct comparison made with the reference

mined topography, the DS gives two better results and one

similar result with the TB method.

5.2 Discussion

Considering the mining method of such deposits, a new

mined-out floor is always exposed following the extraction

of a bauxite unit at a certain location of the mine site. Thus,

one can generate a catalogue of training images from all

the formerly mined-out areas to simulate the future mining

locations. Having formed such a database, the geologists

can have a variety of training images to choose from. This

would allow them to readily find a compatible TI that

matches the expected spatial variability of the orebody

boundaries in a future mining area. Another benefit of the

use of MPS would be the use of a non-parametric approach

for the spatial continuity. The use of TI makes it easier for

the non-expert users as the structural information is not

expressed in a mathematical definition.

Equipment selectivity can also have an effect on the

quality of the TIs generated. A front-end loader type of

mining equipment is used to extract the deposit, and the

selectivity of the equipment hinders accurately following

the fluctuations of the interface (Dagasan et al. 2018c).

Therefore, the created TIs might also include subjectivity

such as operator error and limited equipment selectivity.

To alleviate this problem, a pilot area near a future mining

location can be excavated with more selective mining

equipment to expose the geological variations for better

quality TIs. In other words, mining machinery with a

smaller bucket would allow better exposure of the true

geological variations. A TI produced following such

detailed excavation is believed to improve the quality of

the MPS simulations.
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Simulations

25
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21

19
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Fig. 11 First three realisations of the DS and TB simulations
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6 Summary and conclusions

This paper investigated the application of MPS in mod-

elling the geological contact topography within a lateritic

bauxite mine. The step-by-step methodology to perform

univariate and bivariate simulations was proposed using

the Direct Sampling (DS) multiple-point statistics algo-

rithm; which involved borrowing bivariate training images

(TI) from an analogue site where the mined-out floor sur-

faces as well as the GPR survey were available.

The resulting DS simulations were compared with

classical geostatistical simulations obtained with the

Turning Bands (TB) method. The comparison has been

made using several statistical indicators. In terms of the

performance measures, the observed differences between

the TB and the DS simulations were fairly small; the results

of both simulation techniques were quite similar.

The approaches were, however, rather different. On the

one hand, the TB method assumes multi-Gaussianity of the

random field and infers the parameters of the model from

the data. This has the advantage to be straightforward and

is based on a well established theory. It requires, however,

some careful analysis of the data to identify properly the

covariance or variogram model. On the other hand, the DS

method borrows the spatial patterns from the training

image which was taken from an analogue site. This allows

to avoid the multi-Gaussian assumption but relies on

assuming that the TI represents properly the expected

spatial variability. It is important to note that the two-point

statistics of the TIs were different from those of the con-

ditioning data of the simulation area. This is usually an

unwanted situation and the TI would normally be evaluated

as non-compatible. Nevertheless, by adapting the parame-

ters of the DS method, it was possible to successfully

perform the simulations and reproduce the two-point

statistics of the conditioning data very well. This fact

shows that even if the TI is not perfectly compatible with

the simulated area, the DS method is rather robust. The

relation between the GPR data and the geological contact

was also directly accounted for in a multivariate manner

using the DS, without having to provide an explicit cor-

relation model.
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Fig. 12 Average of the TB and

DS realisations together with

the IQR maps and the

variograms of the realisations
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In conclusion, utilising Direct Sampling to model the

geological interface in lateritic mines seems to be a

promising approach that can be incorporated in resource

estimations. It provides a framework in which one can

relax the multi-Gaussianity assumption. It allows inte-

grating the data from an analogue site in a straightforward

manner, even if the training data is not perfectly in

agreement with the conditioning data set.
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