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One of the main issues in the application of multiple-point statistics (MPS) to the simulation of three-

dimensional (3D) blocks is the lack of a suitable 3D training image. In this work, we compare three

methods of overcoming this issue using information coming from bidimensional (2D) training images.

One approach is based on the aggregation of probabilities. The other approaches are novel. One relies

on merging the lists obtained using the impala algorithm from diverse 2D training images, creating a

list of compatible data events that is then used for the MPS simulation. The other (s2Dcd) is based on

sequential simulations of 2D slices constrained by the conditioning data computed at the previous

simulation steps. These three methods are tested on the reproduction of two 3D images that are used as

references, and on a real case study where two training images of sedimentary structures are

considered. The tests show that it is possible to obtain 3D MPS simulations with at least two 2D

training images. The simulations obtained, in particular those obtained with the s2Dcd method, are

close to the references, according to a number of comparison criteria. The CPU time required to

simulate with the method s2Dcd is from two to four orders of magnitude smaller than the one required

by a MPS simulation performed using a 3D training image, while the results obtained are comparable.

This computational efficiency and the possibility of using MPS for 3D simulation without the need for a

3D training image facilitates the inclusion of MPS in Monte Carlo, uncertainty evaluation, and stochastic

inverse problems frameworks.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Multiple-point statistics (MPS, Guardiano and Srivastava,
1993; Strebelle, 2002) is a geostatistical simulation technique
that makes it possible to reproduce complex geological patterns
and to provide more realistic results than standard geostatistical
techniques. Recent implementations of the MPS technique make
it possible to include auxiliary information efficiently (Chugunova
and Hu, 2008; Straubhaar et al., 2011) and to solve the computa-
tional issues related to the simulation of large grids in terms of
RAM and CPU time (Straubhaar et al., 2011). Still, an important
barrier to applying the MPS simulation technique remains, the
lack of training images, especially for three-dimensional (3D)
situations. A suitable training image (TI), i.e., a conceptual
statistical model of the geology that has to be simulated, is the
fundamental requirement for MPS simulation. Finding a 3D TI is
often challenging. This is claimed, for example, in the work of
Huysmans and Dassargues (2010), where two 2D training images
are deduced from two quarry walls in the Brussels Sands
ll rights reserved.
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formation (Belgium), or in the work of Le Coz et al. (in press),
where only one horizontal training image is available from
detailed aerial/satellite images of the Komadougou Yobé alluvium
(Niger).

The lack of a 3D TI can be faced using different approaches.
One possibility is to build the 3D TI using object-based or process-
based techniques (for a review of the methods see, for example,
Koltermann and Gorelick, 1996; de Marsily et al., 2005; the
description of some object-based and process-based methods
can be found in the works of Maharaja, 2008; Pyrcz and
Strebelle, 2008; Abrahamsen et al., 2007; Pyrcz et al., 2005).
Often, the best solution is to rely on these explicit spatial models
(Journel and Zhang, 2006). However, in many cases it can be
difficult to apply these techniques. For example, with an object-
based technique it is challenging to reproduce all the kind of
geological shapes that can be represented by an outcrop mapped
at high resolution, or to account for nonstationarity. To overcome
this difficulty, one can, for example, mix different techniques and
use a hierarchical approach (Comunian et al., 2011), but the
simulation framework can become complex. The complexity of
the algorithms arises in many cases mainly from conditioning the
simulations to the observation and taking into account the
nonstationarity rather than from the technique itself (see, e.g.,
Michael et al., 2010).
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Another possibility, which is explored in this work, is to use
the statistical information obtained from several 2D training
images. Along this line of research, Okabe and Blunt (2004,
2007) aggregated with a linear pooling formula the information
coming from a 2D thin section of a carbonate rock in order to
reproduce the micropores at the submicrometer scale. In this
way, they improved the estimation of the porosity of a sample of
carbonate rock where the 3D porosity at the macroscale was
investigated using micro computed tomography imaging.

The statistical information coming from variograms and 2D
training images was used by Caers (2006) to simulate geological
structures at different scales. Caers (2006) aggregates the statis-
tical information using the tau model (Journel, 2002) and obtains
encouraging results.

This paper is an attempt to investigate in more detail the
problems studied by Okabe and Blunt (2004, 2007) and Caers
(2006) and to propose new approaches to the interesting research

topic (Hu and Chugunova, 2008) of 3D multiple-point simulation
using 2D training images. In Section 2, the terminology used to
describe the multiple-point statistics is introduced; Section 3
contains a description of two novel methods and the description
of the method based on the aggregation of probabilities. The three
methods are then tested and compared using different bench-
marks; when a 3D training image is accessible, a direct compar-
ison of the results with a reference using the criteria depicted in
Section 4 is made. The simulation methods are tested and
compared to the simulation of a micro computed tomography
image (Section 5), a sedimentary environment observed in the
Brussels sands (Section 6), and a fluvioglacial aquifer analog
(Section 7). The last two sections contain results and discussions.

The approaches presented here are illustrated using a 3D
simulation as target and 2D training images as sources of
information. However, they can be extended to a more generic
framework where the target simulation has dimension m, and the
information is collected from sources of dimension nom. For
example, these techniques could be applied in the framework of
spatiotemporal models, where the target simulation can have
m¼4.
2. Background and terminology

This section reports the definitions and the notation needed to
describe the methodologies illustrated in the following. The MPS
method and its implementation using the impala algorithm
(Straubhaar et al., 2011) are explained using the same notation
as the paper of Straubhaar et al. (2011).

The MPS method is a sequential simulation technique. All the
nodes are simulated in a sequential order, and the same algorithm
is applied repeatedly while accounting from the previously
simulated nodes (Strebelle, 2000). At a given iteration, one has
to consider the current node to be simulated. Its location is
denoted u (a vector of coordinates). A search template is then
defined. It consists of N lag vectors h1,y,hN in a 2D or 3D space.
The search template t of size N referred to a node location u is
defined as a set of locations centered on u:

tðuÞ ¼ fuþh1, . . . ,uþhNg: ð1Þ

A data template is then associated to a search template. If s is a
function that associates the value of a facies code to a spatial
location, then a data template d of size N at the location u is the
vector of the facies codes at all the neighboring nodes of u:

dðuÞ ¼ fsðuþh1Þ, . . . ,sðuþhNÞg: ð2Þ

Once a search template is defined, and before the sequential
simulation algorithm is started, the first step of many multiple-
point simulation algorithms is the construction of a catalog made
of all the data templates contained in the training image. The
catalog contains information about the frequency of occurrence of
a facies code at the central node of a data template.

Two main storage paradigms exist for the catalog. The catalog
can be organized using a three structure, as in the snesim

algorithm (Strebelle, 2002), or using a list structure, as in the
impala algorithm (Straubhaar et al., 2011). The methodology
depicted in this paper could be adapted to both storage para-
digms, but it can be implemented easily with the lists paradigm,
which is described here.

A list L is a collection of list elements L, where each element is
composed of two vectors (c,d). The vector d¼ ðs1, . . . ,sNÞ contains
one of the facies configurations that are observed in the training
image scanned with the search template t. Given a training image
composed of M different facies codes, the vector c¼ ðc1, . . . ,cMÞ

contains the counters for the occurrences of each facies at the
center of the search template (see Straubhaar et al., 2011, for
more details).
3. Methodology

In order to face the lack of a complete 3D training image when
a 3D simulation is required, we propose and compare three
methods. The first is based on probability aggregation methods;
the second is based on 2D simulation constrained by the con-
ditioning data computed at a previous 2D simulation step; the
third is based on the mixing of compatible data events of the lists
extracted from different 2D training images.

Note that in the following we assume that we have access to at
least two different training images oriented along perpendicular
directions. When only one training image is accessible, we
assume that this same image can be used to depict the required
features along another direction too.

3.1. Probability aggregation

The first method is based on the aggregation of probability,
which was previously explored by Okabe and Blunt (2004, 2007)
and Caers (2006). In this paper, we apply this concept using two
aggregation methods, we test it more extensively than the above
authors using synthetic and real case studies, and we check how
the results obtained depend on the weighting factors.

The principle of the method, illustrated in Fig. 1, is the
following. Since a complete 3D multiple-point conditional prob-
ability distribution function (cpdf) is not accessible, an approx-
imation is obtained by aggregating the probabilities that are
computed from several sources of information having a lower
dimensionality (i.e., 2D training images, or variograms).

Consider, for example, a case where N bidimensional training
images TI1,y,TIN are accessible. These images can be, for example,
three training images having their normal vectors oriented along
the coordinates of a 3D Cartesian coordinate system (Fig. 2b, d
and e). The first steps of a MPS simulation performed with this
approach proceed separately for each training image like a
standard simulation. The training images TI1,y,TIN are scanned
separately using corresponding search templates t1, . . . ,tN . For
example, the search templates can have the shapes illustrated in
Fig. 3a–c. The node locations hi that compose each data template
are selected to lie in the plane defined by the corresponding
training image. During the scan, one catalog (a list in case of the
impala algorithm) is created for each training image. Then, at a
point u of the simulation domain, the conditional probabilities
densities PðsðuÞ ¼ k9d1ðuÞÞ, . . . ,PðsðuÞ ¼ k9dNðuÞÞ of finding the
facies k are computed for each training image and for each facies.
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Here the terms d1,y,dN are the data events found in the simula-
tion grid using the corresponding search templates t1, . . . ,tN . In
the following, the cpdf’s obtained from the different training
images will be denoted for the sake of brevity P1, . . . ,PN .
Fig. 2. (a) A complete 3D training image containing channel structures and (b), (c), (d)

images in the proposed approaches.

Fig. 3. Examples of bidimensional search templates used to scan training images orien

merging the first three search templates ((d)). (a) 5�5�1, (b) 5�1�5, (c) 1�5�5 a

Fig. 1. The procedure for performing 3D MPS simulations aggregating the

probabilities from 2D training images. The dashed blocks represent operations

that are performed for each considered training image.
At this step, the different cpdf’s are aggregated into a global
probability term PG, which is an approximation of the conditional
probability

PGðuÞ �PðsðuÞ ¼ k9d1ðuÞ, . . . ,dNðuÞÞ: ð3Þ

PG is used to draw a given facies at the point u, then the
simulation proceeds sequentially using the same approach.

How to aggregate the different cpdf’s coming from the differ-
ent training images? Comunian (2011) and Allard et al. (in
preparation) propose a critical overview of the methods that
can be used to aggregate probability terms. Here two methods
that represents two different categories of aggregation methods
are tested: the linear pooling formula and Bordley’s, 1982 formula

(or the tau model, Journel, 2002). For the sake of brevity, in the
following we will often refer to the two methods using the
acronyms paLin (probability aggregation using a Linear pooling
formula) and paBor (probability aggregation using Bordley’s
pooling formula).
3.1.1. Linear pooling formula

The first aggregation method considered is the linear pooling
formula; it aggregates the probability terms using a weighted
sum. The method is convex and it does not have the external
Bayesianity property, a property that is suitable for the case of
sequential simulations (see Comunian, 2011; Allard et al., in
preparation, for details). However, the method is appealing
because of its flexibility and its simplicity. It is widely used (for
example, it was used by Okabe and Blunt, 2004, 2007). With this
its slices along different orientation planes. These slices can be used as 2D training

ted along different directions ((a), (b), and (c)) and a search template obtained by

nd (d) merged.



Fig. 4. The procedure for simulating a 3D volume using sequential bidimensional

MPS simulations and conditioning data (approach s2Dcd).

Fig. 5. The top view in the plane xy of two possible sequences of bidimensional

surfaces Si for the s2Dcd method when (a) the dimensions x and y of the domain

are comparable or (b) xby. Only the first eight (a)/nine (b) surfaces are shown.

The green dots represent the vertical columns of conditioning data considered for

the simulation of the surfaces S8 (a) and S9 (b). (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this

article.)

A. Comunian et al. / Computers & Geosciences 40 (2012) 49–6552
method, the aggregated probability is given by

PGðuÞ ¼
XN

i ¼ 1

wiPi with w1, . . . ,wN ARþ : ð4Þ

To obtain a probability term PGA ½0,1�, the weights wi are selected
so that their sum Sw equals one.

3.1.2. Bordley’s formula

The other aggregation method considered is Bordley’s formula,
which is expressed in terms of odds:

OGðuÞpO1�Sw

0

YN

i ¼ 1

Owi

i and Sw ¼
XN

i ¼ 1

wi: ð5Þ

The odds Oi are related to the corresponding probability terms Pi

by

Oi ¼
Pi

1�Pi
with iAfG,0,1, . . . ,Ng: ð6Þ

In Eq. (5), the term O0 is the odds of the prior probability term P0.
This last term represents prior information that Bordley’s formula
makes it possible to integrate in the aggregation process; it can,
for example, be used to incorporate the target facies proportions
derived from a previously performed survey. The weights
w1, . . . ,wN ARþ can be selected so that their sum Sw is greater
than, less than, or equal to one. In the last case the contribution
of P0 is ignored. More details about the other cases can be
found in Bordley (1982), Comunian (2011) and Allard et al.
(in preparation).

Bordley’s formula has properties that are desirable in a
geostatistical simulation framework. One of these properties is
the 0/1 forcing property (Allard et al., 2011): if one probability
term provides a null value (impossible event), then the aggre-
gated result will be null; the same is valid for the value one
(certain event). Other properties of Bordley’s formula are external
Bayesianity and nonconvexity (for more details see Comunian,
2011; Allard et al., in preparation).

3.1.3. Weights selection

In order to apply the aggregation methods presented, the
weighting factors must be defined. Comunian (2011) and Allard
et al. (in preparation) review the methods that can be used to
determine these weights and apply some methods to the solution
of synthetic case studies. Here, three weighting schemes are
proposed and tested.

The first weighting scheme considers the weights equal and
fixed during the entire simulation process. If there are no
elements that makes it possible to prefer one training image
rather than another, this is a reasonable choice, which can easily
be applied to the linear pooling formula: the aggregation then
reduces to the arithmetic mean of the cpdf extracted from each
training image. However, this can be more complicated for
Bordley’s formula, where there is not the restriction Sw¼1. For
this formula, one of the most common approaches is to assume
unitary weights, which correspond to the assumption of condi-
tional independence among sources of information (Journel,
2002; Krishnan, 2008). Different weight choices are explored in
the following test cases. In the case of Bordley’s formula, impor-
tant differences are expected when Sw41 or when Swo1; these
two situations correspond to negative or positive values of
the exponent of the term O0. In the case of binary variables, the
aggregated probability follows the tendency suggested by the
prior term P0 when Swo1, and has an opposite tendency when
Sw41. The works of Bordley (1982), Comunian (2011), and Allard
et al. (in preparation) provide a detailed description of this topic.
The second weighting scheme assumes that the weights vary
during the simulation process. It is known that the weights
should not be constant (Krishnan, 2008), because they may
depend on the data configuration. However, the complete cpdf
(Eq. (3)) not being accessible, one is left with having to provide a
reasonable approximation. A possible scheme, when multigrids
are employed, is to assign a different weight for each multigrid
level, giving greater confidence (with larger weights) to the
information that comes from the training images for the simula-
tion of the first multigrid levels; then, when the main structures
are formed and for the simulation of the final multigrid levels,
more weight is given to the prior terms in order to try to get
closer to the target facies proportions. With this weighting
scheme, we performed some tests that are not reported here
because they did not shown significant improvements in the
results obtained.

The last weighting scheme proposed here is novel: weights
vary at each step of the simulation process. They are computed at
each point u of the simulation path, and are proportional to the
size of the data events that are used to compute the cpdf from the
different training images. The weights are selected to be propor-
tional to the size of the data event, but of course their sum must
respect the condition imposed in the case of the linear pool
(Sw¼1) or for Bordley’s formula (Sw should be equal to the sum of
the default values of the weights).
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3.2. Sequential 2D simulations with conditioning data

The second approach proposed here is based on sequential 2D
multiple-point simulations and on the use of conditioning data
(in brief, approach s2Dcd, sequential 2D conditioning data). The
procedure, depicted in Fig. 4, is the following. At the first step, a
sequence for the sequential simulation of the 2D surfaces is defined.
Then, for each simulation step i, a 2D MPS simulation is performed
along a surface Si using the training image that describes the
heterogeneity along the direction of Si; the conditioning data used
are the points contained in Si \ ð

S
jo iSjÞ and the points contained

in Si \ D, where D is the set of hard conditioning data provided
Fig. 6. The procedure for performing 3D multiple-point simulation aggregating

the probabilities from 2D training images. The dashed blocks represent operations

that are performed for each training image considered.

Fig. 7. The data events of the couples dm and di, dn and dj, dn and dk belonging to the li

dm,i, dn,j , and dn,k . The data events dm and dk are not compatible (different facies in the
(if available) at the beginning of the simulation. These steps are
repeated until all the domain is simulated.

The definition of the sequence of simulation surfaces is crucial for
this approach, which relies on the information provided by the
conditioning data, and must therefore try to include, at each
simulation step, as many conditioning data as possible. At the same
time, the geometrical relations among the dimensions of the
simulation domain must be considered in the choice of the simula-
tion sequence. If the dimensions of the simulation domain are
comparable, then a possible simulation order for the surfaces Si is
illustrated in Fig. 5a. It refers to a square domain where there are no
conditioning data at the first simulation step and where only two
training images (one perpendicular to the axis x and the other
perpendicular to the axis y) are available. When conditioning data
are available or when the dimensions of the simulation domain differ
significantly, the order of simulation of the 2D surfaces should be
customized according to the location of the conditioning data and to
the shape of the simulation domain. As a general rule, the simulation
order of the 2D surfaces should be selected in order to gradually fill
up the simulated domain and to include as many conditioning data
as possible. However, different choices can be made according to the
correlation length of the structures contained in the training images
and/or to the location of the conditioning data.

An example of simulation sequence for a simulation domain
with xby is illustrated in Fig. 5b.

3.3. Lists merging

Another method of simulating in 3D using 2D training images,
illustrated in Fig. 6, relies on the use of lists. Nevertheless, the
method described here for the case of the impala algorithm can be
adapted to other MPS implementations.

Let us illustrate this method with an example (Fig. 7). Consider
two 2D binary training images Txz and Txy oriented along the
sts Lxz and Lxy are compatible. Therefore, they can be merged into the data events

position a), and they cannot be merged.
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planes xz and xy and two corresponding search templates txy and
txz of size 3� 3 pixels. For each training image, the corresponding
lists Lxz and Lxy are computed using the impala algorithm. Each
element of the lists, for example, LmALxz, is composed of a vector
that contains the configuration of a data event dm and a vector cm

that contains counters for the occurrences of each facies for the
given dm. Fig. 7 illustrates some situations where the data events
dm and dn belonging to the list elements Lm, LnALxz can be
combined with data events di, dj, and dk, belonging to the
elements of the list Lxy. For example, the data events dm and di

are compatible, and a list element of the merged list Lmerged can
be created. This last list element contains the data event dm,i

obtained by merging dm and di. The compatibility between data
events of the lists Lxz and Lxy is checked by looking at the facies at
the positions a and b. With the same procedure, the compatibility
between all the data events of the two lists is verified and, if it is
the case, an element of Lmerged is created. Of course, it can happen
that a data event of one list (for example, dnALxz) is compatible
with more than one data event of the other list (for example,
dj,dkALxy). In this case, one element of Lmerged is created for each
compatible combination. Once the compatibility among the data
events belonging to the elements of the two lists is verified and a
merged data event is created, another step is needed to fill up the
element of Lmerged—the computation of the vector of counters.
These counters can be computed as a function of the counters of
the two combined list elements. Once again, this problem is ill
posed because there is no way to be sure that the combination is
correct, unless the 3D information is available. Here four
Fig. 8. The micro CT of a sample of Berea sandstone used as a 3D reference. In the

image, of size 400�400�400 voxels, the blue represents the pores and the yellow

the matrix. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 9. Training images used along the different directions for the tests on
approaches are proposed and tested. For the first one, the
counters are computed using the minimum value of the counters
available for the compatible data events in each training image.
For the other three approaches the mean value, the maximum
value, or the sum of the counters is used.

The merged list computed in this way can be used to simulate
the 3D domain. At the same time, the size of the merged list can
be used as an indicator of the compatibility of the training images
considered. Indeed, in some situations it can be difficult to
determine if the models provided by two 2D training images
are coherent and can depict different but compatible aspect of the
same 3D features which must be reproduced. This method offers a
quantitative approach to deal with this issue.
4. Comparison criteria

For the test considered when a 3D reference TI is available,
direct comparisons among this 3D training image, the simulation
obtained with the methods proposed here, and the standard MPS
simulation methods that make use of this 3D training image are
performed. When a 3D reference is not available, the features of
the results are compared with those of the considered training
images. The comparisons between the simulations obtained with
the proposed methods and the references are based on visual
comparisons, the reproduction of facies proportions, the comput-
ing time, and the following criteria and parameters:

Number of geobodies: The number of connected components
(clusters) composed of the same facies code. Comparing this value
computed for the reference image and the one obtained for the
simulations makes it possible to check the continuity of the struc-
tures that are simulated. However, as we show in the following, this
parameter should be considered as indicative only. Moreover, while
the interpretation of this parameter is intuitive for the simulations of
binary images, it is less intuitive for complex structures and when the
number of simulated facies is greater than 2.

Geobodies area (volume): The area (volume) of the connected
components of the same facies is computed by counting the
number of pixels (voxels) contained in each component. For each
simulation, the statistical distribution of the areas (volumes) is
compared with that of the reference image.

Connectivity functions: Following the definition of connectivity
proposed by Strauffer and Amnon (1994) and Allard (1992) for a
binary medium O, two points x and y are connected when there
exists at least one path completely contained in the permeable
component O9perm: of the medium that joins the two points; in
this case the notation x2y is used. With this notation, a
connectivity function between two points at a distance h can be
defined as

gðhÞ ¼Pðx2xþh9xAO9perm:Þ: ð7Þ
the micro CT image. (a) TI along xz, (b) TI along xy and (c) TI along yz
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In this work we compare the connectivity functions computed for
the reference image and for the simulations. In the cases con-
sidered the images can be considered isotropic and only the
connectivity along the direction x is computed.

Equivalent hydraulic conductivity tensor: The comparisons among
the morphological features of the geobodies can become difficult
when the number of facies that are simulated is greater than 2. In
this case, we support the comparisons using another criterion, based
on the computation of the equivalent hydraulic conductivity tensor
K. K is computed using typical values of the hydraulic conductivity
of the geological facies simulated, performing stationary flux simu-
lations with linear boundary conditions along the three different
axis directions (Rubin and Gómez-Hernández, 1990; Renard et al.,
2001) with the finite elements code Groundwater (Cornaton, 2007).
To compare the equivalent permeability of the reference Kref with
that of the simulation Ksim, a relative error e based on the Frobenius
norm J J is computed:

e¼ JKref�KsimJ

JKrefJ
: ð8Þ

When the computational effort allows it, all the above para-
meters are computed for a minimum of 10 and a maximum of 100
simulations.

In this work, we considered suitable for the comparisons the
set of parameters listed above. Note, however, that other para-
meters could be checked for the comparisons, such as the ones
proposed by De Iaco and Maggio (2011), and Boisvert et al. (2010).
Fig. 10. The training images considered for the Brussels Sands sedimentary environm

white, while mud drapes are in black.

Table 1
Comparison of different methods for the simulation of the micro CT image of a

Berea sandstone. The cases where the weights are selected at each simulation step

proportional to the data event size are indicated with ‘‘pd’’.

Test Method Method details Time (s) # TI # geob. Porosity (%)

(a) paLin w1,2 ¼ 0:5 1299 2 2916 21.01

(b) paLin w1,2pd 1333 2 2384 20.38

(c) paBor w1,2 ¼ 1 1152 2 592 20.74

(d) paBor w1,2pd 1172 2 519 25.72

(e) paBor w1,2,3 ¼ 1 1689 3 269 23.44

(f) paBor w1,2,3pd 1999 3 227 29.01

(g) s2Dcd 2 TI 459 2 226 22.10

(h) s2Dcd 3 TI 434 3 212 19.58

(i) 3D txy [ txz 72 500 1 775 20.86

(j) 3D txy [ txz [ tyz 131 234 1 395 21.33

(k) 3D 7�7�7 493 414 1 79 22.40

Ref. 44 20.13
5. Micro computed tomography image

The first realistic benchmark used to test the proposed
methods is the result of a micro computed tomography (micro
CT) on a sample of Berea sandstone (Okabe and Blunt, 2004,
2007). It is a 3D pore-space binary image discretized in 400�
400� 400 voxels (Fig. 8). It was selected for a number of reasons.
First, the 3D results of the simulation methods proposed can be
directly compared with the actual 3D reference. Second, it is
sufficiently stationary to be considered as a training image.
Finally, it shows that the methods proposed here can be applied
to a range of spatial scales, pore-scale included.

The data set extracted from the reference image is composed
of a 3D training image of dimension 200� 200� 200, smaller
than the original one in order to allow faster simulation for the
methods that require a full 3D training image; a subset of
the original image of dimension 100� 100� 100, which is of
the same size as the 3D simulations obtained with the methods
under examination, which can be used for direct comparisons
with the simulations; three bidimensional training images
obtained as slices 400� 400 of the reference image along the
planes xy, xz, and yz.

5.1. Preliminary bidimensional calibration

General guidelines for how to set up the parameters of a
multiple-point simulation exist (Liu, 2006). However, these para-
meters strongly depend on the considered training image and
should be adapted to the specific case. To look directly on 3D
simulations with a trial and error procedure for a suitable parameter
set requires higher computation and interpretation efforts than on
2D simulations. For this reason, the procedure used to select the
number of multigrid levels and the size of the search template was
performed only on 2D cases. This preliminary step is performed for
all the case studies considered in this work.

5.2. Choose the weights for Bordley’s formula

The application of the two proposed aggregation formulae
requires the definition of weighting factors. For the case of the
micro CT image, there is no element that makes it possible to
prefer one of the three 2D training images extracted as sections
along the planes xy, xz, and yz to another. The 3D image can be
considered isotropic. As a consequence, the same weight is
associated with each considered training image. While in the
ent (a) along the plane xz and (b) along the plane yz. Clay-rich bottom set are in
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case of the linear pooling formula this reduces the aggregation
process to a simple arithmetic mean of the probability terms, in
the case of Bordley’s formula more freedom is left in the choice of
Fig. 12. (a)–(k) Simulations of the micro CT image obtained by the paBor method with

simulations, for direct comparisons. The two training images used for the simulations

w1,2 ¼ 0:4, (e) w1,2 ¼ 0:5, (f) w1,2 ¼ 0:6, (g) w1,2 ¼ 0:7, (h) w1,2 ¼ 0:8, (i) w1,2 ¼ 0:9, (j) w1

Fig. 11. One of the outcrops of the Herten aquifer analog dataset. It is used as a

training image in both the xz and yz directions for the simulation with the

methods paBor and s2Dcd.
the weights, and of their sum Sw in particular (for more details see
Bordley, 1982; Comunian, 2011; Allard et al., in preparation).
In our case, having access to the properties of the target 3D
results, we performed a trial-and-error procedure in order to
determine which set of equal weights wi provides the result closer
to the reference image.

The paBor method is applied to 11 different values of the
weights w1,2 ranging from 0.1 to 2.0; two training images parallel
to the xz and to the xy are used. For each parameter set, 100
realizations are obtained.

5.3. Methods comparison

The number of multigrid levels and the size of the data
template used for the following tests are defined by the trial-
and-error procedure discussed in Section 5.1. The training images
used in the following are illustrated in Fig. 9.
different values of w1,2 and (l) a subset of the original image of the same size of the

are parallel to the planes xy and xz. (a) w1,2 ¼ 0:1, (b) w1,2 ¼ 0:2, (c) w1,2 ¼ 0:3, (d)

,2 ¼ 1:0, (k) w1,2 ¼ 2:0 and (l) reference.
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For the method based on probability aggregation, both the
linear formula and Bordley’s formula are tested.

The first is tested with two training images parallel to the
planes xy and xz and with weights w1,2 ¼ 0:5 (test (a), Table 1) or
proportional to the size of the data event and such that
Sw¼1 (test (b), Table 1).

Bordley’s aggregation formula is tested using two training
images parallel to the planes xy and xz (tests (c) and (d), Table 1)
and three training images parallel to the planes xy, xz, and yz
Fig. 13. Connectivity functions computed along the coordinate x for the 3D simulations

the simulations shown in Fig. 12a– 12k. The dashed line represents the reference; the c

(a) w1,2 ¼ 0:1, (b) w1,2 ¼ 0:2, (c) w1,2 ¼ 0:3, (d) w1,2 ¼ 0:4, (e) w1,2 ¼ 0:5, (f) w1,2 ¼ 0:6, (g
(tests (e) and (f) Table 1). The weights used are w1,2 ¼ 1:0,
w1,2,3 ¼ 1:0 and weights proportional to the size of the data event
with Sw ¼

P
iwi and wi¼1 for each i; the considered prior

probability terms are the porosity and 1� porosity.
The approach s2Dcd is tested using two training images

parallel to the planes xy and xz (test (g), Table 1) or three training
images parallel to the planes xy, xz, and yz (test (h), Table 1).

The results obtained with the method based on the merging of
lists are not shown here because their quality is worse than that
obtained with the paBor method and different values of w1,2, which correspond to

orrelation coefficient r between the reference and the computed curve is reported.

) w1,2 ¼ 0:7, (h) w1,2 ¼ 0:8, (i) w1,2 ¼ 0:9, (j) w1,2 ¼ 1:0, (k) w1,2 ¼ 2:0.
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of the results obtained with the other methods. However, an
application to check the compatibility among training images
based on this method is illustrated in Section 9.

The availability of a 3D training image makes it possible to
perform MPS simulations that use it to compare the results with
the ones obtained with the methods that use 2D training images
only. Here the simulations with a 3D training image (tests (i), (j),
and (k), Table 1) are performed using diverse data templates: (k) a
complete 7� 7� 7 template; (i) a template obtained by merging
two bidimensional templates of dimensions 7� 7� 1 and
7� 1� 7; (j) a template obtained by merging three data tem-
plates 7� 7� 1, 7� 1� 7, and 1� 7� 7 (see, for example, Fig. 3).
Incomplete 3D search templates are considered in tests (i) and
(j) in order to compare the results of the standard MPS technique
and the ones tested in this work using search templates of
comparable size.

The results obtained with the setup described in this section
are discussed in Section 8.2.
Fig. 14. Proportions of pores for simulations of the micro CT image obtained for

different values of the weights w1,2 and the method paBor. Each test case

(boxplots from (a) to (k)) represents a set of 100 simulations performed with a

different random seeds and the same weights w1,2. The value of the weights grows
6. Reproduction of sedimentary structures

The methods paBor and s2Dcd are tested using two training
images that represent some typical sedimentary structures
mapped in the Brussels Sands by Huysmans and Dassargues
(2010). In the training images, one can distinguish a matrix of
clay-rich bottom sets and distinct mud drapes (Fig. 10).

For this case study, the results are compared visually and from
the point of view of equivalent conductivity. An equivalent
conductivity tensor is computed in 2D for one of the training
images (the one oriented along the plane xz, Fig. 10a). Another
equivalent conductivity tensor is computed in 3D for each of the
10 simulations performed for the method paBor and for the 10
simulations with the method s2Dcd.

To compute the relative error e on K we use as Kref the 2� 2
tensor computed for the training image, and as Ksim the four
elements of the 3� 3 tensors computed for the simulations that
correspond to the four elements of Kref. In order to observe a
remarkable anisotropy in the equivalent conductivity tensor, for
the flow simulations a contrast between the two facies of 100 is
used in place of the real values of conductivity measured in the
field (Huysmans et al., 2008).
from 0.1 (a) to 2.0 (k). The horizontal line represents the porosity of the

reference image.

Fig. 15. The log10 of the volume of the pores computed on the simulations of the

micro CT image shown in Fig. 12a– 12k. The simulations are obtained with the

paBor method and with a different value of the weights w1,2 for each test case.

The weights vary from 0.1 (a) to 2.0 (k). The dashed line represents the median of

the volume of the geobodies contained in the reference image.
7. The Herten aquifer analog

The s2Dcd and paBor methods are tested on the reproduction
of the hydrofacies distribution of a high-resolution fluvioglacial
aquifer analog also. The Herten aquifer analog is described and
studied in detail by Bayer et al. (2011). The part of the data set
used here consists of six parallel outcrops (oriented along the
plane xz in the reference system adopted here) where 10 hydro-
facies were recognized and mapped during the excavation of a
quarry. A recent study (Comunian et al., 2011) made it possible to
obtain a detailed and realistic 3D reconstruction of the entire
volume with a hierarchical geostatistical simulation approach;
the results of that study are used here as a reference.

The data set is used as conditioning data and training images
as well. In our test, we used one of the profiles (Fig. 11) as a 2D
training image for both the plane xz and the plane yz. This is a
strong hypothesis that can be debatable, but for the application of
the proposed methods, we decided to rely only on field data, and
no outcrop was available along the perpendicular direction.

For this data set, we test the method based on the aggregation
of probabilities using the Bordley’s formula and weighting factors
w1,2 ¼ 1. The method s2Dcd is tested with and without the use of
the coordinate z as an auxiliary variable.
8. Results and discussion

8.1. Micro CT image and paBor weights

The tests performed with the method paBor on the micro CT
image using different weighting factors suggest that the best set
of weights that can be used in this case is w1,2 ¼ 1. While the 3D
representations (Fig. 12) and the connectivity curves (Fig. 13)
show that results close to the reference can be obtained with
w1,2 ¼ 0:8, 0.9, or 1.0, the pores’ proportions (Fig. 14) show that
the best weights set in this case is w1,2 ¼ 1.

Note that, as expected, the orientations along which the
shapes contained in the reference images are reproduced better
than the orientations along which a training image is used
(Fig. 12). The information about the volume of the geobodies
(Fig. 15) did not provide significant insight for the selection of the
most appropriate set of weights.
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The number of geobodies follows a trend opposite to the other
criteria. The best results are obtained with the set of weights
w1,2 ¼ 2: a mean number on the 100 simulation of 318 geobodies,
while 608 geobodies are observed on average for w1,2 ¼ 1, with a
target number in the reference image of 44 geobodies. This is
related to the overestimation of the pore space obtained with
w1,2 ¼ 2 (Fig. 14). Thus, the results that are closer to the reference
image according to the majority of the comparison criteria are
obtained with w1,2 ¼ 1.

The issue raised by comparison between the results for
w1,2 ¼ 1 and 2 shows that the best parameters set cannot be
selected by considering only one parameter (i.e., the number of
geobodies); instead, a number of parameters that entails different
aspects and descriptions of the results must be considered.

For the following comparisons with other methods, the paBor
method is used with weights wi¼1 for each i.
Fig. 16. Simulations obtained by different methods for the micro CT image. When two 2

weights proportional to the size of the data event and with Sw ¼
P

iwi with wi¼1 are de

simulations (i), (j), and (k). (a) paLin, wi ¼ 0:5, 2 TI, (b) paLin, wipd, 2 TI, (c) paBor, w

(g) s2Dcd, 2 TI, (h) s2Dcd, 3 TI, (i) 3D TI, txy [ txz , (j) 3D TI, txy [ txz [ tyz , (k) 3D TI, t
8.2. Methods comparison on the micro CT image

The method that better reproduces the features of the refer-
ence training image is the s2Dcd. The visual inspection of the
simulations (Fig. 16), the connectivity functions (Fig. 17), and
the data of Table 1 provides strong support for this. Note that the
number of geobodies obtained with this method is closer to that
of the reference training image than the one obtained by the
standard MPS simulation approach but with search templates
reduced to a merge of two or three 2D search templates with
different orientations (Table 1, methods (i) and (j)). Moreover,
the computational effort of the method s2Dcd is more than
two orders of magnitude smaller than for methods (i) and (j).
In general, this is true for all the aggregation methods tested in
this case study: the simulation time required by the methods
paLin, paBor, and s2Dcd is from two to three orders of
D TI are used, they are oriented along the planes xy and xz. The methods that adopt

noted by ‘‘pd.’’ The figure (l) is considered as a reference and it is used as TI for the

i ¼ 1:0, 2 TI, (d) paBor, wipd, 2 TI, (e) paBor, wi ¼ 1:0, 3 TI, (f) paBor, wipd, 3 TI,

¼ 7� 7� 7 and (l) reference.
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magnitude smaller than that required by a standard multiple-
point simulation with a complete 3D training image.

The comparisons between the linear aggregation method
(paLin, tests (a) and (b)) and Bordley’s formula (paBor, tests
(c), (d), (e), (f)) show that with the second method it is possible to
obtain results that are more satisfactory in terms of visual aspect
(Fig. 16), connectivity function (Fig. 17), and number of geobodies
Fig. 17. Connectivity functions along the x-axis for the 3D tests performed for the

training image. The correlation coefficient between the curves and the number of geobo

2 TI, (d) paBor, wipd, 2 TI, (e) paBor, wi ¼ 1:0, 3 TI, (f) paBor, wipd, 3 TI, (g) s2Dc

t¼ 7� 7� 7.
(Table 1). Therefore in this situation Bordley’s aggregation for-
mula is more suitable than the linear formula.

Of course, the results obtained using three training images are
more realistic than the ones obtained using only two training
images (Fig. 16, Table 1). Moreover, in the case of the s2Dcd,
using three training images does not entail a greater global
computational effort as it does for the methods based on the
micro CT image. The dashed curve is the function computed on the reference

dies is reported. (a) paLin, wi ¼ 0:5, 2 TI, (b) paLin, wipd, 2 TI, (c) paBor, wi ¼ 1:0,

d, 2 TI, (h) s2Dcd, 3 TI, (i) 3D TI, txy [ txz , (j) 3D TI, txy [ txz [ tyz and (k) 3D TI,
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aggregation of probability. Indeed, even if more simulation steps
are required for the s2Dcd method when three training images
are used, the simulation time decreases faster than in the case
where only two training images are used, because of the faster
increase of the number of conditioning data. This can result in
total computing times that are smaller when three training
images are used (Table 1).

Selecting the weights as proportional to the size of the data
event did not improve the results noticeably. When this option is
used (Table 1, tests (b), (d), and (f)), the number of geobodies is
slightly closer to the target number of geobodies, but at the same
time the proportions get farther from the target proportions. The
observation concerning the set of weights w1,2 ¼ 2 made in the
previous section support this hypothesis.

Some tests are performed using the method based on list
merging for compatible data events. They are not reported because
the quality of the simulations was not comparable with that of the
simulations obtained with the other methods. Another drawback of
this method is that when there is high compatibility among the lists
that are merged, the size of the merged list becomes unacceptable.

This problem can be faced in different ways. One possibility is
to increase the size of the search templates; this entails a
reduction in the number of compatible data events. Another
possibility is to develop some criteria to reduce the size of the
lists in such a way that the final result is not sensibly altered and
the information content is preserved.

An additional issue related to this method is how to compute
the occurrences counters in the merged list as a function of the
counters of the departure lists.

Despite its drawbacks, this method reveals its usefulness when
it is necessary to check the compatibility among 2D training
images that are selected to represent different aspect of a 3D
training image. Section 9 is devoted to this last aspect.
Fig. 19. The relative error e on K computed for 10 simulations performed with the

paBor method and 10 simulations with the s2Dcd method. The reference

conductivity tensor is computed on the training image of Fig. 10a.
8.3. Brussels sand sedimentary structures

With the method s2Dcd it is possible to obtain credible 3D
simulations of the sedimentary structures depicted along two
different sections by the training images in Fig. 10. These simula-
tions contain less noise than the ones obtained with the method
paBor (Fig. 18). Note that the slices in Fig. 18 are not selected
looking for the best or the worst situation, but trying to depict an
equilibrated outline.
Fig. 18. Simulations of the Brussels Sands environment (training images in F
The better simulation quality that is observed for the method
s2Dcd in Fig. 18 is confirmed by the relative error e (Fig. 19). This
last is computed by comparing the equivalent conductivity tensor
of the training image of Fig. 10a and the concerning components
of the tensors computed for the 3D simulations. The cluster of
simulations performed with the method s2Dcd has a lower
relative error than the corresponding cluster of simulations
obtained with the paBor method.

8.4. The Herten aquifer analog

The results obtained for the Herten aquifer analog are com-
pared visually (Fig. 20). The ones obtained with the paBor

method contain a noisy component that is less evident in the
simulations obtained with the other methods. With the method
s2Dcd the results obtained considering or not the coordinate z as
an auxiliary variable (Fig. 20e and f, respectively) are comparable;
they make it possible to obtain features that are very close to the
ones of the reference image (Fig. 20b).

To compare the features of the simulated image in this case
study using the same criteria as used for the micro CT images can
be tedious. For example, the connectivity function can be com-
puted for each of the 10 hydrofacies used in the simulations, and
the same for the number of geobodies and the proportions,
ig. 10) obtained using (a) the paBor method and (b) the s2Dcd method.



Fig. 20. The simulations obtained with the different methods for the Herten aquifer analog: (a) hierarchical technique (considered as reference, Comunian et al., 2011);

(b) transition probability/Markov chain approach (Maji and Sudicky, 2008); (c) paBor approach; (d) s2Dcd with no auxiliary variables; (e) s2Dcd with the coordinate z as

auxiliary variable; (f) with the use of (a) as 3D training image. The background section along xz contains one of the six sections used as conditioning data, while the other

section is placed in between two parallel sections of conditioning data.
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but these results cannot be compared as easily as for a binary
image. For this reason, another criterion is used. The comparisons
are made by computing for each simulation an equivalent con-
ductivity tensor K and its distance in terms of the Frobenius norm
to the equivalent conductivity of the reference image. This
distance e, normalized by the value of the Frobenius norm of
the reference, provides a global parameter that allows quantita-
tive comparison of the characteristics of the simulation results in
term of hydraulic parameters (Fig. 21).

The distance from the reference image makes it possible to
distinguish a cluster of simulations performed with the paBor

method, while the results obtained with the method s2Dcd with
and without the auxiliary variable z have the same distance from the
reference, five times smaller than the distance obtained with the
paBor method. The distance of the methods s2Dcd is comparable
with that of the simulation method TProgs (transition probability/
Markov chain, TP/MC, Carle, 1996; Maji and Sudicky, 2008). The
method that makes it possible to obtain a conductivity tensor closer
to the reference is the one that uses it as a 3D training image.
The computation times, obtained with an Intel Xeon 3.2-GHz
workstation with 2 GB of RAM, are reported in Table 2. The
simulation times required for simulations with the methods
paBor and s2Dcd are comparable (2.1 and 3.5 h respectively,
with two 2D search templates 7� 7), while the time required for
a simulation that uses a 3D training image is one order of
magnitude greater, using a search template 3� 3� 3. If a tem-
plate of size 7� 7� 7 is used for the simulation with the 3D
training image, then the computing times are more that two
orders of magnitude greater than the times required by the paBor
and s2Dcd methods.

Note that the computation times reported here and in Table 2
correspond to serial implementations of the codes for the MPS
simulation. Of course, the parallel implementations of the MPS
would have provided smaller computational times (Straubhaar
et al., 2011), but some of the simulation tools developed for this
study are serial only, for the moment. Therefore, the simulations
are performed using serial implementations, in order to have a
fair comparison.
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9. Check compatibility among training images

In the examples treated in this chapter, the 2D training images
that are used are compatible with each other because they are
either from the same 3D image, or observed in the field from a
single geological environment. However, in practice, the user is
left with providing two or more independent training images, and
it may happen that they are incompatible.

Here we discuss how the technique to merge the lists pro-
posed in Section 3.3 can be used to test their compatibility.

Here the tests are performed on two training images. One
training image is the training image containing channels
(Fig. 22h), introduced by Strebelle (2002), considered as oriented
Fig. 21. The relative error in K computed using as reference one realization of the

Herten aquifer analog obtained with a hierarchical technique (Comunian et al.,

2011) for (a) 2 other realizations obtained by the hierarchical approach; (b) 10

realizations obtained with paBor; (c) 10 realizations obtained with s2Dcd and z

as auxiliary variable; (d) 1 realization obtained with s2Dcd and no auxiliary

variable; (e) 1 realization obtained with a TP/MC approach (Maji and Sudicky,

2008); (f) 1 realization obtained using the reference image as TI.

Table 2
Computation times for the different methods used to simulate the Herten aquifer

analog.

Data template Multigrid levels Method Time (h)

7�1�7, 1�7�7 3 paBor 2.1

7�1�7, 1�7�7 3 s2Dcd 3.5

3�1�3, 1�3�3 6 s2Dcd 0.2

3�3�3 6 3D 22.9

7�7�7 3 3D 4216:0

Fig. 22. The reference training image used along the plane xz (h). The images (a)–(g) a

training image (h) by a number of successive iterations (shown in the subcaptions). (a)�

þ4, (m) þ5, (n) þ6, (o) þ7 and (p) þ8.
along the xz plane. This image is associated with the list L1. The
other training image, oriented along the yz plane, is chosen
among the different images obtained by eroding or dilating the
image used along the plane xz (Fig. 22, list L2).

We then define an indicator of compatibility between the
training images as the ratio between the size of the merged list
Lmerged and the size that the list would have in case all the data
events were compatible, that is, #L1 � #L2 (Fig. 23). The size of
Lmerged alone cannot provide a clear indication, because it
depends both on the sizes of L2 and L1, and on the number of
combined compatible data events.

Fig. 23 shows, for different multigrid levels, the ratio

#Lmerged=ð#L1 � #L2Þ: ð9Þ

For each multigrid level, a maximum of this ratio is observed in
correspondence to the abscissa 0, that is, for the value of erosion/
dilation which corresponds to the departure image, when the
training images used along the two directions are the same. The
maximum is less evident for the first multigrid level (Fig. 23 mg 0)
because for the given data template and the given training image
the number of data events is too small.

Even if this feature should be confirmed by other case studies,
the results shown here indicate that this criterion could be used
as a comparison criterion to check the compatibility of 2D
training images to be used for a joint simulation of a 3D block.
nd (i)–(p) are respectively obtained by eroding (�) or dilating (þ) the reference

7, (b) �6, (c) �5, (d) �4, (e) �3, (f) �2, (g) �1, (h) ref., (i) þ1, (j) þ2, (k) þ3, (l)

Fig. 23. The ratio between the size of the merged list L1[2 and the size of the

merged list under the hypothesis that all the elements of the two merged lists L1

and L2 are compatible. The list L1 is computed from the training image of Fig. 22h,

while the list L2 is obtained from the same image eroded or dilated (Fig. 22). The

sizes of the merged lists are computed for four different multigrid levels.
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Another application could be in synergy with other methodolo-
gies (for example, Boisvert et al., 2007) aimed at the selection of TI
from comparisons with data statistics.
10. Conclusion

This work demonstrates that even without the use of a 3D
training image, it is possible to obtain 3D simulations that
reproduce the main characteristics of simulations obtained with
standard multiple-point statistics (standard in the sense that they
use a complete 3D training image).

One of the novel methods proposed here (s2Dcd) produces
simulations that are closer to the reference 3D image than
methods based on the aggregation of probability, according to
most of the evaluation criteria considered here. Moreover, for the
application of the s2Dcd method, it is not necessary to define
additional parameters such as the weighting factors required for
the application of the paBor method.

The other novel method proposed, based on the merging of
lists of compatible data events, does not make it possible to
obtain realistic simulation results. However, it is based on a
principle that is useful and easy to use for determining when
two (or more) 2D training images can be considered compatible
for the joint description of 3D geological structures.

An important aspect of the methods proposed here is their
computational efficiency. Even if, of course, these methods cannot
reach the same accuracy in the reproduction of complex geologi-
cal patterns of MPS technique with a 3D training image, the
computation time is from two to four orders of magnitude smaller
than for the methods using a full 3D image. Therefore, with these
methods, it is possible to approach problems that are prohibitive
for the standard MPS simulation in terms of CPU time required.
For example, with the same computational effort, with these
methods it is possible to select search templates bigger than the
ones allowed by the standard MPS. This computational efficiency
makes it possible to include MPS in Monte Carlo and uncertainty
evaluation simulation frameworks, or in inverse problems that
require a high number of realizations performed within a reason-
able computation time.

Moreover, with the method s2Dcd, it is possible to face
simulation problems that would normally require huge RAM
resources, because the simulation process is reduced to a
sequence of 2D MPS simulations. This made it possible, for
example, to simulate domains of about 200 million voxels, using
two 2D training images of sand lenses from a clay till outcrop in
Denmark mapped by Kessler et al. (2010).

Still, the s2Dcd method has some limitations. Even if the overall
quality of the results presented here is good, some artifacts can be
observed. For example, looking the 2D slices along their simulation
sequence, a gradual deterioration of their quality can be noticed.
While at the beginning the 2D simulations can easily be constrained
by the available conditioning data, the constraints can become too
strong when many conditioning data have been simulated. The
strength of the constraints is due to the fact that the 2D simulations
are obtained by ignoring lateral correlation (the only information
used in the conditioning data on the same simulation surface), and
therefore some incoherent features can arise during the simulation
procedure. These drawbacks can be reduced by selecting a suitable
simulation sequence of the surfaces, but further investigations are
required to minimize them.

The methodologies presented here are based on the assump-
tion that the 3D model can be represented, along some directions,
by one or more models with a smaller dimension. Of course this
assumption should always be checked and considered according
to the model’s goals and aims.
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