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A B S T R A C T

The aim of this work is to present a methodology for the reconstruction of missing fracture density within
highly fractured intervals, which can represent preferential fluid flow pathways. The lack of record can be
very common due to the intense presence of fractures, dissolution processes, or data acquisition issues. The
superposition of numerous fractures makes the definition of fracture surfaces impossible, as a consequence,
modeling such zones is challenging. In order to address this issue, the usage of direct sampling multiple-
point statistics to perform gap filling in well logs is demonstrated as an alternative to other techniques. It
reproduces data patterns and provides several models representing uncertainty. The method was tested in
intervals from a highly fractured well, by removing previously known fracture density data, and simulating
different scenarios with direct sampling. Simulation results are compared to the observed data using cross-
validation and continuous rank probability score. The reference scenario training data set consists in one well
and two variables: fracture density and fracture occurrence. A sensitivity analysis is carried out considering
additional variables, additional wells, different intervals, resampling with extremes, and other gap filling
techniques. The auxiliary variable plays an important role in pattern matching, but adding wells and logs
increases the complexity of the method without improving pattern retrieval. Best results are obtained applying
extreme values theory for stochastic process with the enrichment of the fracture density data at the tail region,
followed by resampling of the new values. The enriched data is used for the gap filling resulting in lower
continuous rank probability score, and the achievement of extreme fracture density values.
1. Introduction

1.1. The importance of missing record in highly fractured zones

The challenge and importance of this work is related to the fact
that missing records often happen in nature, not only because the tools
do not have resolution to detect some events but also because the
products of some processes are not materialized as rock, but in general
as voids spaces, such as unconformities, bedding, karst, unfilled faults
and fractures.

A highly fractured zone is described by the superposition of numer-
ous fracture surfaces, where sometimes it is impossible to identify each
fracture, measure orientation, dip, aperture, roughness, or even count
how many fractures cross a line to calculate fracture density. One can
infer highly fracture intervals in subsurface from low amplitudes signals
in borehole acoustic image logs, where the sinusoidal forms with higher
dips cannot be precisely individualized (Fig. 1A), or by the fragmented
rock core samples from wells (Fig. 1B).

∗ Corresponding author at: Centre for Hydrogeology and Geothermics, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
E-mail address: ana.burgoa@unine.ch (A.P.B. Tanaka).

In Fig. 1C, a single cored fragment of the reservoir reinforces the
indication of a highly fractured zone with the sampling of a fault
plane with slickensides, indicating movement but uncertain about the
attitude, as the core and consequently the fault cannot be oriented due
to high fragmentation.

The lack of well log data can also be due to cost cutting, operational
drilling problems, and image acquisition issues, either in logging while
drilling or in wireline logging. Core samples are not often planned at
highly fracture zones because of the low recovery. The consequence
of the lack of data in making models is that most likely there will be
no value of fracture intensity in the most fractured regions. A common
practice from industry is to attribute arbitrary values for the maximum
fracture density, or interpolate values from two consecutive points to
avoid misinterpretation.

In spite of this, the missing record is meaningful to understand
phenomena in nature, and in this case fracture density reflect patterns
that are important to understand structure development and controls
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Fig. 1. Fractured intervals in a well: (A) Borehole acoustic image logs, the low amplitudes are showed in dark representing open fractures, highlighting a fracture cluster at the
top left. (B) Core sample fragments from a fractured interval with partial recovery. (C) Fault plane with slickensides from a core fragment of the same well, indicating that the
low recovery is due to high fracture density.
in diagenetic processes for karstic development, the percolation of
hydrothermal fluids, and to characterize uncertainty for reservoir mod-
eling. Fracture distribution, the multi-scale representation of structures,
and flow characterization require fracture density measurement or
estimation. When fractures occur in sufficient spacing or length their
effect on fluid flow becomes crucial (Nelson, 2001; Philip et al., 2005;
Sanderson and Nixon, 2018). Whereas connectivity depend mainly on
fracture density, length, and angular scatter (Ozkaya and Al-Fahmi,
2022). To asses this effect, it is important to know how many of these
fractures exist in a given reservoir volume, and understand how it
evolves with depth.

Further examples that highlight the importance of fracture charac-
terization in well logs for fracture modeling and fluid flow of naturally
fractured carbonates, from the Santos Basin, can be found in Fernandez-
Ibanez et al. (2022), de Jesus et al. (2016), Mimoun and Fernández-
Ibáñez (2023), Tanaka et al. (2022, 2018) and Wennberg et al. (2023).
In a broad sense fracture modeling is important for hydrocarbon recov-
ery, mining and nuclear waste disposal, water resources assessment and
for the development of geothermal systems.

1.2. Data reconstruction with direct sampling multiple-point statistics

The application of direct sampling multiple-point statistics for miss-
ing data reconstruction is exemplified in previous works from Mari-
ethoz and Renard (2010), Mariethoz et al. (2012) and Oriani et al.
(2016). Mariethoz and Renard (2010) demonstrate that the applica-
tion of direct sampling recovers the statistical content of the missing
data, and generates complex signal structures, with the possible use of
auxiliary information.

The concept of multiple-point statistics was developed in the early
1990s, as a non-parametric statistical framework developed to repre-
sent heterogeneity. At the beginning it could be thought as a way
to work in under-informed situations (Mariethoz, 2018). The first ap-
proaches (Guardiano and Srivastava, 1993; Journel, 1993) brought
tools that made the inclusion of interpretative knowledge in spatial
models practical, as the multiple-point statistics framework had the
novelty of carrying the concept and this knowledge within the training
image of what was to be modeled. The first successful applications took
place in fields where data are typically few, uncertain and expensive,
2

such as reservoir modeling, soil science or mining. Multiple-point statis-
tics is widely applied because it reproduces the structures and patterns
present in a training data set, allowing its composition with few hard
data. In such cases, the design of the training data set becomes a very
important part of the modeling work.

Mariethoz and Renard (2010) propose to use direct sampling for
the reconstruction of partially informed images in a wide range of
applications. The idea is to extract the statistics directly from the
data set, that becomes a training data set. The inference of consis-
tent multiple-point statistics is possible even when the training data
set accounts to less than 1% of a 3D volume to reconstruct. Five
reconstruction examples are presented: (1) spatial repartition of the
training data set using a categorical image of sand channels in a clay
matrix, (2) continuous variable example using synthetic transmissivity
field with reference images built from aerial photographs of braided
channels, (3) 3D synthetic example with the reference image of an
object-based simulation of turbidites, (4) 3D case of a quarry in the
sediments from a point-bar deposit formed by a meandering river, and
(5) borehole image case, where the goal was to fulfill gaps between
the pads of a borehole microresistivity image. In the last example, the
authors highlight that borehole images are a powerful way to obtain
information about bedding and fractures.

Mariethoz et al. (2012) explore an approach to produce spatially
continuous fields from discontinuous data focusing on the reconstruc-
tion of gaps of satellite-based Earth observations. Using synthetic im-
agery derived from a regional climate model, they demonstrate that the
method is straightforward, as it requires minimum parameter adjust-
ment and user intervention. The approach could represent complex spa-
tial patterns and the fine-scale data structure. Direct sampling provided
more realistic spatially continuous fields than other kriging methods. As
kriging might result in interpolated areas that are clearly distinct from
the rest of the image, presenting unrealistic continuous textures and,
possibly artifacts.

Oriani et al. (2016) propose the reconstruction of a flow rate time-
series, considering several missing data scenarios with auxiliary data.
A multivariate direct sampling setup was proposed including two out-
of-phase periodic triangular functions, an indicator variable, and the
flow rate time-series as the main variable. It generates more realistic
simulations in comparison with an autoregressive moving average with
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exogenous variable. The prediction becomes better when a correlated
flow rate time-series is used. Direct sampling allows the simulation
of complex natural process by sampling the available data set where
sufficiently similar patterns can be found, without the requirement of
a high amount of data. The efficiency depends on finding the good
ensemble of variables, best suitable for the application.

1.3. Extreme value theory applied for stochastic processes

The lack of extreme values is an intrinsic characteristic of the
missing record, as the highest values might not be available in the con-
sidered data set. The importance of extreme events in environmental
hazards and in assessing risk, is described by Haan and Ferreira (2006)
for the Netherlands, which territory is approximately 40% below sea
level. In this case, the government required that dikes would be as high,
so that the probability of the seawater level exceeding the top of the
dike in a given year would be very low, 10−4. The question was how
to estimate the probability of a once in thousand years event when the
observations of high-tide water levels during storms were limited to
100 years? Going beyond that range seemed to be almost impossible.
However, the solution arises with the use of extreme value theory,
since it provides a theoretical basis and framework for extrapolation.
It restricts the behavior of the distribution function in the tail to
resemble a limited class of functions that can be fitted to the tail of
the distribution function (Haan and Ferreira, 2006).

Different applications of statistical analysis of extreme values to
hydrology and environmental sciences, finance and insurance, material
sciences, and human sciences can be found in Reiss et al. (1997). The
authors describe the importance of the extreme part of the samples
as it may exhibit a larger risk potential of random events such as
floods, hurricanes, high concentration of air pollutants, price shocks,
and others. Reactions to the likelihood of a future catastrophe may help
to prevent a greater disaster to happen. Therefore, the statistical insight
gained from extremes can be considered decisive in daily business, for
the solution to ecological or technical issues.

Fracture density data generally shows heavy tail distribution, the
sampled data close to the extreme values present higher spacing among
the points. A proper reconstruction of the missing data requires to
account for the lack of the extreme values in the data set. The standard
direct sampling algorithm does not generate new values beyond the
observed range. To overcome that issue, the proposition is to enrich the
original data set in the tail region and resample with lifting based on
functional extreme value theory, allowing the extrapolation of the ob-
served data towards yet unobserved high quantiles with direct sampling
as proposed by Opitz et al. (2021).

The semi-parametric resampling with extremes (Opitz et al., 2021)
aims to enrich the original data with new values at the tails of the
distribution by generating an independent sample of the marginal dis-
tribution while keeping the rank order of the observed data, and apply
classical resampling algorithms fixing a target range of return levels
of a magnitude variable and resampling the magnitudes constrained to
that range. The authors use the method to generate heatwave scenarios
over France, based on daily temperature reanalysis. The generation
of extreme values is showed to be crucial for climate-related applica-
tions to understand its impact on the historical record and in future
events (Opitz et al., 2021).

1.4. Objective

The objective of the article is to propose and test a methodology
to infer missing fracture information along borehole well logs. The
methodology considers the available information from well logs to
fulfill fracture density from highly fractured areas using direct sam-
pling multiple-points statistics and tools from extreme value theory for
3

stochastic processes. i
Direct sampling was chosen because it is able to simulate realistic
natural patterns based on the data set, and it requires few parameters. It
provides several models that can represent the intrinsic uncertainty of
this type of data. Resampling with extremes is applied to reach extreme
values in the reconstruction of missing data.

The methodology was tested in a real data set from a naturally
fractured reservoir. But the aim of the work is to propose a method-
ology that could be broadly applied in various different settings. For
petrophysical and structural geology studies, to facilitate the routine
work of log processing and fracture modeling from different sites, by
improving the quality of well log gap filling and making models more
predictive.

2. Methodology

2.1. Data set and study site

The data set used is composed of 24 wells with directional surveys,
conventional well logs (gamma ray, resistivity, neutron porosity, den-
sity, and sonic logs), top reservoir stratigraphic markers, and fracture
interpretation from borehole acoustic and resistivity image logs.

The wells were drilled in an isolated naturally fractured lacustrine
carbonate Aptian reservoir located on the continental margin of SE
Brazil, in the South Atlantic Ocean (Tanaka et al., 2022). Specifically
in the central portion of the Santos Basin, on the top of a long-
lived basement paleo structural high known as the Santos External
High (Carminatti et al., 2009) (Fig. 2). The area shows dominantly
NNE-striking normal faults and the north domain of the reservoir is
highly fractured (Tanaka et al., 2018, 2022).

2.2. Selection of variables for the training dataset

The fracture density P10 is the main variable of interest. It was
calculated with a sampling window of 1 m and corrected using the
borehole deviation (Terzaghi, 1965). As convention P10 [m−1] is the
-d (linear) density defined as the number of fractures per unit length
f the sampling line, according to the system of measures that describes
racture abundance (Dershowitz and Herda, 1992), where P stands
or persistence, followed by subscripts designating the dimension of
he measurement region, or sampling domain (1: borehole) and the
imension of the measure or fracture attribute (0: count of a number
f fractures).

For the reconstruction of fracture density, the available P10 was
sed both as conditioning data and training data set (Fig. 3). For the
irst approach only P10 was used as a training data set, other auxiliary
ariables were gradually added to compare results.

Several auxiliary variables were tested to deal with the non-
tationarity of the training data set. The use of auxiliary variables in
ultiple-point statistics simulations was first suggested by Chugunova

nd Hu (2008). For this work the selection of auxiliary variables was
nspired by Oriani et al. (2014) that applied direct sampling to simulate
aily rainfall time series in order to reproduce the complexity of the
ainfall signal up to the decennial scale, with the aid of a multivariate
ata set.

The idea is to select variables that describe the low-frequency
racture density trend. Several variables were tested: the P10 densities
alculated with different sampling windows (A1 = 10 m), classes of
racture occurrence (OC = 0,1,2,3) calculated from the P10, and addi-
ional well logs such as the compression sonic log (DTCO). An example
f the training data set selection for well-11 is showed in Fig. 3. The
ighlighted gaps were used for cross-validation, as intervals of less
LFG), intermediate (IFG), and higher (HFG) mean fracture density P10.

The low frequency trend A1 was built from a sample window of
0 m, as derived from the main variable P10. Another auxiliary variable
as built as classes of fracture occurrence defined in terms of fracture
ntensity with class 0: P10=0, class 1: 0 < P10 < 5, class 2: 5 ≤ P10
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Fig. 2. Location of the study area in the Santos Basin External High in SE Brazil. The right figure shows a zoom on the structural elevation map of the top reservoir, with the
black traces representing interpreted faults. The numbered black dots show the location of the drilled wells.
Source: Modified from Tanaka et al. (2022).
Fig. 3. Training data set from well-11 for gap filling: fracture density (P10), fracture occurrence (OC) and low frequency trend (A1). Highlighted gaps in red at the P10 track,
where data set was excluded for cross-validation at the less fractured interval (LFG), higher fractured interval (HFG), and intermediate fracture interval (IFG).
< 10, and class 3: P10 ≥ 10. The occurrence is a relative measure
that can be obtained from the wells and when the fracture intensity
is not available it can be interpreted from other well logs, production
data, and conceptual knowledge from the area. The identification of
lower amplitudes signals might be possible at the acoustic image log,
4

where fracture occurrence might be estimated by relative comparing
the amplitudes. To fulfill gaps with adequate values and patterns, the
previous knowledge if either the interval has a higher fracture intensity
is ideal, but not required, as it is possible to work with auxiliary
variables with different resolutions.
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Table 1
Summary of the parameters used in the direct sampling setup.
Variable Distance threshold (t) Number of neighbors (n) Maximal scan fraction (f)

Main 0.05 30 0.5
Auxiliary 0.08 1 0.5
t
d
v

i
t

The fracture occurrence generation was inspired by the dry/wet
equence presented in Oriani et al. (2014), a variable indicating the
osition of a day inside a rainfall pattern of wet, dry, solitary wet, and
et at the beginning or end of a wet spell, that allowed the simulation

o reproduce realistic patterns and reach higher values.

.3. Direct sampling setup

Among the multiple-point statistics techniques, the direct sampling
perates in a multivariate framework and constitutes a very flexible
ool for reproducing complex features within and between variables.
t can handle both categorical and continuous data (Mariethoz et al.,
010; Straubhaar et al., 2020). The simulation process consists in
equentially populating the missing cells in the simulation grid with
alues sampled from the training data set. The algorithm relies on the
omparison of patterns using a distance function defined accordingly
o the type of variable (categorical or continuous) and taking values
etween 0 and 1, interpreted as a mismatch rate (Mariethoz et al.,
010; Straubhaar et al., 2020). The main parameters of the algorithm
re the maximal number of neighbors in the pattern (𝑛), the maximal
istance from compatible patterns or acceptation threshold (𝑡), and the
aximal fraction (𝑓 ) of the training data set that can be scanned for

he simulation of each node. This last parameter allows to control the
imulation time, if the acceptation threshold is not reached after having
canned a fraction 𝑓 , the search is stopped and the best candidate is
etained (Mariethoz et al., 2010; Straubhaar et al., 2020).

The gap filling simulations were conducted using the direct sam-
ling multiple-point statistics DeeSee algorithm from the Python Pack-
ge Geone.1 The DeeSse algorithm can handle multiple variables si-
ultaneously, auxiliary categorical and continuous variables that can

uide the simulation of the main variable of interest, which improves
he quality of the simulation results.

Different direct sampling parameters were tested, but in the follow-
ng we present the results obtained with 𝑛 = 30, 𝑡 = 0.05 for the primary
ariable, 𝑛 = 1, 𝑡 = 0.08 for the auxiliary variables, and 𝑓 = 0.5 for all
he scenarios (Table 1). For each scenario, 20 stochastic simulations
ere generated.

The parameters were selected based on tests and what has been used
n previous works (Oriani et al., 2014, 2016). Oriani et al. (2014) use
= 0.05 for all variables from the setup, and a low maximal number of
eighbors 𝑛 = 1, and 𝑛 = 10 for auxiliary variables to condition dry/wet
atterns on the small scale and to reproduce realistic patterns and reach
igher values. For the reconstruction of flow rates Oriani et al. (2016)
se for two auxiliary variables a threshold 𝑡 = 1, and a low maximal
umber of neighbors 𝑛 = 1. The maximal fraction 𝑓 = 0.5 was selected
n order to scan 50% of the training data set. Ranges were tested but the
est continuous rank probability score (CRPS) came from the presented
etup.

.4. Extreme values resampling

To enhance the capture of extreme values, semi-parametric resam-
ling with extremes is used alongside the gap filling method. While
nitially tested for reconstructing fracture density data, this approach
olds broader applicability in settings dealing with extreme values.
esampling with extremes is implemented using algorithms proposed
y Opitz et al. (2021).

1 https://github.com/randlab/geone.
5

The key steps involve: (1) estimating the univariate probability
density function to model and estimate the marginal distribution, and
(2) choosing between enriching the tail using a technique called naïve
resampling or enriching with a lifting mechanism.

For additional details, the original names of the algorithms devel-
oped by Opitz et al. (2021) are cited for each step, summarized as
follows:

(1) To estimate the marginal distribution, first the data is modeled
with a kernel density estimation (KDE). Subsequently, the marginal
right tail of the distribution is modeled with a generalized Pareto dis-
tribution requiring a probability (𝑝𝑢) of exceedance over the threshold
(𝑢). The extreme value theory restricts the behavior of the distribution
function in the tail to resemble a limited class of functions.

Fig. 4 illustrates the distribution of P10 fracture density data, from
well-11, modeled with a kernel density function. The chosen probabil-
ity of exceedance 𝑝𝑢 = 0.3 is emphasized in the cumulative distribution
function (CDF) derived from the KDE (Fig. 4).

The univariate density model is then expressed as:

𝑓 (𝑥) =

{

𝑓 (𝑥), 𝑥 ≤ 𝑢,
𝑝𝑢𝑓𝐺𝑃 (𝑥 − 𝑢 | 𝜎̂𝑢, 𝜉𝑢), 𝑥 > 𝑢,

(1)

where 𝑓 is provided by the KDE, and 𝑓𝐺𝑃 is the density of a generalized
Pareto distribution with scale (𝜎) and shape (𝜉) parameters, whose the
survival function is defined for 𝑦 > 0 as

𝑃 (𝑌 > 𝑦 ∣ 𝜎, 𝜉) = ∫

+∞

𝑦
𝑓𝐺𝑃 (𝑧 | 𝜎, 𝜉)𝑑𝑧 =

{

(1 + 𝜉𝑦∕𝜎)−1∕𝜉 , 𝜉 ≠ 0,
𝑒𝑥𝑝(−𝑦∕𝜎), 𝜉 = 0

(2)

The scale parameter is first set to 𝜎̂𝑢 = 𝑝𝑢∕𝑓 (𝑢) to ensure the
continuity of the modeled density, and then the estimated shape (𝜉𝑢)
is obtained using a tail index estimator such as maximum likelihood
estimator computed from the data above 𝑢. Hence, the univariate
density model is defined from the data, a KDE and the given probability
of exceedance 𝑝𝑢 (Algorithm 1, Estimation of the univariate probability
density function, Opitz et al., 2021).

(2) Enriching data can be achieved by naïve resampling as follows.
A new set of data values, of same size as the training data set, is
generated by sampling from the modeled density 𝑓 . The vector of ranks
in the sorted list of the training data values is used to reorder the new
data values, to reproduce the patterns and keep spatial (or temporal)
consistency. (Algorithm 2, Naïve resampling, Opitz et al., 2021).

A lifting mechanism can be applied as an alternative to naïve
resampling. First, the distribution 𝑋 of data values, of CDF 𝐹 modeled
in step 1, is transformed to 𝑋(𝑃 ) = 1∕(1 − 𝐹 (𝑋)), which is a standard
Pareto distribution of shape parameter 𝛼 = 1, whose cumulative density
is 𝐹 (𝑧) = 1−1∕𝑧𝛼 . Then, a uniform marginal scale is used by considering
he variable 𝑈 = −1∕𝑋(𝑃 ) = 𝐹 (𝑋) − 1 which follows a uniform
istribution on the interval [−1, 0). The threshold value for the new
ariable 𝑈 is then 𝑣 = 𝐹 (𝑢) − 1 < 0. The lifting mechanism requires

two additional parameters 𝑣1 ≤ 𝑣2 ≤ 0 (and 𝑣1 <0 if 𝑣2=0) and consists
n drawing a new value 𝑣̃ uniformly between 𝑣1 and 𝑣2, and considering
he lifted variable 𝑈 = 𝑠 ⋅ 𝑈 , with the scaling factor 𝑠 = 𝑣̃∕𝑣. If 𝑣̃ > 𝑣,

then 0 < 𝑠 < 1 (since both 𝑣̃ and 𝑣 are negative) and the variable 𝑈
is ‘‘uplifted’’ (Algorithm 3, Lifting with uniform data margins, Opitz
et al., 2021). The lifting operation is only applied to (uniform scale)
data values exceeding the threshold 𝑣, followed by a post-processing
to avoid discontinuities around the threshold value (and values less
than −1 in case of ‘‘downlifting’’) (Algorithm 4, Lifting with uniform
data margins and postprocessing, Opitz et al., 2021). Finally, the result
is back-transformed in the original scale via 𝑋 = 𝐹−1(1 + 𝑈 ). To

https://github.com/randlab/geone
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Fig. 4. Histogram of log fracture density (P10) from well-11, fitted kernel density estimate (KDE), and cumulative density (CDF) from kernel density estimate.
Fig. 5. Well correlation with measured depth (MD), vertical depth (SSTVD), tadpoles as fracture interpretation (Dip Angle), fracture density (P10), and fracture occurrence (OC).
Wells locations in Fig. 2.
ensure better spatial consistency, this method can be applied to a set
of realizations, by first applying lifting to get an enriched data set and
then generating new realizations by resampling based on the enriched
data (Algorithm 5, Resampling dependent extremes, Opitz et al., 2021).
In addition, following this procedure allows to easily account for local
constraints (conditioning data points) in the realizations.

2.5. Testing procedure and quality criteria

Well-11 was chosen for cross-validation as it characterizes longer in-
tervals of highly fractured reservoir. A well section illustrates different
fracture densities from correlated wells of the same structural domain
(Figs. 2, 5).

Three intervals of 20 m each were selected for testing and divided
according to the mean fracture density, described from the base to the
top as: intermediate fractured gap (IFG) = 3.50 m−1, higher fractured
gap (HFG) = 5.92 m−1, and less fractured gap (LFG) = 1.55 m−1 (Fig. 3).
The observed P10 values in these intervals are known, but removed
from the data set for cross-validation. Gap filling algorithm is run and
the results are compared to the observed data.

Among all the tests a reference scenario is defined. It corresponds to
the test of a training data set (TDS) that includes the main variable P10
and the auxiliary variable fracture occurrence (OC), for the filling of
higher fractured interval, using only the data from well-11. Five other
6

scenarios, with variants, are presented for the sensitivity analysis and
compared to the reference (Table 2).

(1) Selecting variables: no auxiliary variable for comparison, one aux-
iliary variable (A1 or DTCO) is tested instead of the fracture
occurrence variable, and additional auxiliary variables are in-
cluded to the reference scenario training data set. The training
data corresponds to well-11 only.

(2) Adding wells: training data from 5 and 24 wells are included,
considering only the variables P10 and fracture occurrence.

(3) Different intervals: the same training data set is used from the
reference scenario but the filled gaps are located in less fractured
intervals.

(4) Resampling with extremes: gap filling considers P10 values enriched
with naïve resampling or lifting with extremes.

(5) Other techniques: different types of interpolation (linear, piece-
wise cubic hermite, and cubic spline), two-point statistics (or-
dinary kriging, cokriging and sequential gaussian simulation),
and machine learning (neural network and random forest) are
applied.

The quality of the tests was evaluated with the continuous rank
probability score (CRPS) as proposed by Juda et al. (2020) for multiple
point statistics simulations. It is a scoring rule originally described
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Table 2
Summary of the scenarios, sensitivity analysis and comparison with other techniques.
Scenarios Wells Variables Interval Method Mean CRPS

Reference a 1 (2) P10, OC HFG Direct sampling 0.79

(1) Selecting variables

b 1 (1) P10 HFG Direct sampling 5.06
c 1 (2) P10, A1 HFG Direct sampling 3.15
d 1 (2) P10, DTCO HFG Direct sampling 3.95
e 1 (3) P10, OC, A1 HFG Direct sampling 0.77
f 1 (3) P10, OC, DTCO HFG Direct sampling 0.98
g 1 (4) P10, OC, A1, DTCO HFG Direct sampling 0.99

(2) Adding wells h 5 (2) P10, OC HFG Direct sampling 0.95
i 24 (2) P10, OC HFG Direct sampling 0.97

(3) Different intervals j 1 (2) P10, OC LFG Direct sampling 0.39
k 1 (2) P10, OC IFG Direct sampling 0.70

(4) Resampling with extremes

l 1 (2) P10, OC HFG Direct sampling, naïve 0.73
m 1 (2) P10, OC HFG Direct sampling, lifting 0.77
n 1 (2) P10, A1 HFG Direct sampling, naïve 2.97
o 1 (2) P10, A1 HFG Direct sampling, lifting 3.07
p 1 (3) P10, OC, A1 HFG Direct sampling, naïve 0.76
q 1 (3) P10, OC, A1 HFG Direct sampling, lifting 0.78

(5) Other techniques

r 1 (1) P10 HFG Linear interpolation 4.21
s 1 (1) P10 HFG Piecewise cubic hermite 4.52
t 1 (1) P10 HFG Cubic spline 16.94
u 1 (1) P10 HFG Ordinary kriging 3.55
v 1 (1) P10, OC HFG Cokriging 2.35
w 1 (1) P10 HFG Sequential guassian simulation 3.94
x 1 (1) P10, OC HFG Sequential guassian simulation 2.69
y 1 (1) P10 HFG Neural network 4.15
z 1 (1) P10 HFG Random forest 5.27
by Gneiting and Raftery (2007) and Gneiting et al. (2007), that quanti-
fies the quality of a probabilistic forecast by comparing it with a single
true value. If 𝑥 represents an observation, the cumulative distribution
unction (CDF) 𝐹 associated with the empirical probabilistic forecast
such that 𝐹 (𝑦) = 𝑃 [𝑋 ≤ 𝑦]) is considered to compute the CRPS between
𝑥 and 𝐹 , defined as:

𝐶𝑅𝑃𝑆(𝐹 , 𝑥) = ∫

∞

−∞
(𝐹 (𝑦) −(𝑦 − 𝑥))2𝑑𝑦 (3)

where  is the Heaviside step function taking the value of 1 if the real
argument is positive or zero, or the value of 0 otherwise. The CRPS
is expressed in the same unit as the observed variable and generalizes
the mean absolute error (Gneiting and Raftery, 2007). In this sense,
lower scores indicate a better match between ensemble simulations and
the hard data at every observed data point. The comparison has been
conducted on a large ensemble of scenarios.

3. Results and discussion

3.1. Fracture density reconstruction with direct sampling

Table 2 summarizes the scenarios and sensitivity analysis done to
test the methodology, and compare results from each different combi-
nation of training data sets, without and with extreme resampling, and
with other techniques to fulfill gaps in fracture density.

Fig. 6 illustrates results from one single simulation of each scenario
of well-11 gap filling without extremes, at the higher fractured interval.
From the reference scenario (a) to scenarios 1 and 2 (b to h) where the
training data set is composed of different variables and additional wells.

For the selection of other auxiliary variables, an example of simula-
tion without an auxiliary variable (Scenario 1b) is presented with high
mean CRPS of 5.06 and pattern mismatch (Fig. 6b), highlighting the
importance of the auxiliary variable.

When auxiliary variable A1 or the sonic log DTCO are selected alone
as auxiliary variables (Scenario 1c and 1d), the mean CRPS are high
3.15 and 3.95, respectively, but patterns do not match (Fig. 6 c, d).

By adding the low frequency trend as auxiliary variable to the ref-
erence training data set (Scenario 1e), there is a slight improvement in
comparison to the reference scenario (Fig. 6e). With pattern matching
7

and lower CRPS, as it changes from 0.79 from the reference scenario
to 0.77.

When well logs are added, e.g. the sonic log DTCO, to the reference
scenario, and the low frequency trend as auxiliary variable, (Scenario
1f and 1g), the results do not improve, as CRPS turns to 0.98 and
0.99. In both cases the pattern still matches, but higher values are
not reached (Fig. 6f, g). The curve becomes slightly more erratic,
that could be due to the different resolution. Another aspect is that
well logs are the result of various natural events imprinted on the
rock and that they can also reflect the characteristics from the fluid.
Therefore, the well log records are not directly related to fracturing. On
the opposite, the fracture occurrence variable relates fracture density
with mechanical stratigraphy in a sense that is not captured by the
other logs, other than a borehole image log interpretation. This is why
working with the auxiliary variable of fracture occurrence improves
pattern predictability but it could be a limitation if there is no previous
knowledge about the most fractured zones.

By considering more wells in the training data set (Scenario 2), there
is not an improvement as CRPS turns to 0.95, and 0.97 by considering 5
(Fig. 6h) or 24 wells, respectively. Although the results are still good. As
well-11 is the highest fracture well in the area, the additional data does
not improve the matching of the highest values. Figs. 2, 5 illustrate the
position of the wells and the difference of fracture intensity between
wells.

When intervals with different fracture density are submitted to gap
filling (Scenario 3), as expected, the best result are obtained for the less
fractured interval (Fig. 7j) with mean fracture density of 1.55 and CRPS
of 0.39, in comparison to the reference scenario with mean fracture
density of 5.92 and CRPS of 0.79. The intermediate fracture interval is
in between both cases, with mean fracture density of 3.50 and CRPS
of 0.70 (Fig. 7k). In general, power law distribution, log-normal, and
exponential laws describe rather well the frequency distribution of
fracture density (Bonnet et al., 2001; Davy et al., 2013). As lower
fracture densities are more frequent than higher density, lower P10
values are easier to sample for the direct sampling algorithm. Besides
that, the zero values can be precisely matched in the simulations with
the aid of the auxiliary variable (Fig. 7).

The fracture occurrence showed to be an important guide to retrieve
accurate patterns of peaks and valleys (Figs. 6, 7).
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Fig. 6. Results from different scenarios of fracture density P10 reconstruction with direct sampling from well-11 at a zoom at the higher fractured interval, with the correspondent
scores. The observed data is shown in black solid line and the simulations in magenta dashed line. (a) Reference scenario with one well and two variables, (b) Scenario with one
well and one main variable, (c) Scenario with two variables, with a low frequency trend as auxiliary variable, (d) Scenario with two variables, with the sonic log as auxiliary
variable, (e) Scenario with three variables, adding the low frequency trend to the reference scenario (f) Scenario with three variables, adding the sonic log to the reference scenario,
(g) Scenario with four variables, (h) Scenario with five wells and two variables.

Fig. 7. Results from fracture density P10 reconstruction from well-11 with direct sampling, using one well and two variables, at different intervals of lower fracture densities,
with the correspondent scores. The observed data is shown in black solid line and the simulations in magenta dashed line. (j) Scenario of gap filling of the less fractured interval
selected for cross-validation, (k) Scenario of gap filling of the intermediate fractured interval.
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Fig. 8. Results from the gap filling of well-11 at the higher fractured interval, reference scenario. The points are the observed data, the magenta line is one simulation, the blue
traced line is the mean from the ensemble simulations and the shaded area is the confidence intervals.
Fig. 9. Fracture density curves (P10), from top to bottom: original observed data before resampling, enriched data after naïve resampling, difference between the enriched curve
with naïve resampling and the original, enriched data after lifting, and difference between the enriched curve with lifting and the original data.
Fig. 8 shows results from 20 simulations, with confidence interval,
for the reconstruction of P10 at the higher fractured interval from well-
11 (Reference scenario 1a). Only a few points of extreme fractured
densities are outside the range obtained by the simulations.

Most of the higher and lower P10 values that characterize the
described patterns could be reached with well-11 data only (Fig. 8),
although it still misses to match all the highest values, for example
at 5135.6 m and 5150.6 m. Simulating the highest values of the
distribution are a challenge for the gap filling with direct sampling,
such values can be achieved by resampling with extremes.
9

3.2. Resampling fracture density with extremes

Resampling with extremes was performed using data from well-11.
After the original data was enriched either by naive resampling or

lifting with extremes, gap filling was applied for the reference scenario
by replacing the original P10 with the new enriched P10 values (Sce-
nario 4) (Table 2). The modeling considered only the enrichment of the
values from the right tail, the higher values.

Fig. 9 show the original P10 curve for well-11, the enriched P10
curve after naive resampling, the difference between them, the enriched
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Fig. 10. Results from different scenarios of fracture density P10 reconstruction with direct sampling and resampling with extremes from well-11 at a zoom at the higher fractured
interval, with the correspondent scores. (l) Scenario with two variables like the reference scenario, where P10 is enriched by naïve resampling, (m) Scenario with two variables like
the reference scenario, where P10 is enriched by lifting, (n) Scenario with two variables, with a low frequency trend as auxiliary variable, and enriched P10 by naïve resampling,
(o) Scenario with two variables, with a low frequency trend as auxiliary variable, and enriched P10 by lifting, (p) Scenario with three variables, and enriched P10 by naïve
resampling, (q) Scenario with three variables, and enriched P10 by lifting.
P10 curve after lifting, and the difference between the lifted and the
original curve.

In both cases the substitution of the original P10 curve for the new
resampled values took place where the new values were higher than
the original ones.

Fig. 10 illustrates the gap filling with the enriched P10 curves with
different auxiliary variables, the best result is from naïve resampling
(Scenario 4l), with CRPS 0.73 (Fig. 10l). The training data set consists
in 1 well, and 2 variables: enriched P10 and fracture occurrence. Lifting
was also applied to the same setting (Scenario 4m) obtaining CRPS of
0.77 (Fig. 10m).

When the fracture occurrence is substitute by the low frequency
trend A1, the CRPS increase to 2.97 with naïve resampling (Scenario
4n) and 3.07 with lifting (Scenario 4o) (Fig. 10n, o).

With the addition of a third auxiliary variable (Fig. 10p, q) results
are still good with CRPS of 0.76 and 0.78, respectively. Showing a small
gain from the reference scenario.

The ensemble simulation for Scenarios 4l and 4m, built with naïve
resampling and lifting match most of the highest values and reach
extreme high values in both cases (Fig. 11).
10
The improvement in CRPS of 0.73 and 0.77 respectively for the
naïve resampling and lifting, in comparison to the reference scenario
without extremes of 0.79, might seem to be minor but the major gain
of the application of both approaches is reaching the high P10 value
at 5135.6 m. This high value was not achieved previously without the
extremes, being now reached due to the extremes (Figs. 8 and 11). For
the two cases it is possible to reach values unobserved by the original
data. Although with lifting it was also possible to match high P10 value
at 5150.6 m (Fig. 11).

3.3. Comparison with other methods of gap filling

The interpolation of well logs is a routine task for the processing of
petrophysical data. The most common interpolation technique used is
linear interpolation which is most suitable for small gaps (maximum of
5 values) and not for a large number of missing values (Churikov and
Grafeeva, 2018).

To compare various reconstruction gap filling we use different
interpolation techniques such as linear interpolation, piecewise cubic
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Fig. 11. Results from the gap filling of well-11 at the higher fractured interval with
direct sampling and resampling with extremes (𝑝𝑢 = 0.3). The points are the observed
hard data, the magenta line is the result from one simulation, the blue dashed line is
the mean from the ensemble simulations and the shaded area is the confidence intervals
from the simulations.

hermite interpolating polynomial (PCHIP), and cubic spline (Scenario
5r to 5t). Additionally, for two-point statistics, ordinary kriging, cokrig-
ing and sequential gaussian simulation (SGS) were used (scenarios 5u to
5x), and for machine learning, neural network and random forest were
explored (Scenario 5y to 5z). The continuous rank probability score was
calculated for each case (Table 2). While the techniques serve for gap
filling by generating values to fill the gaps, they may not succeed in
retrieving patterns within the gap.

Linear interpolation and piecewise cubic hermite are quick methods
for obtaining extrapolated values to fill gaps, but they fall short in
capturing the patterns of fracture density and its uncertainties. Kriging
and SGS perform better than interpolations and allow the use of auxil-
iary variables, although even with the auxiliary variable OC pattern
retrieval is not better then the reference scenario. Machine learning
methods, such as gradient boosting and random forest, demand the
configuration of a larger number of parameters to split data and set
up tree learning.

Fig. 12 illustrates the comparison between methods. Direct sampling
approach for the reference scenario shows better results in terms of
pattern match and with lower CRPS.
11
In terms of time spent in the algorithm setup, the proposed approach
of gap filling with direct sampling is in between the standard interpola-
tion techniques and the machine learning methods. It does not require
a large amount of data set or data augmentation and it outputs several
simulation that can be used to characterize uncertainties.

Lopes and Jorge (2018) present well log gap prediction using ma-
chine learning methods such as artificial neural networks, gradient tree
boosting, and random forests, in comparison to algorithms of linear
regression. They gather a basic suite of logs from thousand wells for the
prediction of neutron porosity missing gaps of a single well. Concluding
that the random forests and gradient boosting performed better than
the linear approaches. They show that the greater the gap, the higher
the average error, as it could be expected due to less amount of data
remaining for the training, typically showing more variance in the
target values.

More recently Shakiba et al. (2022) present a study of one-
dimensional fracture arrangements with multi-scale data analytics us-
ing Ripley’s K-function, as a measure of spatial interaction. They use
it to fill spatial gaps where data is absent by taking into account
the spacing between fractures and position along a scanline. The idea
is to randomly choose and relocate a fracture along the interval by
comparing the original k-function to the one from the new fracture
arrangement, if the mismatch is reduced the new arrangement is
accepted. For restoring fracture gaps it needs reference values of
the k-function, for their case study the authors assume that fracture
arrangement in the gap at the middle of the scanline will be similar to
the rest of the area. The arrangements were initially limited to 10 m,
but after data imputation they could extend to 30 m.

In the context of fracture density reconstruction, the target variable
is derived from borehole image log interpretation. Gaps can be in the
scale of tens of meters, so greater gaps are more difficult to match the
observed data. Importantly, the objective of gap filling extends beyond
merely generating values for intervals without data. It encompasses
the additional goal of recovering fracture density patterns capable of
characterizing zones indicative of preferential fluid flow paths within
the gaps.

4. Conclusions

The results show that direct sampling is suitable for fracture den-
sity gap filling, as an alternative for common interpolation, with the
parametrization of few settings such as the acceptation threshold (𝑡),
maximal number of neighbors (𝑛) and maximal fraction (𝑓 ).

The summarized steps for the reconstruction of missing fracture
density in well logs with direct sampling are: (i) selection of the
training data set, (ii) enriching data using extreme value theory, (iii)
running the simulation with enriched main variable for gap filling,
and (iv) validating results with cross-validation and evaluating suitable
scenarios with CRPS.

The training data set selection of two variables, fracture density
P10 as the main variable and fracture occurrence being the auxiliary
variable, is simple and showed good results for gap filling of a highly
fractured interval of well-11. The auxiliary variable plays an important
role as it guides pattern match. When more variables are added, the
complexity in the training data set increases, although the results do
not necessarily improve.

Resampling with extremes improve the reconstruction of missing
data and could be further applied for various cases where gaps are due
to extreme events. Values beyond the observed data range could be
achieved. For the resampling with extremes a probability of exceedance
(𝑝𝑢) is also required.

Other than reservoir modeling, the proposed methodology could be
extended for scanlines in structural geology and geothermal studies,
and for the post processing and gap filling of various types of well logs
and log-derived data of different settings.
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Fig. 12. Results from scenarios of fracture density P10 reconstruction with different techniques from well-11 at a zoom at the higher fractured interval, with the correspondent
scores. The observed data is shown in black solid line and the simulations in magenta dashed line. Interpolation scenarios: (a) Reference scenario with direct sampling, (r) Linear
interpolation, (s) Piecewise cubic hermite interpolation, (t) Cubic spline interpolation. Two point statistics scenario: (u) Ordinary kriging, (v) Cokriging, (w) Sequential guassian
simulation, (x) Sequential guassian simulation with auxiliary variable. Machine learning scenarios: (y) Neural network, (z) Random forest.
For further application, the code and examples of the reconstruction
of fracture density data with extremes are available in Python. 2
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