Defining Significant Terms

J. Savoy

Université de Neuchâtel

C. Müller : Principes et méthodes de statistique lexicale. Champion. Paris.
F. Smadja: Retrieving Collocations form Text: Xtract.

Computational Linguistics, 19(1), 1993, 143-177.
J. Savoy: Lexical Analysis of US Political Speeches. Journal of Quatitative Linguistics, to appear

Discriminating Features

- Various methods have been proposed to define / weight the importance of each word / term in describing the semantic content of a document
- Usually related to Information Retrieval (IR)
- Here we will focus on a comparative basis
- How can we characterize a corpus (or a document or a set of documents) in comparison with another?
Compare two works of two different authors Compare two works of the same author Compare a web site with another

Discriminating Features

- To define whether a given feature (e.g., word, bigram, POS, etc.) is used significantly more often in a given corpus, we may subdivide the whole corpus (C) into two (or more) disjoint parts
- Example: US electoral speeches

Our US Corpus

US: all speeches given by B. Obama \& J. McCain during the years 2007 \& 2008

Example with 15 tokens and 4 types

Contingency Table

- We can resume all needed information into a contingency table (one per word / feature)
- A large corpus \mathbf{C} is subdivided into two (disjoint) parts \mathbf{S} and \mathbf{C} - (with $\mathbf{C}=\mathbf{S} \cup \mathbf{C}$-)

	\mathbf{S}	C-	
ω	a	b	$a+b$
not ω	c	d	$c+d$
	$a+c$	$b+d$	$n=a+b+c+d$

Bernoulli Process

- Example The word "IT" in Obama's speeches in 2008 (S) vs. all other US electoral Speeches (C-)

	Obama'08	C-	
"IT"	1	0	1
not "IT"	294,552	334,541	629,093
	294,553	334,541	629,094

- $\operatorname{Prob}[\omega]=\operatorname{Prob}[" I T "$ in C] $=(a+b) / n=$ $1 / 629,024=0.0000016$.
- $n^{\prime}=a+c=294,553$

Bernoulli Process

- We can view the distribution of ω as follows.
- We draw a (biased) coin (Bernoulli process).

For each "head" (success) we generate the word ω.
For each "tail" (failure), another word.

- The probability of obtaining "head" is small (e.g., Prob[ω] = 0.0000016).
- We repeat this process n^{\prime} times (e.g., $n^{\prime}=294,553$)
- We may expect finding n ' Prob[ω] heads (or successes or word ω in a document composed of 294,553 word tokens) In our example, we obtain 0.468 .
This value is the mean of the underlying Bernoulli process ${ }^{\top}$

Bernoulli Process

- Another example
- We draw a (biased) coin.

The probability of obtaining "head" (success) is $p=0.4$
The probability of "tail" (failure), $1-p=0.6$.

- We repeat this process n^{\prime} times $\left(n^{\prime}=10\right)$
- We may expect finding $n ' \cdot p$ heads. In our example, we have $10 \cdot 0.4=4$.

Bernoulli Process

- We can then compare the expected number of occurrence (n ' $\cdot \operatorname{Prob}[\omega]$) of the word ω with a (the observed number of occurrence).
- In our case, we obtain 0.468 and $a=1$.
- The difference must be analyzed with respect to the underlying (normal) variability. This is measured by the standard deviation (denoted σ) defined as:

$$
\sigma=\sqrt{n^{\prime} \cdot \operatorname{Prob}[\omega] \cdot(1-\operatorname{Prob}[\omega])}
$$

If σ is large, we may expect a larger (but normal) difference between (n ' $\operatorname{Prob}[\omega]$) and a

The Z Score

- As a general measure to take account for the difference between:
- an observed value (x), a random variable
- its mean (μ)
- its standard deviation (σ) (or its variance σ^{2}) we may compute its Z score (standardized score) as

$$
Z \text { score }=\frac{x-\mu}{\sigma}=\frac{x-\mu}{\sqrt{\sigma^{2}}}
$$

on our case,

$$
Z \text { score }=\frac{x-\mu}{\sigma}=\frac{a-\left(n^{\prime} \cdot \operatorname{Prob}[\omega]\right)}{\sqrt{n^{\prime} \cdot \operatorname{Prob}[\omega] \cdot(1-\operatorname{Prob}[\omega])}} 10
$$

The Z Score

- In our example (word "IT"), we have

$$
Z \text { score }=\frac{1-(294,553 \cdot 1 / 629,094)}{\sqrt{294,553 \cdot 1 / 629,094 \cdot(1-1 / 629,094)}}=0.777
$$

is this value significantly large?

- To have a complete answer, we need to compare it with "normal" values. Is this possible? Yes, because it is known that the Z score follows a Normal distribution $N\left(\mu=0, \sigma^{2}=1\right)$ or in short, $\mathrm{N}(0,1)$.

The Z Score

The interesting values of a $\mathrm{N}(0,1)$ distribution are \ldots

Probability	\mathbf{Z} value
0.01	-2.33
0.025	-1.96
0.05	-1.64
0.1	-1.28
0.5	0.0
0.9	1.28
0.95	1.64
0.975	1.96
0.99	2.33

Characteristics Terms

- Back to our example

The word "IT" in Obama's speeches in 2008 (S) vs. all other US electoral Speeches (C-)

	Obama'08	C-	
"IT"	1	0	1
not "IT"	294,552	334,541	629,093
	294,553	334,541	629,094

$$
Z \text { score }=\frac{x-\mu}{\sigma}=\frac{1-(294,553 \cdot 1 / 629,094)}{\sqrt{294,553 \cdot 1 / 629,094 \cdot(1-1 / 629,094)}}=0.777
$$

Characteristics Terms

- In our example, we have Z score $=0.777$

This value is not really an exception and thus the corresponding term ("IT" or "astronaut") occurring only once cannot be qualify as "significant" for Obama 2008.

- We can consider another word type / subset.

	McCain'08	C-	
"Bush"	26	398	424
not "Bush"	154,339	474,331	628,670
	154,365	474,729	629,094

Characteristics Terms

- For the word "Bush" in McCain's speeches in 2008 we compute the Z score as
Z score $=\frac{x-\mu}{\sigma}=\frac{26-(154,365 \cdot(424 / 629,094))}{\sqrt{154,365 \cdot(424 / 629,094) \cdot(1-(424 / 629,094))}}=-7.654$
The resulting value is -7.654 (very small). The probability of having a Z score value lower than -2.33 is around 0.01 .
Clearly the word "Bush" is underused in McCain's speeches (in 2008) compared to the rest of the US corpus.

Other (Related) Questions

- Do we use all word types or remove some (not useful) types (e.g., "the", "of")?
- Do we use the surface (inflected) form or the lemma (e.g., "is", "was" or "be")?
- Do we apply a deeper morphological analysis to conflate related word types under the same stem (e.g., "American" and "America")?
- Do we use only a subset of all possible POS tags (e.g., only nouns, adjectives, adverbs and verbs)?
- What is the difference between the frequency and the Z score?

Most Frequent Words

	McCain 2008		Obama 2008
Freq.	Word	Freq.	Word
2345	I	6203	we
2160	we	4216	I
1602	our	3276	our
1540	will	3164	will
821	my	2389	you
775	you	1566	American
775	American	1444	they
709	they	1313	can
640	he	1107	America
540	country	1081	year
530	tax	1047	need
485	America	958	tax

Most Significant Words

\mathbf{Z}	McCain 2008	\mathbf{Z}	Obama 2008
14.5	Obama	17.8	McCain
9.8	government	11.1	John
9.6	my	9.9	we
8.6	Canada	8.7	Bush
8.1	federal	7.7	jobs
7.9	among	7.5	Washington
7.8	small	7.4	up
7.7	judicial	7.3	relief
7.4	Arizona	7.2	working
7.4	court	7.1	why
7.3	very	7.1	street
7.1	such	7.0	family
7.0	business	7.0	because

Using Filter?

- We want to study the most significant bigrams (sequence of two words)
- Looking at the most frequent ones we obtain of/IN the/DT
in/IN the/DT
i/PRP be/VB
to/TO the/DT
- Not really helpful
- Adding constraints?

Example of Filters

- We admit the following POS sequences

JJ NN white house NN NN mortgage rate

- And for trigrams NN NN NN stem cell research
JJ JJ NN next big idea
JJ NN NN clean energy economy NN IN NN academy of science
- Difference between the frequency and the Z score (both with POS constraints)

Most Frequent Bigrams

	McCain 2008		Obama 2008
Freq.	Bigram	Freq.	Bigram
326	Senator Obama	479	health care
158	health care	384	Senator McCain
131	small business	322	United States
123	United States	300	Wall Street
111	American people	289	John McCain
48	Wall Street	284	American people
40	next street	245	middle class
40	new president	214	tax cut
38	tax increase	148	George Bush
35	health insurance	132	insurance company
35	government spending	131	tax break
34	middle class	129	new job

Most Significant Bigrams

\mathbf{Z}	McCain 2008	\mathbf{Z}	Obama 2008
28.5	Senator Obama	20.0	Senator McCain
8.4	small business	17.2	John McCain
8.1	government spending	13.9	Wall Street
6.7	tax increase	11.9	middle class
6.6	bad economy	11.4	tax cut
6.3	higher tax	11.0	Main Street
6.2	business tax	9.6	tax break
6.2	flex fuel	9.1	insurance company
6.1	law enforcement	8.5	George Bush
5.9	more job	8.4	more year
5.9	energy security	7.9	oil company
5.6	great country	7.6	rescue plan
5.6	tax rate	7.5	21 st century

Most Frequent Trigrams

Freq.	McCain 2008	Freq.	Obama 2008
50	President I will	69	President United States
28	I elected President	67	President I will
25	you thank you	57	United States America
22	thank you thank	42	I running President
21	I believe we	40	we can afford
21	health care system	38	million new jobs
20	dependence foreign oil	35	we can choose
18	small business owner	34	we will make
17	I thank you	34	I President we
16	thank you I	33	President we will
16	I will work	33	I will make
15	I will make	32	will make sure
12	our country I	26	change we need

Most Significant Trigrams

Z	McCain 2008	\mathbf{Z}	Obama 2008
5.0	hybrid flex fuel	8.2	State of America
4.6	nuclear power plant	5.6	common sense regulation
4.6	cost of energy	5.5	last eight years
4.5	strong have courage	5.3	middle class family
4.5	stronger better country	5.2	capital gain tax
4.5	selfishness in Washington	4.8	source of energy
4.5	mess of corruption	4.6	world class education
4.4	percent of American	4.6	month in Iraq
4.3	manufacture of hybrid	4.4	time for change
4.3	excess of Wall	4.2	jobs of tomorrow
4.0	worse keep tax	4.1	mountain of debt
4.0	tax increase spending	4.0	uncertainty for America
4.0	single government program	4.0	early childhood education

Most Frequent Terms

PS		PDC		PRD		UDC	
Freq.	Type	Freq.	Type	Freq	Type	Freq	Type
237	nous	643	nous	178	être	864	suisse
198	politique	347	suisse	176	suisse	456	pas
192	doit	261	pas	166	doit	445	politique
190	pas	245	être	143	politique	384	ne
178	ne	230	notre	138	nous	323	être
150	être	222	ne	108	sécurité	321	état
133	suisse	177	politique	108	ne	320	AI
132	culture	174	PDC	91	pas	295	droit
106	culturelle	156	doit	90	doivent	286	UDC
104	sociale	144	formation	88	armée	248	étranger

Most Significant Terms

PS		PDC		PRD		UDC	
Z	Type	Z	Type	Z	Type	Z	Type
15.2	état	21.8	nous	18.9	PRD	14.6	AI
14.0	II	18.9	PDC	16.0	radical	13.2	UDC
13.0	culture	11.8	demandons	12.2	mission	11.3	neutralité
11.9	culturelle	10.4	énergie	12.0	armée	10.0	gauche
11.7	artiste	10.1	internet	11.7	défense	9.6	naturalisation
10.3	encouragement	9.1	enfant	11.3	sécurité	9.0	rente
10.1	art	9.1	notre	9.6	militaire	8.8	état
10.0	autogestion	8.9	énergétique	9.6	easy	8.7	nationalité
10.0	CO2	8.2	PDC	9.5	imposition	8.0	milliard
9.5	pro	8.1	formation	9.2	tax	7.4	étranger

Dynamic Evaluation

Topic 'Iraq' in US Speeches
Topic "Iraq"
Month by month in 2008

Dynamic Evaluation

Topic "jobs"
Month by month in 2008

Dynamic Evaluation

Topic 'financial' in US Speeches
Topic "financial"
Month by month in 2008

Dynamic Evaluation

Topic 'Bush' in US Speeches
Topic "Bush"
Month by month in 2008

Dynamic Evaluation

Topic
"Washington"
Month by month in 2008

Topic 'Washington' in US Speeches

The Context of a Term

	Obama 2008
6	Washington we can
6	failure politician Washington
5	Washington player expect
5	status quo Washington
5	know happen Washington
5	dime Washington lobbyist
5	broken system Washington
4	Washington twenty six
4	Washington think long
4	Washington game Washington
4	they back Washington
4	politician Washington think
4	George Bush Washington

And for the President Obama?

Terms overused by the President
budget
Chrysler department recovery plan new foundation
American recovery
reinvestment act auto loan
higher education
health care reform
clean energy economy
thank
Turkey
secretary
recovery act
economic recovery
new investment
mutual interest
mutual respect
kind of energy
long term deficit

Other Association Measures

- We can resume all needed information into a contingency table (one per word / feature)
- A large corpus C is subdivided into two (disjoint) parts S and C- (with C = S U C-)

	\mathbf{S}	$\mathbf{C}-$	
ω	a	b	$a+b$
$\operatorname{not} \omega$	c	d	$c+d$
	$a+c$	$b+d$	$n=a+b+c+d$

Mutual Information

- Basic Idea: Comparing two models (Church \& Hanks, 1990)
- Under independence

$$
\operatorname{Prob}[S \cap \omega]=\operatorname{Prob}[S] \cdot \operatorname{Prob}[\omega]=\frac{a+c}{n} \cdot \frac{a+b}{n}
$$

- Estimation (MLE)

$$
\operatorname{Prob}[S \cap \omega]=\frac{a}{n}
$$

- How to measure the deviation between the two models?
- Mutual information (MI) for the word ω in the subset S

$$
I(S ; \omega)=\log _{2}\left[\frac{\operatorname{Prob}[S \cap \omega]}{\operatorname{Prob}[S] \cdot \operatorname{Prob}[\omega]}\right]
$$

Mutual Information

$\mathrm{I}(\mathrm{S} ; \omega) \approx 0$ Independence (random)
$\mathrm{I}(\mathrm{S} ; \omega)>0$ Positive association
I(S; ω)<0 Negative association
Example IM("IT";Obama'08) = 1.09
No clear decision rule

	Obama'08	US-	
"IT"	1	0	1
not "IT"	294552	334541	629093
	294553	334541	629094

Chi-square

$$
\chi^{2}=\sum_{i, j=0,1} \frac{\left(o_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

Compute the statistics followings a chi-square distribution Example word = "Bush", S = McCain'08: $\chi^{2}=78.13$ Limit values:

$$
\begin{aligned}
6,63 & \alpha=0,01(1 \text { dof }) \\
10,83 & \alpha=0,001
\end{aligned}
$$

	McCain'08	US-	
"Bush"	26	398	424
not "Bush"	154339	474331	628670
	154365	474729	629094

Conclusion

- Various methods have been proposed to define / weight the importance of each word / term in describing the semantic content of a document
- The Z score is relatively effective to discriminate between terms used by both speakers and terms overused by one of them
- Adding POS constraints is useful (but we need a POS tagger)
- Chi-square requires at least 5 observations in each cell
- Mutual Information (MI) does not have a clear decision rule

