
1

Markov Models for NLP:
an Introduction

 J. Savoy
Université de Neuchâtel

C. D. Manning & H. Schütze : Foundations of statistical natural
language processing. The MIT Press, Cambridge (MA)
P. M. Nugues: An introduction to language processing with Perl
and Prolog. Springer, Berlin

2

Markov Models
  Different possible models
  Classical (visible, discrete) Markov Models (MM) (chains)
  Based on a set of states
  Transitions from one state to the other at each “period”
  The transitions are random (stochastic model)
  Modeling the system in terms of

  states
  change from one state to the other

  Memoryless property: the future depends only of the current
state (not of all previous states)

3

Markov Models
  Transitions from one state to the other is a probabilistic one
  Interesting questions:
  Compute the probability of being in a given state in the next

step / in the next two steps
  Compute the probability of a given sequence of states
  Examples:

  Generating a DNA sequence
  Decoding a DNA sequence

4

Example: DNA sequence
To encode the genetic information (DNA or RNA), cells are
using the genetic code based on four nucleotides

A Adenine
G Guanine
C Cytosine
T Thymine

The system is based on sequences of three nucleotides
(from “AAA”, “AAG”, …, “TTC”, “TTT”, 43 = 64) (defining a
codon to denote either an amino acid or a stop signal).
Decoding a DNA sequence means finding the start / stop
signal and the sequence different amino acids.
How can we model this system as a Markov Model?

5

Example
  Where are the states?
  Where are the (random) transitions?
  The four different nucleotides (letters A, C, G, T) represent

the four states
  We assume that going from one state to the other is a

random process. We are not sure about the future (it is not
deterministic).

  Big idea: modeling the randomness by using numbers
(probability) to represent our certainty (uncertainty) about an
event.

 “Prob[A]” or “P[A]“ (or “P(A)”)
where A denotes the corresponding event

6

Random Process
  We are using three axioms:
1.  0 ≤ Prob [A] ≤ 1

The measure is limited between 0 and 1.
2.  Prob [certain event] = 1 (or Prob [Ω] = 1)

For an event that is absolutely sure, we assign a probability
of 1.

3.  If A and B are two mutually exclusive events
 Prob [A or B] = Prob [A] + Prob [B]

There is nothing in common between A and B
(the additive law)

  But noting is specified about “how to obtain the probability”

7

Random Process
  Define your own random process: the dice problem.

Six possible outcomes, define their probabilities.
1.  Subjective approach
2.  Common sense
3.  Frequentist: doing some experiments and evaluate the

probability as
 Prob [A] = #outcome A / number of trials

  What is our random model for throwing a dice?

8

Random Process
  By common sense

  Six possible outcomes
 Prob[“1”] = Prob[“2”] = Prob[“3”] =
 Prob[“4”] = Prob[“5”] = Prob[“6”]

  Their sum must be equal to 1.

  Thus we must have: Prob[“1”] = ⅙

  Other computations

Prob[“1” or “2”] = 1/6 + 1/6 = 2/6 = ⅓

Prob[“1” or “3” or “4”] = 1/6 + 1/6 + 1/6 = 3/6 = ½

Prob[“even”] = #even / # possible = 3/6 = ½

9

Random Process
  Probability of an even outcome in the first trial, and an even

outcome in the second trial?

  First reasoning:
Enumerate all possible outcomes
{1,2}, {1,3}, {1,4}, ... {6,4}, {6,5}, {6,6}
Prob [“even,even”] = #even,even / #possible = 9/36 = 2/13 =¼

  Second reasoning: the multiplicative law
The outcome (“even”/”odd”) in the first trial has no influence
on the outcome in the second trial (the dice does not have
any memory). The two events are independent.
Prob[“even,even”] = Prob[“even”].Prob[“even”] = ½ . ½ = ¼

10

Random Process
  Back to our DNA problem...
  Where are the states of our Markov model?
  Where are the (random) transitions?
  The four different nucleotides (letters A, C, G, T) represent

the four states
  We assume that going from one state to the other is a random

process
From \ To A C G T

A 0.25 0.2 0.25 0.3
C 0.3 0.25 0.2 0.25
G 0.3 0.25 0.1 0.35
T 0.5 0.1 0.2 0.2

11

Markov Example

Generating a DNA
sequence

The sequences AAT
or AAC define the
asparagine.

G

C

A T

0.25
0.3

0.2
0.5

0.2

0.1

0.25

0.1

0.2

0.25

0.25

0.3

0.2

0.35 0.25

12

Markov Example

  We can define various sequences of three letters such as
The sequences TAT or TAC define the tyrosime.
The sequences TCT, TCC, TCA, TCG, AGT, AGC = serine
The sequence TAA, TAG or TGA the stop signal.

  Can we compute the probability of a sequence (e.g., TAC)?
We will note
Prob[T] probability of being in the state “T”
Prob[A|T] probability of being in state “A”, knowing that

 previously (just before) we were in state “T”
Prob[C|AT] probability of being in state “C”, knowing that

 previously we were in state “A”, and before “T”

13

Markov Example

  Computing the probability of a sequence (e.g., TAC as
Prob [TAC])?

  First reasoning:
Enumerate all possible sequences observed during a
(long) period.
Prob [TAC] = #seq ”TAC” / # all seq generated

  Difficult to find the data

  Time consuming

  Difficult to observe some phenomena

14

Markov Example

  Computing the probability of a sequence (e.g., TAC as
Prob[TAC])?

  Second reasoning: we have a (Markov) model, and we can
use it.
Decompounding into simpler parts...
Prob [TAC] = Prob [T] . Prob [A|T] . Prob [C|AT]
and more simpler (Markov property of memoryless: the future
depends only of current state)
Prob [TAC] = Prob [T] . Prob [A|T] . Prob [C|A]
where Prob [A|T] and Prob [C|A] are the transition probability

  Prob [TAC] = 1 . 0.5 . 0.2 = 0.1

15

Markov Example
Sequence First Second Third Prob

TTT 1 0.2 0.2 0.04
TTA 1 0.2 0.5 0.1
TTG 1 0.2 0.2 0.04
TTC 1 0.2 0.1 0.02
TAT 1 0.5 0.3 0.15
TAA 1 0.5 0.25 0.125
TAG 1 0.5 0.25 0.125
TAC 1 0.5 0.2 0.1
TGT 1 0.2 0.35 0.07
TGA 1 0.2 0.3 0.06
TGG 1 0.2 0.1 0.02
TGC 1 0.2 0.25 0.05
TCT 1 0.1 0.25 0.025
TCA 1 0.1 0.3 0.03
TCG 1 0.1 0.2 0.02
TCC 1 0.1 0.25 0.025

16

Speech Synthesis
The possible pronunciation of the word “tomato”.
The states are the possible phonemes for the word “tomato”.

17

Speech Synthesis
  The computation of the different pronunciations

t - ax - m - ey - t - ow 0,35 . 1 . 0,95 . 0,05 . 1 = 0,016625
t - ax - m - ey - dx - ow 0,35 . 1 . 0,95 . 0,95 . 1 = 0,315875
t - ax - m - aa - t - ow 0,35 . 1 . 0,05 . 0,8 . 1 = 0,014
t - ax - m - aa - dx - ow 0,35 . 1 . 0,05 . 0,2 . 1 = 0,0035
t - ow - m - ey - t - ow 0,05 . 1 . 0,95 . 0,05 . 1 = 0,002375
t - ow - m - ey - dx - ow 0,05 . 1 . 0,95 . 0,95 . 1 = 0,045125
t - ow - m - aa - t - ow 0,05 . 1 . 0,05 . 0,8 . 1 = 0,002
t - ow - m - aa - dx - ow 0,05 . 1 . 0,05 . 0,2 . 1 = 0,0005
t - m - ey - t - ow 0,6 . 0,95 . 0,05 . 1 = 0,0285
t - m - ey - dx - ow 0,6 . 0,95 . 0,95 . 1 = 0,5415
t - m - aa - t - ow 0,6 . 0,05 . 0,8 . 1 = 0,024
t - m - aa - dx - ow 0,6 . 0,05 . 0,2 . 1 = 0,006

18

POS Tagging
 We can use Markov Model to design a Part-Of-Speech (POS)

tagger
Assign a POS tag for each surface word (token)
No guarantee that the whole sentence is correct.

 Example
Input: “Time flies like an arrow.”
Output: “Time/NNP flies/VBZ like/IN an/DT arrow/NN ./.”
Input: “time flies like an arrows.” (*)
Output: “time/NN flies/VBZ like/IN an/DT arrows/NNS ./.”

19

POS Tagging
 Different POS taggers freely available online
 May work at different levels

“aimes” tag simply as “VB” or “VB” and the needed
morphological information
Usually select only one tag per word (but no guarantee this will
be the correct one)

 Other example
“The brown cat eats the gray mouse.”
“The/DT brown/JJ cat/NN eats/VBZ the/DT gray/JJ mouse/
NN ./.”

20

POS Tagset (Penn Treebank)
DT determiner
IN preposition
JJ adjective
NN singular or mass noun
NNP singular proper noun
NNS plural noun
RB adverb
VB verb, base form
VBD verb, past tense
VBG verb, present participle, gerund
VBP verb, non-3rd person singular present
VBZ verb, 3rd singular present
WDT wh-determiner
WP wh-pronoun

21

POS Tagging (word-based)

 A given token (word) may belong to more than one POS.
“record” is it a noun (NN) or a verb (VB)?
 and maybe it is better to have a small dictionary than a
larger one

 Most words taken from the dictionary have only one part of
speech or have a strong preference for only one of them.

 For French & English, 50% to 60% of words have a unique
possible tag, and 15% to 25% have only two tags.

22

POS Tagging (word-based)

 Tagging a word with its most common POS, success rate of
around 75% (for both French and English)

 Usage in corpus
Assign the most common tag for each known word and the
tag “proper noun” to all unknown
Success rate: around 90% accuracy for the English
language (Charniak)

E. Charniak: Statistical Language Learning, The MIT Press, 1993.

23

POS Tagging (sequence-based)

 A given token (word) may belong to more than one POS.
E.g., “record” as noun or verb?

 Based on previous POS tags (syntagmatic information)
Assign the most frequent tag for each word based on
previous tags (how many previous tags?)
Having the sequence “determinant-adjective-?? (DT–JJ -??)
the next POS tag will certainly be “noun” (NN)

 Success rate: around 77% accuracy for the English language
(using only the most frequent rules, without considering the
word)

 Add a special tag (e.g., “null”) beginning of the sentence

24

POS Tagging (combining)

 Brill’s tagger (1995)
 Based on a dictionary

 contains all words
  list all legal tags in an frequently-based order

1.  Tag each word with its most likely tag
2.  Apply a list of transformation to modify the initial tagging

(contextual rules)
 Using 500 rules, accuracy of 97% for the English language

25

POS Tagging (combining)

 Back to a Markov Model
 Combing both sources of information

  the word itself
  the context (limited to the previous tag in a Markov

model)
  ignore the position in the sentence.

 States?
Possible POS tag

 Transitions?
Possible sequence of two adjacent POS tags

26

POS Tagging (combining)

 Estimate the probabilities of a sequence of two tags
(e.g., ”NN VB”, or in general tj tk)

 Prob [tk | tj] = C(tk tj) / C(tj)
with C(tj) = number of tags tj (e.g., # NN in the corpus)
and C(tk tj) = number of times we have the bigram tj tk
(e.g., “NN VB” in the corpus)

 We need some training examples (manually tagged
corpus, see next slide)

 Example: we have 833 tags NN and 358 times the
sequence “NN VB”, Prob [VB | NN] = 358 / 833 =
0.429772

27

POS Tagging
We have a corpus (manually annotated) of 300 sentences

28

POS Tagging
And the corresponding Markov model

29

POS Tagging

 We can compute the probability of a tags sequence (e.g.,
an English sentence or a part of it)
“Ø DT NN VB IN DT NN” (e.g., “the cat sat on the mat”)
Prob [“Ø DT NN VB IN DT NN”] =
 0.71 . 1.0 . 0.43 . 0.65 . 0.74 . 1.0 = 0.14685

 Other example (composed also of six tags)
Prob [“Ø NN VB NN IN NN NN”] =
 0.29 . 0.43 . 0.35 . 0.44 . 0.26 . 0.13 = 0.00065

 This is the first part. We may compute the probability of a
sequence of n tags (Prob[t1,n]) and thus we can estimate
that some syntactic structures are more probable than
others.

30

POS Tagging

 We then need to estimate the probability that knowing a
given POS tag, the next word (token) will be the given
word. E.g., Prob [record| VB] = …, Prob [like | VB] = …
Prob [flower | NN] = ?
Given that the next word is a NN, estimate the probability
that this word will be “flower”?

 The corresponding word has only one POS.
 But in general…

31

POS Tagging

  In general
1.  We may use a machine-readable dictionary and when a

word owns n possible tags, each of them as the
probability 1/n to be the correct one.

2.  We need to have a (manually) tagged corpus to
3.  …

32

POS Tagging

 Estimate the probability that knowing a given POS tag, the
next word (token) will be a given word.
Prob [flower | NN] = ?
(e.g., ”NN flower”, or in general the tag tj with the word wk)

 Prob [wk | tj] = C(wk tj) / C(tj)
with C(tj) = number of tags tj (# NN in the corpus = 833)
and C(wk tj) = number of times we have the word wk has the
POS tag tk (e.g., “flower” as NN = 53, see next slide)

 This probability is different from Prob [wk and tj] (e.g.,
Prob[flower and NN] = 53/68 = 0.78

33

POS Tagging

This a example of the needed information

34

POS Tagging

 We may compute some examples
 Prob [flower | NN] = 53 / 833 = 0.06363
 Prob [flies | NN] = 21 / 833 = 0.02521
 Prob [flies | VB] = 23 / 300 = 0.07667
 Prob [the | DT] = 300 / 558 = 0.5102
 Prob [the | VB] = 0 / 300 = 0.0
 Prob [the | NN] = 1 / 833 = 0.0012

35

POS Tagging

 The problem: Determine the most probable sequence of
POS tags t1,n for the input sequence (sentence) w1,n (word
from 1 to n).

 Arg Max (t1,n) Prob[w1,n | t1,n] . Prob[t1,n]

 Example
Input: w1,n = « Flies like a flower » (n=4)
Output: « Flies/NN like/VB a/DT flower/NN »?

 Example
« Flies/NN like/VB a/DT flower/NN »
or « Flies/VBZ like/IN a/DT flower/NN »

36

POS Tagging

 « Flies/NN like/VB a/DT flower/NN »?

 Prob [w1,n | t1,n] . Prob [t1,n]

 Prob [t1,n] = 0.29 . 0.43 . 0.65 . 1 = 4.68E-06

 Prob [w1,n | t1,n] = 0.0252 . 0.1 . 0.3602 . 0.0636 = 5.778E-05

  Prob [w1,n | t1,n] . Prob [t1,n] = 4.68E-06

 After normalization: 0.556

 Second most probable 0.443 (NN-IN-DT-NN)

37

Conclusion

 Markov model use in various contexts
 Random walk
 Surfing on the Internet (PageRank)

 Use to model spam email (and thus use to filter the e-mail
traffic)

 Extension: We have shown only first-order MM. We can
consider second-order (Prob [A|BC]).

 Variant: Hidden Markov Chain: the states and the
transitions cannot be observed directly but only by the
observation of a symbols

 The Hidden Markov Model (HMM) is the basic model of
speech recognition.

38

Surfing on the Internet

 Each page is a state
 Transition: from a given we may reach pages that are

related by a hyperlink
 Select the next page randomly based on available

hyperlinks in the source page.
Probability to go from Page i to Page j =

 1/di if there is a hyperlink from Page i to Page j
 0 otherwise

 Extension:
Consider the position of the hyperlink in Page i
Consider the words in the anchor text

