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Markov Models 
  Different possible models 
  Classical (visible, discrete) Markov Models (MM) (chains) 
  Based on a set of states 
  Transitions from one state to the other at each “period” 
  The transitions are random (stochastic model) 
  Modeling the system in terms of 

  states 
  change from one state to the other 

  Memoryless property:  the future depends only of the current 
state (not of all previous states) 
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Markov Models 
  Transitions from one state to the other is a probabilistic one 
  Interesting questions: 
  Compute the probability of being in a given state in the next 

step / in the next two steps 
  Compute the probability of a given sequence of states  
  Examples:  

  Generating a DNA sequence 
  Decoding a DNA sequence 
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Example:  DNA sequence 
To encode the genetic information (DNA or RNA), cells are 
using the genetic code based on four nucleotides 

A  Adenine 
G  Guanine 
C  Cytosine 
T  Thymine 

The system is based on sequences of three nucleotides 
(from “AAA”, “AAG”, …, “TTC”, “TTT”, 43 = 64) (defining a 
codon to denote either an amino acid or a stop signal). 
Decoding a DNA sequence means finding the start / stop 
signal and the sequence different amino acids.  
How can we model this system as a Markov Model? 
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Example 
  Where are the states? 
  Where are the (random) transitions? 
  The four different nucleotides (letters A, C, G, T) represent 

the four states 
  We assume that going from one state to the other is a 

random process.  We are not sure about the future (it is not 
deterministic). 

  Big idea:  modeling the randomness by using numbers 
(probability) to represent our certainty (uncertainty) about an 
event. 

 “Prob[A]” or “P[A]“ (or “P(A)”) 
where A denotes the corresponding  event 
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Random Process 
  We are using three axioms: 
1.  0  ≤  Prob [A]  ≤  1 

The measure is limited between 0 and 1.  
2.  Prob [certain event] = 1  (or Prob [Ω] = 1) 

For an event that is absolutely sure, we assign a probability 
of 1.  

3.  If A and B are two mutually exclusive events  
 Prob [A or B]  =  Prob [A] + Prob [B] 

There is nothing in common between A and B 
(the additive law)   

  But noting is specified about “how to obtain the probability” 
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Random Process 
  Define your own random process:  the dice problem. 

Six possible outcomes, define their probabilities. 
1.  Subjective approach 
2.  Common sense  
3.  Frequentist:  doing some experiments and evaluate the 

probability as 
 Prob [A]  = #outcome A / number of trials 

  What is our random model for throwing a dice? 
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Random Process 
  By common sense 

  Six possible outcomes 
 Prob[“1”] = Prob[“2”] = Prob[“3”] = 
  Prob[“4”] = Prob[“5”] = Prob[“6”] 

  Their sum must be equal to 1. 

  Thus we must have:  Prob[“1”] = ⅙ 

  Other computations 

Prob[“1” or “2”] = 1/6 + 1/6 = 2/6 = ⅓ 

Prob[“1” or “3” or “4”] = 1/6 + 1/6  + 1/6 = 3/6 = ½  

Prob[“even”] = #even / # possible = 3/6 = ½ 
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Random Process 
  Probability of an even outcome in the first trial, and an even 

outcome in the second trial? 

  First reasoning: 
Enumerate all possible outcomes 
{1,2}, {1,3}, {1,4}, ... {6,4}, {6,5}, {6,6} 
Prob [“even,even”] = #even,even / #possible = 9/36 = 2/13 =¼ 

  Second reasoning:  the multiplicative law 
The outcome (“even”/”odd”) in the first trial has no influence 
on the outcome in the second trial (the dice does not have 
any memory). The two events are independent.  
Prob[“even,even”] = Prob[“even”].Prob[“even”] = ½ . ½  = ¼ 
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Random Process 
  Back to our DNA problem... 
  Where are the states of our Markov model? 
  Where are the (random) transitions? 
  The four different nucleotides (letters A, C, G, T) represent 

the four states 
  We assume that going from one state to the other is a random 

process  
From \ To A C G T 

A 0.25 0.2 0.25 0.3 
C 0.3 0.25 0.2 0.25 
G 0.3 0.25 0.1 0.35 
T 0.5 0.1 0.2 0.2 
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Markov Example 

Generating a DNA 
sequence 

The sequences AAT 
or AAC define the 
asparagine. 

G 

C

A T 

0.25 
0.3 

0.2 
0.5 

0.2 

0.1 

0.25 

0.1 

0.2 

0.25 

0.25 

0.3 

0.2 

0.35 0.25 
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Markov Example 

  We can define various sequences of three letters such as 
The sequences TAT or TAC define the tyrosime. 
The sequences TCT, TCC, TCA, TCG, AGT, AGC = serine 
The sequence TAA, TAG or TGA the stop signal. 

  Can we compute the probability of a sequence (e.g., TAC)? 
We will note  
Prob[T]  probability of being in the state “T” 
Prob[A|T]  probability of being in state “A”, knowing that 

 previously (just before) we were in state “T” 
Prob[C|AT] probability of being in state “C”, knowing that 

 previously we were in state “A”, and before “T” 
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Markov Example 

  Computing the probability of a sequence (e.g., TAC as 
Prob [TAC])? 

  First reasoning: 
Enumerate all possible sequences observed during a 
(long) period. 
Prob [TAC] = #seq ”TAC” / # all seq generated  

  Difficult to find the data 

  Time consuming 

  Difficult to observe some phenomena 
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Markov Example 

  Computing the probability of a sequence (e.g., TAC as 
Prob[TAC])? 

  Second reasoning:  we have a (Markov) model, and we can 
use it. 
Decompounding into simpler parts... 
Prob [TAC] = Prob [T] . Prob [A|T] . Prob [C|AT] 
and more simpler (Markov property of memoryless:  the future 
depends only of current state) 
Prob [TAC] = Prob [T] . Prob [A|T] . Prob [C|A] 
where Prob [A|T] and Prob [C|A] are the transition probability 

  Prob [TAC] = 1 . 0.5 . 0.2 = 0.1 
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Markov Example 
Sequence First  Second Third Prob 

TTT 1 0.2 0.2 0.04 
TTA 1 0.2 0.5 0.1 
TTG 1 0.2 0.2 0.04 
TTC 1 0.2 0.1 0.02 
TAT 1 0.5 0.3 0.15 
TAA 1 0.5 0.25 0.125 
TAG 1 0.5 0.25 0.125 
TAC 1 0.5 0.2 0.1 
TGT 1 0.2 0.35 0.07 
TGA 1 0.2 0.3 0.06 
TGG 1 0.2 0.1 0.02 
TGC 1 0.2 0.25 0.05 
TCT 1 0.1 0.25 0.025 
TCA 1 0.1 0.3 0.03 
TCG 1 0.1 0.2 0.02 
TCC 1 0.1 0.25 0.025 
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Speech Synthesis 
The possible pronunciation of the word “tomato”. 
The states are the possible phonemes for the word “tomato”. 
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Speech Synthesis 
  The computation of the different pronunciations 

t - ax - m - ey - t - ow  0,35  . 1 . 0,95 .  0,05 . 1  =  0,016625 
t - ax - m - ey - dx - ow  0,35  . 1 . 0,95 .  0,95 . 1  =  0,315875 
t - ax - m - aa - t - ow  0,35  . 1 . 0,05 .  0,8 . 1  =  0,014 
t - ax - m - aa - dx - ow  0,35  . 1 . 0,05 .  0,2 . 1  =  0,0035 
t - ow - m - ey - t - ow  0,05  . 1 . 0,95 .  0,05 . 1  =  0,002375 
t - ow - m - ey - dx - ow  0,05  . 1 . 0,95 .  0,95 . 1  =  0,045125 
t - ow - m - aa - t - ow  0,05  . 1 . 0,05 .  0,8 . 1  =  0,002 
t - ow - m - aa - dx - ow  0,05  . 1 . 0,05 .  0,2 . 1  =  0,0005 
t  - m - ey - t - ow  0,6  . 0,95 .  0,05 . 1  =  0,0285 
t - m - ey - dx - ow  0,6  . 0,95 .  0,95 . 1  =  0,5415 
t - m - aa - t - ow  0,6  . 0,05 .  0,8 . 1  =  0,024 
t - m - aa - dx - ow  0,6  . 0,05 .  0,2 . 1  =  0,006 
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POS Tagging 
 We can use Markov Model to design a Part-Of-Speech (POS) 

tagger 
Assign a POS tag for each surface word (token) 
No guarantee that the whole sentence is correct. 

 Example 
Input:   “Time flies like an arrow.” 
Output:  “Time/NNP flies/VBZ like/IN an/DT arrow/NN ./.” 
Input:   “time flies like an arrows.”   (*) 
Output:  “time/NN flies/VBZ like/IN an/DT arrows/NNS ./.” 
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POS Tagging 
 Different POS taggers freely available online 
 May work at different levels 

“aimes” tag simply as “VB” or “VB” and the needed 
morphological information 
Usually select only one tag per word (but no guarantee this will 
be the correct one) 

 Other example 
“The brown cat eats the gray mouse.” 
“The/DT brown/JJ cat/NN eats/VBZ the/DT gray/JJ mouse/
NN ./.” 
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POS Tagset (Penn Treebank) 
DT  determiner 
IN  preposition 
JJ  adjective 
NN  singular or mass noun 
NNP  singular proper noun 
NNS  plural noun 
RB  adverb 
VB  verb, base form 
VBD  verb, past tense 
VBG  verb, present participle, gerund 
VBP  verb, non-3rd person singular present 
VBZ  verb, 3rd singular present 
WDT  wh-determiner 
WP  wh-pronoun 
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POS Tagging (word-based) 

 A given token (word) may belong to more than one POS. 
“record” is it a noun (NN) or a verb (VB)? 
 and maybe it is better to have a small dictionary than a 
larger one  

 Most words taken from the dictionary have only one part of 
speech or have a strong preference for only one of them. 

 For French & English, 50% to 60% of words have a unique 
possible tag, and 15% to 25% have only two tags. 
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POS Tagging (word-based) 

 Tagging a word with its most common POS, success rate of 
around 75% (for both French and English)  

 Usage in corpus 
Assign the most common tag for each known word and the 
tag “proper noun” to all unknown  
Success rate: around 90% accuracy for the English 
language (Charniak)  

E. Charniak:  Statistical Language Learning, The MIT Press, 1993. 
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POS Tagging (sequence-based) 

 A given token (word) may belong to more than one POS. 
E.g., “record” as noun or verb? 

 Based on previous POS tags (syntagmatic information) 
Assign the most frequent tag for each word based on 
previous tags (how many previous tags?) 
Having the sequence “determinant-adjective-?? (DT–JJ -??)  
the next POS tag will certainly be “noun” (NN) 

 Success rate: around 77% accuracy for the English language 
(using only the most frequent rules, without considering the 
word) 

 Add a special tag (e.g., “null”) beginning of the sentence 
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POS Tagging (combining)  

 Brill’s tagger (1995) 
 Based on a dictionary 

 contains all words 
  list all legal tags in an frequently-based order 

1.  Tag each word with its most likely tag 
2.  Apply a list of transformation to modify the initial tagging 

(contextual rules) 
 Using 500 rules, accuracy of 97% for the English language 
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POS Tagging (combining) 

 Back to a Markov Model 
 Combing both sources of information 

  the word itself 
  the context (limited to the previous tag in a Markov 

model) 
  ignore the position in the sentence. 

 States? 
Possible POS tag 

 Transitions? 
Possible sequence of two adjacent POS tags 
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POS Tagging (combining) 

 Estimate the probabilities of a sequence of two tags 
(e.g.,  ”NN VB”, or in general tj tk) 

 Prob [tk | tj] = C(tk tj)  /  C(tj)  
with C(tj) = number of tags tj  (e.g., # NN in the corpus) 
and C(tk tj) = number of times we have the bigram tj tk 
(e.g., “NN VB” in the corpus) 

 We need some training examples (manually tagged 
corpus, see next slide) 

 Example:  we have 833 tags NN and 358 times the 
sequence “NN VB”,  Prob [VB | NN] = 358 / 833 = 
0.429772 
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POS Tagging 
We have a corpus (manually annotated) of 300 sentences 
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POS Tagging 
And the corresponding Markov model 
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POS Tagging 

 We can compute the probability of a tags sequence (e.g., 
an English sentence or a part of it) 
“Ø DT NN VB IN DT NN”   (e.g., “the cat sat on the mat”) 
Prob [“Ø DT NN VB IN DT NN”] = 
    0.71 .  1.0 .  0.43 .  0.65 .  0.74 .  1.0 = 0.14685 

 Other example (composed also of six tags) 
Prob [“Ø NN VB NN IN NN NN”] = 
    0.29 .  0.43 .  0.35 .  0.44 .  0.26 .  0.13 = 0.00065 

 This is the first part.  We may compute the probability of a 
sequence of n tags (Prob[ t1,n ]) and thus we can estimate 
that some syntactic structures are more probable than 
others.   



30 

POS Tagging 

 We then need to estimate the probability that knowing a 
given POS tag, the next word (token) will be the given 
word. E.g., Prob [record| VB] = …, Prob [like | VB] = … 
Prob [flower | NN] = ? 
Given that the next word is a NN, estimate the probability 
that this word  will be “flower”? 

 The corresponding word has only one POS. 
 But in general… 
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POS Tagging 

  In general 
1.  We may use a machine-readable dictionary and when a 

word owns n possible tags, each of them as the 
probability 1/n to be the correct one.   

2.  We need to have a (manually) tagged corpus to 
3.  …  
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POS Tagging 

 Estimate the probability that knowing a given POS tag, the 
next word (token) will be a given word. 
Prob [flower | NN] = ? 
(e.g., ”NN flower”, or in general the tag tj with the word wk) 

 Prob [wk | tj] = C(wk tj)  /  C(tj)  
with C(tj) = number of tags tj  (# NN in the corpus = 833) 
and C(wk tj) = number of times we have the word wk has the 
POS tag tk (e.g., “flower” as NN = 53, see next slide) 

 This probability is different from Prob [wk and tj] (e.g., 
Prob[flower and NN] = 53/68 = 0.78 
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POS Tagging 

This a example of the needed information 
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POS Tagging 

 We may compute some examples 
 Prob [flower | NN] = 53  /  833 = 0.06363 
 Prob [flies | NN] = 21  /  833 = 0.02521  
 Prob [flies | VB] = 23  /  300 = 0.07667  
 Prob [the | DT] = 300 /  558 = 0.5102 
 Prob [the | VB] = 0  /  300 = 0.0 
 Prob [the | NN] = 1  /  833 = 0.0012 
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POS Tagging 

 The problem: Determine the most probable sequence of 
POS tags t1,n for the input sequence (sentence) w1,n (word 
from 1 to n).   

 Arg Max (t1,n) Prob[ w1,n | t1,n ] . Prob[ t1,n ]  

 Example 
Input:  w1,n = « Flies  like  a  flower » (n=4) 
Output:  « Flies/NN  like/VB  a/DT  flower/NN »? 

 Example 
« Flies/NN  like/VB  a/DT  flower/NN » 
or « Flies/VBZ  like/IN  a/DT  flower/NN » 
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POS Tagging 

 « Flies/NN  like/VB  a/DT  flower/NN »? 

 Prob [ w1,n | t1,n ] . Prob [ t1,n ]  

 Prob [ t1,n ] = 0.29 . 0.43 . 0.65 . 1 = 4.68E-06 

 Prob [ w1,n | t1,n ] = 0.0252 . 0.1 . 0.3602 . 0.0636 = 5.778E-05  

   Prob [ w1,n | t1,n ] . Prob [ t1,n ]  = 4.68E-06  

 After normalization: 0.556 

 Second most probable 0.443 (NN-IN-DT-NN)   
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Conclusion 

 Markov model use in various contexts 
 Random walk 
 Surfing on the Internet (PageRank) 

 Use to model spam email (and thus use to filter the e-mail 
traffic) 

 Extension: We have shown only first-order MM.  We can 
consider second-order (Prob [A|BC]). 

 Variant:  Hidden Markov Chain:  the states and the 
transitions cannot be observed directly but only by the 
observation of a symbols  

 The Hidden Markov Model (HMM) is the basic model of 
speech recognition. 
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Surfing on the Internet 

 Each page is a state 
 Transition:  from a given we may reach pages that are 

related by a hyperlink 
 Select the next page randomly based on available 

hyperlinks in the source page. 
Probability to go from Page i to Page j = 

 1/di  if there is a hyperlink from Page i to Page j  
 0  otherwise  

 Extension: 
Consider the position of the hyperlink in Page i 
Consider the words in the anchor text 


