
Information Retrieval

Jacques Savoy1 and Eric Gaussier2

1 Computer Science Dept., University of Neuchatel
rue Emile Argand 11, 2009 Neuchatel (Switzerland)

Jacques.Savoy@unine.ch
2 Laboratoire LIG, Université Joseph Fourier

385 rue de la bibliothèque, 38041 Grenoble Cedex 9 (France)
Eric.Gaussier@imag.fr

Abstract. This chapter presents the fundamental concepts of Informa-
tion Retrieval (IR) and shows how this domain is related to various
aspects of NLP. After explaining some of the underlying and often hid-
den assumptions and problems of IR, we present the notion of indexing.
Indexing is the cornerstone of various classical IR paradigms (Boolean,
vector-space, and probabilistic) which we introduce together with some
insights to advanced search strategies used on the Web, such as PageR-
ank. The IR community relies on a strong empirical tradition and we
present the basic notions of IR evaluation methodology and show, with
concrete examples, why some topic formulations can be hard even with
the most advanced search strategies. Various NLP techniques can be used
to, at least partially, improve the retrieval performance of IR models. We
devote a section of this chapter to an overview of these techniques.

1 Introduction

The Information Retrieval (IR) [1] domain can be viewed, to a certain extent,
as a successful applied domain of NLP. The speed and scale of Web take-up
around the world has been made possible by freely available and effective search
engines. These tools are used by around 85% of Web surfers when looking for
some specific information [2].

But what precisely is IR? We can define it the following way: “IR deals with
the representation, storage, organization of, and access to information items.
These information items could be references to real documents, documents them-
selves, or even single paragraphs, as well as Web pages, spoken documents, im-
ages, pictures, music, video, etc.”[3]

As information items, we will focus mainly on documents written in the
English language, but the ideas and concepts we introduce can also be applied,
with some adaptations however, to other media (music, image, picture, video)
and other languages (e.g., German, Spanish, Russian, Chinese, Japanese, etc.).

One of the first and most important characteristics of IR is the fact that an
IR system has to deal with imprecise and incomplete descriptions of both user
needs and documents queried: in most cases, it is impossible to compute a pre-
cise and unambiguous representation for queries of documents. This contrasts

with the situation for databases. In a relational table for example, John has a
wage of $1,198.5 and not “almost $1,200”. If SQL queries cannot be ambiguous,
users sending queries to Web search engines tend to write very short and am-
biguous descriptions of their information needs (“Canadian recipes,” “iPhone”
or “Britney Spears”). Clearly, users do not describe their information needs
with all the needed details, preferring the system to suggest some answers, and
selecting, from the answers, the most appropriate items. The search process
should be viewed more as a “trial-and-error” problem solving approach than a
direct “query-response” paradigm. Finally, and contrary to SQL-based search,
the matching between the query and the information item is not deterministic:
the system provides the best possible answers (best matches) by estimating their
underlying probability of relevance to the submitted query.

The underlying difficulty in retrieving documents relevant to a query resides
in the three aspects of all natural languages, namely polysemy, synonymy and,
to a lesser extent, spelling errors and variations. In all natural languages, a given
word may have more than one precise meaning (polysemy). Some of these senses
could be related, but in other cases, the underlying meaning could vary greatly.
For example, the word “bank” could be used to designate a financial institution,
its building, a synonym of “rely upon” in the expression “I’m your friend, you can
bank on me” or the borders of a river. The last sense is of course not related to
the previous three. With the word “Java”, the possible meanings are less related
(an island, coffee, a dance, a domestic fowl, a computer programming language).
If this word were submitted as a query, we can understand why the search system
may provide “incorrect” answers. Acronyms are also subject of such ambiguity
problems as, for example, BSE (Bovine Spongiform Encephalopathy, Bombay
Stock Exchange (or Boston, Beirut, Bahrain), Breast Self-Examination, Bachelor
of Science in Engineering, Basic Service Element, etc.).

Polysemy corresponds to one face of a coin. Synonymy, i.e. the fact that dif-
ferent words or expressions can be used to refer to the same object, is the second.
For example, to refer to a given car accident, we can use the following terms:
“accident,” “event,” “incident,” “situation,” “problem,” “difficulty,” “unfortu-
nate situation,” “the subject of your last letter,” “what happened last month,”
... When fixing a rendez-vous, we can meet in a restaurant, hotel, pizzeria, coffee
shop, snack bar, café, tearoom, tea house, public house, cafeteria, inn, tavern,
or simply at our favorite Starbucks. In the last example below, the expressions
written in italics refer to the same person. It is also interesting to note that the
string “Major” does not always refer to the same person.

“Mr Major arrived in France today. The Prime Minister will meet the Pres-
ident tomorrow. The Conservative leader will then travel to Moscow where he
will meet Mr Gorbachev. Mrs Major will join her husband in Russia, where this
son of a circus artist is a relatively unknown figure.” [4]

As a result of these two main problems, and as demonstrated empirically
in [5], the probability that two people use the same term to describe the same
object is below 0.20. The question that then arises is to understand how a search
system may operate at a reasonable performance level with such variability, a

question we will address by considering the different components that make up
a search system.

All search systems assume that similar words tend to correspond to sim-
ilar meanings. Thus when a query shares many terms with a document, this
document is seen as an appropriate answer to the corresponding query. Search
systems are thus based on a simple approach: extract words from documents
and queries, compare the two sets of words and rank the document according to
this comparison (potentially using additional elements, such as PageRank). As
shown by Hawking & Robertson [6], as the collection size increases, the achieved
performance of such a process tends to increase.

Of course, different components must be described in more detail; the rest of
this chapter is organized as follows: Section 2 outlines the main aspects of the in-
dexing process used to build documents or query representations while Section 3
discusses various IR models. Section 4 describes the evaluation methodology
used in the IR field in order to compare objectively two (or more) indexing and
search strategies. Failure analysis is also described in this section. Finally, Sec-
tion 5 presents various aspects of NLP approaches that can be used to answer
some of the topic difficulties that each IR system encounters.

2 Indexing

Effective search systems do not work directly with the documents (or the queries).
They use different techniques and strategies to represent the main semantic as-
pects of the documents and queries. This process is called indexing. It is described
in the following two sections.

2.1 Indexing Dimensions

We focus here on the representation of the semantic content of the documents.
External characteristics, such as the publication date, the author name, the
number of pages, the book price, the edition, the publisher, the language, can
be managed without real problem by a relational database system. Of course,
we can use such features to conduct a search (e.g., “return all documents writ-
ten by Salton”). They tend however to be used as filters to complement the
search criteria (e.g., “best picture Oscar later than 2002” or “airplane hijacking,
information in English or German”).

The indexing process aims to represent the semantic content of documents
(or queries) by a set of indexing features. In the most common case, these in-
dexing units are words for documents, musical notes for music, color values for
pictures, etc. If we limit ourselves to written documents, we can consider as in-
dexing units not only single words (e.g., “language,” “natural”) but compound
constructions (“natural language processing”) or thesaurus class numbers. In the
opposite direction, we can sometimes consider decompounding compound words
(e.g., from “handgun”, we may extract the terms “hand” and “gun”, a useful
feature when searching with the German language [7]). Furthermore, sentences

or words may be subdivided into continuous segments of n characters (n-gram
indexing [8]). Fixing n = 4, the phrase “white house” is represented by the fol-
lowing 4-gram sequence: “whit”, “hite”, “ite h”, “te ho”, ..., and “ouse”. Such a
language independent indexing scheme can be useful when faced with a language
for which no morphological analyzers (be it traditional analyzers or stemming
procedures) are readily available (e.g., the Korean language [9]) or when dealing
with texts containing many spelling errors (e.g., OCR-ed documents [10]).

After defining our indexing units, we have to answer different questions to
define a complete indexing strategy. When describing a document, do we need
to consider all its details or only the main aspects? In defining this exhaustivity
level (completeness of the representation), one can also take into account the
document importance with respect to some objectives (e.g., an in-house docu-
ment may have a deeper coverage). In addition, one must fix the specificity level
or the degree of accuracy applied to the selected indexing units: choose general
indexing terms (e.g., “drink”), or impose the use of more specific terms (“soft
drink”), or even very specific terms (“iced tea”, “herbal iced tea”, “Nestea”). In
some cases, the indexing policy relies on a controlled vocabulary (e.g., Library
of Congress Subject Headings, MeSH in the biomedical literature, or the hierar-
chical thesaurus associated with DMOZ3). In such cases, indexing units cannot
be freely chosen, but must be present in the given authoritative list.

Traditionally, librarians have adopted a manual indexing strategy in the hope
of creating a better representation of their searchable objects. Such manual in-
dexing [11] usually relies on the use of controlled vocabularies in order to achieve
greater consistency and to improve manual indexing quality. The advantage
of these authority lists is that they prescribe a uniform and invariable choice
of indexing descriptors and thus help normalize orthographic variations (e.g.,
“Beijing” or “Peking”), lexical variants (e.g., “analyzing”, ”analysis”) or exam-
ine equivalent terms that are synonymous in meaning. The level of generality
may be represented by hierarchical relationships (e.g., “Ford” is a “car”), and
related-term relationships (e.g., “see also”). However, while controlled vocabular-
ies should increase consistency among indexers, various experiments demonstrate
that different indexers tend to use different keywords when classifying the same
document [12], [13]. This illustrates, through yet another example, the variety
of wordings human beings have at their disposal to describe the same content.
It is thus important to have a certain degree of consistency between document
and query representations in order to increase the chance that searchers will be
able to locate the information they require [14].

2.2 Indexing Process

Most existing IR systems nowadays rely on automatic indexing of documents
and queries. Developed from the beginning of the sixties [15], such an approach
allows one to process the huge amounts of information available online. A simple
automatic indexing algorithm is composed of four steps:

3 www.dmoz.org

1. Structure analysis and tokenization
2. Stopword removal
3. Morphological normalization
4. Weighting

Structure analysis and tokenization

In this first step, documents are parsed so as to recognize their structure (title,
abstract, section, paragraphs). For each relevant logical structure, the system
then segments sentences into word tokens (hence the term tokenization). This
procedure seems relatively easy but (a) the use of abbreviations may prompt the
system to detect a sentence boundary where there is none, and (b) decisions must
be made regarding numbers, special characters, hyphenation, and capitalization.
In the expressions “don’t”, “I’d”, “John’s” do we have one, two or three tokens?
In tokenizing the expression “Afro-American”, do we include the hyphen, or
do we consider this expression as one or two tokens? For numbers, no definite
rule can be found. We can simply ignore them or include them as indexing
units. An alternative is to index such entities by their type, i.e. to use the tags
“date”, “currency”, etc. in lieu of a particular date or amount of money. Finally,
uppercase letters are lowercased. Thus, the title “Export of cars from France” is
viewed as the word sequence “export”, “of”, “cars”, “from” and “france”.

Stopword removal

In a second step, very frequent word forms (such as determiners (“the”), prepo-
sitions (“from”), conjunctions (“and”), pronouns (“you”) and some verbal forms
(“is”), etc.) appearing in a stopword list are usually removed. This removal is
usually motivated by two considerations. Firstly because it allows one to base
the matching between queries and documents on content bearing words only.
Retrieving a document just because it contains the query words “be”, “in” and
“the” does not constitute an intelligent search strategy. Stopwords, also called
empty words as they usually do not bear much meaning, represent noise in the
retrieval process and actually damage retrieval performance, since they do not
discriminate between relevant and non-relevant documents. Secondly because re-
moving stopwords allows one to reduce the storage size of the indexed collection,
hopefully within the range of 30% to 50%.

Although the objectives seem clear, there is no clear and complete methodol-
ogy to develop a stopword list [16]. For example, the SMART system [15] has 571
words in its stopword list, while the DIALOG information services propose us-
ing only nine terms (namely “an”, “and”, “by”, “for”, “from”, “of”, “the”, “to”,
and “with”). Furthermore, some expressions, as “The Who”, “and-or gates”, or
“vitamin A”, based on words usually found in stopword list, are very useful in
specifying more precisely what the user wants.

Similarly, after converting all characters into lowercase letters, some ambigu-
ity can be introduced as, for example, with the expressions “US citizen” viewed
as “us citizen” or “IT scientist” as “it scientist”, as both us and it are usually
considered stopwords. The strategy regarding the treatment of stopwords may

thus be refined by identifying that “US” and “IT” are not pronouns in the above
examples, e.g. through a part-of-speech tagging step. Commercial search engines
tend to use, if any, a very short stopword list.

Morphological normalization

As a third step, an indexing procedure uses some type of morphological
normalization in an attempt to conflate word variants into the same stem or root.
Stemming procedures, which aim to identify the stem of a word and use it in
lieu of the word itself, are by far the most common morphological normalization
procedures used in IR. Grouping words having the same root under the same
stem (or indexing term) may increase the success rate when matching documents
to a query. Such an automatic procedure may therefore be a valuable tool in
enhancing retrieval effectiveness, assuming that words with the same stem refer
to the same idea or concept, and must be therefore indexed under the same
form. We will come back to stemming procedures and morphological analyzers
in Section 5.1.

Weighting

As described previously, an IR system automatically segments a given sen-
tence into words, removing the most frequent ones and stripping the suffixes to
produce a set of the indexing units. For example, from the sentence “In 1969, the
IBM-360 computer was one of the first third generation computers”, we can ob-
tain the following indexing units: “IBM-360”, “first”, “third”, “generat”, “com-
put”. This result corresponds to a binary indexing scheme within which each
document is represented by a set of (stemmed) keywords without any weight
assigned. Of course we may consider additional indexing rules as, for example,
to consider only the main aspects of each document (low degree of exhaustivity).
To achieve this, we can consider as indexing units only terms appearing more
often than a given threshold.

Binary logical restrictions may often be too restrictive for a document and
query indexing. It is not always clear whether or not a document should be
indexed by a given term. Often, a more appropriate answer is neither “yes”
nor “no”, but rather something in between. Term weighting creates a distinc-
tion among terms and increases indexing flexibility. Thus we need to assign
higher weight to more “important” features and lower weight to marginal ones.
To weight appropriately each indexing unit, we can consider three components,
namely the term frequency, the document frequency and the document length [17].

First, one can assume that an indexing unit appearing more often in a doc-
ument must have a higher importance in describing its semantic content. We
can measure this influence by counting its term frequency (i.e. its number of oc-
currences within a document), a value denoted tf . Thus, if a term occurs three
times in a document, its tf will be 3. Of course, one can consider other simple
variants, especially when considering that the occurrence of a given term in a
document is a rare event. Thus, it may be good practice to give more impor-
tance to the first occurrence than to the others. To do so, the tf component is

sometimes computed as log(tf + 1) or as 0.5 + 0.5 · [tf/max(tf)]. In this latter
case, the normalization procedure is obtained by dividing tf by the maximum
tf value for any term in that document.

As a second weighting component, one may consider that those terms occur-
ring very frequently in the collection do not help us discriminate between rele-
vant and non-relevant documents. For example, the query ”computer database”
is likely to yield a very large number of articles from a collection about computer
science. We meet here the notion of a term’s frequency in the collection (i.e. the
number of documents in which a term appears), a value denoted df , and called
“document frequency”.

More precisely, we will use the logarithm of the inverse document frequency
(denoted by idf = log(n/df), with n indicating the number of documents in
the collection), resulting in more weight for rare words and less weight for more
frequent ones [18]. With this component, if a term occurs in every document
(df = n), its weight will be log(n/n) = 0, and thus we must ignore it. On the
other hand, when a term appears in only one document (df = 1), its weight will
reach the maximum for the collection, namely log(n/1) = log(n).

To integrate both components (tf and idf), we can multiply the weight cor-
responding to the importance of the indexing term within the document (tf)
by its importance considering the whole collection (idf). We thus obtain the
well-known tf · idf formula.

Lastly, one usually considers that the presence of a term in a shorter docu-
ment provides stronger evidence than it does in a longer document. This phe-
nomenon can be accounted for by taking into account the document length in
the weighting of a term, which is usually done by comparing the length of a
document to the average document length (denoted avdl). Different weighting
schemes include the document length within their weighting formula, leading to
more complex schemes as described in the next sections.

3 IR Models

To define an IR model, we must explain precisely how information items (docu-
ments) and queries are represented and how these representations are compared
to produce a set or ranked list of retrieved items. In this section, we will start our
presentation with the Boolean model, the oldest paradigm and one that is still
used for some specialized applications. Section 3.2 will describe the vector-space
paradigm while different probabilistic models will be introduced in Section 3.3,
both models corresponding to modern IR approaches, and usually achieving bet-
ter retrieval effectiveness than Boolean models.

To further improve the retrieval performance as shown in Section 3.4, we
may consider an automatic query expansion strategy that takes different term-
term relationships into account in order to expand the original query. Finally, in
Section 3.5 we will briefly introduce more advanced IR models as well as some
search strategies, such as PageRank, based on document relationships.

3.1 Classical Boolean Model

The Boolean model was the first IR model developed and has a long tradition
in library science [13]. Documents are represented by a set of keywords, usually
obtained by manual indexing [11] based on a controlled vocabulary. Some ad-
ditional indexing terms can be provided by authors, usually by selecting some
terms from an authoritative list and adding free ones. Table 1 shows a very small
example with five indexing terms and four documents. To write a query, the user
must transform his/her information need into a logical expression using the in-
dexing terms and the Boolean operators AND, OR, and AND NOT. In order
to be retrieved, a document must strictly respect the logical constraint imposed
by the query. Based on our example, the query “document AND retrieval” will
return the documents D2 and D3, while the query “search OR retrieval” will
extract the documents D2, D3 and D4.

Table 1. Binary Indexing

Indexing Terms

Document linguistic document search compute retrieval

D1 1 0 0 0 0
D2 1 1 0 1 1
D3 0 1 1 0 1
D4 1 0 1 0 1

Transforming an information need into a Boolean query is not always a simple
task. If you are interested in cats and dogs, you may formulate the query “cat
AND dog”. But this logical expression imposes the presence of both terms in a
document in order to be retrieved. A better formulation is “cat OR dog” allowing
documents with only one of these two terms to be retrieved. The conjunctions
“and” and “or” in natural languages are thus not equivalent to the corresponding
logical operators. This semantic difference must be taken into account when
formulating Boolean queries. Within this paradigm, however, users can formulate
structured queries to express their information needs with great precision. The
query “document AND retrieval” is clearly more specific than writing a broad
query such as “document OR retrieval”.

In order to return an answer very fast, the indexing information is not inter-
nally stored as in a matrix as depicted in Table 1. In fact, as the collection grows,
the number of indexing terms also tends to increase rapidly. Therefore, it is usual
to have more than tens of millions of terms for the collection containing several
million documents. To verify if the documents respect the logical constraint im-
posed by the query, we only need to have a fast access to the document identifiers
indexed under the searched keywords. To achieve this, the system stores in an
“inverted file” the document numbers in which indexing terms occurs. For ex-
ample, Table 2 shows the inverted file corresponding to Table 1. For the sake

of clarity, we have denoted in Table 2 the document number with the prefix
D which, of course, does not appear in reality. Various techniques have been
suggested [19] to reduce storage requirements, to speed up processing, or to al-
low the use of phrases in queries (e.g., “New York City”) as well as the use of
proximity operators (e.g. through the use of the adjacency operator as in “New
York” ADJ “city”).

Table 2. Inverted File

Indexing term Sequence of document identifiers

linguistic D1, D2, D4

document D2, D3

search D3, D4

compute D2

retrieval D2, D3, D4

There are however major drawbacks in the Boolean model. First of all, the
retrieved documents do not form a ranked list. To rank retrieved documents, a
Boolean-based system has to rely on external attributes, such as the publication
date, the title, etc. In principle, the ranking of the retrieved documents should
reflect their degree of relevance to the submitted query. For example, considering
our previous query “search OR retrieval”, it seems reasonable to present first
the document having both indexing terms (D3, D4) before items indexed only
under one of them (e.g., D2). Secondly, binary logical restrictions are often too
limiting for document and query indexing. Within this model, it is not possible
to specify whether a given term is essential in a user’s query or just marginal.
Thirdly, a Boolean search system is unable to return documents that partially
match the query. As an answer to the query “document AND search”, the system
cannot extract document D2, even if it is indexed under the term “document”
and “retrieval”, a synonym of “search”. Fourthly, making the right choice of the
search keywords has a real impact on the quality of the returned list. If certain
terms appear in the query, the system may return a large number of documents
(output overload) from which it is difficult to detect relevant ones.

In order to solve some of these problems, various attempts have been pro-
posed to include the possibility to assign weights during the indexing of docu-
ments and/or queries (hybrid Boolean models). Moreover, this information can
be used to rank retrieved documents in a sequence most likely to fulfill user
intent [20]. However, all these approaches suffer from some logical deficiencies,
and their overall performance (see Section 4) is lower than that of more recent
IR approaches.

3.2 Vector-Space Models

Within this IR model [15], [17], documents and queries are indexed according
to the strategies described in Section 2. The resulting representation is a set of

weighted indexing terms. Thus, the user does not need to express his/her infor-
mation needs using logical operators; a simple expression in natural language,
such as “free speech on the Internet”, or “Italian royal family” is enough. This
model clearly provides more user-friendly access to the information.

Within the vector-space model, documents and queries are represented by
vectors in a high dimensional space in which each indexing term corresponds to
one dimension. Elements of the vectors may be binary, indicating the presence or
absence of the term, or fractional weights indicating the relative importance of
the term in the document or query. The set of indexing terms forms an orthogonal
basis (linearly independent basis vectors). We assume therefore that the indexing
terms are independent of one another. For example, if the term “computer”
appears in a document, this information implies nothing about the presence
(or absence) of other terms such as “algorithm” or “horse”. This represents, of
course, a simplified assumption.

Based on a geometric intuition, the vector-space model does not have a solid
and precise theory that is able to clearly justify some of its aspects. For example,
to compute the degree of similarity between the document representations and
the query, we can choose different formulas. If we denote by wij the weight of
the indexing term tj in a document Di, and by wqj the weight of the same term
in the query Q, the similarly between this document and the query could be
computed according to the inner product as follows:

Sim(Di, Q) =
p∑

j=1

wij · wqj (1)

in which p indicates the number of indexing terms included in query Q. Of
course, the vector representing Di is composed of t values with t representing
the number of distinct indexing terms. However, when a term is not present in
the query, its contribution to the inner product is null, and has no impact on
the similarly level. We can thus restrict the computation to the p query terms.

As an alternative similarity measure, we may compute the cosine of the angle
between the vectors representing Di and Q as follows:

Sim(Di, Q) =

∑p
j=1 wij · wqj√∑t

k=1 w
2
ik ·
√∑p

k=1 w
2
qk

(2)

In order to avoid computing all elements expressed in the previous formula
at retrieval time, we may store the weights associated with each element of Di

in the inverted file. If we apply the well-known weighting scheme tf · idf (see
previous section), we can compute and store the weight wij of each indexing
term tj for the document Di during the indexing as follows:

wij =
tfij · idfj√∑t

k=1(tfik · idfk)2
(3)

Advanced weighting formulas have been proposed within the vector-space
model leading to different formulas [21], some being more effective than others.

Moreover, various attempts have been suggested to account for term depen-
dencies [22]. Most of these attempts can be seen as transformations aiming at
expanding document representations through a linear transformation T: the vec-
tor Di becomes T · Di. Often, the matrix T represents a term-term similarity
matrix, which can be defined by “compiling” some a priori given thesaurus, or
by automatically building a semantic similarity matrix. In particular, the Gen-
eralized Vector-Space Model (GVSM) [22] corresponds to setting T to the term-
document matrix (i.e. the transpose of the document-term matrix, an example
is given in Table 1). In this case, the transformation projects the document from
a term space to a dual document space. This approach can be generalized by
using groups of similar documents instead of isolated documents. The Similarity
Thesaurus [24] is a variant of this approach which relies on a particular weighting
scheme. Another interesting attempt to take into account term dependencies is
the approach known as Latent Semantic Analysis (LSA).

Latent Semantic Analysis [23] allows the automatic derivation of semantic
information (in this case a certain form of synonymy and polysemy) from a doc-
ument collection through co-occurrence analysis. In particular, two terms which
are synonyms of each others are likely to have the same profile (i.e. similar rows)
in the term-document matrix. Such correlations are unveiled in LSA by a de-
composition of the term-document matrix into singular values. More precisely,
let C represent the term-document matrix. Then, the singular value decompo-
sition (SVD) of C aims at identifying two orthogonal matrices U and V and a
diagonal matrix Σ such that:

C = U Σ Vt (4)

where t denotes the transpose. Assuming the eigenvalues in Σ are organized
in decreasing values, one can reduce the dimensionality by retaining only the
first k columns of U (Uk), the first k rows of V (Vk) and the first k diagonal
elements of Σ (Σk). The matrix UkΣkVk

t can be shown to be the closest
approximation (wrt the Frobenius norm) of C of rank k. Documents and queries
can then be projected on the obtained latent space (via Uk

tD) and directly
compared, for example with the cosine formula, in this space. LSA has been
showed to provide improvements over the standard vector-space model on several
collections, however not on all. The required computing resources represent the
main drawback of the LSA approach.

3.3 Probabilistic Models

Within the probabilistic family of models, the retrieval is viewed as a classifi-
cation process. For each query, the system must form two classes: relevant and
non-relevant. Thus, for a given document Di, one has to estimate the probability
that it belongs to the relevant class (class denoted R) or to the non-relevant one
(denoted R̄). With two classes, the decision rule is rather simple: retrieve Di

if Prob[R|Di] > Prob[R̄|Di]. The main theoretical foundation of this model is
given by the following principle [25]:

“The probability ranking principle (PRP): if a reference retrieval system’s
response to each request is a ranking of the documents in the collection in order
of decreasing probability of usefulness to the user who submitted the request,
where the probabilities are estimated as accurately as possible on the basis of
whatever data has been made available to the system for this purpose, the overall
effectiveness of the system to its users will be the best that is obtainable on the
basis of that data.”

Of course, this principle does not indicate precisely what data must be used
and how to estimate the underlying probabilities. To estimate them, we need to
make some assumptions. First, we assume that the relevance of a document is
independent of the other documents present in the collection. Second, we assume
that the number of relevant documents does not affect the relevance judgment.
Both assumptions represent simplification as (a) a particular document may
be a good complement to another document, relevant to the query, without
being relevant alone, and (b) relevance judgements are affected by the documents
already judged.

In addition, we assume for the moment that the document Di is represented
by a set of binary indexing terms. It is important to note that we do not need
to compute a precise value for the underlying probabilities Prob[R|Di]. What is
required is to produce a ranked list of documents reflecting these values. Using
Bayes rule, we can estimate the probability that Di belongs to the relevant class
and the non-relevant one as:

Prob[R|Di] =
Prob[Di|R] · Prob[R]

Prob[Di]
(5)

Prob[R̄|Di] =
Prob[Di|R̄] · Prob[R̄]

Prob[Di]
(6)

where Prob[R] (Prob[R̄]) indicates the prior probability of relevance (and of
non-relevance) of a random document (with Prob[R] + Prob[R̄] = 1). Prob[Di]
is the probability of selecting Di. From this, we can see that the ranking order
depends only on Prob[Di|R] and Prob[Di|R̄] (the other factors being constant).

As described in [26], we can assume conditional independence between terms,
and thus write Prob[Di|R] as the product of the probabilities for its components
(binary indexing). For a given document, we denote by pj the probability that
the document is indexed by term tj given that the document belongs to the
relevant set. Similarly, qj is the probability that the document is indexed by
term tj given that the document belongs to the non-relevant set. Thus we need
to estimate, for each term tj , the following two probabilities:

pj = Prob[dj = 1 | R] (7)
qj = Prob[dj = 1 | R̄] (8)

from which we can then compute the probability of relevance (and non-relevance)
of document Di as:

Prob[Di | R] =
t∏

j=1

p
dj

j · (1− pj)1−dj (9)

Prob[Di | R̄] =
t∏

j=1

q
dj

j · (1− qj)1−dj (10)

where dj is either 1 or 0, depending on the fact that the term tj appears or not
in the representation of document Di.

One way to estimate the underlying probabilities pj and qj is to model the
distribution of terms according to a probability distribution such as the 2-Poisson
model [27]. In this case, we model the term distribution in the relevance class by
a Poisson distribution, while the distribution over the non-relevant class follows
another Poisson distribution. These estimates can be refined based on the a set
of known relevant and non-relevant items [28] for the current query (relevance
feedback). For example, we can estimate the required probabilities as follows:

pj =
rj
r

and qj =
dfj − rj
n− r

(11)

where r indicates the number of relevant documents, rj the number of relevant
documents indexed with term tj , n the number of documents in the collection,
and dfj the number of documents in which the term tj occurs.

Modern probabilistic IR models take into account new variables such as term
frequency, document frequency and document length to provide useful insights
regarding the probability that a given document is relevant to a query or not
(e.g., the Okapi or BM25 model [29]). Among more recent proposals, a very
interesting one is DFR (Divergence from Randomness), proposed by Amati &
van Rijsbergen [30], which represents a general probabilistic framework within
which the indexing weights wij attached to term tj in document Di combine two
information measures as follows:

wij = Inf1
ij · Inf2

ij = − log2

[
Prob1ij(tf)

]
· (1− Prob2ij(tf)) (12)

The first component measures the informative content (denoted by Inf1
ij) based

on the observation that in the document Di we found tf occurrences of the term
tj . The second one measures the risk (denoted by 1 − Prob2ij(tf)) of accepting
the term tj as a good descriptor, knowing that in document Di there are tf
occurrences of term tj .

In the first information factor, Prob1ij(tf) is the probability of observing tf
occurrences of the term tj in document Di by pure chance. If this probability is
high, term tj may correspond to a non content-bearing word in the context of the
entire collection [27]. For the English language, these words generally correspond
to determiners, such as “the”, prepositions like “with” or verb forms like “is” or

“have”, considered as being of little or not use in describing a document’s seman-
tic content. Various nouns can also appear in numerous documents within a par-
ticular corpus (for example “computer” and “algorithm” for a computer science
collection). On the other hand, if Prob1ij(tf) is small (or if −log2[Prob1ij(tf)] is
high), term tj would provide important information regarding the content of the
document Di. Several stochastic distributions can be chosen for Prob1 (see [30,
31]), for example the geometric distribution:

Prob1ij(tf) =
[

1
(1 + λj)

]
·
[

λj

(1 + λj)

]tf

with λj = tcj/n (13)

where tcj indicates the number of occurrences of term tj in the collection. n is
the number of documents in the collection.

The term Prob2ij(tf) represents the probability of having tf + 1 occurrences
of the term tj , knowing that tf occurrences of this term have already been found
in document Di. This probability can be evaluated using the Laplace’s law of
succession as Prob2(tf) = (tf+1)/(tf+2) ≈ tf/(tf+1), which leads, by taking
into account the document length to:

Prob2ij(tf) =
tfnij

(tfnij + 1)
with tfnij = tfij · log2

[
1 + (c · avdl)

li

]
(14)

where avdl is the mean length of a document, li the length of document Di, and
c a constant whose value depends on the collection.

The work presented in [31] relates Laplace’s law of succession to a well-
known phenomenon in text modeling, namely the one of burstiness, which refers
to the behavior of words which tend to appear in bursts: once they appear in
a document, they are much more likely to appear again. This work also shows
that a single distribution can be used as the basis for Prob1 and Prob2.

Another interesting approach is the one known as non-parametric probabilis-
tic modeling 4, which is based on a statistical language model (LM) [32]. As
such, probability estimates are based on the number of occurrences in docu-
ment Di and the collection C. Within this language model paradigm, various
implementations and smoothing methods [33] can be considered. We will limit
ourselves here to a simple model proposed by Hiemstra [32], and described in
Equation 15 (Jelinek-Mercer smoothing), combining an estimate based on the
document (P [tj |Di]) and one based on the collection (P [tj |C]):

Prob[Di|Q] = Prob[Di] ·
∏

tj∈Q

[λj · Prob[tj |Di] + (1− λj) · Prob[tj |C]] (15)

Prob[tj |Di] = tfij/li and Prob[tj |C] = dfj/lc with lc =
∑

k

dfk (16)

4 The term non-parametric is misleading here, as one can view this model as being
based on a multinomial distribution. Non-parametric refers here to the fact that the
number of parameters grows with the size of the collection, but this is also the case
with the previous models we presented.

where λj is a smoothing factor (constant for all indexing terms tj , and usually
fixed at 0.35) and lc an estimate of the size of the collection C. Both probability
estimates P [tj |Di] and P [tj |C] are based on a ratio, between tfij and the docu-
ment size on the one hand, and the number of documents indexed with the term
tj and the size of the whole collection on the other hand.

Lastly, we would like to mention the risk minimization framework developed
in [34], which constitutes an attempt to unify several IR models into a single
framework.

3.4 Query Expansion and Relevance Feedback

To provide better matching between user information needs and documents, var-
ious query expansion techniques have been suggested. The general principle is
to expand the query using words or phrases having meanings similar or related
to those appearing in the original query, either by using information from a the-
saurus (see for example [35, 36] and Section 5.4), or by deriving this information
from the collection. To achieve this, query expansion approaches rely on (a) rela-
tionships between words, (b) term selection mechanisms, and (c) term weighting
schemes. The specific answers to these three questions may vary, leading to a
variety of query expansion approaches [37].

In the first attempt to find related search terms, we might ask the user to
select additional terms to be included in an expanded query. This can be handled
interactively through displaying a ranked list of retrieved items returned by the
first query.

As a second strategy, Rocchio [38] proposed taking the relevance or non-
relevance of top-ranked documents into account, as indicated manually by the
user. In this case, a new query would then be built automatically in the form of
a linear combination of the terms included in the previous query and the terms
automatically extracted from both relevant (with a positive weight) and non-
relevant documents (with a negative weight). More precisely, each new query
term was derived by applying the following formula:

w′qi = α · wqi + β ·
r∑

j=1

wij − γ ·
nr∑

j=1

wij (17)

in which w′qi denotes the weight attached to the ith query term, based on the
weight of this term in the previous query (denoted by wqi), and on wij the
indexing term weight attached to this term in both the relevant and non-relevant
documents appearing in the top k ranks. The value r (respectively nr) indicates
the number of relevant (respectively non-relevant) documents appearing in the
first k positions. The positive constants α, β, and γ are fixed empirically, usually
with α ≥ β, and β = γ. Empirical studies have demonstrated that such an
approach is usually quite effective.

As a third technique, Buckley et al. [21] suggested that even without looking
at them, one can assume that the top k ranked documents are relevant. Using
this approach, we simply set r = k and γ = 0 in Equation 17. This method,

denoted pseudo-relevance feedback or blind-query expansion, is usually effective
(at least when handling relatively large text collections).

Relevance feedback can be very effective when the results of the original
query are somehow correct. In other cases, the retrieval performance may de-
crease. Peat & Willett [39] provide one explanation for such poor performance.
In their study they show that query terms have a greater occurrence frequency
than do other terms. Query expansion approaches based on term co-occurrence
data will include additional terms that also have a greater occurrence frequency
in the documents. In such cases, these additional search terms will not prove ef-
fective in discriminating between relevant and non-relevant documents. In such
circumstances, the final effect on retrieval performance could be negative.

There are several works focusing on (pseudo-)relevance feedback and the best
way to derive related terms from search keywords. For example, we might use
large text corpora to derive various term-term relationships and apply statistical
or information-based measures. For example, Qiu & Frei [24] suggested that
terms extracted from a similarity thesaurus that had been automatically built
through calculating co-occurrence frequencies in the search collection could be
added to a new query. The underlying effect was to add idiosyncratic terms to
those found in underlying document collections, and related to query terms in
accordance to the language being used. Kwok et al. [40] suggested building an
improved request by using the Web to find terms related to search keywords.
Additional information about relevance feedback approaches can be found in [1,
Chapter 9] and in [37].

3.5 Advanced Models

As we already mentioned, document and query representations are imprecise and
uncertain. It has been shown that different document representations or search
strategies tend to have similar overall retrieval performances, although based on
different retrieved items [41]. This observation prompted investigations of possi-
ble enhancements to overall retrieval performance by combining different docu-
ment representations [7] (e.g., single terms, n-grams, phrases) or different search
strategies (different vector-space and/or probabilistic implementations) [42].

Such merging strategies, known as data fusion, tend to improve the overall
performance for three reasons. First, there is a skimming process in which only
the m top-ranked retrieved items from each ranked list are considered. In this
case, one can combine the best answers obtained from various document rep-
resentations (which retrieve various relevant items). Second, one can count on
the chorus effect, by which different retrieval schemes retrieve the same item,
and as such provide stronger evidence that the corresponding document is in-
deed relevant. Third, an opposite or dark horse effect may also play a role. A
given retrieval model may provide unusually high (low) and accurate estimates
regarding the relevance of a document. In this case, a combined system can re-
turn more relevant items by better accounting for those documents having a
relatively high (low) score or when a relatively short (or long) result lists occurs.
Such data fusion approaches however require more storage space and processing

time. Weighing advantages and disadvantages of data fusion, it is unclear if it is
worth deploying in a commercial system.

A second interesting research area is to propose a better estimate for prior
probabilities. In the probabilistic models, we have denoted by Prob[Di] the prior
probability of document Di which appears in different implementations (see
Equation 5, or in the LM paradigm, see Equation 15). Usually, without any
additional information we assume that this value is the same for all documents.
On the other hand, we know that all documents are not equally important. The
“80-20 rule” may apply in large document collections or IR databases, meaning
that around 20% of the documents present in the collection provide the expected
answer to 80% of information needs. In such situations, it may be useful to rely
on user feedback to dynamically adapt the prior probability for each document.

In the Web, it is known that users have a preference for the home page
of a site, a page from which they can directly buy or obtain the needed ser-
vice or information (e.g., flight ticket, consult a timetable, obtain an address,
reserve an hotel). If we look at the corresponding URL describing such pages
(e.g., “www.apple.com”, “www.easyjet.co.uk”), one immediately sees that it is
composed only of the root element (sometimes with a standard file name such
as “index.html” or “default.htm”). As described in [43], we can consider this
information to assign higher probability to entry pages. Such practice (used by
commercial search engines) can significantly improve retrieval performance.

In addition, Web search engines usually take into account the anchor texts,
i.e. the sequence of words used to indicate the presence of a hyperlink and de-
scribing, in a compact manner, the target Web page. Thus, to refer to Microsoft
home page, we can collect all anchor texts written by various authors and point-
ing to “www.microsoft.com”. All these expressions can be viewed as forming
a set, manually built, of terminological variants indexing the target page (e.g.,
“see Microsoft”, “MicroSoft”, “Micro$oft”, “Bill Gates’ Empire” or “The $$
Empire”).

Lastly, to improve existing IR models on some collections, one can consider
various relationships between documents. Bibliographic references are such an
example and can viewed as a set of relationships between documents, under
the assumption that the main purpose of citing earlier articles is to give credit
to works (concepts, facts, models, results, methodology, etc.) the subjects of
which are related to the present document (at least in the author’s mind). A
main advantage of bibliographic references [44] is that they are independent of a
particular use of words, and even languages. Thus they do not suffer (a) from the
underlying ambiguity of all natural languages, (b) from the fact that the majority
of subject indexers are specialized in a given domain, whereas documents may
contain information pertaining to more than one specific domain of knowledge,
and (c) from the fact that terms used to describe the content of a document may
become obsolete in e.g. the scientific and technological literature.

One of the bibliographic measures is bibliographic coupling [45], which mea-
sures subject similarity on the basis of referenced documents. To define the
bibliographic coupling measure between two articles, one simply counts the num-

ber of documents cited by the two papers. Another measure is the co-citation
measure, used by Small [46] to build a network of documents: for each pair of
documents, one counts the number of papers which cite both. To be strongly
co-cited, two documents must be cited together by a large number of papers.
In this case, the underlying hypothesis is that co-citation measures the subject
similarity established by an author group.

On the Web, each page typically includes hypertext links to other pages, and
such links are clearly not created by chance. Based on the previous bibliographic
measures, one can establish and measure an association strength between Web
pages. In a similar perspective, Google uses PageRank (PR) [47] as one (among
others) source of information to rank retrieved Web pages. In this link-based
search model, the importance assigned to each Web page is partly based on its
citation pattern. More precisely, a Web page will have a higher score if many
Web pages point to it. This value increases if there are documents with high
scores pointing to it. The PR value of a given Web page Di (value noted as
PR(Di)), having D1, D2, ..., Dm pages pointing to it, is computed according to
the following formula:

PRc+1(Di) = (1− d) · 1
n

+ d ·
[
PRc(D1)
C(D1)

++
PRc(Dm)
C(Dm)

]
(18)

where d is a parameter (usually set to 0.85 [47]) and C(Dj) is the number
of outgoing links for Web page Dj . The computation of the PR value can be
done using an iterative procedure (few iterations are needed before convergence).
After each iteration, each PR value is divided by the sum of all PageRank values.
As initial values, one can set PR(Di) to 1/n, where n indicates the number of
documents in the collection.

A third link-based approach consists of HITS [48]. In this scheme, a Web page
pointing to many other information sources must be viewed as a “good” hub,
while a document with many Web pages pointing to it is a “good” authority.
Likewise, a Web page that points to many “good” authorities is an even better
hub, while a Web page pointed to by many “good” hubs is an even better
authority. For Web page Di, formulas for hub and authority scores (Hc+1(Di)
and Ac+1(Di)) are given, at iteration c+ 1, by:

Ac+1(Di) =
∑

Dj∈parent(Di)

Hc(Dj) (19)

Hc+1(Di) =
∑

Dj∈child(Di)

Ac(Dj) (20)

Such scores are computed for the k top-ranked documents (typical values of k
are k = 200) retrieved by a classical search model, together which their children
and parents (as given by the citation network). Hub and authority scores are
updated for a few iterations, and a normalization procedure (e.g., dividing each
score by the sum of all squared values) is applied after each step.

Based on these two main hyperlink-based algorithms, different variants have
been suggested [49]. It is important to note, however, that using such algorithms

alone to retrieve documents does not yield very interesting results, as shown in
various TREC evaluation campaigns [50]. This being said, their integration in a
general search engine provides new, interesting functionalities (as the detection
of spam Web pages, or the improvement of the rank of well-known Web pages).

More recently, several researchers have investigated the possibility of using
machine learning approaches in IR. Let us assume that we have a large collection
of documents, a large number of queries and relevance judgements (see Section 4)
for these queries on the collection. We can see such judgements as a set of
annotated (query, document) pairs, where the annotation takes e.g. the value 1 if
the document is relevant to the query, and −1 if it is not. Next, one can transform
a given (query, document) pair into a vector which represents an example. Such
a transformation needs to abstract away from the particular terms present in the
query, and usually relies on a variety of features based on characteristics [51],
such as

1. number of common terms between the query and the document,
2. average inverse document frequency of the query terms present in the doc-

ument,
3. width of the window in which query terms appear in the document,
4. cosine similarity between the query and the document,
5. probabilistic measure of relevance of the document,
6. and, when available:

– PageRank value of the document,
– number of incoming (outgoing) links, ...

Once (query, document) pairs are seen as vectors, we end up with a standard
binary classification problem, the aim of which being to build a classifier that
discriminates well between positive and negative examples. Once such a classifier
is built, documents relevant to a new query are those documents classified in the
positive class (each document of the collection is, of course, first paired to the
query, the pair being then transformed, as above, into a vector which will be the
input of the classifier). Many different classifiers can be used here. Because of
their success in different settings, Support Vector Machines (see for example [1])
are quite often chosen for the task.

Nallapati [51] shows that the approach based on machine learning outper-
forms standard IR approaches when both the number of features used in the
vector representation and the number of relevance judgements are sufficiently
large. It is also possible to go beyond the framework of binary classification,
and try to directly learn a ranking function, through pairwise preferences [52]
or listwise preferences [53]. These last two approaches outperform the one based
on a direct classification of documents.

As one may have noted, the basic building block of machine learning ap-
proaches to IR is a set of relevance judgements. If some collections (as the one
found in TREC for example) do have a set of associated relevant judgements,
most collections do not. The situation is somewhat different for the Web and
Web search engines, as Web search companies have access to clickthrough data
(data recording the fact that, for a given query, a user has clicked on particular

documents proposed by the search engine) which can partly be used as anno-
tated data to develop machine learning tools (see for example [54] and more
recently [55]). Furthermore, it is probable that such companies try to manually
develop relevance judgements in order to deploy accurate machine learning tech-
niques. The field of research on machine learning for IR is thus very active at
the time of writing this chapter, and will certainly give birth to new, interesting
approaches to IR.

4 Evaluation and Failure Analysis

In order to know whether one search model is better than another, an evaluation
methodology must be adopted. In the IR domain, this must be applied to the
search process as a whole (user-in-the-loop paradigm) which means evaluation
by real users with their real information needs. It would be of interest to analyze
a range of characteristics such as the answer speed, its quality, the user’s effort
needed to write a query, the interface of the search system, the coverage of the
collection, etc. All these aspects are certainly important but (a) user studies are
costly, and (b) some features are hard to measure objectively. Thus traditional
IR evaluation approaches are usually limited to system performance, and more
particularly to the quality of the answer (retrieval effectiveness).

In this vein, to measure the retrieval performance [56], we first need a test col-
lection containing a set of information units (e.g., documents), and a set of topic
(or query) formulations together with their relevance assessments. As described
in the following section, these corpora are usually the result of an international
cooperative effort. Having such a benchmark, we can evaluate several IR models
or search strategies by comparing their relative retrieval performance (measured
by precision-recall values).

As shown in Section 4.3, even after decades of research in this field, we still
need a better understanding of the reasons explaining why some topics are still
hard. The analysis of some difficult queries will give us some insights on this,
as well as on the ways existing IR models can be improved or designed more
effectively.

4.1 Evaluation Campaigns

Modern IR evaluations are based on rather large test collections built during
different evaluation campaigns. The oldest and best known of these campaigns
is TREC5 [57] (Text REtrieval Conference) established in 1992 in order to eval-
uate large-scale IR, to speed the transfer of technology from research labs into
products and to increase the availability of appropriate evaluation methodolo-
gies. Held each year, TREC conferences have investigated retrieval techniques
in different medium (written documents, Web pages, spoken documents, OCR,

5 trec.nist.gov

image, video) as well as different search tasks (ad hoc, interactive, routing, filter-
ing, categorization, question/answering) or languages (English, Arabic, Chinese,
Spanish, etc.).

Around the world, three other evaluation campaign series have been launched.
Beginning in 1999, the NTCIR6 conference is held every 18 months in Japan and
is more oriented to problems related to Far-East languages (e.g., Japanese, tra-
ditional or simplified Chinese, Korean) used in conjunction with several search
tasks (patent retrieval, Web, ad hoc, question/answering, summarization).

In Europe, CLEF7 [58] (Cross-Language Evaluation Forum) was founded
to promote, study and evaluate information access technologies using various
European languages. Held each year since 2000, the CLEF campaigns have pro-
duced test collections in more than twelve languages related to different tasks
(ad hoc, bilingual, multilingual and cross-lingual retrieval, image search, ques-
tion/answering, domain-specific retrieval, etc.).

Lastly, and more recently, a campaign, called INEX8, was launched in order
to evaluate retrieval systems in (semi-)structured collections.

Each year, these evaluation campaigns propose additional challenging tracks
such as novelty (retrieval of new and unseen information items), robust (im-
proving the performance of hard topics), spam filtering, IR on blog corpus, ques-
tion/answering using Wikipedia, cross-language retrieval on audio data, multilin-
gual Web IR, geographic-based IR (search involving spatial aspects), multimodal
summarization for trend information, etc.

The user is not absent in all evaluation studies. For example the interac-
tive track at TREC [59] presented an interesting set of studies on various as-
pects of human-machine interactions. More specific experiments pertaining to
cross-lingual information retrieval systems were presented during various CLEF
evaluation campaigns [60].

One of the main objectives of these evaluation campaigns is to produce reli-
able test collections. To achieve this, corpora are extracted from various news-
papers, news agencies, on the Web or from other private sources (e.g., libraries,
private companies). These data are preprocessed to guarantee some standardiza-
tion (same encoding, homogenization of the tags, segmentation into information
items).

Besides the creation and clean-up of the corpora themselves, the organizers
prepare a set of topic formulations (usually 50 per year). Each of them is usually
structured into three logical sections comprising a brief title (T), a one-sentence
description (D) and a narrative (N) specifying the relevance assessment criteria.
For example, we can find the following topic description:
<title> Oil Prices </title>
<desc> What is the current price of oil? </desc>
<narr> Only documents giving the current oil price are relevant, i.e. the price

6 research.nii.ac.jp/ntcir
7 www.clef-campaign.org
8 inex.is.informatik.uni-duisburg.de

when the document was written. References to oil prices in the past or predictions
for price changes in the future are not relevant. </narr>

The available topics cover various subjects (e.g., “Pesticides in Baby Food”,
“Whale Reserve”, “Renewable Power” or “French Nuclear Tests”) and may in-
clude both regional (“Swiss Initiative for the Alps”) and international coverage
(“Ship Collisions”). Depending on the campaigns, topics are manually translated
into several languages.

After receiving the topic set, the participants have around one month to
send back their answers as computed by their own search system. For each task,
guidelines specify exactly the task conditions (usually by imposing that runs
must be fully automatic and based only on the title and description (TD) parts
of the topic formulation). After this step, the organizers may form a pool of
retrieved documents for each topic. As each participant is usually allowed to
send 1,000 answers for each topic, the organizers take only the top n documents
(e.g., n = 100) from each run. These documents are then presented to a human
assessor who decides whether each item is relevant or not. This process is blind
in the sense that the assessor only has access to a query and a set of documents.

This procedure has been applied over many years and we must recognize that
the resulting judgments are a subset of true relevant set because not all docu-
ments belonging to the underlying collection were judged. However, as demons-
trated by various studies, the difference is not large [56]. It is worth to note that
having a large number of very different IR systems is necessary (however not
sufficient) to ensure the reliability of the evaluation process. If a test collection
is built with a few participants having similar search strategies, the results are
questionable. Finally, the retrieval performance that can be drawn from any test
collection is never absolute but only relative to the test collection in use.

4.2 Evaluation Measures

To measure retrieval performance [56], we may consider that the only important
aspect is to retrieve one pertinent answer. In some contexts, the answer could
really be unique, or at least the number of correct answers is rather limited
as, for example, when searching for a home page on the Web. In this case, the
evaluation measure will be based only on the rank of the first correct answer
retrieved.

For any given query, if r is the rank of the first relevant document retrieved,
the query performance is computed as 1/r. This value, called the reciprocal rank
(RR), varies between 1 (the first retrieved item is relevant) and 0 (no correct
response returned). It should be noted here that ranking the first relevant item
in second place instead of first would seriously reduce the RR value, making it
0.5 instead of 1.

To measure the retrieval performance resulting from a set of queries, we
simply compute the mean over all the queries. This value known as the mean
reciprocal rank (MRR), serves as a measure of any given search engine’s ability
to extract one correct answer and list it among the top-ranked items. We thus

believe that MRR value closely reflects the expectation of those internet surfers
who are looking for a single good response to their queries.

In IR, we usually do not want to measure a search system’s ability to rank one
relevant item, but to extract all relevant information from the collection. In such
contexts, we assume that users want both high precision (fraction of retrieved
items that are relevant) and high recall (fraction of relevant items that have
been retrieved). In other words they want “the truth, the whole truth (recall),
and nothing but the truth (precision)”. In order to get a synthetic measure from
both precision and recall, the harmonic mean between the two (known as F1 or
F score [26]) is sometimes used (specially in NLP tasks). Denoting the precision
by P and the recall by R, the F score is defined as:

F1 =
2 · P ·R
P +R

(21)

It is however more common in IR to compute the average precision (AP) for
each query by measuring the precision achieved at each relevant item extracted
and then computing an overall average. Then for a given set of queries we calcu-
late the mean average precision (MAP), which varies between 0.0 (no relevant
items found) and 1.0 (all relevant items always appear at the top of the ranked
list).

However, between these two values it is difficult for a user to have a mean-
ingful and direct interpretation of a MAP value. Moreover, from a user’s point
of view, the value of the difference in AP achieved by two rankings is sometimes
difficult to interpret. For example, in Table 3 we have reported the AP for a
topic with three relevant items. With System A, the relevant documents appear
in rank 2, 3 and 30. If we computed the AP for this query, we have a precision
of 1/2 after the second document, 2/3 after the third document, and 3/30 after
the 30th retrieved item given an AP of 0.422. Computing the AP for System B,
we found 0.676, showing a relative improvement of 60% over ranking produced
by System A.

Table 3. Precision-Recall Computation

Rank System A System B

1 NR R 1/1
2 R 1/2 R 2/2
3 R 2/3 NR
... NR NR
30 R 3/30 NR
... NR NR

100 NR R 3/100

AP 0.422 0.676

As an alternative, we may consider that the evaluation should focus on the
capability of the search system to retrieve many relevant items on the one hand,

and to present them in the top-n position of the returned list. In this case, we
do not attach a great importance to extracting all relevant items, assuming that
there are too many. To evaluate the retrieval performance in such circumstances,
we can compute the precision achieved after retrieving n items. On the Web, we
may set this threshold to n = 10, corresponding to the first screen returned by a
commercial search engine and then compute the precision at this point, a value
denoted P@10 or Prec@10. In our previous example (see Table 3), both systems
achieved a performance of P@10 = 0.2.

More recently, Järvelin and Kekäläinen introduced [61] a new evaluation
measure called Normalized Discounted Cumulative Gain (NDCG), which is well
adapted to situations where relevance judgements are graded, i.e. when they
take more than just two values (relevant or not). The assumption behind NDCG
is that highly relevant documents are (a) more useful when appearing earlier
in the list of retrieved documents and (b) more useful than marginally relevant
documents, which in turn are more useful than irrelevant documents. NDCG
computes a relevance score for a list of documents through the gain brought by
each document in the list discounted by the position at which the document
appears. This score is then normalized relative to the optimal gain that can be
achieved, yielding a score between 0 and 1 (provided the lowest value for the
relevance is greater than 1). The NDCG score for the list consisting of the first
k documents retrieved by an IR system is thus:

N(k) =

normalization︷︸︸︷
Zk

k∑
j=1︸︷︷︸

cumulative

gain︷ ︸︸ ︷
(2p(j) − 1) / log2(j + 1)︸ ︷︷ ︸

position discount

(22)

where p(j) corresponds to the relevance value of the document appearing at
position j. With this formula, System B in Table 3 gets a higher score than
System A on the first 10 documents as, even though they both retrieve only
two documents, the position discounts for System B are lower than the ones for
System A since the relevant documents are ranked higher in the list by System
B.

Finally, in an effort to statistically determine whether or not a given search
strategy would be better than another, we may apply different statistical tests [62]
(Sign test, Wilcoxon signed ranks test, t-test or using the bootstrap methodol-
ogy [63]). Within these tests the null hypothesis H0 states that the two retrieval
schemes produce similar MAP (or MRR) performance. This null hypothesis is
accepted if the two retrieval schemes are statistically similar (i.e. yield more or
less the same retrieval performance), and is rejected otherwise.

For example, the Sign test does not take the amount of difference into ac-
count, but only the fact that a search system performs better than the other. In
a set of 50 topics, imagine that System A produced better MAP for 32 queries
(or 32 “+”), System B was better for 16 (or 16 “–”), and for the two remaining
queries both systems showed the same performance. If the null hypothesis were
true, we would expect to obtain roughly the same number of “+” or “–” signs.

In the current case involving 48 experiments (the two ties are ignored), we have
32 “+” and only 16 “–” signs. Accepting the null hypothesis, the probability of
observing a “+” would be equal to the probability of observing a “–” (namely
0.5). Thus, for 48 trials, the probability of observing 16 or fewer occurrences
of the same sign (“+” or “–”, for a two-tailed test) is only 0.0293 (see tables
in [62]). With a significance level fixed at α = 5%, we must reject H0, and accept
the alternative hypothesis stating that there is a difference between System A
and B. In such a case, the difference is said to be statistically significant at the
level α = 0.05.

4.3 Failure Analysis

Given the sound procedures described previously for both indexing (see Sec-
tion 2) and search models (see Section 3), it seems a priori that search engines
should not fail to retrieve documents queried by users, especially when those doc-
uments share many words with the query. However, unexpected and incorrect
answers happen from time to time.

From a commercial IR perspective, it is important to understand the reasons
why a search system fails, why customers encounter problems when searching
for information. In the academic world, this aspect has been studied within
several robust tracks [64]. During previous evaluation campaigns, numerous topic
descriptions have been created by humans and submitted to different search
engines. Some of them (around 5% to 10%) have been found to be hard for
almost every search paradigm, without being able to detect, a priori, when a
query would be hard or not. Only a few studies (e.g. [65]) tend to investigate
search system failures.

To illustrate our purpose, we have extracted some topics from our partici-
pation in past evaluation campaigns. These hard queries are defined as topics
having zero precision after 10 retrieved items (P@10). In an effort to explain
the IR model’s failure to list at least one pertinent item among the top ten, we
might classify the causes into two main groups: first, system flaws (Category
#1 to #3) where some advanced processing techniques may improve the perfor-
mance; Second, topic intrinsic difficulties (Category #4 to #6) where a deeper
understanding of user’s intent and semantic analysis seems to be required.

Category 1: Stopword list. The way letters are normalized (or not) as well as
the use of a stopword list may prevent one from finding correct answers. From the
topic “Who and whom”, the query representation was simply empty because the
forms “who”, “and” and “whom” were included in the stopword list. A similar
problem might be encountered with phrases such as “IT engineer”, “US citizen”
or “language C”. In the first two cases, the search system might fail to recognize
the acronyms, treating them as the pronouns “it” or “us”, which are usually
included in a stopword list, along with the letter “c”. This example explains
why commercial IR systems may have a particular strategy for dealing with
empty words.

Category 2: Stemming. The stemming procedure cannot always conflate all
word variants into the same form or stem, as illustrated by the topic “Prehistori-

cal Art”. In this case, a light stemming approach left unchanged the search term
“prehistorical”. This term however does not occur in the corpus and the submit-
ted query was therefore limited to “art”. Using a more aggressive stemmer is not
always the most appropriate solution. Of course, using Porter’s stemmer [69], the
IR system is able to conflate the forms “prehistorical” and “prehistoric” under
the same root and to retrieve a relevant item in the top ten. However, a more
aggressive stemmer may lead to overstemming with a negative impact on the
search results.

Category 3: Spelling errors. When building topic descriptions, the organizers
of the evaluation campaign usually check the spelling of each topic so that only
a few, if any, of them appear in queries. They do however exist as “tartin”
(instead of “tartan”) or “nativityscenes” (for “nativity scenes”). The presence
of proper nouns may also generate this problem (e.g., “Solzhenitsyn”). A related
problem is the fact that spelling may vary across countries (e.g. “color” vs.
“colour”) or that several variants are acceptable (“fetus” and “foetus”). In all
these cases, search systems are often unable to retrieve any pertinent items in the
top of their ranked list or may ignore numerous pertinent items written using an
alternate spelling. In a commercial environment, spell checking and suggestion
is an essential feature for all man-machine interfaces.

Category 4: Synonymy and language use. The topic “Les risques du téléphone
portable” (“Risks with mobile phones”) illustrates how vocabulary can change
across countries. For this query, the relevant documents used synonyms that are
country dependent. In Switzerland, a mobile phone is usually called “natel”, in
Belgium “téléphone mobile”, “cellulaire” in Quebec, and “portable” in France
(the same problem occurs in the Chinese language with two different expressions
used, one in Taiwan and another in mainland China). All IR systems included
in their top ten results certain documents covering the use of mobile phones
in the mountains (and the risk of being in the mountains). Other retrieved
articles simply presented certain aspects related to mobile phones (new joint
ventures, new products, etc.). Other words or English expressions present similar
difficulties (e.g, “film” and “movie” in the query “Films set in Scotland”, or
“car” and “automobile” in the query “European car industry”). In such cases,
the query may include one form, and relevant documents another.

Category 5: Missing specificity. A fifth failure explanation is found for ex-
ample in topic “Trade unions in Europe”. The specific or desired meaning is
not clearly specified or is too broad. This same difficulty occurs with the topics
“Edouard Balladur”, “Peace-keeping forces in Bosnia”, “World soccer champi-
onship” or “Computer security”. With all these queries, the IR system listed
top ranked articles having not one but at least two or three terms in common
with the query. Placed at the top of the output list were short articles having all
query terms in their title (or 3 out of 4 terms for topic “Peace-keeping”). The
unspecified main purpose of the topic was clearly missing; for example, for the
topic “World soccer championship” the required information was most probably
the “result of the final”.

Category 6: Discrimination ability. For example, in the topic “Chinese cur-
rency devaluation” the pertinent set must contain information about the effects
of devaluation. In this case, the three relevant articles had only one or two terms
in common with the query. The terms “Chinese” (also appearing in 1,090 other
articles) and “currency” (occurring in 2,475 documents) appeared in the first
relevant document. In the second, only the term “Chinese” appears to be in
common with the topic’s title, and in the last only the term “devaluation” (oc-
curring also in other 552 articles). The IR system therefore found it very difficult
to discriminate between relevant and non-relevant documents, due to the fact
that a lot of the latter had at least two terms in common with the query. The
same difficulty arose with the topic “Wonders of ancient world” for which rele-
vant documents describe one wonder without using explicitly the term “wonder”,
“ancient” or “world”.

5 Natural Language Processing and Information
Retrieval

The basic building blocks of most natural languages are words. However, the
term “words” is ambiguous and we must be more precise in order to distinguish
between the surface form (e.g., “horses”) corresponding to tokens, and word type
or lemma (entry in the dictionary, such as “horse” in our case). Moreover, the
specific meaning of the term “horse” is not always an animal with four legs as
in the term “horse-fly” or in expressions as “Trojan horse”, “light horse”, “to
work like a horse”, “from the horse’s mouth”, or “horse about”.

In the design of effective IR systems, the morphological [66] component plays
an important role. For most search systems, and also for most human languages,
the words form the basic units to build the phrases, expressions and sentences
used to transmit a precise meaning. An appropriate processing of these entities is
therefore important for enhancing retrieval performance by promoting pertinent
word-sense matching. In addition, the way words combine and the meanings
words convey are crucial for understanding the content of a document and for
representing this content accurately.

In this section, we will review some of the major relations between IR and
NLP. We will do so by examining the traditional layers of Natural Language
Text Processing (morphology, syntax, semantics) and see the role they play or
can play in IR. Lastly, we will briefly mention various applications which have
direct connections with both IR and NLP.

5.1 Morphology

As mentioned previously, the goal of the morphological step in IR is to conflate
morphological variants into the same form. In some cases, only an inflectional
analysis is performed, so as to get to a lemmatized version of the original text.
This step can be followed by a derivational analysis, usually relying on suffixes
only, as prefixes tend to radically modify the meaning of a word (indexing the

two forms “decompose” and “recompose” as the same token does not make sense
from an IR point of view).

In most cases however, these two steps (inflectional and derivational analysis)
are not separated, but performed in conjunction. Even though inflectional ana-
lyzers, based on electronic lexicons, exist in many languages, this is not the case
for derivational analyzers, and the IR community has relied on tools which aim
at identifying word stems without necessarily relying on precise morphological
processes. Such tools are called stemmers (as mentioned in Section 2.2) and are
described below. One can find in [67] a comparison of the use of a stemmer and
a derivational lexicon for conflating words in the framework of IR.

When defining a stemming algorithm, a first approach will only remove in-
flectional suffixes. For English, such a procedure conflates singular and plural
word forms (“car” and “cars”) as well as removing the past participle ending
“-ed” and the gerund or present participle ending “-ing” (“eating” and “eat”).

Stemming schemes that remove only morphological inflections are termed
as “light” suffix-stripping algorithms, while more sophisticated approaches have
also been proposed to remove derivational suffixes (e.g., “-ment”, “-ably”, “-
ship” in the English language). For example, Lovins’s stemmer [68] is based on a
list of over 260 suffixes, while Porter’s algorithm [69] looks for about 60 suffixes.
In such cases suffix removal is also controlled through the adjunct of quantita-
tive restrictions (e.g., “-ing” would be removed if the resulting stem had more
than three letters as in “running”, but not in “king”) or qualitative restrictions
(e.g., “-ize” would be removed if the resulting stem did not end with “e” as in
“seize”). Moreover, certain ad hoc spelling correction rules are used to improve
the conflation accuracy (e.g., “running” gives “run” and not “runn”), due to cer-
tain irregular grammar rules usually applied to facilitate easier pronunciation.
Of course, one should not stem proper nouns such as “Collins” or “Hawking”,
at least when the system can recognize them.

Stemming schemes are usually designed to work with general text in any
given language. Certain stemming procedures may also be especially designed
for a specific domain (e.g., in medicine) or a given document collection, such as
that of Xu & Croft [70] who suggest developing stemming procedures using a
corpus-based approach which more closely reflects the language used (including
the word frequencies and other co-occurrence statistics), instead of using a set
of morphological rules in which the frequency of each rule (and therefore its
underlying importance) is not precisely known.

As we mentioned above, stemming procedures ignore word meanings, and
thus tend to make errors. Such errors may be due to over-stemming (e.g., “gen-
eral” becomes “gener”, and “organization” is reduced to “organ”) or under-
stemming (e.g., with Porter’s stemmer, the words “create” and “creation” do
not conflate to the same root). Not surprisingly, the use of an on-line dictionary
has been suggested in order to produce better conflations [71], [72].

The development of a morphological analyzer (be it a stemmer or a more
refined tool) depends largely on the language considered. The English inflectional
morphology is relatively simple. The plural form is usually denoted by adding

an ’-s’ (with some exceptions like “foot” and “feet”). The feminine form is built
using some suffixes (e.g., “actor” and “actress”) and we do not have to mark
the agreement between noun and adjective (“tall man”, “tall women”). To build
new words (derivational construction), we may add prefixes (“pay”, “prepay”)
and / or suffixes (“bank”, “banking”, “banker”, “bankless”, “bankrupt”).

For other European languages, the morphological construction can be rela-
tively similar. In the French language, the plural is denoted as in English (“face”,
“faces”), while the feminine form can simply be denoted by a final ’-e’ (“em-
ployé”, “employée”) or by a suffix (“acteur”, “actrice”). As in English, various
suffixes are available to form new words.

For some other languages, the inflectional morphological possibilities are
more numerous. In the German language for example, we find four grammatical
case endings (e.g., the genitive case by employing an ’-s’ or ’-es’ as in “Staates”
(of the state), “Mannes” (of the man)). The plural form is denoted using a va-
riety of endings such as ’-en’ (e.g., “Motor” and “Motoren” (engine)), ’-er’, ’-e’
(e.g., “Jahr” and “Jahre” (year)) or ’-n’ (e.g., “Name” and “Namen” (name)).
Plural forms may also use diacritic characters (e.g., “Apfel” (apple) becomes
“Äpfel“) or in conjunction with a suffix (e.g., “Haus” and “Häuser” (house)).
Also frequently used are the suffixes ’-en’ or ’-n’ to indicate grammatical cases
or for adjectives (e.g., “... einen guten Mann” (a good man) in the accusative
singular form)

The Hungarian language makes use of a greater number of grammatical cases
(23 in total, although some are limited to a set of nouns or appear only in fixed
and predefined forms) than does German. Each case has its own unambigu-
ous suffix however; e.g. the noun “house” (“ház” in nominative) may appear as
“házat” (accusative case), “házakat” (accusative plural case), “házamat” (“...
my house”) or “házamait” (“... my houses”). In this language the general con-
struction used for nouns is as follows: ’stem’ ’possessive marker’ ’case’ as in ’ház’
+ ’am’ + ’at’ (in which the letter ’a’ is introduced to facilitate better pronun-
ciation because “házmt” could be difficult to pronounce). Similar agglutinative
aspects may be found in other languages such as Turkish, where the noun “ev”
(house) may take on the form “evler” (the houses), “evlerim” (my houses) and
“evlerimde” (in my houses). For these two languages at least, the automatic
removing of suffixes does not present a real and complex task [73], [74].

For the Finnish language however, it seems that the design and development
of an effective stemming procedure requires a more complex morphological anal-
ysis, usually based on a dictionary. The real stemming problem with the Finnish
language is that stems are often modified when suffixes are added. For exam-
ple, “matto” (carpet in the nominative singular form) becomes “maton” (in the
genitive singular form, with ’-n’ as suffix) or “mattoja” (in the partitive plural
form, with ’-a’ as suffix). Once we remove the corresponding suffixes, we are left
with three distinct stems, namely “matto”, “mato” and “matoj”. Of course ir-
regularities such as these also occur in other languages, usually helping to make
the spoken language flow better, such as “submit” and “submission” in English.

In Finnish however, these irregularities are more common, and thus they render
the conflation of various word forms into the same stem more problematic.

Compound constructions (concatenation of two or more lexemes to form
another word, e.g., handgun, worldwide) also appear in other European lan-
guages. In Italian, the plural form may alter letters within a word, for example
“capoufficio” (chief secretary) becomes “capiufficio” in its plural form. Yet, in
other constructions, the stem “capo” is left unchanged (e.g. “capogiro” gives
“capogiri” (dizziness) in its plural form).

In German and in most Germanic languages, compound words are widely
used and are a source of additional difficulties. For example, a life insurance com-
pany employee would be “Lebensversicherungsgesellschaftsangestellter” (“Leben”
+ ’s’ + “Versicherung” + ’s’ + “Gesellschaft” + ’s’ + “Angestellter” for life +
insurance + company + employee). The augment (i.e. the letter “s” in our previ-
ous example) is not always present (e.g., “Bankangestelltenlohn” built as “Bank”
+ “Angestellten” + “Lohn” (salary)). Since compound construction is so widely
used and can be written in different forms, it is almost impossible to build a
German dictionary providing complete coverage of the language, and an auto-
matic decompounding procedure is required in order to obtain an effective IR
system in the German language [7], [75].

Several tools are available for identifying morphological variants in different
languages. They are either based on on-line dictionaries and standard morpholog-
ical analysis (see for example http://www.xrce.xerox.com) or on stemming pro-
cedures dedicated to different languages (e.g., http://www.unine.ch/info/clef/
or http://snowball.tartarus.org/).

5.2 Orthographic Variation and Spelling Errors

The standardization of spelling was mainly the fruit of the 19th century. Working
with documents written previously, one encounters different spellings for a given
term or proper name (e.g. Shakespeare’s name appears as “Shakper”, “Shakspe”,
“Shaksper”, “Shakspere” or “Shakspeare” in his own works).

The spelling problem can be domain-specific. In the biomedical literature,
it is known that several orthographic variants [76] can be found to represent a
given name, generally introduced for a variety of reasons. Firstly, there are of
course typographic errors and misspellings (performance errors as in “retreival”
and “retrieval” or competence errors as in “ecstasy”, “extasy”, or “ecstacy”).
Secondly, punctuation and tokenization may produce variants, mainly due to the
lack of a naming convention (e.g. “Nurr77”, “Nurr-77” or “Nurr 77”). Thirdly,
regional variations also introduce variants (e.g. the difference between British
and American English for “colour” and “color” or “grey” or “gray”). Fourthly,
the transliteration of foreign names produces some differences (e.g., “Crohn”
and “Krohn” or “Creutzfeld-Jakob” and “Creutzfeldt-Jacob”).

The standard strategy to reduce the negative impact caused by spelling errors
or orthographic variation is to relate similar (however not identical) forms in
one way or another. Two main strategies can be used here: (a) compute an
edit-distance between different forms (e.g. present in a dynamic dictionary) and

normalize the variants with a particular form, (b) adopt an n-gram indexing
strategy (n is typically set to 5 across a range of studies). The n-gram method has
the advantage of being fast (filters have to be used to avoid comparing unrelated
forms in the first approach). Moreover, this method does not require any prior
linguistic knowledge and is robust to typographical errors, both in the submitted
queries and documents retrieved [8]. For instance, the term “alzheimer” would be
decomposed, with an overlapping 5-gram approach, as: “alzhe”, “lzhei”, “zheim”,
“heime” and “eimer”.

5.3 Syntax

Most IR systems index documents on the basis of the simple words they contain.
However, there have been many attempts to make use of more complex index
terms, comprising several terms, in order to get a more precise description of
the content of documents. One of the first attempts, referred to as adjacent
pairs (e.g. described in [77]), considered complex terms made up of two adjacent
content words. Even though simple, this approach is appropriate e.g. for the
English language, as it allows one to capture terminological elements consisting
of Adjective Noun or Noun Noun sequences (and their combination). For other
languages, such as the ones based on a composition of Romance type, i.e. in
which compounds are formed through prepositions, simple regular expressions
can be used over part-of-speech tags to identify terminological elements and add
them to the index terms.

More generally, a syntactic analyzer can be used to identify long-distance
dependencies between words, so as to improve the indexing of documents. The
first works in this direction were based on “traditional” grammars, in which
a complete analysis/representation of a sentence or a phrase was searched for.
Fagan [78] investigates for example, the impact of a syntactic parser for noun
phrases on IR performance. However, the lack of large-coverage grammars, and
the difficulty of obtaining unambiguous and correct parses for many sentences
effectively put a stop to this type of research at that time.

Advances in shallow (or light) parsing in the mid-nineties led to a resur-
gence of this type of work, as such parsers were partly defined to be general
and robust. Hull [79] proposes, for example, to use a shallow parser to identify
relations within and between complex noun and verb phrases. Pairs of terms
thus extracted (as Subject Verb pairs or Adjective Noun pairs) are then added to
simple words to provide a richer index of documents. Experiments conducted on
the vector-space model showed a slight improvement on the TREC-5 collection.
Similar experiments conducted on French can be found in [80]. More recently,
Gao et al. [81] proposed an extension of the language modeling approach to IR
that can take into account the syntactic dependencies provided by a probabilistic
parser deployed on the queried collection.

One of the major problems with the use of syntactic information is that the
improvements in IR performance have been limited, and highly dependent on
the queried collection. Complex terms acquired through syntactic analysis can
be seen as additional information that can help refine query results and thus

lead to an increase in the precision at the top of the list of retrieved documents.
However, in many cases, having constituents of a compound taken independently
of each other or as a whole does not change the retrieval results substantially.
For example, a document indexed with the two terms information and retrieval
is very likely to deal with information retrieval, so that the addition of this last
compound does not really add any new information: all documents containing
both information and retrieval will almost certainly also be indexed by informa-
tion retrieval after a syntactic analysis phase, and the ranking will not change.

In essence, syntactic analysis provides additional indexing dimensions, but
does not address the problem of the vocabulary mismatch between queries and
documents. A direct way to address this problem is to resort to a semantic
analysis in order to replace index terms with concepts and perform the matching
between queries and documents at a more abstract level.

5.4 Semantics

In the absence of robust systems providing a complete semantic analysis of sen-
tences, most work in IR and semantics have focused on lexical semantics, and
the possibility to replace standard index terms with concepts or word senses.
While some studies have shown that word sense disambiguation procedures can
be beneficial in some cases [82, 83], the majority have tried to rely on existing
semantic resources in order to index both documents and queries at the concept
level. Such works have used existing semantic resources, either generic ones, as
Wordnet [35], or specialized ones for specific collections (e.g. UMLS - see below).

The usefulness of concept indexing in specific domains has been shown in
several studies, mainly in the medical domain for which large-coverage thesauri
and semantic networks exist. For example, the best performing systems on text
in the ImageCLEFmed task of CLEF [84, 36] use conceptual indexing methods
based on vector-space models or language models. In the TREC genomics track,
Zhou et al. [85] used the MeSH (Medical Subject Headings) thesaurus and Entrez
databases to select terms from medical publications. Terms in documents and
queries were expanded with their variants found in these resources to achieve
better indexing. They found that this strategy led to a significant improvement
over standard indexing methods.

Other researchers have tried to go beyond the use of concepts by exploit-
ing relations between them. Vintar et al. [86] evaluates the usefulness of UMLS
concepts and semantic relations in medical IR. They first extract concepts and
relations from documents and queries. To select relations in a sentence, they rely
on two assumptions: (1) interesting relations occur between interesting concepts;
(2) relations are expressed by typical lexical markers such as verbs. However,
their experiments with a vector-space model show that using both concepts and
relations lower the performance obtained with concepts alone. A similar line of
development has been taken on the basis of the language modeling approach
to IR. The language modeling approach to IR was first proposed in [87], and
extended in [32] (see Section 3.3). Even though smoothed unigram models have
yielded good performance in IR, several studies have investigated the use of more

advanced representations. Studies like (e.g., [88] or [89]) proposed the combina-
tion of unigram models with bigram models. Others studies, e.g. [90] or [81],
have extended the model to deal with syntactic dependencies. More recently,
Maisonnasse et al. [91, 36] have proposed a generalization of these works that
can deal with semantic networks as well. In fact, any directed acyclic graph can
be used to represent documents and queries.

This latter approach was applied to the medical domain, where documents are
indexed at the concept level with UMLS, and where relations between concepts
are added by checking whether two concepts co-occurring in the same sentence
are present in the Semantic Network associated with UMLS. The results show
that concept indexing yields a significant improvement over standard indexing
in IR performance. The use of semantic relations further improves the precision
of the system, namely at the top of the list of retrieved documents, even though
slightly.

What these results show is that, provided one has at her disposal semantic
resources adapted to the collection (as is UMLS for the medical domain), then
significant gains can be achieved with semantic indexing.

5.5 Related Applications

There are a number of applications which directly borrow models and methods
from both IR and NLP. A detailed presentation of these applications is beyond
the scope of this chapter, and we will just mention what we believe are the more
important here.

1. Text categorization is a good example of an application where research has
been conducted in the two communities, IR and NLP (to which we should
add the Machine Learning and Data Mining ones). Text categorization aims
at automatically assigning new documents to existing categories. Most ap-
proaches are currently based on machine learning, where already classified
documents are used to automatically learn a decision function. The way doc-
uments are represented directly derives from the vector-space model (some-
times with additional processing steps, such as named entity and term ex-
traction) and the different weighting schemes of Section 3.2.

2. A second application where methods from both IR and NLP are used is
document summarization, which aims at providing a summary, in a few sen-
tences, of a document or a document collection. Current approaches focus on
extracting key sentences (sometimes parts of sentences) from the document
or document collection and on displaying them in an appropriate way.

3. A third application is BioNLP, which focuses on the processing of text doc-
uments in the biological domain. As for the medical domain, there exist
several knowledge bases in the biological domain which can be used to get a
more accurate representation of documents. However, the kind of informa-
tion searched for by biologists is complex, and one needs to deploy a whole
range of technologies to be able to match the needs of biologists.
For example, when trying to find articles relevant to an interaction between
two proteins (BRCA1 and p53 on PubMed), simply searching for the two

terms results in 733 abstracts of which a high proportion do not describe
any relationship between the proteins. More precise queries, which include
verbs describing interactions, such as ’interact’ and ’regulate’, are often used
to significantly reduce the search space. Unfortunately the information loss
is unknown and the retrieved abstracts still document other relationships,
for example, between E6 and p539. In this case, a tight coupling between
the indexing engine, the search engine, and the natural language processing
engine is needed. Interested readers are referred to the BioNLP chapter of
the current book for a detailed presentation of the models and methods
deployed in this domain.

4. The last application we would like to mention is Question-Answering, which
aims at providing precise answers (as opposed to whole documents or para-
graphs as is traditionally the case in IR) to questions. Most Question-Answering
systems rely on a tightly-coupled combination of IR and NLP techniques,
leading to systems which integrate many of the existing technologies of these
two domains. Here again, we refer interested readers to the Question Answer-
ing chapter of the current book for a detailed presentation of such systems.

6 Conclusion

As described in this chapter, the IR field is an extensive applied NLP domain
that is able to cope successfully with search and retrieval in the huge volume
of information stored on the Web — users are, on average, able to find what
they are looking for. This success may however hide other challenging problems.
Commercial search engines want to know more about the users and their needs
to have a better knowledge of the real question behind the submitted query
(what the user is really looking for). For example, a user living in Canberra who
submits the query “movie tonight” is not likely to be interested in films displayed
in New York City or in Washington D.C. Information about user preferences,
e.g. for music, can also be exploited to re-rank retrieved items, e.g. by moving
musical comedies to the top of the list. This information can play an important
role in commercial advertising. From this perspective, the search system will try
to complement its answer page with advertising banners that are appropriate to
both the user query and preferences.

Proposing new IR models, suggesting new implementations or adding new
functionalities to existing IR models is an important and active domain in IR.
There are many collections which are different from the Web. To a certain extent,
commercial Web search engines provide only access to the surface Web: the deep
Web is largely ignored (private collections, court decisions, patents, etc.). Within
a given Web site, or a site inside an enterprise, the search function must provide
an effective access to the information required (e.g., in order to allow customers
to find what they want or have easy access to past e-mails).

Campaigns involving design, implementation and evaluation of IR systems
for different languages, including both European (CLEF), and popular Asian
9 We thank D. Hawking and T. E. McIntosh who provided us with this example.

(NTCIR) languages have already been running for a few years. Recently, the
FIRE evaluation forum has been launched to study IR specialties related to
the languages belonging to the Indian sub-continent. Some of these languages
seem to be more difficult from an IR perspective, having, for example, a less
strict spelling convention. The automatic segmentation of Chinese or Japanese
sentences, the automatic decompounding of German words, or the automatic
query translation represent examples of NLP problems encountered by modern
IR systems.

Finally the relationship between the IR and NLP domains tends to be strong
on one hand, and multifaceted on the other. As presented in this chapter, mor-
phology, spelling error correction, syntax, and semantics are important aspects
for general or domain-specific IR systems. Moreover, IR can also be one of the
steps in a complex processing chain of textual corpora. In this vein, we can
mention the design and implementation of Question/Answering systems or the
elaboration of opinionated IR within which the retrieved items are not related
to a given topic but to personal opinions about the target. In such cases, the
retrieval of textual items must be then post-processed by complex NLP system
to extract short and precise answers to a question, or to define whether or not
the retrieved item contains an opinion on the subject. As indicated in this chap-
ter, the use of machine learning techniques is currently an active research area
in developing IR systems with a significant NLP component.

Acknowledgments. The authors would like to thank the two reviewers of this
chapter, namely Ellen Voorhees (NIST, Washington, D.C.) and David Hawking
(Funnelback, Canberra), for their helpful suggestions and remarks.

References

1. Manning, C. D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (UK), 2008.

2. Wolfram, D., Spink, A., Jansen, B.J., Saracevic, T.: Vox populi: The public searching
of the web. Journal of the American Society for Information Science and Technology,
52 (2001) 1073–1074.

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley,
Reading (MA), 1999.

4. Gal, A., Lapalme, G., Saint-Dizier, P., Somers, H. : Prolog for Natural Language
Processing. Addsion-Wesley, Reading (MA), 1991.

5. Furnas, G., Landauer, T.K., Gomez, L.M., Dumais, S.T. : The vocabulary problem
in human-system communication. Communications of the ACM, 30 (1987) 964–971.

6. Hawking, D., Robertson, S.: On collection size and retreival effectiveness. IR Journal,
6 (2003) 99–150.

7. Savoy, J.: Combining multiple strategies for effective monolingual and cross-lingual
retrieval. IR Journal, 7 (2004) 121–148.

8. McNamee, P., Mayfield, J.: Character n-gram tokenization for European language
text retrieval. IR Journal, 7 (2004) 73–97.

9. Savoy, J.: Comparative study of monolingual and multilingual search models for
use with Asian languages. ACM - Transactions on Asian Languages Information
Processing, 4 (2005) 163–189.

10. Voorhees, E.M., Garofolo, J.S.: Retrieving noisy text. In E.M. Voorhees, D.K.
Harman (Eds): TREC. Experiment and Evaluation in Information Retrieval. The
MIT Press, Cambridge (MA) (2005) 183–198.

11. Anderson, J.D., Pérez-Carballo, J.: The nature of indexing: how humans and ma-
chines analyze messages and texts for retrieval. Information Processing & Manage-
ment, 37 (2001) 231–254.

12. Zunde, P., Dexter, M.E.: Indexing consistency and quality. American Documenta-
tion, 20 (1969) 259–267.

13. Cleverdon, C.W.: Optimizing convenient on-line access to bibliographic databases.
Information Service & Use, 4 (1984) 37–47.

14. Cooper, W.S.: Is interindexer consistency a hobgoblin? American Documentation,
20 (1969) 268–278.

15. Salton, G. (Ed): The SMART Retrieval System. Experiments in Automatic Doc-
ument Processing. Prentice-Hall, Englewood Cliffs (NJ), 1971.

16. Fox, C.: A stop list for general text. ACM - SIGIR Forum, 24 (1989) 19–21.
17. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval.

Information Processing & Management, 24 (1988) 513–523.
18. Sparck Jones, K.: A statistical interpretation of term specificity and its application

in retrieval. Journal of Documentation, 28 (1972) 11–21.
19. Zobel, J., Moffat, A.: Inverted file for text search engines. ACM Computing Sur-

veys, 38 (2006) 1–56.
20. Savoy, J.: Ranking schemes in hybrid Boolean systems: A new approach. Journal

of the American Society for Information Science, 48 (1997) 235–253.
21. Buckley, C., Singhal, A., Mitra, M., Salton, G.: New retrieval approaches using

SMART. In Proceedings TREC-4, NIST publication #500-236, Gaithersburg (MD)
(1996) 25–48.

22. Wong, S.K.M., Ziarko, W., Raghavan, V.V.: On modelling of information retrieval
concepts in vector spaces. ACM - Transactions on Database Systems, 12 (1987)
723–730.

23. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., Harshman, R.: In-
dexing by latent semantic analysis. Journal of the American Society for Information
Science, 41 (1990) 391–407.

24. Qiu, Y., Frei, H.P.: Concept based query expansion. In Proceedings ACM-
SIGIR’93, Pittsburgh (PA) (1993) 160–169.

25. Robertson, S.E.: The probability ranking principle in IR. Journal of Documenta-
tion, 38 (1977) 294–304.

26. van Rijsbergen, C.J.: Information Retrieval. 2nd ed., Butterworths, London (UK),
1979.

27. Harter, S.P.: A probabilistic approach to automatic keyword indexing. Journal of
the American Society for Information Science, 26 (1975) 197–206.

28. Robertson, S.E., Sparck Jones, K.: Relevance weighting of search terms. Journal
of the American Society for Information Science, 27 (1976) 129–146.

29. Robertson, S.E., Walker, S., Beaulieu, M.: Experimentation as a way of life: Okapi
at TREC. Information Processing & Management, 36 (2002) 95–108.

30. Amati, G., van Rijsbergen, C.J.: Probabilistic models of information retrieval based
on measuring the divergence from randomness. ACM - Transactions on Information
Systems, 20 (2002) 357–389.

31. Clinchant, S., Gaussier, E.: The BNB distribution for text modeling. In Proceedings
of ECIR’2008, Glasgow (UK) (2008) 150–161.

32. Hiemstra, D.: Using Language Models for Information Retrieval. PhD. Thesis
(2000).

33. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to information retrieval. ACM - Transactions on Information Systems, 22 (2004)
179–214.

34. Zhai, C., Lafferty, J.: A risk minimization framework for information retrieval.
Information Processing & Management, 42 (2006) 31–55.

35. Voorhees, E.M.: Using WordNetTMto disambiguate word senses for text retrieval.
In Proceedings ACM-SIGIR’93, Pittsburgh (PA) (1993) 171–180.

36. Maisonnasse, L., Gaussier, E., Chevallet, J.P.: Multiplying concept sources for
graph modeling. In C. Peters, V. Jijkoun, T. Mandl, H. Müller, D.W. Oard, A.
Peñas, V. Petras, D. Santos, (Eds.): Advances in Multilingual and Multimodal In-
formation Retrieval. LNCS #5152. Springer-Verlag, Berlin (2008) 585–592.

37. Efthimiadis, E.N.: Query expansion. Annual Review of Information Science and
Technology, 31 (1996) 121–187.

38. Rocchio, J.J.Jr.: Relevance feedback in information retrieval. In G. Salton (Ed.):
The SMART Retrieval System. Prentice-Hall Inc., Englewood Cliffs (NJ) (1971)
313–323.

39. Peat, H.J., Willett, P.: The limitations of term co-occurrence data for query expan-
sion in document retrieval systems. Journal of the American Society for Information
Science, 42 (1991) 378–383.

40. Kwok K.L., Grunfield, L, Sun, H.L., Deng, P.: TREC2004 robust track experiments
using PIRCS. In Proceedings TREC 2004, NIST publication #500-261, Gaithers-
burg (MD) (2005).

41. Turtle, H., Croft, W.B.: Evaluation of an inference network-based retrieval model.
ACM - Transactions on Information Systems, 9 (1991) 187–222.

42. Vogt, C.C., Cottrell, G.W.: Fusion via a linear combination of scores. IR Journal,
1 (1999) 151–173.

43. Kraaij, W., Westerveld, T., Hiemstra, D.: The importance of prior probabilities for
entry page search. In Proceedings ACM-SIGIR’2002, Tempere (2002) 27–34.

44. Garfield, E.: Citation Indexing: Its Theory and Application in Science, Technology
and Humanities. The ISI Press, Philadelphia (PA), 1983.

45. Kessler, M.M.: Bibliographic coupling between scientific papers. American Docu-
mentation, 14 (1963) 10–25.

46. Small, H.: Co-Citation in the scientific literature: A new measure of the relationship
between two documents. Journal of the American Society for Information Science,
24 (1973) 265–269.

47. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In Proceedings of the WWW’7, Amsterdam (1998) 107–117.

48. Kleinberg, J.: Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46 (1999) 604–632.

49. Borodin, A., Roberts, G.O., Rosenthal, J.S., Tsaparas, P.: Link analysis ranking:
Algorithms, theory, and experiments. ACM - Transactions on Internet Technology,
5 (2005) 231–297.

50. Hawking, D.: Overview of the TREC-9 web track. In Proceedings of TREC-9,
NIST Publication #500-249, Gaithersburg (MD) (2001) 87–102.

51. Nallapati, R.: Discriminative models for information retrieval. In Proceedings
ACM-SIGIR’2004, Sheffield (UK) (2004) 64–71.

52. Cao, Y., Xu, J., Liu, T;-Y., Li, H., Huang, Y., Hon, H.-W.: Adapting ranking SVM
to document retrieval. In Proceedings of ACM-SIGIR’2006, Seattle (WA) (2006)
186–193.

53. Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., Li, H. Learning to rank: from pariwise
approach to listwise approach. In Proceedings of ICML’2007, Corvalis (OR) (2007)
129–136.

54. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Evaluating the accu-
racy of implicit feedback from clicks and query reformulations in web search. ACM
- Transactions on Information Systems, 25 (2007) 1–26.

55. Scholler, F., Shokouni, M., Billerbeck, B., Turpin, A.: Using clicks as implicit judge-
ments: Expectations versus observations. In Proceedings of ECIR’2008, Glasgow
(UK) (2008) 28–39.

56. Buckley, C., Voorhees, E.M.: Retrieval system evaluation. In E.M. Voorhees, D.K.
Harman (Eds): TREC. Experiment and Evaluation in Information Retrieval. The
MIT Press, Cambridge (MA), (2005) 53–75.

57. Voorhees, E.M., Harman, D.K. (Eds): TREC. Experiment and Evaluation in In-
formation Retrieval. The MIT Press, Cambridge (MA), 2005.

58. Peters, C., Jijkoun, V., Mandl, T., Müller, H., Oard, D.W., Peñas, A., Petras, V.,
Santos, D. (Eds.): Advances in Multilingual and Multimodal Information Retrieval.
LNCS #5152. Springer-Verlag, Berlin, 2008.

59. Dumais, S.T., Belkin, N.J.: The TREC interactive tracks: Putting the user into
search. In E.M. Voorhees, D.K. Harman (Eds): TREC. Experiment and Evaluation
in Information Retrieval. The MIT Press, Cambridge (MA) (2005) 123–152.

60. Gonzalo, J., Oard, D.W.: The CLEF 2002 interactive track. In C. Peters, M.
Braschler, J. Gonzalo, M. Kluck, (Eds.): Advances in Cross-Language Information
Retrieval. LNCS #2785. Springer-Verlag, Berlin (2003) 372–382.

61. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
Transaction on Information Systems, 20 (2002) 422–446.

62. Conover, W.J.: Practical Nonparametric Statistics. 3rd edn. John Wiley & Sons,
New York (NY) 1999.

63. Savoy, J.: Statistical inference in retrieval effectiveness evaluation. Information
Processing & Management, 33 (1997) 495–512.

64. Voorhees, E.M.: The TREC 2005 robust track. ACM SIGIR Forum, 40 (2006)
41–48.

65. Buckley, C.: Why current IR engines fail. In Proceedings ACM-SIGIR’2004,
Sheffield (UK) (2004) 584–585.

66. Sproat, R.: Morphology and Computation. The MIT Press, Cambridge (MA), 1992.
67. Hull, D.: Stemming algorithms - A case study for detailed evaluation. Journal of

the American Society for Information Science, 47 (1996) 70–84.
68. Lovins, J.B.: Development of a stemming algorithm. Mechanical Translation and

Computational Linguistics, 11 (1968) 22–31.
69. Porter, M.F.: An algorithm for suffix stripping. Program, 14 (1980) 130–137.
70. Xu, J., Croft, B.W.: Corpus-based stemming using cooccurrence of word variants.

ACM - Transactions on Information Systems, 16 (1998) 61–81.
71. Krovetz, R., Croft, B.W.: Lexical ambiguity and information retrieval. ACM -

Transactions on Information Systems, 10 (1992) 115–141.
72. Savoy, J.: Stemming of French words based on grammatical category. Journal of

the American Society for Information Science, 44 (1993) 1–9.
73. Savoy, J.: Searching strategies for the Hungarian language. Information Processing

& Management, 44 (2008) 310–324.
74. Can, F., Kocberber, S., Balcik, E., Kaynak, C., Ocalan, H. C.: Information retrieval

on Turkish texts. Journal of the American Society for Information Science and
Technology, 59 (2008) 407–421.

75. Braschler, M., Ripplinger, B.: How effective is stemming and decompounding for
German text retrieval? IR Journal, 7 (2004) 291–316.

76. Yu, H., Agichtein, E.: Extracting synonymous gene and protein terms from biolog-
ical literature. Bioinformatics, 19 (2003) i340–i349.

77. Salton, G., Yang, C.S., Yu, C.T.: A theory of term importance in automatic text
analysis. Journal of the American Society for Information Science, 26 (1975) 33–44.

78. Fagan, J.L.: The effectiveness of a nonsyntactic approach to automatic phrase
indexing for document retrieval. Journal of the American Society for Information
Science, 40 (1989) 115–132.

79. Hull, D.A., Grefenstette, G., Schültze, B.M., Gaussier, E., Schütze, H., Pedersen,
J.O.: Xerox TREC-5 site report: Routing, filtering, NLP, and Spanish track. In
Proceedings TREC-5, NIST publication #500-238, Gaithersburg (MD) (1997) 167–
180.

80. Gaussier, E., Grefenstette, G., Hull, D., Roux, C.: Recherche d’information en
français et traitement automatique des langues. Traitement Automatique des
Langues (TAL), 41 (2000) 473–493.

81. Gao, J., Nie, J.-Y., Wu, G., Cao, G.: Dependence language model for information
retrieval. In Proceedings ACM-SIGIR’2004, Sheffield (UK) (2004) 170–177.

82. Sanderson, M.: Word sense disambiguation and information retrieval. In Proceed-
ings ACM-SIGIR’94, Dublin (1994) 142–151.

83. Schütze, H., Pedersen, J.O.: Information retrieval based on word senses. In Pro-
ceedings of the 4th Annual Symposium on Document Analysis and Information
Retrieval, Las Vegas (NV) (1995) 161–175.

84. Lacoste, C., Chevallet, J.P., Lim, J.-H., Wei, X., Raccoceanu, D., Le, T.H.D.,
Teodorescu, R., Vuillenemot, N.: Inter-media concept-based medical image indexing
and retrieval with UMLS at IPAL. In C. Peters, P. Clough, F.C. Gey, J. Karlgren, B.
Magnini, D.W. Oard, M. de Rijke, M. Stempfhuber (Eds): Evaluation of Multilin-
gual and Multi-modal Information Retrieval. LNCS #4730. Springer-Verlag, Berlin
(2007) 694–701.

85. Zhou, W., Yu, C., Smalheiser, N., Torvik, V., Hong, J.: Knowledge-intensive con-
ceptual retrieval and passage extraction of biomedical literature. In Proceedings
ACM-SIGIR’2007, Amsterdam (2007) 655–662.

86. Vintar, S., Buitelaar, P., Volk, M.: Semantic relations in concept-based cross-
language medical information retrieval. In Proceedings of the ECML/PKDD Work-
shop on Adaptive Text Extraction and Mining (ATEM), Catvat–Dubrovnik (2003).

87. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval.
In Proceedings ACM-SIGIR’98, Melbourne (1998) 275–281.

88. Srikanth, M., Srikanth, R.: Biterm language models for document retrieval. In
Proceedings ACM-SIGIR’2002, Tempere (2002) 425–426.

89. Song, F., Croft, W.B.: A general language model for information retrieval. In Pro-
ceedings ACM-CIKM’99, Kensas City (MI) (1999) 316–321.

90. Lee, C., Lee, G.G., Jang, M.G.: Dependency structure applied to language model-
ing for information retrieval. ETRI Journal, 28 (2006) 337–346.

91. Maisonnasse, L., Gaussier, E., Chevallet, J.P.: Revisiting the dependence lan-
guage model for information retrieval. In Proceedings ACM-SIGIR’2007, Amster-
dam (2007) 695–696.

