

Example	Size	Color	Shape	Category	
1	small	red	circle	positive	
2	large	red	circle	positive	
3	small	red	triangle	negative	
4	large	blue	circle	negative	

Applications: Text Filtering

- Text Filtering
 - Classifying a stream of incoming documents (e.g., produced by a news agency for newspapers)
 - Usually single-label TC, splitting the new message into two disjoint categories {relevant, irrelevant} (e.g., e-mail into junk or ham)
 - May further classify relevant messages into various thematic categories (e.g., personalized web newspapers)
 - Text filtering may be installed at the producer end (selection based on user's profile)
 - Can be adapted from user feedback (adaptive filtering vs. routing or batch filtering)

5

7

Applications: Sentiment & Opinion

- Classifying web document (product review, customer information, social network) according to their opinionated content
- Fact

"Five years ago, there were no Internet-related information businesses."

- Negative opinion
 "Since the United States is Korea's most important trade partner, the Korean economy was also affected immediately."
- Positive opinion
 "I believe that we have found the appropriate balance," he said.

Applications: Hierarchical Categorization

- Hierarchical categorization of Web pages
 - Large number of web pages useful to generate (automatically) a portal on a given topic (or generate an electronic catalogue)
 - Each category must have between $k_1 \le x \le k_2$ items
 - Must allow the creation of new categories (or to delete obsolete ones)
 - · Can account for
 - Hypertextual nature of the document
 - Hierarchical nature of the categories (decomposing the classification into smaller classification problems)

6

8

Applications of TC

- Other applications
 - Document indexing
 - Word-Sense Disambiguation (WSD)
 - Multimedia document classification (through analysis of textual parts)
 - Author identification
 - Language identification
 - Text genre identification
 - Recommending messages / product
 - ...

Problem Definition

- Need to assign a Boolean value {0,1} to each entry of the decision matrix
- $C = \{c_1, \dots, c_{|C|}\}$ set of pre-defined categories, with |C| = m

9

11

- $D = \{d_1, \dots, d_n\}$ set of documents to be categorized
- 1 for a_{ii}: d_i belongs to c_i (or True)
- 0 for a_{ii}: d_i does not belong to c_i (or False)

	d_1	 	d_{j}	 	d_n
c_1	a_{11}	 	a_{1j}	 	a_{1n}
c_i	a_{i1}	 	a_{ij}	 	a_{in}
c_m	a_{m1}	 	a_{mj}	 	a_{mn}

Problem Definition

- Binary text classification
 - = Each d_j in D must be assign either to c_i or to its complement
 - = Build a separate system for each c_i , such that it takes in as input a d_i and outputs a Boolean value for (d_j, c_i)
 - The most general approach (multi-label into |C| binary classifier)
 Based on assumption that decision on (d_j, c_i) is independent of (d_i, c_k)
- Binary text classification is more general
 - Many important applications
 - Solving the binary means solving the multi-label case
 - Many techniques are simply special case of the single-label case (and simpler to explain)

Problem Definition

- Categories are just symbolic labels (without additional knowledge about their meaning)
- No exogenous knowledge is available (based only on the docs without their metadata (type, author, source, etc.))
- Instead of a Boolean assignment, we may assign a probability (of belonging to the corresponding category)
- Given an integer k, exactly k (or ≤ k, or ≥ k) elements of C to be assigned to each d_j in D
- Single Label, k = 1, single label (non-overlapping)
 Train a system which takes a d_i and C as input and outputs a c_i
- Multi-label, k in [0, |C|]
 - $\hfill\blacksquare$ Train a system which takes a d_i and C as input and outputs C', a subset of C

10

Steps in TC

1. Data processing

- Term extraction, dimensionally reduction (Zipf's law, 50% of the words), feature selection
- 2. Define the test & training data
- 3. Creation of a classification model using the select algorithm
- 4. Model training (training set)
- 5. Model testing & evaluation (test set)
- 6. Final model building (using both training & test set)

13

15

Rule-Based Classifier

- Using an inductive rule learning, producing rules
 IF < condition> THEN < category>
- Condition: presence (or absence) of keyword in document descriptor (forming a Boolean condition)
 Decision: category assignment
- Example
 - IF ((wheat & farm) or (wheat & community) or (bushels & export) or (wheat & tonnes) or (wheat & winter & ¬soft)) THEN <WHEAT> ELSE ¬<WHEAT>
- Based on propositional logic
- Knowledge acquisition bottleneck

Text Classifier

- Different strategies
 - Rule-based (expert system, Machine Learning)
 - Probabilistic classifier (Naïve Bayes)
 - Decision Tree classifier (see ML course)
 - Regression methods (see ML or stat course)
 - Neural Networks (see AI course)
 - Decision rule classifier
 - On-line methods
 - tf-idf method (see IR course)
 - Rocchio's method
 - Example-based classifiers (k-nearest-neighbor or k-NN)

Document Representation

- Semantic is still a distant goal
- Need to build a compact text representation (indexing) with its meaningful units (lexical semantics) Assuming that compositional semantics is true
- Usually, we represent a document d_j by a vector of weighted term t_k (*k*=1, 2, ..., *t*) (*n*-gram, isolated word, bigrams, noun phrase, ...)

$$(w_{1j}, w_{2j}, \ldots, w_{kj}, \ldots, w_{tj})$$

with $W_{ki} \ge 0$

• Give higher weight to most important terms

17

Different ways to understand what is a term Usually based on bag-of-words Do not consider the location in the sentence May take account for the location of the sentence (e.g., title)

- Detecting phrases (syntactically, statistically) does not improve clearly the quality
- Can be a combined approach (isolated words, bigrams, noun phrases)

18

20

Example
Segmentation / tokenization
Normalization (uppercase/lowercase, diacritics, punctuation, number, etc.)
Stopword removal (the, in, of, with, has, done)
Stemming (inflectional)

Result: a bag-of-words Important step: need to weight each item in this bag.

Document Representation

- "The bill I'm signing today, known as the Weapons System Acquisition Reform Act, represents an important next step in this procurement reform process." (Obama, May, 22nd, 2009)
- "the bill i m signing today known as the weapons system acquisition reform act represents an important next step in this procurement reform process"
- "bill i sign*ing* today know*n* weapon*s* system acquisition reform act represent*s* important next step procurement reform process"
- "bill i sign today know weapon system acquisition reform act represent important next step procurement reform process"

19

References

- C.D. Manning & H. Schütze : *Foundations of statistical natural language processing*. The MIT Press, Cambridge (MA), 2001.
- F. Sebastiani: Machine Learning in Automated Text Categorization. ACM Computing Surveys, 34(1), 2002
- Y. Yang: An Evaluation of Statistical Approaches to Text Categorization. *Journal of Information Retrieval*, 1, 67-88, 1999.

37