Text Categorization

Jacques Savoy
Université de Neuchâtel

Outline

- Examples & applications
- Definition of Text Categorization (TC)
- Rule-based and learning
- Dimension Reduction
- Text classifiers
- Evaluation

Example of TC

- Predefined categories C (categories may form hierarchy)
- Set of labeled document examples D (to learn)
- A standard classification (supervised learning) problem

Example

<table>
<thead>
<tr>
<th>Size</th>
<th>Color</th>
<th>Shape</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>small</td>
<td>red</td>
<td>circle</td>
<td>positive</td>
</tr>
<tr>
<td>large</td>
<td>red</td>
<td>circle</td>
<td>positive</td>
</tr>
<tr>
<td>small</td>
<td>red</td>
<td>triangle</td>
<td>negative</td>
</tr>
<tr>
<td>large</td>
<td>blue</td>
<td>circle</td>
<td>negative</td>
</tr>
</tbody>
</table>

Example of TC

- Instance language: \(<\text{size}, \text{color}, \text{shape}>\)
 - \(\text{size} \in \{\text{small, medium, large}\}\)
 - \(\text{color} \in \{\text{red, blue, green}\}\)
 - \(\text{shape} \in \{\text{square, circle, triangle}\}\)
- \(C = \{\text{positive, negative}\}\)
- \(D: (\text{training & test}) \text{ examples}\)
Applications: Text Filtering

- Text Filtering
 - Classifying a stream of incoming documents (e.g., produced by a news agency for newspapers)
 - Usually single-label TC, splitting the new message into two disjoint categories {relevant, irrelevant} (e.g., e-mail into junk or ham)
 - May further classify relevant messages into various thematic categories (e.g., personalized web newspapers)
 - Text filtering may be installed at the producer end (selection based on user's profile)
 - Can be adapted from user feedback (adaptive filtering vs. routing or batch filtering)

Applications: Hierarchical Categorization

- Hierarchical categorization of Web pages
 - Large number of web pages useful to generate (automatically) a portal on a given topic (or generate an electronic catalogue)
 - Each category must have between $k_1 \leq x \leq k_2$ items
 - Must allow the creation of new categories (or to delete obsolete ones)
 - Can account for
 - Hypertextual nature of the document
 - Hierarchical nature of the categories (decomposing the classification into smaller classification problems)

Applications: Sentiment & Opinion

- Classifying web document (product review, customer information, social network) according to their opinionated content
 - Fact
 - "Five years ago, there were no Internet-related information businesses."
 - Negative opinion
 - "Since the United States is Korea's most important trade partner, the Korean economy was also affected immediately."
 - Positive opinion
 - "I believe that we have found the appropriate balance," he said.

Applications of TC

- Other applications
 - Document indexing
 - Word-Sense Disambiguation (WSD)
 - Multimedia document classification (through analysis of textual parts)
 - Author identification
 - Language identification
 - Text genre identification
 - Recommending messages / product
 - ...
Problem Definition

- Need to assign a Boolean value \{0,1\} to each entry of the decision matrix
- \(C = \{c_1,\ldots, c_m\} \) set of pre-defined categories, with \(|C|= m\)
- \(D = \{d_1,\ldots, d_n\} \) set of documents to be categorized
- 1 for \(a_{ij}: d_j \) belongs to \(c_i \) (or True)
- 0 for \(a_{ij}: d_j \) does not belong to \(c_i \) (or False)

\[
\begin{array}{cccc}
 d_1 & \ldots & d_j & \ldots & d_n \\
 c_1 & a_{11} & \ldots & a_{1j} & \ldots & a_{1n} \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 c_m & a_{m1} & \ldots & a_{mj} & \ldots & a_{mn} \\
\end{array}
\]

Problem Definition

- Categories are just symbolic labels (without additional knowledge about their meaning)
- No exogenous knowledge is available (based only on the docs without their metadata (type, author, source, etc.))
- Instead of a Boolean assignment, we may assign a probability (of belonging to the corresponding category)
- Given an integer \(k \), exactly \(k \) (or \(\leq k \) or \(\geq k \)) elements of \(C \) to be assigned to each \(d_j \) in \(D \)

Single Label, \(k = 1 \), single label (non-overlapping)
- Train a system which takes a \(d_i \) and \(C \) as input and outputs a \(c_i \)

Multi-label, \(k \) in \([0, |C|]\)
- Train a system which takes a \(d_i \) and \(C \) as input and outputs \(C' \), a subset of \(C \)

Problem Definition

- To choose a text classifier
 - Must generalize to classify correctly instances not in the training data
- Occam’s razor
 - Prefer a simple hypothesis or rule agreeing with the data than a more complex one (and against the black box)

- Supervised or unsupervised
 - Supervised approaches need training examples
Steps in TC

1. Data processing
 - Term extraction, dimensionally reduction (Zipf's law, 50% of the words), feature selection
2. Define the test & training data
3. Creation of a classification model using the select algorithm
4. Model training (training set)
5. Model testing & evaluation (test set)
6. Final model building (using both training & test set)

Text Classifier

- Different strategies
 - Rule-based (expert system, Machine Learning)
 - Probabilistic classifier (Naive Bayes)
 - Decision Tree classifier (see ML course)
 - Regression methods (see ML or stat course)
 - Neural Networks (see AI course)
 - Decision rule classifier
 - On-line methods
 - tf-idf method (see IR course)
 - Rocchio's method
 - Example-based classifiers (k-nearest-neighbor or k-NN)

Rule-Based Classifier

- Using an inductive rule learning, producing rules
 - IF <condition> THEN <category>
- Condition: presence (or absence) of keyword in document descriptor (forming a Boolean condition)
- Decision: category assignment
- Example
 - IF ((wheat & farm) or (wheat & community) or (bushels & export) or (wheat & tonnes) or (wheat & winter & ¬soft))
 - THEN <WHEAT> ELSE ¬<WHEAT>
- Based on propositional logic
- Knowledge acquisition bottleneck

Rule-Based & Learning

- Use Machine Learning approaches
- Inductive process
- Given a set of documents classified (manually?) under category c_i, build a classifier by observing the underlying characteristics of documents belonging to category c_i or its complement (supervised learning)
- Must be able to classify unseen documents
- Pre-classified documents is the key resource
- Simple to classify documents than to extract rules
- Need to separate into two disjoint sets, the training set (to build the classifier and tune the parameters) and the test set (evaluation)
Document Representation

- Semantic is still a distant goal
- Need to build a compact text representation (indexing) with its meaningful units (lexical semantics)
- Assuming that compositional semantics is true
- Usually, we represent a document \(d \) by a vector of weighted term \(t \) \((k=1, 2, \ldots , t)\) \((n\text{-gram, isolated word, bigrams, noun phrase, \ldots})\)
 \[
 \left(w_{1j}, w_{2j}, \ldots , w_{kj}, \ldots , w_{lj} \right)
 \]
 with \(w_{kj} \geq 0 \)
 - Give higher weight to most important terms

Document Representation

- Different ways to understand what is a term
- Usually based on bag-of-words
- Do not consider the location in the sentence
- May take account for the location of the sentence (e.g., title)
- Detecting phrases (syntactically, statistically) does not improve clearly the quality
- Can be a combined approach (isolated words, bigrams, noun phrases)

Document Representation

- Example
 1. Segmentation / tokenization
 2. Normalization (uppercase/lowercase, diacritics, punctuation, number, etc.)
 3. Stopword removal (the, in, of, with, has, done)
 4. Stemming (inflectional)

Result: a bag-of-words
Important step: need to weight each item in this bag.

Document Representation

- "The bill I'm signing today, known as the Weapons System Acquisition Reform Act, represents an important next step in this procurement reform process." (Obama, May, 22nd, 2009)
- "the bill i m signing today known as the weapons system acquisition reform act represents an important next step in this procurement reform process"
- "bill i signing today known weapons system acquisition reform act represents important next step procurement reform process"
- "bill i sign today know weapon system acquisition reform act represent important next step procurement reform process"
Document Representation

- "Last night, Senator McCain said that George Bush won’t be on the ballot this November." (Obama, October, 15th, 2008)
- "last night senator mccain said that george bush won't be on the ballot this november"
- "last night senator mccain said george bush ballot november"
- "last night senator mccain said george bush ballot november"

Term Selection

- Term selection by selecting terms receiving the higher scores according to a function
 - Using the document frequency (df)
 - Select terms having the highest df more valuable for TC (not for IR)
 - According to the Zipf’s law, many terms have a low df
 - Example
 - Removing term occurring in at least x (training) documents (with x between 1 and 3)
 - Using both the tf and idf values
 - various other measures can be used (mutual information, χ², t-test, information gain, etc.)

Text Classifier

- By inductive learning
 - Define a CSV (Categorization Status Value) for each category c as:
 - CSV: D → {True, False} (hard classifier)
 - CSV: D → [0, 1] (ranking)
 - We can apply thresholds
 - if CSV(d_j) ≥ δ_i then assign c_i
 - May define different δ_i values for each category
 - These δ_i values an be learned
 - Occam’s rasor: Adopt the simplest hypothesis with equal performance (better generalization)
Bayes' Rule

- In the bar, a person said: "I win with a 7!" Does this person win when rolling a pair of dice or spinning a roulette? (our hypothesis H)
 - $\text{Prob}[\text{dice} \mid \text{"7"}], \text{Prob}[\text{roulette} \mid \text{"7"}]$?
- Difficult to estimate directly...
- The prior: There is 6 tables, and in 2 they are playing with a roulette.
 - $\text{Prob}[h_{\text{dice}}] = 4/6$
 - $\text{Prob}[h_{\text{roulette}}] = 2/6$
- and the evidence (the "7")?

Bayes' Rule

- Evidence:
 - What is the chance to obtain a "7"?
 - We need to compute the evidence (having a "7" according to the two hypothesis):
 - $\text{Prob}[\text{"7"} \mid \text{dice}]$ and $\text{Prob}[\text{"7"} \mid \text{roulette}]$?
 - $\text{Prob}[\text{"7"} \mid \text{dice}] = \text{Prob}[\text{e} \mid h_{\text{dice}}] = 6/36$
 - $\text{Prob}[\text{"7"} \mid \text{roulette}] = \text{Prob}[\text{e} \mid h_{\text{roulette}}] = 1/37$
- Next we need to combine these two sources the prior and the likelihood (evidence)

Bayes' Rule

- Probability of event H given evidence E:
 $$\text{Prob}[H \mid E] = \frac{\text{Prob}[E \mid H] \cdot \text{Prob}[H]}{\text{Prob}[E]}$$
- A priori probability of H : $\text{Prob}[H]$
 - Probability of event before evidence is seen
- A posteriori probability of H : $\text{Prob}[H \mid E]$
 - Probability of event after evidence is seen
- Combining prior probabilities and the likelihood of the data (according to the hypothesis H)
 $$\text{Prob}[H \mid E] = \frac{\text{Prob}[E \mid H] \cdot \text{Prob}[H]}{\text{Prob}[E]} \propto \text{Prob}[E \mid H] \cdot \text{Prob}[H],$$

Bayes' Rule

- Prior:
 - $\text{Prob}[h_{\text{dice}}] = 4/6$
 - $\text{Prob}[h_{\text{roulette}}] = 2/6$
- Evidence:
 - $\text{Prob}[\text{e} \mid h_{\text{dice}}] = 6/36$
 - $\text{Prob}[\text{e} \mid h_{\text{roulette}}] = 1/37$
- Combination:
 $$\text{Prob}[h_{\text{dice}} \mid e] = \frac{\text{Prob}[\text{e} \mid h_{\text{dice}}] \cdot \text{Prob}[h_{\text{dice}}]}{\text{Prob}[\text{e}]} = \frac{6/36 \cdot 4/6}{(6/36 \cdot 4/6 + 1/37 \cdot 2/6)}$$
 $$\text{Prob}[h_{\text{roulette}} \mid e] = \frac{\text{Prob}[\text{e} \mid h_{\text{roulette}}] \cdot \text{Prob}[h_{\text{roulette}}]}{\text{Prob}[\text{e}]} = \frac{1/37 \cdot 2/6}{(6/36 \cdot 4/6 + 1/37 \cdot 2/6)}$$
Naive Bayes Classifier

- In TC, we have
 - Evidence $E =$ new document, sentence, instance
 - Event $h_j =$ class value for this new instance
- The evidence can be divided into parts (i.e., the various features / terms $E = \{e_1, e_2, \ldots e_n\}$)
- Classify according to
 \[
 h_{MAP} = \arg \max_{h_j \in H} \frac{\text{Prob}[h_j | e_1, e_2, \ldots e_n]}{\sum_{h_j \in H} \text{Prob}[h_j | e_1, e_2, \ldots e_n]}
 \]

Naive Bayes Classifier

- Hypotheses: \{Spam, Ham\} (binary decision)
- Evidence: an incoming email
 - The message is treated as a bag-of-words
- Knowledge
 - $\text{Prob}[h_0=\text{Spam}]$ (with $\text{Prob}[h_1=\text{Ham}] = 1 - \text{Prob}[h_0]$)
 - The prior probability of an e-mail message being a spam.
 - How to estimate this probability?
 - $\text{Prob}[e_i | h_0=\text{Spam}]$
 - The probability that a word is e_i if we know e_i is chosen from a spam.
 - How to estimate this probability?

Naive Bayes Classifier

- The computation of $\text{Prob}[e_1, e_2, \ldots e_n | h_j]$ is in a general case too complex (interaction between the different e_i)
- The naive Bayes classifier (conditionally independence)
 \[
 \text{Prob}[e_1, e_2, \ldots e_n | h_j] = \prod_{i=1}^{n} \text{Prob}[e_i | h_j]
 \]
 and thus
 \[
 h_{NB} = \arg \max_{h_j \in H} \text{Prob}[h_j] \cdot \prod_{i=1}^{n} \text{Prob}[e_i | h_j]
 \]

Text Classification (Learning)

1. Collect all words, punctuation that occur in the C (Corpus)
 - $V =$ the set of all distinct words or tokens (selection?, stemming?)
2. Compute the probability estimate $P[h_j]$ and $P[e_i | h_j]$ as
 - $\text{doc}_j =$ the subset of documents from C having the target value is h_j
 - $P[h_j] = |\text{doc}_j| / |C|$ (reasonable prior estimation)
 - $\text{Text}_j =$ concatenation of all members of doc_j
 - $n =$ total number of words in Text_j
 - for each word w_k in V
 - $n_k =$ number of times word w_k occurs in Text_j
 - $P[e_i | h_j] = (n_k + 1) / (n + |V|)$ (better than direct n_k / n) (smoothing the probabilities)
Example (Opinion Detection)

- Opinionated sentence (mixed)
 - "Half of the job is psychiatry."
 - with "psychiatry" (tf = 1, hapax)
 - NB: (0.179 / 0.821) half (3.23 / 5.91) job (2.61 / 2.13) psychiatry (-)
 - → without opinion

- Opinionated sentence (negative)
 - "You were often abused and humiliated"
 - with "humiliated" (tf=1, hapax)
 - NB: (0.397 / 0.603) you (12.65 / 7.7) often (4.17 / 3.39) abused (-)
 - → without opinion

Evaluation

- Effectiveness measure on unseen examples (train & test)
- Contingency table for each category c_i
 - TP: True positive
 - TN: True negative
 - FP: False positive
 - FN: False negative

We can also create a global contingency table with all decisions (all documents)

Conclusion

- TC is a major research area
- Many applications (proliferation of text-based information)
- Very useful when manual alternative is impossible
- Could be useful to help human taking the correct decision (suggesting possible solutions)
- A 100% correctness is impossible (humans are not consistent)
- In Naive Bayes: independence between features
- Other challenges
 - Noisy text (OCR)
 - Speech transcripts
 - Multilingual TC
 - Other media (e.g., image categorization)
References