

•••••

....

Frequency

• Counting the word *types (vocable)* means counting the vocabulary size

Denote by V the vocabulary E.g., V = {country, democracy, States, the, United} and its size is |V| = 5 (cardinality of a set)

- Counting the number of tokens (*forme*) means counting the sample / document / corpus size
 Use n to indicate this size
- Usually *n* > |V| because some word types appear more than once in a sample / document / corpus.
- Use f(ω) to indicate the frequency (number of occurrences) of a given word ω in a sample (e.g., f("the") = 3)

Frequency

• Given a corpus. Can we model the word distribution?

10

....

- Can we find general law(s) governing the word distribution?
- Are words used randomly?
- Does the word distribution differ from one author to the other?
- Can we infer pertinent information from word distribution?
- Can we find constant(s) when analyzing the word distribution of a given author within a given genre? A set of authors in a given genre? An author in general?
- Can we use such information to describe an author's style?

Frequency					
		McCa	in'08	Oban	na'08
The most frequent	Rank	Word	f(ω)	Word	f(ω)
word types f(ω)	1	the	7759	the	13027
	2	and	6157	and	10950
With	3	to	5413	to	9072
V = 7,792	4	of	4773	that	7446
for J. McCain and V = 7,663 for B. Obama the number of distinct types (or	5	in	3137	of	6985
	6	а	2940	we	6203
	7	I	2345	а	5562
	8	that	2243	in	5340
	9	we	2160	is	4986
vocabulary size)	10	for	1762	I	4216
					13

Frequency (Brown Corpus)

Collected in 1961	Rank	Word	Freq.	%
A real sample	1	the	69975	6.90%
	2	be	39175	3.86%
1,014,312 tokens	3	of	36432	3.59%
	4	and	28872	2.85%
Given by lemmas	5	to	26190	2.58%
(e.g., be = is ,	6	а	23073	2.28%
was, be, were,	7	in	20870	2.06%
etc.)	8	he	19427	1.92%
	9	have	12458	1.23%
	10	it	10942	1.08%

Zipf's Law

 The Zipf's law could be more useful when considering the log-log relationship between the absolute frequency (f(ω)) and the rank (z)

17

$$f(\omega) = \frac{c}{z^{\alpha}} = c \cdot z^{-\alpha}$$

we may obtain

$$log(f(\omega)) = log\left(\frac{c}{z^{\alpha}}\right)$$

- $= log(c) \alpha \cdot log(z) = \beta \alpha \cdot log(z)$ Zipf's law is an example of power law
- Another similar form is the 80-20 rule
 Property: scale invariant

Zipf's Law

Rank	Word	Freq. f(ω)	Rel. Freq.	Cumul.	r x freq.	••••
1	de	1,891,468	0.0548	0.0548	0.0548	
2	la	1,062,987	0.0308	0.0856	0.0616	
3	I	811,217	0.0235	0.1091	0.0705	
4	le	807,145	0.0234	0.1325	0.0936]
5	à	682,670	0.0198	0.1523	0.0989	1
6	les	657,241	0.0190	0.1713	0.1143]
7	et	592,668	0.0172	0.1885	0.1202	
8	des	584,412	0.0169	0.2054	0.1355]
9	d	548,764	0.0159	0.2214	0.1431	1
10	en	477,379	0.0138	0.2352	0.1383]
11	du	439,227	0.0127	0.2479	0.1400	1
12	а	409,561	0.0119	0.2598	0.1424]
13	un	394,582	0.0114	0.2712	0.1486	
14	une	335,561	0.0097	0.2809	0.1361]
15	est	279,495	0.0081	0.2890	0.1215	
16	dans	265,387	0.0077	0.2967	0.1231	21

Rank	Word	Freq.	Rel. Freq.	Cumul.	r x freq.	
1	der	2,420,534	0.0346	0.0346	0.0346	
2	die	2,407,558	0.0344	0.0690	0.0688	
3	und	1,489,787	0.0213	0.0902	0.0639	
4	in	1,243,042	0.0178	0.1080	0.0710	
5	den	790,054	0.0129	0.1193	0.0564	1
6	von	668,300	0.0095	0.1288	0.0573]
7	das	668,163	0.0095	0.1384	0.0668]
8	mit	586,284	0.0084	0.1468	0.0670	
9	im	568,533	0.0081	0.1549	0.0731	
10	zu	556,061	0.0079	0.1628	0.0794	
11	für	534,454	0.0076	0.1705	0.0840	1
12	des	489,420	0.0070	0.1775	0.0839]
13	auf	481,672	0.0069	0.1843	0.0895]
14	sich	456,291	0.0065	0.1909	0.0913	
15	dem	429,675	0.0062	0.1970	0.0921]
16	ein	421,569	0.0060	0.2030	0.0964	23

Zipf's Law (Spanish Language)

- Based on the news agency EFE
- 71,987,982 tokens and 377,945 types (vocables)
- With the first 12 most frequent types, we cover more than 30% of all Spanish documents (news articles)

Zipf's	Law	(Spani	ish La	ngua	ge)	
Rank	Word	Freq.	Rel. Freq.	Cumul.	r x freq.	
1	de	5,004,275	0.0695	0.0695	0.0695	
2	la	2,876,708	0.0400	0.1095	0.0799	
3	el	2,452,367	0.0341	0.1435	0.1022	
4	que	2,171,101	0.0302	0.1737	0.1206	1
5	en	2,046,482	0.0284	0.2021	0.1421	
6	у	1,613,223	0.0224	0.2245	0.1345	
7	а	1,376,522	0.0191	0.2437	0.1338	
8	los	1,228,087	0.0171	0.2607	0.1365	1
9	del	1,094,641	0.0152	0.2759	0.1368	
10	por	809,824	0.0112	0.2872	0.1125	1
						25

Zipf's Law

- On the other tail (the less frequent word types)
- Lot of word types with frequency = 1 (*hapax legomena*) and many with frequency = 2
- Number of word types: 7663 (Obama'08), 7792 (McCain'08)

28

Frequency	Obama'08		McCa	ain'08
1	2573	33.6%	2958	38.0%
2	1042	13.6%	1112	14.3%
3	556	7.3%	641	8.2%
4	446	5.8%	435	5.6%
5	308	4.0%	313	4.0%

Zipf's Law

• Example of hapax legomena

in McCain 2008	in Obama 2008
MI	AK
BMW	zionist
denial	WTO
bird	odd
richer	petrodollar
motel	Dupont
NALEO	Dehli

Vocabulary Growth

Tokens	V	Increase	Нарах
1,000	386	386	243
2,000	606	220	357
3,000	818	212	486
4,000	982	164	574
5,000	1,102	120	620
292,000	7,654	7	2,577
293,000	7,661	0	2,575
294,000	7,661	2	2,575

30

Obama's speeches (2008)

Word Frequency

- Model of the growing of the vocabulary $|V| = k \cdot n^{\beta}$, with $10 \le k \le 20$, $0.5 \le \beta \le 0.6$
- Can we find useful features to help us finding the underlying characteristics of an author?

33

....

....

35

- We can find some differences between common American English (Brown corpus) and US electoral speeches by considering the top 10 / 20 most frequent word types
- Mainly on limited interest
- What are the differences between Obama's & McCain's speeches? Vocabulary? Topics? Style?

Rank	Bro	own	ι	JS
1	the	6.90%	the	4.69%
2	be	3.86%	be	3.81%
3	of	3.59%	and	3.78%
4	and	2.85%	to	3.30%
5	to	2.58%	of	2.61%
6	а	2.28%	that	2.17%
7	in	2.06%	а	1.95%
8	he	1.92%	in	1.88%
9	have	1.23%	we	1.85%
10	it	1.08%	I	1.50%
11	that	1.05%	have	1.36%
12	for	0.89%	not	1.19%
13	not	0.87%	for	1.18%
14	I	0.83%	our	1.10%
15	they	0.82%	it	1.01%
16	with	0.72%	will	0.98%
17	on	0.61%	this	0.85%
18	she	0.60%	you	0.68%

Overall Lexical Measure

- We may consider forms used frequently by one author, less by the other
- Determinant "the" more frequent in ordinary language (6.9% vs. 4.7%)
- Used more frequently by politicians: "we", "l", "that", "will"
- Used more often by common American English (Brown corpus): "he", "she"
- Large variations when considering the same author but different periods, styles (e.g., tragedies, novels) and genres (prose vs. poetry)
- Basic elements for a language model
- Authorship attribution: Molière vs. Corneille

Smoothing Technique

- Data sparseness is a serious and common problem in statistical NLP.
- The probability of a sequence is zero if it contains unseen elements (types, bigram)
- Problem 1: Low frequency *n*-grams if *n*-gram *x* occurs twice and *n*-gram *y* occurs once, is *x* really twice as likely as *y*?
- Problem 2: Zero counts If *n*-gram *y* does not occur in the training set, does that mean that it should have probability zero?

Laplace Smoothing

Laplace smoothing

$$Prob[w_{i+1}|w_i] = \frac{C(w_i, w_{i+1}+1)}{\sum_{w} C(w_i, w)+1} = \frac{C(w_i, w_{i+1})+1}{C(w_{i-1})+|V|}$$

....

.

....

44

....

- Pro: Very simple technique
- Cons:

....

....

41

....

43

- Too much probability mass is shifted towards unseen *n*-grams
- Probability of frequent n-grams is underestimated
- Probability of rare (or unseen) n-grams is overestimated
- All unseen n-grams are smoothed in the same way
- Instead of adding 1 to all counts, add λ = 0.1 (Lidstone's rule)
- This gives much less probability to those extra events

Overall Lexical Measure

- In general, difficult to define an overall lexical measure and compare it with other authors/documents
- We can used:
 - |V| vocabulary size (number of word type)
 - ratio |V| / n
- not really satisfactory. Why?
 - depends on the sample size (not stable)
 - LNRE Large Number of Rare Events (many events do not occur in the sample!)

View/Verify the Context

- Finding pertinent (significant) features is the first step
- Explaining such phenomena is the second step
- Usually it is important to see the context and again the computer science may help
- How?
- KWIC
- + Perl script to specify multiple constraints in selecting words / contexts / sentences

KWIC Keyword In Context

 Besides counting linguistic phenomena, computer science may provide other useful tools

....

45

....

....

....

41

....

.....

- KWIC is such an example
- Provide the left and right context (number of words, number of characters) of a given word (exact spelling)
- Can be used to see the context around a term
- Example:

Translation of "fort" (JJ) into the English language by "strong" or "powerful"

"un fort orage", "un café fort", "un médicament fort"

Context around "Strong"

the administration immediately lodged a strong protest with the Soviet ambassador here, saving the

s pointed toward the December report as strong evidence of the long-awaited reversal in the nation's 5.8 billion Canadian dollars largely on strong foreign sales of forest products. *E* *S* However, , and basically a black school that was strong in academics, "Dade said, *E* *S* "Before, we finishing third in Iowa, maintened a strong lead in New Hampshire - but he no longer had the huge etts Gov. Michael Dukakis maintened a strong lead in the Democratic race. *E* *S* ABC reported he S* In both polls, Dukakis maintened a strong lead in the Democratic race. .End of Discourse *E* * Er whose poll you're looking at - and a strong one, too, "said Jeff Alderman, chief of polling Port on the seacost, *E* *S* Kemp, a strong proponent of states rights, has asked federal requ rsuit of peace, NATO must soon offer a strong proposal on conventional and chemical weapons control rsuit of peace, NATO must soon offer a strong proposal on conventional and chemical weapons control ri Dubini Friday morning to "lodge a strong protest. *E* *S* "Defense Secretary Franl C. Carl er Alexander Bessmertnykh read him a " strong protest. *E* *S* "The Soviet side cannot but view

46

.

....

....

48

....

....

Context around "Powerful"

ted. *E* *S* It also said two other "

powerful bombs" were defused "in the last several days' ederation of Economic Organizations, a powerful business alliance, is planning a leap into the 21s itian army Col. Jean-Claude Paul, the powerful commander of the key batallion in Port-au-Prince, . *E* *S* Despite the existence of two powerful drugs to treat the rare form of pneumonia, scienti and simulated windsurfing in front of a powerful fan. *E* *S* Among the poeple wearing shorts were nd West Germany, both with politically powerful farming lobbies, have sought an increase of \$3.1 b till was a land of barbarian tribes and powerful feudal warriors - one of Japan's last frontiers. out. *E* *S* "It's a vera silent but powerful force in Southern politics, "Rose said. *E* *S*

en. *E* *S* The reflex is particulary powerful in children, doctors say. *E* *S* Kendall was in en. *E* *S* The reflex is particulary powerful in children, doctors say. *E* *S* Tecklenburg sai ficient in the short-term, it provides powerful incentive for workers to sabotage innovative techno eight straight term. *E* *S* With the powerful infrastructure of the governing Colorado Party at h k was retained as head of South Korea's powerful intelligence agency, the Agency for National Secur hn Moo-hyuk was retained as head of the powerful intelligence organization, the Agency for National

Strong vs. Powerful

- Are you drinking a "strong coffee" or a "powerful coffee"?
- Are you working with a "strong PC" or a "powerful PC"?
- Given the context, the translation could be "strong" or "powerful" (but the distinction is not always (for a computer at least) very clear, e.g., "strong/powerful drug")
- Based on newspaper articles, we can find

trong v	vs. Powe	rful	
C(w)	C(strong w)	C(powerful w)	W
3418	4	13	force
933	0	10	computers
2337	0	8	computer
588	0	6	machines
2266	0	5	Germany
3745	0	5	nation
3685	50	0	support
3616	58	7	enough
3741	21	0	sales
1093	19	1	opposition
802	18	1	showing
2501	14	0	defense

Derivation from the Zipf's Law

Starting with

$$f(\omega) = \frac{c}{z} \text{ or } \frac{f(\omega)}{n} \cdot z = c'$$

. .

....

54

where *c* is a constant, $f(\omega)$ the absolute frequency associated with word ω , *n* the total number of tokens, and *z* the rank

We may define by z_k the rank of word occurring k times in the corpus, we have:

$$z_k = \frac{c' \cdot n}{k}$$

Derivation from the Zipf's Law • We can define l_k the difference between the rank z_k and the rank z_{k+1} with $z_{k+1} < z_k$ $I_k = z_k - z_{k+1} = \frac{c' \cdot n}{k} - \frac{c' \cdot n}{k+1} = \frac{c' \cdot n}{k \cdot (k+1)}$ $I_1 = z_1 - z_2 = \frac{c' \cdot n}{2}$ The rank difference between word occurring once and twice is 50% of all word types

Benfor	d's Law		
 Estimat 	ions		
d	prob	cumul. distribution	
d = 1	0.30103	0.30103	
d = 2	0.17609	0.47712	
d = 3	0.12493	0.60206	
d = 4	0.09691	0.69897	
d = 5	0.07918	0.77815	
d = 6	0.06694	0.84510	
d = 7	0.05799	0.90309	
d = 8	0.05115	0.95424	
d = 9	0.04575	1.0	
			57
			57