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Abstract   With the development of network technology, the users looking for 
information may send a request to various selected databases and then inspect 
multiple result lists.  To overcome such multiple inspections, the database merging 
strategy involves the merging of the retrieval results produced by separate, 
autonomous servers into an effective, single ranked list.  To achieve this merging, 
this study is concerned with a particular situation within which only the rank of the 
retrieved records is available as a key to combine different result lists.  Based on this 
rather limited information, this paper describes the theoretical foundation and 
retrieval performance of our database merging approach based on the logistic 
regression.   

Keywords:  Database merging, collection fusion, logistic regression 
methodology.   

1.  INTRODUCTION 

Actually, it becomes more and more difficult to store and manage a growing 
documents collection within a single computer.  Recent advances in network 
technology allows us to disseminate information sources by partitioning a single 
huge corpus (or to distribute heterogeneous sub-collections) into a local-area 
network (INTRANET).  Moreover, the INTERNET paradigm also permits to search for 
information across wide-area networks.  Therefore, to answer to a need of 
information expressed by a query, some tools called metasearch send 
simultaneously the request to several separate search engines.  To achieve this 
purpose, metasearch system are working in three principal steps (Dreilinger & 
Howe, 1997).  First, the dispatch mechanism selects the appropriate search engines to 
which the query will be sent.  Second, the interface agents convert the request into a 
format readable by the selected search servers (for example, based on the Z90.50 
protocol for inter-system retrieval).  Third, the display mechanism have to select, 
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sort and present a unique result list.  Some examples of such automatic metasearch 
are, MetaCrawler, SavySearch and ProFusion system.  Using manual metasearch, 
like All-In-One, InterNIC and again ProFusion system, the users are completely free 
to select the appropriate search engines.   

In the rest of this paper, we shall assume that the dispatch mechanism has 
already selected the appropriate information servers.  We will concentrate on the 
third step of architecture: the display mechanism.  This part, known as collection 
fusion or database merging strategy, combines the results provided by separate 
search engines into a single final ranked list.  Various strategies as described in 
Section 2, have been proposed to resolve the collection fusion or database merging 
problem.  To treat the problem when different retrieval schemes interrogate different 
information collections, we present in Section 3 a new model based on logistic 
regression.  Section 4 depicts evaluations and comparisons of most of these 
strategies.   

2.  RELATED WORK ON DATABASE MERGING 

Recent works have suggested some solutions to the merging of separate answer 
lists obtained from distributed information services.  As a first approach, we might 
assume that each database contains approximately the same number of pertinent 
items and that the distribution of the relevant documents is the same across the 
servers answers.  Based only on the rank of the retrieved records, we may interleave 
the results in a round-robin fashion.  According to previous studies (Voorhees et al. , 
1995 April; Callan et al., 1995 June), the retrieval effectiveness of such interleaving 
scheme is around 40% below the performance achieved by a single retrieval scheme 
working with a single huge collection representing the entire set of documents.   

Voorhees et al. (1995 July; 1996 October) demonstrate that we may improve this 
ranking scheme based on the estimated expected relevance of each sub-collection to 
the current request.  Thus, instead of extracting an equal amount of items from each 
sub-collection, the suggested scheme retrieves, for each information server, a 
number of documents related to the previous performance of the underlying sub-
collection.  Depending on the underlying learning schemes, the overall performance 
is 20% to 30% below the average precision produced by a single huge collection.   
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However, many search models return not only the rank of the retrieved items 
but also a numeric score (e.g., a retrieval status value (RSV) or a document score) 
indicating the similarity strength between the retrieved document and the request.   

To take account for this additional information, we might formulate the 
hypothesis that each information server applies the same or a very similar search 
strategy and that the similarity values are therefore directly comparable (Kwok et al., 
1995 April), (Moffat & Zobel, 1995 April).  Such a strategy, called raw-score merging, 
produces a final list sorted by the retrieval status value computed by each separate 
search engine.  However, as demonstrated by Dumais (1994 March), collection-
dependent statistics in document or query weights may vary widely among sub-
collections, and therefore, this phenomenon may invalidate the raw-score merging 
hypothesis.   

Finally, Callan et al. (1995 June) suggest a merging strategy based on the score 
achieved by both sub-collection and document.  The first score is computed 
according to the probability that the sub-collection respond appropriately to the 
current request, and the second is the usual retrieved status value.  The evaluation of 
this approach shows a performance similar to a run treating the entire set of 
documents as a single collection.   

When only the rank is available to merge different retrieval schemes, we deal 
with isolated database merging problem and to resolve this, we suggest another 
approach based on logistic regression.  When additional information is available 
such as document score, we will face with integrated database merging strategies.  
Table 1 presents a classification and examples of these four database merging 
situations.   

 
 Same retrieval  

schemes 
Different retrieval 

schemes 
only the rank round-robin round-robin 

   
isolated DB merging (Voorhees et al. 1996 

October) 
our approach 

rank, score, ... raw score merging normalized 
  raw score merging 

integrated DB merging (Callan et al. 1995 June)  

Table 1:  Classification and examples of database merging strategies 
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3.  LOGISTIC REGRESSION 

We suggest using the logistic regression (Cox & Snell, 1989; Hosmer & 
Lemeshow, 1989) as a methodology for combining multiple sources of evidence 
regarding the relevance of a given document.  Of course, this statistical approach has 
been already applied in related domains such as informetrics (Bookstein et al., 1992) 
or as a retrieval model (Gey, 1994), (Fuhr & Pfeifer, 1994).  In our context, we will use 
the logistic regression as a theoretical methodology and as a practical mean to 
combine different retrieval schemes which can be based on various and very 
different search models such as the vector space model, the probabilistic approach, 
etc.   

3.1. Modeling  

The logistic regression is a statistical methodology to predict the probability of 
a binary outcome variable according to a set of independent explanatory variables.  
In our approach, we use a logistic regression to predict the probability of relevance 
of documents retrieved by different retrieval schemes.  In such circumstances, 
explanatory variable could be the rank, the retrieval status value, or other 
information like the publication date.  The estimated probabilities can be used to 
select and sort the retrieved records obtained from separate information servers in 
order to obtain a single ranked list.   

As a first specification, we have thought using only the rank of the retrieved 
items as explanatory variable.  In this case, the probability of relevance changes 
systematically with the rank order (or the serial order).  However, using this ordinal 
variable without any transformation, assumes regular differences between retrieved 
documents position which is not realistic.  A difference of 10 in rank seems to be 
more significant between the ranks 20 and 30 than between 990 and 1000.  These last 
ranks contain a so little number of relevant documents that it could be appropriate to 
ignore the difference between 990 and 1000.  To take into account for these 
irregularities, we suggest using the logarithm of the rank instead of the rank.  The 
purpose of this transformation is to increase differences between first ranks and the 
rest of the rank distribution.  Various experiments confirmed empirically such a 
logarithm transformation.  Therefore, we define our model according the following 
equation:  
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within which xi is the natural logarithm (noted ln) of the rank for a retrieved 
document.   

In this equation, the coefficients α and β are unknown parameters which fit the 
S-curve shown in Figure 1.  The estimation of the value of these coefficients are 
noted $α  and $β , and are calculated according the principle of maximum likelihood 
(the required computations have been done with the SAS package).   

The logistic regression methodology may of course take account of multiple 
independent variables.  However in our context, we want to resolve the isolated 
database merging problem within which only the rank is available as a key to select 
and merge the various retrieved records.   

 

 

Figure 1:  Example of logistic function with β < 0 

3.2. Our model 

To verify the validity of this model, we have chosen the "Wall Street Journal" 
(WSJ) collection (74,520 documents, 186 queries) extracted for the TREC conference 
corpora.  To simulate various information servers working with different databases, 
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the WSJ test-collection has been divided in three separate sub-collections according to 
the publication year.  The resulting sub-collections called WSJ90, WSJ91 and WSJ92 do 
not contain a similar amount of texts (ranging from 35 Mb to 146 Mb) nor a similar 
number of relevant articles per query.  Various statistics about these collections can 
be found in the Appendix 1.   

Moreover, a different retrieval scheme has been applied on these three sub-
collections as follow:  

• the first search engine is based on the OKAPI probabilistic model working 
with WSJ90 collection (Robertson et al., 1995); 

• the second server stores the WSJ91 corpus and the retrieval system is based 
on the vector-processing LNU - LTC (Buckley et al., 1996 October); 

• the third retrieval scheme is based on the vector-space LNC - LTC model and 
works with the WSJ92 collection.   

Table 2 presents the coefficient values of our logistic model applied on each 
retrieval schemes together with related statistics.   

 
 WSJ90 OKAPI  WSJ91 LNU WSJ92 LNC 
 Intercept 

α 
ln(rank) 

β 
Intercept 

α 
ln(rank) 

β 
Intercept 

α 
ln(rank) 

β 
values 0.3218 -0.9492 0.6341 -0.9016 -0.3099 -0.9758 

standard error 0.0627 0.0139 0.0555 0.0117 0.0842 0.0197 
Wald test on  

each parameter 
p=0.0001 p=0.0001 p=0.0001 p=0.0001 p=0.0001 p=0.0001 

Wald test on 
regression 

p=0.0001 p=0.0001 p=0.0001 

Table 2:  Logistic regression coefficients for our model 

To examine the adequacy of fit, we have used a single overall statistic of 
goodness of fit (e.g., Wald test for our logistic model depicted in the last raw of Table 
2).  All the logistic models are significant and the null hypothesis that the values of 
all coefficients are equal to zero, is always rejected.   

More precisely, for WSJ91 LNU-LTC, the Wald test indicates that the regression 
model is significant (p=0.0001) with the point estimate $α = 0.6341 (associated 
standard error 0.0555) et $β  = -0.9016 (standard error 0.0117).  The values of both 
coefficients may be considered as significantly different from 0 (Wald test, p=0.0001).  
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The confidence interval estimation (95%) for the intercept $α is 0.6341 ± 1.96 . 0.0555 = 
[0.5253; 0.7429], and for the coefficient $β  is -0.9016 ± 1.96 . 0.0117 = [-0.9245; -0.8787].   

Once the three logistic regressions have be computed separately for the three 
sub-collections, the second part of our database merging strategy consists in merging 
the three independent lists of records extracted from our three information servers 
into a single final list.  Based on the values of the coefficients depicted in Table 2, 
Table 3 shows the estimated probabilities associated with each sub-collection 
together with the combined final ranked list.   

 
WSJ90 OKAPI WSJ91 LNU-LTC WSJ92 LNC-LTC 

rank prob. rank prob. rank prob. 
1 0.57976 1 0.65342 1 0.42314 
2 0.41675 2 0.50229 2 0.27165 
3 0.32717 3 0.41183 3 0.20070 
4 0.27011 4 0.35074 4 0.15941 
5 0.23043 5 0.30641 5 0.13234 
6 0.20118 6 0.27262 6 0.11322 
...  ...  ...  

combined list 
 rank prob. from 
 1 0.65342 LNU-LTC  (1st)  
 2 0.57976 OKAPI  (1st) 
 3 0.50229 LNU-LTC(2nd) 
 4 0.42314 LNC-LTC  (1st) 
 5 0.41675 OKAPI(2nd) 
 6 0.41183 LNU-LTC(3rd) 
 7 0.35074 LNU-LTC(4th) 
 8 0.32717 OKAPI(3rd) 
 9 0.30641 LNU-LTC(5th) 
 10 0.27262 LNU-LTC(6th) 
 ... ...   

Table 3:  Example of merging based on coefficient values shown in Table 2 

From the example shown in Table 3, we can see that in the ten-best ranked 
records appearing in the final list, 6 are coming from the LNU-LTC scheme (WSJ91), 3 
from OKAPI probabilistic scheme (WSJ90), and only one record from LNC-LTC search 
model (WSJ92).  Looking back at the statistics of the three sub-collections depicted in 
Appendix 1, we can see that the WSJ91 collection contains twice more documents 
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(and relevant items) than WSJ90 and that WSJ92 owns only 12.8% of the relevant 
records (831 over 6,468).   

3.3. Model interpretation 

A first interpretation of logistic regression results is to analyze the odds and the 
probabilities.  The odds of making response 1 (or "relevant") instead of response 0 
(or "not relevant") is defined as:  

odds ei
i

i

xi( ))
)

)
π

π
π

α β(x
(x

(x
=

−
⎡

⎣
⎢

⎤

⎦
⎥ = + ⋅

1
 (2) 

For example, if the odds value is one, the document has equal chance to be 
relevant or non-relevant, and with an odds = 0.5, the document owns twice more 
chance to be non-relevant than relevant.   

Based on the retrieval scheme LNU-LTC (WSJ91 sub-collection), Table 4 presents 
some estimated probabilities and the corresponding odds.   

 
Rank i π(xi) odds(π(xi)) 

1 0,6534 1.8853 
2 0,5023 1.0092 
3 0,4118 0.7002 
4 0,3507 0.5402 
5 0,3064 0.4418 
6 0,2726 0.3748 
7 0,2459 0.3262 
8 0,2243 0.2892 
9 0,2064 0.2600 

10 0,1912 0.2365 
...   

100 0,0288 0.0297 
...   

200 0,0156 0.0159 

Table 4:  Example of probabilities and odds on WSJ91 LNU-LTC  
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odds(π(xi)) π(xi) ln(rank) = 
[-ln(1/odds)- α]/β 

rank  

1.5 0.6 0.253 1.29 
1 0.5 0.703 2.02 

0.5 0.33 1.472 4.36 

Table 5:  Odds and corresponding ranks for WSJ91 LNU-LTC 

Moreover, we can be interested to know the corresponding ranks of the odds 
values 1, 1.5 and 0.5 as depicted in Table 5.  This table shows that just two-best ranks 
are considered to have more chance to be relevant.  Immediately after the rank 2, the 
probability to be non-relevant becomes higher than the relevant one.  These results 
are interesting because we may directly related the rank with the probability of 
relevance.  In our evaluation, there is a few number of relevant documents in the 
retrieved documents (a mean proportion of 1.6% per query when 1,000 items are 
retrieved by request).  Our model indicates that the first two ranks may "certainly" 
contains relevant items.  Such information is useful when facing with high precision 
searches.   

Another interpretation of the logistic regression is the meaning of the 
coefficient β.  In classical linear regression, this slope coefficient indicates the 
increase of the outcome variable for every unit of change in the independent 
variable.  In the context of logistic regression, the interpretation of β can be done 
according to the following equation:  

β ψ= + − =g x g x( ) ( ) ln( ( ))1 1  (3) 

where g(x) is the logit defined as:  

g x
x

x
xi
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Equation 3 is therefore the logit difference, or the log of the odds ratio.   

The effect of a change of c units in the independent variable is given by the 
following equation:  

ψ β( )c e c=  (4) 
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For example, in the sub-collection WSJ90 (OKAPI retrieval scheme), an increase 
of 10 in ranks implies that the chance of relevance increase ψ(ln(10))= 0.112 times 
which means decrease of 1/0.112 = 8.9 times.  For the retrieval scheme LNU-LTC 
(sub-collection WSJ91), it implies a decrease of 7.97 times and the LNC-LTC on WSJ92 a 
decrease of 9.46.   

4.  EVALUATION 

To evaluate our suggested scheme, we have used the "Wall Street Journal" 
collection from TREC corpora (see Appendix 1).  The indexing procedures applied 
for both the documents and the queries are described in Appendix 2.  Moreover, we 
must mention that, in order to deal with a more realistic situation, the topics are 
indexed using only the Descriptive section.   

As an evaluation measure, we have used the non-interpolated average 
precision at eleven recall values provided by the TREC2_EVAL software based on 
1,000 retrieved items per request.  To decide whether a search strategy is better than 
another, the following rule of thumb is used: a difference of at least 5% in average 
precision is generally considered significant and, a 10% difference is considered very 
significant (Sparck Jones & Bates, 1977).   

A first evaluation of the retrieval schemes performance is presented in the first 
sub-section while the second shows the results of database merging using the same 
retrieval schemes for each sub-collection.  Our logistic regression model is evaluated 
and compared to other database merging strategies in the last sub-section.   

4.1. Preliminary evaluations 

The result of our first experiment is shown in Table 6 within which we have 
considered the probabilistic model OKAPI and various vector-processing schemes 
(from LNU-LTC to NNN-NNN).  These retrieval strategies are evaluated on our three 
sub-collections (WSJ90, WSJ91 and WSJ92) and also on the whole WSJ corpus treated as 
a single collection.  The conclusion that can be drawn for Table 6 is clear: the 
probabilistic model OKAPI and the vector-processing scheme LNU-LTC present a 
similar average precision which is usually significantly better than other search 
strategies.   
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 Precision (% change) 

collection WSJ90 WSJ91 WSJ92 WSJ 
 170 queries 171 queries 140 queries 186 queries 

model 2074 rel. doc. 3563 rel. doc. 831 rel. doc. 6468 rel. doc. 
OKAPI - NPN 24.13 22.74 28.16 20.32 
LNU - LTC 24.31 (+0.7) 22.88 (+0.6) 27.95 (-0.7) 20.27 (-0.2) 
LTN - NTC 23.89 (-1.0) 22.49 (-1.1) 24.13 (-14.3) 19.16 (-5.7) 
HTN - BNN 23.21 (-3.8) 21.46 (-5.6) 26.00 (-7.7) 19.09 (-6.1) 
ATN - NTC 22.27 (-7.7) 20.50 (-9.9) 24.11 (-14.4) 18.85 (-7.2) 
ANN - NTC 21.03 (-12.8) 18.81 (-17.3) 22.20 (-21.2) 16.78 (-17.4) 
LNC - LTC 18.39 (-23.8) 17.72 (-22.1) 22.52 (-20.0) 15.76 (-22.4) 
LTC - LTC 17.55 (-27.3) 17.98 (-20.9) 22.94 (-18.5) 15.06 (-25.9) 
ANC - LTC 14.12 (-41.5) 14.02 (-38.3) 19.06 (-32.3) 11.94 (-41.2) 
ANN - ANN 14.70 (-39.1) 11.43 (-49.7) 15.53 (-44.9) 10.76 (-47.0) 
LNC - LNC 11.89 (-50.7) 10.69 (-53.0) 14.23 (-49.5) 9.69 (-52.3) 
BNN - BNN 9.37 (-61.2) 5.84 (-74.3) 7.82 (-72.2) 4.85 (-76.1) 
NNN - NNN 6.36 (-73.6) 5.80 (-74.5) 7.94 (-71.8) 4.53 (-77.7) 

Table 6:  Evaluation of various retrieval schemes  (Topic = <desc>) 

4.2. Merging based on similar retrieval schemes 

Using the performance achieved by the WSJ test-collection as baseline, we want 
to compare the relative performance of various database merging strategies when 
the search on each sub-collection is based on the same retrieval scheme.  Thus, Table 
7 compares round-robin and raw-score merging strategies when the same retrieval 
schemes operates for each sub-collection.   
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 Precision (% change) 

collection WSJ WSJ90- WSJ91- WSJ92 
model baseline round-robin raw-score raw-score &  

optimal selection 
 186 

queries 
186 queries 186 queries 186 queries 

OKAPI - NPN 20.32 17.34 (-14.7) 20.37 (+0.2) 21.93 (+7.9) 
LNU - LTC 20.27 17.28 (-14.8) 20.09 (-0.9) 22.10 (+9.0) 
LTN - NTC 19.16 17.46 (-8.9) 18.76 (-2.1) 21.53 (+12.4) 
HTN - BNN 19.09 16.55 (-13.3) 18.79 (-1.6) 20.76 (+8.7) 
ATN - NTC 18.85 16.24 (-13.8) 18.13 (-3.8) 20.31 (+7.7) 
ANN - NTC 16.78 14.80 (-11.8) 16.62 (-1.0) 18.74 (+11.7) 
LNC - LTC 15.76 12.90 (-18.1) 15.60 (-1.0) 16.82 (+6.7) 
LTC - LTC 15.06 12.87 (-14.5) 14.91 (-1.0) 16.04 (+6.5) 
ANC - LTC 11.94 9.92 (-16.9) 11.77 (-1.4) 12.95 (+8.5) 
ANN - ANN 10.76 9.17 (-14.8) 10.81 (+0.5) 11.51 (+7.0) 
LNC - LNC 9.69 8.24 (-15.0) 9.76 (+0.7) 10.46 (+7.9) 
BNN - BNN 4.85 5.58 (+15.1) 4.87 (+0.4) 6.18 (+27.4) 
NNN - NNN 4.53 3.97 (-12.4) 4.53 (0.0) 4.92 (+8.6) 

Table 7:  Evaluation of database merging strategies  (Topic = <desc>) 

The round-robin strategy, a naive approach for resolving the database merging 
problem, shows a degradation of around 14%.  This poor result confirms previous 
studies (Callan et al., 1995 June) indicating a depreciation of around 50%.  However, 
the difference between these percentages seems to be due to the underlying 
characteristics of the WSJ collection.  In analyzing the raw-score merging, Callan et al. 
(1995 June) demonstrate that such a technique may decrease the retrieval 
effectiveness by around 10% when working with heterogeneous corpora.  This is not 
confirmed in this study because the WSJ collection tends to form a more homogenous 
set of documents having a very similar idf measure among its sub-collections.  Thus, 
the raw-score merging seems to be valid as a simple first approach when a huge 
collection of similar documents is distributed across a local-area network and 
operated within the same retrieval scheme.   

So far, we have taken into account the result list provided by all information 
servers.  However, as mentioned in Appendix 1, each sub-collection does not always 
contain a relevant item for each request.  Therefore, we might figure out a collection 
selection procedure which may choose only sub-collections containing at least one 
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pertinent document for the current query (dispatch mecanism).  To evaluate the 
impact of such a selection procedure, Table 7 indicates, in its last column, the 
performance achieved by such an optimal selection, ignoring sub-collections having 
no relevant information for a given query.  The resulting data indicates that an 
optimal collection selection procedure may significantly enhance the retrieval 
effectiveness.  Moreover, applying such a selection procedure before evaluating a 
request is economically attractive.  Similar conclusion can be draw when indexing 
topics according both the Descriptive and Narrative section (see Appendix 3).   

4.3. Merging based on different retrieval schemes 

The results depicted in Table 7 are based on the assumption that each 
information server applies the same retrieval strategy.  Such a hypothesis is clearly 
unrealistic, especially in a wide-area network.  More pragmatically and in order to 
evaluate our logistic model in a more realistic context, we will face with the 
following scenario.  Our queries will be submitted to three independent servers 
working with: (1) the probabilistic model OKAPI on WSJ90, (2) the vector-processing 
schemes LNU-LTC on the WSJ91 sub-collection, and (3) the LNC-LTC scheme on the 
WSJ92 corpus.   

Table 8 illustrates the retrieval performance of each sub-collection together 
with various statistics about the underlying retrieval status values.  As a baseline, we 
have evaluated the round-robin strategy, achieving a mean precision of 16.96.   
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 Precision (% change) 
Collection WSJ90 WSJ91 WSJ92 
 170 queries 171 queries 140 queries 
 2074 rel. doc. 3563 rel. doc. 831 rel. doc. 
Model OKAPI LNU - LTC LNC - LTC 
Average precision 24.13 22.88 22.52 
# of relevant documents 2074 3563 831 
# of relevant doc. retrieved 1765 2811 745 
RSV min. 1.152 0.002 0.011 
RSV max. 47.176 0.0065 0.0555 
RSV mean 6.013 0.027 0.435 
RSV standard error 2.741 0.0026 0.0268 
 WSJ 
 186 queries 
Isolated DB merging:  
Round-robin  16.96 
Logistic ln (RANK(Di)) 18.40 (+8.49) 
Integrated DB merging:   
Raw-score merging 8.75 (-48.41) 
Norm. raw-score merging 15.42 (-9.08) 

Table 8:  Evaluation of database merging strategies  (Topic = <desc>) 

When analyzing the collection fusion problem in such circumstances, the raw-
score merging strategy is clearly ineffective.  All the retrieved documents are 
extracted form the WSJ90 sub-collection because the OKAPI model retrieval status 
values are always greater than those of the LNU-LTC or LNC-LTC search schemes.  If 
we normalize the retrieval status value (RSV) within each sub-collection by dividing 
them by the maximum RSV of each result list, the retrieval performance is always 
significantly worse that the round-robin strategy.   

When only rank can be used as explanatory variable, our logistic model 
exhibits an interesting performance, always significantly better than all other 
merging strategies.  This finding is confirmed when using longer requests (see 
Appendix 3).   

However, the evaluation reported in Table 8 can be questionable because we 
have used the same set of queries to estimate the value of the coefficients of our 
logistic model and to evaluate our merging strategy (retrospective evaluation).  To 
check the validity of the logistic regression coefficients on the one hand, and on the 
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other of our evaluations, we have divided the request set in ten disjoint sub-samples 
(ten-fold cross-validation) (Stone, 1974).   

Figure 2 and 3 present the 95% confidence intervals of each of these estimations 
(coefficients of the WSJ91 LNU-LTC retrieval strategy).  In these figures, the value of 
the parameters shown in Table 2 are indicated by a solid line.  A similar picture can 
be drawn from the other two retrieval schemes.  Thus, we may this infer that the 
coefficient value shown in Table 2 are trustful.   
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Figure 2:  95% confidence interval estimate for $β  (10-fold cross-validation) 
for WSJ91 LNU-LTC 
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Figure 3:  95% confidence interval estimate for $α (10-fold cross-validation) 
for WSJ91 LNU-LTC 

The evaluation of the 10-fold cross-validation indicates an average precision at 
eleven recall points of 18.40.  Thus, there is no real difference in term of precision 
between the 10-fold cross-validation and the retrospective evaluation shown in Table 
8.   

5.  CONCLUSION 

This paper presents a new approach to combine multiple sources of evidence in 
database merging.  This model based on logistic regression takes place in the case 
where only ranks are available as a key to merge different ranked list obtained by 
various retrieval schemes.  Compared to other database merging strategies such as 
round-robin, raw-score and normalized raw-score, our model gives a significantly 
better retrieval effectiveness.   

The retrospective evaluation and the ten-fold cross-validation return similar 
retrieval effectiveness, tending to prove that logistic regression coefficients are 
trustful and stable, when computed by the classical retrospective approach.   
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An open question to address by future work is to know how the system may 
take into account of incremental learning, beginning with no prior knowledge about 
the relative performance of the different information servers.   

Finally, in this study, we never take known relevance documents or pseudo-
relevance information into account (Buckley et al., 1996 October) in order to improve 
retrieval effectiveness.  Although we do not reject this attractive proposition, our 
objective is to evaluate the effectiveness of the initial search.  Relevance feedback can 
therefore be used after this first search in order to enhance the retrieval performance.   
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Appendix 1:  Collection Statistics 

 
Collection WSJ90 WSJ91 WSJ92 WSJ 

Size 73 Mb 146 Mb 35 Mb 254 Mb 
# of documents 21,705 42,652 10,163 74,520 
# of topics 170 171 140 186 
# relevant doc. 2,074 3,563 831 6,468 
Based on indexing terms    
mean 142.8 138.8 134.2 139.37 
standard error 123.0 119.4 117.0 120.86 
median 90 88 83 88 
maximum 1532 1738 1425 1738 
minimum 3 5 5 3 
Based on tfij     
mean 246.6 239.6 232.2 240.64 
standard error 236.5 230.4 228.0 231.90 
median 145 141 134 141 
maximum 4924 5791 4343 5791 
minimum 3 5 5 3 

Table A.1:  Various statistics associated with each collection 

In the WSJ90 collection, the queries {65, 80, 81, 101, 102, 104, 139, 140, 146, 201, 
213, 214, 221, 225, 227, 232, 234, 236, 252, 260, 263, 272, 277, 278, 279, 280, 281, 292, 
295, 296} do not have any relevant document, while for the WSJ91 corpus, the topics 
{66, 69, 80, 81, 103, 104, 105, 121, 141, 144, 146, 201, 210, 213, 214, 220, 231, 232, 236, 
253, 260, 262, 263, 267, 276, 278, 279, 281, 296} are removed from the evaluation.  For 
the WSJ92 collection, the queries {54, 58, 63, 64, 69, 70, 77, 80, 81, 91, 93, 99, 101, 103, 
104, 105, 121, 126, 127, 129, 130, 131, 133, 139, 140, 144, 146, 201, 210, 213, 214, 217, 
220, 229, 232, 236, 238, 239, 252, 253, 256, 258, 262, 263, 265, 266, 267, 268, 271, 275, 
276, 278, 279, 280, 281, 288, 293, 295, 296, 300} are removed for the same reason.  
Finally, for the whole WSJ collection, the queries {80, 81, 104, 146, 201, 213, 214, 232, 
236, 263, 278, 279, 281, 296} can be ignored.   
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Appendix 2:  Weighting Schemes 

In this paper, the indexing procedure done by the SMART system is fully 
automatic and based on a single term only.  The representation of each topic is based 
on the content of its Descriptive (<desc>) section or its Descriptive and Narrative 
(<narr>) sections.  For each document, the Text (<text>) section as well as the 
Subtitle (<st>), Headline (<hl>), and Summary (<lp>) sections were used to build the 
document surrogate.  All other subsections were removed, and, in particular, the 
title and the concept section of each topic (see Table A.2).   

 
Collection Section 
WSJ <desc>, <text>, <st>, <hl>, <lp> 
Query <desc>  or  <desc> & <narr> 

Table A.2:  Selected sections used to represent documents and queries 

To assign an indexing weight wij reflecting the importance of each single-term 
Tj, j = 1, 2, ..., t, in a document Di, we may use one of the equations shown in Table 
A.3.  In this table, tfij depicts the frequency of the term Tj in the document Di (or in 
the request), n represents the number of documents Di in the collection, dfj the 
number of documents in which Tj occurs, and idfj the inverse document frequency 
(log [n/dfj]).  Moreover, the document length of Di (the number of indexing terms) is 
noted by nti, and mean(nt.) indicates the average of the document length.  The 
constant c is fixed to 0.2 and C is computed as  0.5 + 1.5 . [nti / mean(nt.)].  Finally, 
the computation of the retrieval status value is based on the inner product.   

 
BNN wij =  1 NNN wij = tfij  

ANN wij  =  0.5 +  0.5 ⋅
tfij

max tfi.
 ATN wij  =  0.5 + 0.5 ⋅

tf ij

max tfi.

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅ idfj  

NPN wij  =  0.5 + 0.5 ⋅
tf ij

max tfi.

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅ idfj  

LTN wij  =   log  tfij ( )+ 1 [ ]⋅ idfj  

HTN 
wij  =

log  tfij + 1 ( )⋅ idf j

log  nti  ( )   
OKAPI wij =

2 ⋅ tf ik

C + tfikk=1

t

∑  

LNC 
wij =

log  tfij ( )+ 1

  log  tfik ( )+ 1 ( )2
k =1

t

∑
 

NTC wij =
tfij ⋅ idfj

  tfik ⋅ idfk  ( )2
k =1

t

∑
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ANC 

wij =

0.5 + 0.5 ⋅
tfij

max tfi.

 0.5 + 0.5 ⋅
tf ik

max tfi.

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ k =1

t

∑
2

 

LTC 
wij =

 log  tfij  ( )+ 1 [ ]⋅ idf j

  log  tfik  ( )+ 1[ ] ⋅ idfk ( )2

k =1

t

∑
 

LNU 
wij =

1+ log  tfij ( )
1+ log  mean  tfi. ( ) ( )

     1 - c ( )⋅ mean  nt. ( )+ c ⋅ nti     
 

 

Table A.3:  Weighting schemes 
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Appendix 3:  Retrieval Results Based on Longer Queries 
 

 Precision (% change) 
collection WSJ WSJ90- WSJ91- WSJ92 

model baseline round-robin raw-score raw-score &  
optimal selection 

OKAPI - NPN 28.06 23.98 (-14.54) 27.87 (-0.68) 29.25  (+4.24) 
LNU - LTC 26.25 23.36 (-11.01) 26.03  (-0.84) 27.83  (+6.02) 
LTN - NTC 24.03 21.23 (-11.65) 23.67  (-1.50) 25.28  (+5.20) 
ATN - NTC 24.00 20.85 (-13.13) 23.50  (-2.08) 25.37 (+5.71) 
LNC - LTC 23.86 20.14 (-15.59) 23.73  (-0.54) 24.89 (+4.32) 
LTC - LTC 21.80 19.00 (-12.84) 21.76  (-0.18) 22.82 (+4.68) 
ANN - NTC 21.79 18.80 (-13.72) 21.51  (-1.28) 23.22 (+6.56) 
ANC - LTC 19.65 16.91 (-13.94) 19.32  (-1.68) 20.59 (+4.78) 
HTN - BNN 17.86 16.13 (-9.69) 17.81  (-0.28) 19.35 (+8.34) 
LNC - LNC 16.97 14.23 (-16.15) 17.05  (+0.47) 17.95 (+5.78) 
ANN - ANN 10.66 9.10 (-14.63) 10.73  (+0.66) 11.24 (+5.44) 
NNN - NNN 6.63 5.55 (-16.29) 6.63  (0.00) 6.85 (+3.32) 
BNN - BNN 5.18 5.46 (+5.41) 5.18  (0.00) 6.07 (+17.18) 

Table A.4:  Evaluation of database merging strategies  (Topic = <desc> & <narr>) 
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 Precision (% change) 
     Collection WSJ90 WSJ91 WSJ92 
 Model OKAPI LNU - LTC LNC - LTC 
  132 queries 131 queries 112 queries 
 Average precision 33.45 28.67 30.73 
 # of relevant documents 1758 2961 685 
 # of relevant doc. retrieved 1686 2604 660 
 RSV min. 1.151 0.002 0.0137 
 RSV max. 184.117 0.0327 0.4455 
 RSV mean 16.926 0.0082 0.0590 
 RSV standard error 12.367 0.0030 0.0267 
 Database merging WSJ 
  141 queries 
 Isolated DB merging: 
 Round-robin  23.27 
 Logistic ln(RANK(Di)) 25.52  (+9.67) 
 Integrated DB merging: 
 Raw-score merging 11.87  (-48.99) 
 Norm. raw-score merging 22.09  (-5.07) 

Table A.5:  Evaluation of database merging strategies  (Topic = <desc> & <narr>) 


