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Abstract   Evaluation methodology, and particularly its statistical tests
associated, plays a central role in the information retrieval domain which maintains a
strong empirical tradition.  In an effort to evaluate the retrieval effectiveness of a
search algorithm, this paper focuses on the average precision over a set of fixed
recall values.  After reviewing traditional evaluation methodology through the use
of examples, this study suggests applying another statistical inference methodology
called bootstrap, within which no particular assumption is needed about the
distribution of the observations.  Moreover, this scheme may be used to assert the
accuracy of virtually any statistic, to build approximate confidence interval, and to
verify whether a statistically significant difference exists between two retrieval
schemes, even when dealing with a relatively small sample size.  This study also
suggests selecting the sample median rather than the sample mean in evaluating
retrieval effectiveness where the justification for this choice is based on the nature of
the information retrieval data.
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1.  INTRODUCTION

Information retrieval research has a strong empirical tradition and the
comparison of retrieval performances is based on test collections containing a set of
documents, a set of queries and, for each request, a set of relevance judgments.
Good test collections are very expensive to produce and there are some inherent
characteristics, often unknown, that may favor one retrieval scheme to the detriment
of another.  We therefore suggest using of more than one test collection when
comparing the relative performance of two retrieval schemes.

Moreover, when evaluating a retrieval scheme, we assume that the following
three hypotheses are always respected (Tague-Sutcliffe & Blustein, 1992), (Hull, 1993).
Firstly, all queries included in a test collection are independent or not obviously
related.  Secondly, all documents contained in a test collection are judged either
relevant or irrelevant to a given request.  Thirdly, each relevant record is equally
important in satisfying the user's information need.  Thus, the relevance of a given
document does not depend on the number of relevant and already retrieved
records.

Of course, these assumptions are not really realistic, but they can be adopted as
a first approximation.  For example, we recently suggested a retrieval scheme based
on the relationships between past queries in order to enhance the ranking of related
future requests (Savoy, 1994), and the underlying assumption of this retrieval
scheme clearly contradicts the first hypothesis.  The second supposition implies that a
"good" test collection must include a list of pertinent documents obtained, ideally
through a manual inspection of all documents contained in the corpus.  However, as
Fox (1983, pp. 41-42) notes:

"... it would be a formidable task to obtain exhaustive relevance
judgments.  The users who provided the questions were not likely to be
willing to make such an effort and even if they were, the time and expense
required would have been prohibitive.  ...  Though exhaustive relevance
information was not available, it was assumed for the sake of retrieval
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evaluation that the judgments provided were a good approximation to
having complete information."

Moreover, the relevance assessments given by users are subjective, as reported
by (Saracevic, 1975), (Schamber, 1994) and (Harter, 1996).  Cleverdon (1984, p. 39)
corroborates this finding when he writes:

" ... if two scientists or engineers are asked to judge the relevance of a
given set of documents to a given question, the area of agreement may
not exceed 60 percent."  

Finally, the third hypothesis is not totally realistic because a user will naturally
attach a greater utility to the first retrieved and relevant document than to the 25th.
However, these criticisms related to the design of test collections, and particularly to
the method used to obtain relevance judgments, cannot be a well grounded
argumentation to invalidate retrieval experiments (Salton, 1992).

These three hypotheses lead us to define a retrieval effectiveness measure on
the basis of both the number of relevant documents and the number of retrieved
records.  Respecting these two criteria, the average precision at eleven standard
recall values can be considered as a good retrieval effectiveness measure (Tague-
Sutcliffe, 1992, pp. 483-484), (Salton, 1992), (Tague-Sutcliffe & Blustein, 1994), and this
means is widely accepted throughout information retrieval literature.  However,
other approaches can also be considered, see (van Rijsbergen, 1979, Chapter 7), and
for a broader perspective about evaluation of IR systems, see (Saracevic, 1995).

This paper is organized as follows.  The first part describes typical experimental
methodology used to determine whether or not a retrieval scheme is better than
another.  In particular, we compare two suffix-stripping algorithms and analyze the
distribution of differences in the average precision at eleven recall values.  The
second part presents the motivations of using the sample median instead of the
sample mean as a location statistic in information retrieval studies.  Moreover, the
bootstrap methodology is briefly introduced, and, based on this approach, we show
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how to build confidence intervals and hypothesis testing by presenting simple
algorithms and illustrating them by examples.

2.  EVALUATION OF RETRIEVAL SYSTEM

Traditional evaluation methodology compares the average precision at eleven
recall values to determine whether a search strategy is better, equal of worse than
another.  As examples to illustrate our purposes, this paper will evaluate two
stemming algorithms.

The first section describes two suffix-stripping algorithms used throughout this
study.  Section 2.2 introduces two well-known retrieval models, namely the classical
Boolean model and the vector-space scheme.  This section will also present an
informal rule to decide whether a search strategy can be judged better than another.
Based on goodness-of-fit tests, Section 2.3 analyses the distribution of the difference
between two observation samples.  Finally, three statistical tests are applied to
determine whether or not Porter's stemming scheme is better than the s-suffix
stripping algorithm.

2.1  Suffix stripping algorithms

A stemming algorithm reduces inflectional and derivational variants of words
to a common form.  For example, the words "thinking", "thinkers" or "thinks" are
reduced to the stem "think".  To be precise, the root of a word is obtained by
removing both suffixes and prefixes while the stem is obtained by deleting only the
suffixes.

In information retrieval, grouping words having the same root under the same
stem (or indexing term) will increase the success of matching of documents to a
query (van Rijsbergen, 1979, Chapter!2).  Therefore, such an automatic procedure
may be a valuable tool for the enhancement of the retrieval effectiveness, under the
assumption that words having the same stem refer to the same idea or concept.
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To define such a procedure, a minimal stemming procedure called s-suffix will
only conflate the singular and plural word forms according to the following three
rules:

1. if a word ends in «-ies», but not «-eies» or «-aies»
then replace «-ies» by «-y»;

2. if a word ends in «-es», but not «-aes», «-ees» or «-oes»
then replace «-es» by «-e»;

3. if a word ends in «-s», but not «-us» or «-ss»
then remove «-s».

More sophisticated stemming schemes have already been proposed for suffix
removal (Lovins, 1968), (Porter, 1980), (Savoy, 1993), (Krovetz, 1993), (Paice, 1994),
(Hull, 1996).  Even if the retrieval effectiveness of such procedures has already been
analyzed (Frakes, 1992), the current study is concerned with a statistical analysis of
the difference between two retrieval schemes, and the evaluation of the s-suffix and
Porter's suffix-stripping algorithms will be used to illustrate our purposes.

2.2 Experimental results

As a retrieval effectiveness measure for a given query i, we suggest
incorporating the average precision at eleven standard recall values, measure noted
xi.  For a sample of n queries, we may compute the average precision and its

estimated standard error s  x̂  
_ according to the following formulae:

x  
_

  =  1n   . Â
i!=!1

n
!   xi

s   ̂x  
_  =  S2

n     =  S
n

         with S2  =  1
n-1    . Â

i!=!1

n
! (xi  - x

_
)  2 (1)

During our evaluations, we retain 50 requests for the CACM collection, because
two queries (#2 and #57) are addressed to external descriptors of documents (e.g.,
author's name).  The CISI corpus contains 35 requests, both in natural language and
Boolean forms.
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As a first retrieval strategy, we adopt the classical Boolean scheme within which
the retrieved records are ranked according to the decreasing order of their
publication date.  This ranking scheme favors recent documents and simulates a
presentation order common in commercial systems.

As a second retrieval scheme, we will consider the vector-space model, within
which the retrieval status value (RSV) of each retrieved record is computed according
to the well-known cosine similarity measure (Salton, 1989) as follows:

RSV(Di, Q) = 

Â
j!=!1

q
wij!.!wqj

! Â
j!=!1

t
!wij2!.!Â

j!=!1

q
!wqj2

                

where wij represents the weight of term Tj in document Di, wqj the weight of term Tj

in the current request Q, t the number of indexing terms in the collection, and q the
number of stems contained in the query Q.

To assign a value to both wij and wqj, our automatic indexing procedure applies

the following formula:

wij = ntfij . nidfj      where ntfij = 
tfij

!max!tfi
        and nidfj = log ÎÍ

È
˚
˙̆m

dfj
   / log(m)

where tfij is the frequency of the term Tj in the document Di, m the number of
documents Di in the collection, dfj the number of documents in which Tj occurs, and
idfj the inverse document frequency.

The evaluation of the Boolean and vector-space models according to our two
stemming procedures is shown in Table!1.
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Precision (% change)
Model  \  Collection CACM CISI
Classical Boolean model
s-suffix 19.52 13.08
Classical Boolean model
Porter's algorithm 21.00  (+7.6%) 13.66  (+4.4%)
Vector-space model (cosine)
s-suffix 30.92 18.60
Vector-space model (cosine)
Porter's algorithm 32.58  (+5.4%) 20.28  (+9.0%)

Table 1:  Average precision at eleven standard recall values

To decide whether a search strategy is better than another, we need a decision
rule.  To define such a rule, we may use the following rule of thumb:  a difference of
at least 5% in average precision is generally considered significant and a 10%
difference is considered very significant (Sparck!Jones & Bates, 1977, p.!A25).

According to this rule, and for the CACM collection, we may conclude that
Porter's stemming algorithm performs with significant enhancement for both
retrieval schemes.  When inspecting results obtained with the CISI corpus, the vector-
space model shows a significant increase when using Porter's procedure.  The
Boolean model however depicts only a near significant enhancement.  Based on
these results, it seems more appropriate to choose Porter's stemming algorithm
rather than the s-suffix scheme.

However, we may wish to establish that the difference in retrieval effectiveness
under two conditions is statistically different or that the difference does not simply
occur by chance.  To achieve this goal, we may base our decision rule on either
parametric or nonparametric tests instead of applying the described informal rule.

2.3 Goodness-of-Fit tests

The most important source of information in defining whether a search scheme
is more effective than another, is the study of the difference in average precision at
eleven recall values.  Such a measure is computed as follows:

xi  
d  =  xi  

a  -  xi  
b (2)
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in which xi  
a and xi  

b represent the average precision for the ith request obtained with

the retrieval strategy a, respectively strategy b.  In this study, the condition a
indicates the average precision using the s-suffix algorithm while condition b reflects
the result obtained with Porter's stemming procedure.

Since parametric tests generally assume that the random variable xi  
d follows a

Gaussian distribution, we want to verify such an assumption using the well-known
chi-square test (Freeman, 1987), (Conover, 1980, Section 4.5) instead of following our
prior feelings.

In such tests, the null hypothesis H0 states that the underlying distribution of

the observed data follows a given probability law, the normal distribution in our
case.  Under this condition, we compute a statistic based on the hypothesized
distribution and the probability of observing this value.  If the resulting probability is
less than a specified significance level a, we may conclude that the empirical

distribution of the data and the hypothesized distribution are statistically different, or
that the difference between both distributions could not only have occurred by
chance.  In the given context, the following two hypotheses are:

H0:  "The distribution function of the observations is a Gaussian distribution

function"

H1:  "The distribution function of the observed variable is different from the
normal"

After grouping the observations into c classes, the Pearson chi-square statistic
X2 will compare the observed count Ok and the expected number of observations Ek

in each cells k = 1, 2, ..., c (Conover, 1980, Section 4.5), (Freeman, 1987).  The expected
number Ek is computed according to the hypothesized distribution provided by H0.

Moreover, we generally require that the expected count in any class to be at least 1.0,
and more than 5.0 in at least 80 percent of the cells.  To respect these criteria,
10!groups were defined for the CACM collection, and 7!classes for the CISI corpus.
The Pearson chi-square statistic is computed according to the following formula:
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X2 = Â
i=1

c
! 
(Oi!!-!Ei)2

Ei
  

and the value X2 follows a chi-square distribution with c - p - 1 degrees of freedom
where c means the number of classes, and p the number of estimated parameters,
two for a Gaussian distribution.

For the CACM collection, the number of degrees of freedom is 10 - 2 - 1 = 7
leading to the critical values ta = 14.067 with a significance level a!=!0.05, or
ta!=!18.475 with a = 0.01 (the notation ta does not mean that the underlying

distribution is a Student).  For the CISI corpus, the number of degrees of freedom is
7!- 2!-!1 = 4 and the critical values ta are 9.488 with a significance level a = 0.05, or
ta!=!13.28 with a!=!0.01.  The resulting decision rule consists of rejecting the null
hypothesis if the value of X2 exceeds ta (one-sided test).

Besides this test, we may also consider the log likelihood statistic G2, or the
weighted least squares Q.  The computation of these two tests are based on the
following equations, and both statistics follow a chi-square distribution with c-p-1
degrees of freedom.

G2  =  2 . Â
i=1

c
!   Oi . ln Î

Í
È

˚
˙
˘Oi

Ei
            and  Q  =  Â

i=1

c
! 
(Oi!-!Ei)2

Oi
  

For the latest statistic, when the value Oi becomes zero for a given cell, we

replace it by 0.5.  The values of these three statistics are reported in Table!2 and are
based on the difference between the s-suffix algorithm and Porter's stemming
procedure.
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Statistics CACM Boolean CACM vector CISI Boolean CISI vector
Pearson X2 = 152.4 X2 = 28.8 X2 = 25.6 X2 = 10.8

chi-square ta = 18.475 ta = 18.475 ta = 13.28 ta = 9.488
H0 rejected H0 rejected H0 rejected H0 rejected

a = 0.01 a = 0.01 a = 0.01 a = 0.05
Likelihood Q = 88.306 Q = 47.898 Q = 36.856 Q = 21.905

ta = 18.475 ta = 18.475 ta = 13.28 ta = 13.28
H0 rejected H0 rejected H0 rejected H0 rejected

a = 0.01 a = 0.01 a = 0.01 a = 0.01
Weighted G2 = 85.234 G2 = 27.859 G2 = 24.143 G2 = 11.413

least squares ta = 18.475 ta = 18.475 ta = 13.28 ta = 9.488
H0 rejected H0 rejected H0 rejected H0 rejected

a = 0.01 a = 0.01 a = 0.01 a = 0.05

Table 2:  Goodness-of-Fit tests

From these results, we may conclude that, for the CACM collection, the
distribution of the difference for both the Boolean scheme and the vector-space
model does not follow a Gaussian distribution at a significance level of 0.01.  For the
CISI corpus, we must reject the null hypothesis H0 for the classical Boolean model

(significance level of 0.01).  For the vector-space model, the Pearson chi-square and
the weighted least squares tests lead to the conclusion that the hypothesis H0 must

be rejected at the significance level of 0.05, but cannot be rejected for a = 0.01.

However, not all retrieval performance differences follow this pattern.  For example,
when comparing the Boolean model and the vector-space scheme, we cannot reject
the hypothesis that the distribution of the difference between these two schemes
follows a normal distribution.

Besides the chi-square tests, we may also use the more powerful Kolmogorov-
Smirnov method.  The basic idea of this statistic test consists of computing the
absolute value of the difference between Fn(x), the empirical distribution of the

observations, and F(x) the theoretical distribution provided by the null hypothesis
H0 (Conover, 1980, pp. 346-353).

To verify whether the difference values comply with a Gaussian distribution,
we formulate the null hypothesis H0 that the underlying distribution is normal and

we calculate the following statistic:
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T  =  max   x    [ | Fn(x) - F(x) | ]

in which T measures the absolute value of the maximum deviation between Fn and

F.  The results depicted in Table!3 are based on a two-sided test, and the null
hypothesis H0 is rejected if the value of the statistic T is greater than the value

specified by ta (since the underlying distribution is symmetrical, only one percentile

value is depicted in Table!3) .
Statistic CACM Boolean CACM vector CISI Boolean CISI vector

Kolmogorov T = 0.357168 T = 0.19381 T = 0.277072 T = 0.172868
ta = 0.2305 ta = 0.1923 ta = 0.269 ta = 0.224

n = 50 n = 50 n = 35 n = 35
H0 rejected H0 rejected H0 rejected H0 cannot be

a = 0.01 a = 0.05 a = 0.01 rejected: a=0.05

Table 3:  Summary of Kolmogorov-Smirnov test

The conclusions that can be drawn from Table!3 confirm those of the chi-square
tests.  For the CACM corpus, the difference in average precision does not follow a
Gaussian distribution.  Except for the vector-space model and using the CISI

collection, the Kolmogorov-Smirnov test indicates that we cannot reject the fact that
the distributions of the data may follow a normal distribution (significance level of
0.05).  Since the Gaussian distribution is an assumption for various parametric tests,
and following (van Rijsbergen, 1979), we conclude that these tests are suspect in
most information retrieval contexts.

2.4 Statistical tests

The aim of statistical tests is to know whether or not the difference between
two retrieval schemes is really significant or if this difference could have occurred by
chance.  The resulting decision is strengthened (1) when the difference values are
relatively high;  or (2) when these values are, more or less, always in favor of the
same retrieval scheme; and  (3) when the sample size grows.

Based on the results of Table!1, we have informal evidence that Porter's
stemming scheme is better than the s-suffix approach.  Using statistical tests, we
want to confirm this conclusion.  Therefore, in the following tests, the null hypothesis
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H0 states that the s-suffix scheme is better or equal to Porter's stemming algorithm.

Such a null hypothesis plays the role of a devil's advocate, and we hope that the
resulting statistic will lead us to reject this hypothesis (one-sided test).

Under H0, each test computes a statistic T and calculates the achieved

significance level of this test which is the probability of observing a value at least as
extreme as T when the null hypothesis H0 is true.  If this probability is less than a

specified significance level a, we may conclude that the search schemes are

significantly different.

In the following computations, the results corresponding to the retrieval
scheme a are obtained with the s-suffix algorithm, while Porter's stemming
procedure represents condition b.

The "paired t test" represents the first statistical test that we might consider,
under the assumption that the difference xi  

d follows a normal distribution.  The

formulation of the statistic T is described by Equation!3 (Conover, 1980, pp. 290-292).
The corresponding decision rule consists of rejecting H0 if T < ta, where the

percentile ta follows a Student's distribution with n-1 degrees of freedom.

T  = x
_d

!Sxd!/! n
       with x  

_d  =  1n   . Â
i!=!1

n
!   xi  

d     and  Sxd  =  1
n-1!!.!Â

i=!!1

n
!(xi

d!-!x
_d)2  (3)

The result of this parametric test is of questionable value, because, as we have
shown in Section 2.3, the distribution of the difference does not follow a Gaussian
distribution, and this is a problem only for small sample which is the case in our
study.  As mentioned in (van Rijsbergen, 1979), this test seems therefore
inappropriate.

However, even if the distribution of the observations is not normally shaped
but if the empirical distribution is roughly symmetric, the t-test can be still a useful
test because it is relatively robust in the sense that the indicated significance level is
not far from the true a level.  However, testing symmetry is a more complex

procedure, e.g., (Antille et al., 1982).



- 12 -

The Wilcoxon Signed-Ranks test is based on the statistic T computed according
to Equation!4 (Siegel, 1956, pp. 75-83), (Conover, 1980, pp. 280-288).  If the null
hypothesis H0 is true (the s-suffix scheme exhibits a better or equal effectiveness than

Porter's stemming procedure), the values of T tend to be large, and small values of T
indicate that H0 is false.  Therefore, our decision rule is to reject H0 if T < za, where

the percentile za follows a standard normal distribution N(0,1).  However, the

approximation, T
 
~  .  N(0,1), is valid only if n!>!20, which is the case in the current

study.  Finally, for both the Wilcoxon and Sign tests, ties (if any) are removed before
the underlying statistics are computed, and the resulting size n is indicated in Table!4.

T  = 
Â
i!=!1

n
!!Ri

Â
i!=!1

n
!!Ri

2
          with Ri  =  sign(xi  

d) . rank | xi  
d |,  and T

 
~  .  N(0,1) (4)

For the Sign test (Siegel, 1956, pp. 68-7)], (Conover, 1980, pp. 122-129), the
corresponding statistic is expressed in Formula!5 and represents the number of times
that the s-suffix stemming algorithm returns a better performance than Porter's
stemming scheme.

T  = Â
i!=!1

n
!   I![x  

_d > 0]         with  I![x  
_d > 0] = Ó

Ì
Ï
1 !!!!!if!x

_d!>!0
0!!!!!otherwise

  

and ta  =  12   . (n + za . n  )    with z ˜ N(0,1), and n > 20 (5)

Large values of T indicate that the average precision provided by the s-suffix
procedure tends to be higher than Porter's stemming algorithm, as assumed by H0.
The decision rule will compare the values of T and ta, and the null hypothesis H0 will

be rejected if T ≤ ta.

The results of Table!4 do not corroborate the conclusions based on our rule of
thumb described in Section 2.2.  For all statistics, except two, the decision is to accept
the null hypothesis H0 stating that the s-suffix scheme presents better, or at least

equal, retrieval effectiveness compared to Porter's stemming procedure.  However,
a decision to accept H0 is not equivalent to the opinion that the null hypothesis H0 is
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true, but, instead, represents the fact that "H0 has not been shown to be false"
resulting of insufficient evidence against H0.

As mentioned, both Wilcoxon and Sign test are based on a reduced sample size
because ties are removed.  A closer look at the Table!4 data demonstrates that, for
the CACM collection and using the classical Boolean model, these tests are based only
on 24 pairs of values, leading to the conclusion that, for 26 requests, both suffix-
stripping schemes return identical retrieval performances.

The previous tests are based on average precision differences.  However, if the
difference is relatively small for a given request (e.g., less than 0.1%, an arbitrary
level), we might consider such a value to be zero as suggested by the following
equation.  For example, if under two different conditions and for one query, we
obtain 25.33% and 25.27% as average precision, it seems reasonably to view this
difference as non significant.  Ignoring these very small differences, the computation
of the various statistical tests leads to the same conclusion.

xi  
d  =  Ó

Ì
Ïxi

a!!-!!xi
b !!|!xi

a!!-!!xi
b!|!!>!!0.1

!!!!!!0!!!!!! otherwise   

When comparing the conclusions drawn for the rule of thumb given in
Section!2.2 and those from the statistical tests, we are faced with different deductions.
For example, for the CISI collection, the average precision of the vector-space model
based on Porter's stemming scheme is 9% higher than those provided by the s-suffix
algorithm (20.28 vs. 18.6 in Table!1).  According to the informal rule, Porter's
algorithm results in a significant enhancement over the s-suffix scheme.  However,
such an affirmation is not confirmed by all statistical tests.
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Statistics CACM Boolean CACM vector CISI Boolean CISI vector
Paired t-test T = -1.4301 T = -0.8107 T = -0.8355 T = -2.2044

ta = -1.6775 ta = -1.6775 ta = -1.697 ta = -1.697
n = 50 n = 50 n = 35 n = 35

H0 cannot be H0 cannot be H0 cannot be H0 rejected
rejected: a=0.05 rejected: a=0.05 rejected: a=0.05 a = 0.05

Wilcoxon T = -1.0 T = -1.877 T = 0.3723 T = -1.4905
za = -1.6449 za = -1.6449 za = -1.6449 za = -1.6449

n = 24 n = 48 n = 31 n = 35
H0 cannot be H0 rejected H0 cannot be H0 cannot be

rejected: a=0.05 a = 0.05 rejected: a=0.05 rejected: a=0.05
Sign test T = 12 T = 19 T = 19 T = 16

ta = 7.97 ta = 18.30 ta = 10.92 ta = 12.63
n = 24 n = 48 n = 31 n = 35

H0 cannot be H0 cannot be H0 cannot be H0 cannot be
rejected: a=0.05 rejected: a=0.05 rejected: a=0.05 rejected: a=0.05

Table 4:  Results of statistical tests

To clarify this dilemma, we suggest the following explanation.  The pragmatic
rule is based on the sample mean which, by definition, for various requests, may
hide the fact that the s-suffix scheme may return better results than Porter's
stemming algorithm.  The statistic T of the Sign test in Table!4 indicates that for 16
queries over 35, the s-suffix returns a better retrieval performance.  However, when
Porter's stemming scheme gives a better performance, the difference is relatively
high, and leads to an average precision greater than the mean provided by the s-
suffix procedure.  Thus, an informal rule, based on an overall measure, leads to the
conclusion that Porter's stemming scheme is better, while the Sign test, grounded on
all individual requests, does not corroborate to this finding.

According to van Rijsbergen (1979), we know that the conditions required for
the application of these tests are not really met in the information retrieval context.

"[The Wilcoxon Matched-Pairs] test is done on the differences Di!=!Za(Qi) -
Zb(Qi), but it is assumed that Di is continuous and that it is derived from a

symmetric distribution, neither of which is normally met in IR data. ... [The
sign test] makes no assumptions about the form of the underlying
distribution.  It does, however, assume that the data are derived from a
continuous variable and that the Z(Qi) are statistically independent.  These
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two conditions are unlikely to be met in a retrieval experiment.
Nevertheless given that some of the conditions are not met it can be used
conservatively." (van Rijsbergen, 1979, pp. 178-179)

However, for (Hull, 1993), even if these conditions are not strictly respected,
statistical tests are still valid, because with a sufficiently large sample, discrete and
bounded measures are often well-approximated by continuous distribution.  Our
purpose is not to elaborate on these two positions, but rather to go beyond this
debate in suggesting another statistical methodology which relieves the investigator
of having to make assumptions underlying both parametric and nonparametric
statistical models (e.g., variances for different treatment groups are approximately
equal, effects and interactions of the independent variables are additive, etc.).

3.  ANOTHER LOOK AT RETRIEVAL EFFECTIVENESS MEASURES

The distribution of the difference between two retrieval schemes does not
follow a normal distribution in all circumstances, and, therefore, parametric tests are
of doubtful value.  Nonparametric tests stipulate hypotheses that may not hold in
the context of information retrieval analysis (van Rijsbergen, 1979), and other
statistical models may be based on unrealistic or unverifiable assumptions.
Moreover, the average precision does not represent the only measure available to
quantify the difference between two retrieval schemes, and we may also consider
the median, a more robust location statistic.  Based on the bootstrap paradigm, this
chapter suggests another approach for deciding whether or not a retrieval strategy
provides a better retrieval effectiveness than another.

The rest of this paper is organized as follows.  Section 3.1 analyzes the choice of
the sample mean as a summary statistic for information retrieval evaluation studies
and suggests replacing this measure by the sample median.  After obtaining a point
estimator, we need some indication of its accuracy or a numerical value of its
standard error.  To achieve this goal, Section 3.2 explains the basic idea of the
bootstrap approach and illustrates its use through examples.  Section 3.3 describes
how one can build approximate confidence intervals based on the bootstrap
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paradigm, while the last section describes the algorithm that can be apply for
inferential decisions.

3.1 Choice of a summary statistic

Sample mean is one approach measuring the central tendency of a distribution,
and the sample median approach can also be considered.  This latter location
measure is represented by the value in the middle of the sorted sample.  For

example, the median and the mean x  
_
 of the sample X = {25, 26, 27, 28, 29} are both

equal to 27.  When a sample contains an even number of values, the median can be
computed according to the average between the two values in the middle of the
sample.  However, what are the differences between these two statistics?

When we introduce a zero value in our sample leading to X!=!{0, 25, 26, 27, 28,
29}, the sample median is evaluated as (26 + 27) / 2 = 26.5.  The introduction of this
value zero, represents a very different value compared to the rest of the sample,
leading to a sample mean value of 22.5.  Such a number does not seem typical;  after
all, 5 of the 6 values are greater than 22.5.  Since the sample mean is sensitive to the
presence of extreme scores, it is not a particularly good measure of location when
the distribution is skewed and / or truncated.  By contrast, the median is not
dramatically changed by the new value, and therefore represents a more robust
summary statistic.

In the information retrieval domain, the presence of an average precision of 0
for a request reflects the fact that the retrieval scheme is unable to find any relevant
record.  Particularly when an retrieval scheme is based on the Boolean model, such a
phenomena can be explained by various reasons as, for example, by writing a too
restrictive query, introducing a spelling error or a variant of a term (e.g., "foetus",
"fetus"), confusion between the operator AND and OR (e.g., the request "whale" OR

"dolphin" was written as "whale" AND "dolphin").

In a less extreme situation, the analysis of various TREC experiments
demonstrates that a retrieval scheme may perform very well for some queries and
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poorly for other requests.  In Section 2.4., we also find that the overall statistics, like
the average precision, may hide performance irregularities among requests when
comparing two retrieval schemes.  Moreover, we know that the vector-space model
does not perform very well with a very short query.  From these considerations, we
really need a robust summary statistic to evaluate the retrieval effectiveness and the
median seems to be a better measure than the mean.

However, the sample mean displays interesting properties.  We know of both
its expectation and variance which provides a general idea of the accuracy of this

point estimator.  Moreover, based on the central limit theorem, the distribution of x  
_

will be approximately normal as the sample size n gets larger.  Thus, we may write:

x  
_  

~  .  N Ë
Á
Ê

¯
˜
ˆ

m!;!
ŝ!

n
  (6)

in which the symbol ~  . means that the random variable follows approximately a
Gaussian distribution.  This formulation leads us to construct confidence intervals
around the observed sample mean and hypothesis testing.  However, such an
approximation can be good if n is large, but can be quite inaccurate for the sample
size actually available.  Moreover, other location statistics are not necessary
represented by a neat formula like Equation!6, and the assessment of the accuracy of
such an estimator can be quite hard.  Therefore, some authors (e.g., (Grimm, 1993))
suggest that the median must be considered only as a descriptive measure.

Collection and Model n x  
_

median S
CACM Boolean model, s-suffix 50 19.52 12.01 22.62
CACM Boolean model, Porter 50 21.00 14.51 22.63
CISI Boolean model, s-suffix 35 13.08 10.92 9.79
CISI Boolean model, Porter 35 13.66 13.53 9.65
CACM vector-space model, s-suffix 50 30.92 26.99 20.78
CACM vector-space model, Porter 50 32.58 29.86 21.46
CISI vector-space model, s-suffix 35 18.60 17.31 12.58
CISI vector-space model, Porter 35 20.28 20.88 13.10

Table 5:  Average precision statistics at eleven standard recall values

In order to obtain a picture of the value of the median for our retrieval
schemes, Table!5 depicts the statistics for both test collections.  Limited to a point
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estimate, a given statistic is not especially interesting, and we really need some
indication about the accuracy of such a value.  To achieve this objective, the
bootstrap method can be a useful tool.

3.2 Principles and examples of bootstrap methodology

To assign measures of accuracy to virtually any statistical estimators, we
suggest using the bootstrap methodology (Efron & Tibshirani, 1986), (Léger et al.,
1992), (Efron & Tibshirani, 1993).  Within this paradigm, we do not have to rely
entirely on the central limit theorem to obtain a numerical value of estimator
accuracy.  Such an approach is very attractive in the information retrieval domain,
because we could use the median instead of the mean to measure the central
tendency of a sample.

The basic idea of the bootstrap approach is simple and can be explained as
follows.  For retrieval effectiveness measures, we have a sample of observations X!=
{x1, x2, ..., xk, ..., xn} of size n, drawn from a population of queries possessing a

probability distribution F.  If we know the real distribution F, we may compute the
underlying parameter of interest, e.g., the median or the mean, according to q!=!t(F).
Since the distribution F is unknown, we want to estimate the parameter q by a point
estimate q   ̂= t(F  )̂ based, for example, on the plug-in principle.  Within this approach,

the estimate is computed according to the same function, t() in our case, which
should be applied if we know the real distribution F.  In this computation, we
substitute F by the empirical distribution F  .̂  Traditional statistics theories may
provide other functions for obtaining a point estimate based on a sample of
observations.  However, the aim of the bootstrap methodology is not to provide
another formula to calculate an estimator, but to achieve a measure of accuracy of
any statistical estimate.

In order to achieve this goal, the computer generates a set of bootstrap samples
X*i  = {x*  1, x*  2, ..., x*  k, ..., x*  n}, for i = 1, 2, ... B, by random sampling with replacement
from X.  This process garantees that each value x*  k is mutually independent of each

other and identically distributed (i.i.d.) of F  ,̂ where F   ̂represents the empirical
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distribution function putting probability 1/n on each value xk (nonparametric

bootstrap).  Each bootstrap sample X*i contains members of the sample X, some
appearing zero times, some once, some twice, etc.

When we randomly generate a bootstrap sample, each value xk has the

probability 1/n to be selected, according to the empirical distribution F  .̂  Thus, the
probability that a given value xk does not appear in a bootstrap sample of size n is:

pn = ÎÍ
È

˚
˙̆1!-!1n    n,   and when n Æ ∞, the value pn Æ e-1 ≈ 0.368

On the other hand, the probability that a given value xk appears in a bootstrap

sample is:

1 - pn = 1 - ÎÍ
È

˚
˙̆1!-!1n    n,   and when n Æ ∞, the value 1 - pn Æ 1 - e-1 ≈ 0.632

From each sample X*i , we may compute q  *̂i, the bootstrap replication of q  ^

computed according to the same function which was applied to compute q   ̂from X.
Finally, the value of s  *̂(q  *̂), the estimator of standard error associated with q  *̂, can

be considered as a good approximation to numerical value of the standard error
associated with q   ̂(see underlying formulae in Figure!1).  Of course, one bootstrap

sample is clearly not enough to obtain an accurate estimate of the standard error,
and the computer will repeat this procedure B times according to the algorithm
depicted in Figure!1.

However, the bootstrap method may sometimes fail to give an appropriate
numerical value of the standard error of an estimator q, as mentioned by Efron &

Tibshirani (1993, p. 81):

"The difficulty occurs because the empirical distribution F   ̂ is not a good
estimate of the true distribution F in the extreme tail.  ... The
nonparametric bootstrap can fail in other examples in which q depends on

the smoothness of F."

Such cases have not been encountered in our case, within which the point
estimator is a summary statistic (e.g., the sample mean or the sample median, as
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demonstrated in (Bickel & Freedman, 1981)).  For example, it could be misleading to
apply bootstrap methodology, at least as described in this paper, to estimate the
standard error associated to the maximum of a distribution (Bickel & Freedman,
1981, Section!5).

Estimator accuracy measurement for q  ^

Given X = {x1, x2, ..., xk, ..., xn} , a sample of size n;
for i = 1, 2, ..., B (e.g., B = 50 to 1000)

Generate X*i  = {x*  1, x*  2, ..., x*  k, ..., x*  n} a bootstrap sample
drawn

with replacement from X, and with x*  k ~ i.i.d. of F   ̂;
Compute the statistic q   ̂*i corresponding to each bootstrap

sample X*i ;
next i

Compute s   ̂* (q   ̂*) = 1
B-1!!.! Â

k=1

B
!!(q̂!*k!-!q

_
*)2      with q  

_
* = 1B    . Â

k=1

B

!q̂!*k   

Figure 1:  General bootstrap algorithm

As an example illustrating our purposes, we will evaluate the accuracy of both
the sample mean and the sample median of a retrieval scheme operating under two
different conditions.  Given a set of seven queries, we obtain the following results
under circumstances a: {98, 70, 49, 47, 19, 11, 8}, and the following values when using
method!b: {73, 52, 36, 25, 20, 15, 5}.  We assume that each xk ~ i.i.d. of the distribution

F, which means that the requests are not related.  The standard errors for both the
sample mean and median are depicted in Table!6.

Statistics  \   B = 50 200 500 2000 5000 •

s  ^mean a 12.7403 11.2162 11.4564 11.7848 11.5548 11.633
s  ^median a 17.9733 18.1793 18.4362 18.7467 18.904 18.841
s  ^mean b 8.9398 8.0931 8.0571 8.2796 8.1905 8.216

s  ^median b 10.2776 10.5954 11.1351 11.3062 11.5838 11.868

Table 6:  Standard errors of the sample mean and the sample median
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In the last column of Table!6, we have included the exact value of both standard
errors.  For the median, these values are obtained according to the argument that
follows.  For a given bootstrap sample of size seven, the probability that the median
will be equal to xi  (or the fourth member of the sorted sample) is the following

(Efron & Tibshirani, 1993, p.16):

p(i) = Â
j!=!0

3
!{!Bi(j;!n;!(i-1)/n)!-!Bi(j;!n;!i/n)!}!     with Bi(j; n; p) = ËÊ ¯

ˆn
j    . pj . (1-p)n-j

in which Bi(j; n; p) represents the binomial probability.

The resulting values, p(1)=0.0102, p(2)=0.0981, p(3)=0.2386, p(4)=0.3062,
p(5)=0.2386, p(6)=0.0981, p(7)=0.0102, are used to obtain the corresponding values of
the median and its associated standard error in Table!6.

From this table, one can see that as the constant B gets larger, the accuracy of
the standard error gets closer to the limit value (last column).  However, the
particular value can sometimes be larger, sometimes smaller than this limit (e.g., see
s  ^mean a).  In another case, the values increase slightly as B grows (e.g., see s  ^median

a) but the sampling variability decreases as B increases, or in other words, the

estimates came closer and closer to the limit value.  Moreover, for both samples, the
standard error associated with the sample median is larger than the numerical value
of the standard error of the mean.  For these samples, the mean is therefore more
accurate than the median.

Such a computer application however must be based on a "good" uniform
pseudo-random number generator.  For this purpose, we have implemented a
generator grounded on combined Tausworthe sequences producing a period length
about 1018.  Moreover, a battery of 21 statistical tests applied to this generator does
not reveal any regularity in the resulting sequences (Tezuka & L'Écuyer, 1991),
(L'Écuyer & Côté, 1991), even if a truly random sequence cannot be computed
(Herring & Palmore, 1995).
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3.3 Approximate bootstrap confidence interval

After obtaining a numerical value of the standard error for a given statistic, we
want to go a step further in defining an approximate confidence interval for a point
estimate.  If we already know the value of the statistic q   ̂ and its standard error, we
actually do not know the distribution followed by q   ̂.  If the sample mean is chosen

as a summary statistic, and if n is relatively large, then the following statistic Z
becomes a standard normal distribution.

Z  =  
x
_!

-!m
!sx

_     =  
x
_!

-!m
!s/ n

  
 
  ~  .   N(0,1) (7)

and, according to Equation!1, we may estimate the standard error of the sample
mean as s   ̂x  

_  =  s  ^/ n  .  Using the standard normal distribution to find the
numerical value of percentiles za and z1-a, the following standard interval estimate

will have a coverage probability equal to 1!-!(2!. !a).

ProbF { za  ≤  
x
_!

-!m
sx

_     ≤  z1-a
 }  =  1 - 2 . a

which can be written as:

ProbF { -z1-a  ≤  
m!-!x

_

sx
_     ≤  -za

 }  =  ProbF { x  
_ 

- z1-a . sx  
_  ≤  m  ≤  x  

_ 
- za . sx  

_ }

and we obtain the following confidence interval:

[ x  
_
 - z1-a . s   ̂x  

_ ;  x  
_
 - za . s   ̂x  

_ ]      (8)

Improvement of such interval estimates can be obtained for a moderate sample
size n.  The assumption leading to Equation!7 is valid only if n is relatively large, and

Gosset (1908) derives a better estimate when q   ̂= x  
_
 and demonstrates that the

underlying statistic Z follows a Student's distribution with n-1 degrees of freedom.
Thus, Formula!8 can be written as:

[ x  
_
 - tn-1,1-a . s   ̂x  

_  ;  x  
_
 - tn-1,a . s   ̂x  

_ ] (9)
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in which tn-1,1-a or tn-1,a follows a Student's distribution with n-1 degrees of

freedom.

To obtain an interval estimate for the median and without relying entirely on
the central limit theorem, we may use the following procedure.  Given X!=!{x1, x2, ...,
xn} a sample of n values representing the average precision at eleven standard recall
value, we assume that each xi  ~ i.i.d. of F.  To obtain an interval estimate or a

confidence interval for the estimator q   ̂, we will use a nested bootstrap procedure as

shown in Figure 2.

In a first step, we compute the estimate q   ̂ based on the available sample X.  In
order to obtain a numerical value of the standard error of q   ̂, we generate B1

bootstrap samples drawn with replacement from X, and such that each x*  k ~ i.i.d. of

F  .̂  Based on a given bootstrap sample X*i , we may compute the bootstrap
replication of q   ̂ noted q   ̂*i.  To obtain a numerical value of the estimate of the
standard error associated with each q   ̂*i, we apply a second time the bootstrap
algorithm, generating B2 bootstrap samples X**j which members are drawn with
replacement from X*i .  After B2 draws, we may compute the numerical value of the
standard error of q   ̂*i, noted s   ̂**(q   ̂*i ) which is used to calculate t*  i , a Studentized

value, as:

t*  i  =  
q̂!*i !-!q̂

!ŝ!**(q̂!*i )
   

which forms a sample of B1 values used to build our estimate of the distribution of

the percentile ta directly from the observations.
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Confidence interval around q  ^

Compute q   ̂= t(F   ̂), the estimator based on the sample X;
for i = 1, 2, ..., B1  (e.g., B1 = 200 to 1000)

Generate X*i  = {x*  1, x*  2, ..., x*  k, ..., x*  n};
Compute the statistic q   ̂*i based on the bootstrap sample X*i;
for j = 1, 2, ..., B2  (e.g., B2 = 25 to 200)

Generate X**j = {x*  1*, x*  2*, ..., x*  k*, ..., x*  n* } a bootstrap
sample

drawn from X*i  and with x*  k* ~ i.i.d. of F   ̂*;
Compute q   ̂**j the statistic of the bootstrap sample X** j;

next j

Compute q  
_
**  =  1

B2
    . Â

k=1

B2

!q̂!**k  

Compute s   ̂**(q   ̂*i )  =  1
B2-1!!.! Â

k=1

B2
!!(q̂!**k!-!q

_
**)2   

Compute t*  i   =  
q̂!*i !-!q̂

!ŝ!**(q̂!*i )
    

next i

Compute q  
_
* = 1

B1
    . Â

k=1

B1

!q̂!*k   

Compute s   ̂* (q   ̂*)  = 1
B1-1!!.! Â

k=1

B1
!!(q̂!*k!-!q

_
*)2  

Sort by increasing value the vector T = {t*  1, t*  2, ..., t*  B1};
Compute the interval of confidence (95%) for q   ̂which is:

[ q   ̂- t*  [.975.B1] . s  *̂ (q   ̂*) ;  q   ̂- t*  [.025.B1] . s  *̂ (q   ̂*) ]

Figure!2:  Algorithm to build confidence interval for a median

Such a scheme does not use any parametric assumption such as Equation!7, and
we implicitly build a table for the percentile ta for constructing the needed

confidence interval.  The resulting interval is often asymmetrical about 0.
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This algorithm has been used to build an approximate confidence interval for
the median and the mean as shown in Table!7.  For these computations, we set the
value of B1 to 200, and B2 to 50.

Statistics CACM s-suffix CACM Porter CISI s-suffix CISI Porter
Median 12.013 14.512 10.919 13.53
s  *̂(q  *̂) 3.744 3.791 2.592 3.124

(-t*  [.975.B1], -t*  [.025.B1]) (-2.53, 1.86) (-2.51, 1.89) (-2.22, 2.32) (-2.15, 3.00)
Confidence Interval [2.55, 18.98] [5.0, 21.69] [5.15, 16.94] [6.81, 22.91]

Mean 19.518 21.003 13.076 13.657
s  *̂(q  *̂) 3.075 3.006 1.705 1.655

(-t*  [.975.B1],  -t*  [.025.B1]) (-1.91, 2.41) (-1.84, 2.50) (-1.91, 3.0) (-1.95, 2.77)
Confidence Interval [13.64, 26.92] [15.48, 28.51] [9.83, 18.20] [10.43, 18.24]

S / n  3.199 3.200 1.655 1.631
Standard CI [13.09, 25.94] [14.57, 27.43] [9.72, 16.44] [10.35, 16.97]

Table 7a:  Confidence interval for classical Boolean model (a = 0.05)

Statistics CACM s-suffix CACM Porter CISI s-suffix CISI Porter
Median 26.994 29.86 17.311 20.877
s  *̂(q  *̂) 3.881 3.245 3.773 3.679

(-t*  [.975.B1], -t*  [.025.B1]) (-1.70, 2.45) (-2.48, 2.18) (-3.06, 5.11) (-2.34, 2.35)
Confidence Interval [20.41, 36.50] [21.83, 36.95] [5.78, 36.58] [12.28, 29.52]

Mean 30.917 32.578 18.597 20.277
s  *̂(q  *̂) 2.899 2.810 2.276 2.378

(-t*  [.975.B1], -t*  [.025.B1]) (-1.88, 1.84) (-1.65, 2.28) (-1.82, 2.94) (-2.01, 2.97)
Confidence Interval [25.48, 36.26] [27.95, 38.99] [14.45, 25.28] [15.50, 27.35]

S / n  2.939 3.036 2.126 2.215
Standard CI [25.09, 36.74] [26.48, 38.68] [14.28, 22.91] [15.78, 24.77]

Table 7b:  Confidence interval for vector-space model (a = 0.05)

Under the label "Standard CI", one can find the standard interval estimate
computed according to Equation!9.  The percentile of Student's distribution is
tn-1,1-a = 2.009, with n = 50 and a = 0.05 (tn-1,1-a = 2.03, with n = 35 and a = 0.05).   As

n -> •, the bootstrap and standard intervals converge toward each other, and

sample mean examples are provided in Table!7.

The information contained in these tables can be used to answer the question as
to how far the guess q   ̂ might reasonable be.  For example, using the CACM
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collection, the sample mean of the classical Boolean model is 21.003 (Porter's
stemming procedure).  With a coverage probability of 0.95, we may say that the real
mean for this retrieval scheme must be between 15.48 and 28.51 (or between 14.57
and 27.43 using a standard confidence interval).

From these tables, it can be observed that the standard errors associated with
the median are greater than those of the sample mean.

3.4 Hypothesis testing

After obtaining a numerical value for the point estimator accuracy and building
confidence intervals for them, we then wish to test the null hypothesis H0 or the

validity of the assumption of identical two medians (or means).  This assumption will
be accepted if two retrieval schemes return statistically similar performances, and
rejected if not.  Such comparison of treatments or effects represents the major
objective of a retrieval experiment.

To achieve this goal, we take a sample of observations Xp = {(x1  
a, x1  

b); (x2  
a, x2  

b);
...; (xk  

a, xk  
b); ...; (xn  

a, xn  
b)} representing the average precision at eleven standard recall

values for a sample of n queries using respectively the retrieval scheme a (xk  
a) and

the search strategy b (xk  
b).  We know that each pair of values (xk  

a, xk  
b) ~ i.i.d. of an

unknown distribution P.  This assertion implies that each xk  
a ~ i.i.d. of Fa, and xk  

b ~

i.i.d. of Fb, where Fa and Fb represent possibly different probability distributions.

If these two retrieval schemes result in similar retrieval effectiveness, we might
state the null hypothesis H0, that the mediana = medianb or that the mediana -
medianb = 0 (or meana - meanb = 0).

To test whether or not the two medians are statistically equal, the first step is to
compute a sample Xd = {x1  

d, x2  
d, ..., xk  

d, ..., xn  
d} based on the difference between the

two search strategies according to the following equation:

xk  
d  = xk  

a -  xk  
b      with xk  

d ~ i.i.d. of F   ̂ d.
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From this sample of size n, we may compute the value q  ,̂ the estimate of our
summary statistic q, the median or the mean of the unknown distribution Fd, and we

may write the underlying hypotheses of our test as follows:

H0: q = 0    vs.   H1:  q ≠ 0

Based on the numerical value of q   ̂ which is fixed at its observed value, we
compute the sample U = {u1, u2, ..., uk, ..., un} according to uk = xk  

d - q   ̂ so that
uk!~!i.i.d. of G  ,̂ and having the null hypothesis distribution, the distribution of q   ̂ if
H0 is true.  On the one hand, if the estimator q   ̂ represents the median, we might
state that G   ̂-1(0.5) = 0, which satisfies H0.  On the other hand, if we have estimated

the mean, U represents a sample of a distribution G   ̂ having a mean equal to zero.

Based on the sample U, we may use the general idea of bootstrap
methodology.  The computer generates a bootstrap sample U*i  = {u*  1, u*  2, ..., u*  k, ...,
u*  n} of size n drawn from U, with u*  k ~ i.i.d. of G   ̂'  (with G   ̂' -1(0.5) = 0, or with mean

equal to zero).

From each bootstrap sample U*i , we compute a bootstrap replication of the
median (or the mean) noted q   ̂* i .  We repeat this process B times and we obtain an
empirical distribution of q   ̂* i forming the basis for the outcome of our test.
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Hypothesis testing
Compute q  ,̂ the median (mean) of the empirical distribution
      as q   ̂= t(F   ̂d);
Hypothesis:  q = 0  (H0)  vs.  q ≠ 0  (H1);
Compute U = {u1, u2, ..., uk, ..., un} according to uk = xk  

d - q   ̂ ;
for i = 1, 2, ..., B  (e.g., B = 200)  to generate values having the null
     hypothesis distribution;

Generate U*i  = {u*  1, u*  2, ..., u*  k, ..., u*  n} a bootstrap sample;
Compute q   ̂* i  the absolute value of the median (mean) of the

bootstrap sample U*i ;
next i
Test for equality:
Does the fixed value |q  ^| exceed the threshold value q   ̂* i  [.95.B]?

if yes, H0 must be rejected;  if not, H0 cannot be rejected.

Figure!3:  Algorithm determining whether two location statistics are identical

In order to obtain a two-sided test, the absolute values of q   ̂* i are sorted.  From
this empirical distribution, we select a threshold value given a significance level a.
This value can be found in the position (1-a) . B and will be compared with the
absolute value of the point estimator q   ̂of the sample Xd.  If the fixed value |q  ^|
exceeds the threshold value q   ̂* i  [1-a.B], then the null hypothesis H0 is rejected,

leading to the conclusion that the two retrieval schemes present a significant
difference.  Otherwise, we cannot reject the null hypothesis, inferring that the two
search strategies exhibit similar retrieval effectiveness.

As a guideline for choosing an appropriate value for the constant a, we suggest
that when a = 0.01, the resulting test decision can be interpreted as very strong
evidence against H0, while a = 0.05 represents reasonably strong evidence against
H0 (the value used in Figure 3).

The underlying procedure shown in Figure!3 can also be applied to compute
the achieved significance level of the bilateral test (ASL), or the probability of
observing the value q   ̂ when the null hypothesis H0 is true.  This probability is

calculated as follows:
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ASL  =  
!I![|q̂!* i !|!>!|q̂!|]

B             with  I![| q   ̂* i  | > |q   ̂|]  =  Ó
Ì
Ï1 !!!!!if!|!q̂!* i !|!>!|q̂!|
0! !!!!!otherwise   

Table 8 demonstrates the bootstrap test results for the equality of two medians,
and two means respectively.  In rows "Median Xa" and "Median!Xb", we have
reported the retrieval scheme sample median based on the s-suffix algorithm, and
Porter's stemming scheme respectively.  The third row indicates the value of the
statistic q   ̂ based on the sample Xd, the difference between the performance obtained

with the s-suffix algorithm and Porter's stemming procedure.  In the fourth row, we
have indicated the absolute value of q  *̂ i  

[.95.B].  Finally, the probability value of ASL

is depicted, and the last row denotes the underlying test results.  For these
computations, the value of B was set to 200.

Statistics CACM Boolean CACM vector CISI Boolean CISI vector
Median Xa 12.013 26.994 10.919 17.311
Median Xb 14.512 29.863 13.53 20.877

q  ^ 0.0 -0.697 0.034 -0.199
q  *̂ i  

[.95.B] 0.0 4.376 0.282 1.391
ASL 1.0 0.495 0.45 0.6

Decision H0 cannot be H0 cannot be H0 cannot be H0 cannot be
rejected: 0.05 rejected: 0.05 rejected: 0.05 rejected: 0.05

Mean Xa 19.518 30.917 13.076 18.597
Mean Xb 21.003 32.578 13.657 20.277

q  ^ -1.485 -1.661 -0.581 -1.679
q  *̂ i  

[.95.B] 2.123 3.552 1.298 1.386
ASL 0.18 0.37 0.415 0.02

Decision H0 cannot be H0 cannot be H0 cannot be H0 rejected
rejected: 0.05 rejected: 0.05 rejected: 0.05 a = 0.05

Table 8:  Testing the equality of two medians or two means
when comparing stemming procedures (two-sided test, a = 0.05)

The resulting decision that can be inferred form this table is that the s-suffix
stemming scheme performs in a manner similar to Porter's stemming procedure.

However, our data can also be used to verify the null hypothesis H0 that the

classical Boolean model performs similarly to the vector-space model based on the
cosine coefficient.  Of course, such an assumption can be viewed as a devil's advocate
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because we already know that the vector-processing retrieval strategy performs
better than the Boolean model.  To investigate this hypothesis, we calculate the
difference between the Boolean model average precision against that achieved with
the vector-space model.  Of course, these comparisons are based on the same suffix-
stripping algorithm (see Table!9).

Statistics CACM s-suffix CACM Porter CISI s-suffix CISI Porter
Median Xa 12.013 14.512 10.919 13.53
Median Xb 26.994 29.863 17.311 20.877

q  ^ -9.221 -9.268 -4.265 -5.952
q  *̂ i  

[.95.B] 3.930 6.308 3.801 4.3
ASL 0.0 0.0 0.01 0.005

Decision H0 rejected H0 rejected H0 rejected H0 rejected
a = 0.05 a = 0.05 a = 0.05 a = 0.05

Mean Xa 19.518 21.003 13.076 13.657
Mean Xb 30.917 32.578 18.597 20.277

q  ^ -11.399 -11.575 -5.521 -6.620
q  *̂ i  

[.95.B] 5.649 6.830 3.218 3.222
ASL 0.0 0.0 0.0 0.0

Decision H0 rejected H0 rejected H0 rejected H0 rejected
a = 0.05 a = 0.05 a = 0.05 a = 0.05

Table 9:  Testing the equality of two medians or two means
when comparing two retrieval models (two-sided test, a = 0.05)

The conclusion that can be drawn from Table!9 is clear:  the vector-space model
performs in a manner superior to the classical Boolean model using either the mean
or the median as a location statistic, or the suffix-stripping algorithm.
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4.  CONCLUSION

The aim of this paper was to evaluate the retrieval effectiveness of a search
system and to form a firm theoretical basis for comparing retrieval schemes.  After
reviewing traditional statistical tests used in information retrieval studies, we suggest
rejecting the paired t-test to verify whether or not a retrieval scheme is better than
another, because the underlying distribution of the data does not always follow a
normal distribution.  Moreover, since the hypotheses underlying nonparametric
tests are not always strictly respected in the information retrieval domain (van
Rijsbergen, 1979), this study suggests using the bootstrap methodology to both
analyze the performance of a single retrieval mechanism and to compare two search
strategies.  However, the bootstrap approach is not an "assumption-free" method
and requires that the observations are independent and identically distributed (i.i.d.).
In information retrieval, this means that we must assume that the queries sample
associated with a given test collection is a reasonable representative of the requests
population.

The bootstrap methodology retains the advantage of relieving the investigator
from having to make assumptions imposed by both parametric and nonparametric
statistical models, or having to derive formulae that can be hard to come by.  This
paper explains how the bootstrap resampling approach can be applied to building a
confidence interval for a given statistic (e.g., the mean or the median) and
developing a technique for the application of this approach for statistical inferences.
This paper also suggests using the sample median instead of the sample mean as a
location measure for information retrieval data.

Even if this study proposes the use of average precision at eleven recall values
as a measure of the retrieval performance of a search strategy, the underlying
methodology can be applied to other measures of retrieval effectiveness such as the
fallout ratio, the expected search length (Cooper, 1968), etc.

Our evaluation methodology indicates whether or not a difference between
two retrieval techniques can be considered as significant.  However, real retrieval
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systems are ultimately judged by users, and for them, even a difference that cannot
be considered as significant by a statistical test may be both valuable and important if
it occurs repeatedly in various contexts (Keen, 1992).  Moreover, tests based on small
test collections might not always reflect retrieval performance in very large
commercial full-text environments (Ledwith, 1992).  However, this criticisms and
other related to test collections, do not invalidate most of the important conclusions
that can be drawn from retrieval experiments (Salton, 1992).
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