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In authorship attribution, various distance-based
metrics have been proposed to determine the most
probable author of a disputed text. In this paradigm, a
distance is computed between each author profile and
the query text. These values are then employed only to
rank the possible authors. In this article, we analyze their
distribution and show that we can model it as a mixture
of 2 Beta distributions. Based on this finding, we dem-
onstrate how we can derive a more accurate probability
that the closest author is, in fact, the real author. To
evaluate this approach, we have chosen 4 authorship
attribution methods (Burrows’ Delta, Kullback-Leibler
divergence, Labbé’s intertextual distance, and the naïve
Bayes). As the first test collection, we have downloaded
224 State of the Union addresses (from 1790 to 2014)
delivered by 41 U.S. presidents. The second test collec-
tion is formed by the Federalist Papers. The evaluations
indicate that the accuracy rate of some authorship deci-
sions can be improved. The suggested method can
signal that the proposed assignment should be inter-
preted as possible, without strong certainty. Being able
to quantify the certainty associated with an authorship
decision can be a useful component when important
decisions must be taken.

Introduction

In text categorization, various classifiers have been pro-
posed to determine the most appropriate category (or cat-
egories) for a query text. These predefined categories could
be thematic labels (topical text categorization) (Sebastiani,
2002), the most probable author (authorship attribution)
(Stamatatos, 2009), or other discriminative factors (e.g., sen-
timent or opinion analysis [Pang & Lee, 2008]). In such
categorization tasks, the answer could be a Boolean value
(binary classifier), a single label selected over a set of pos-
sible tags, the probability of belonging to the most likely

category, or a ranked list of categories (sorted according to
the estimated fitness of the various categories to the query
text).

When considering the wide range of possible applica-
tions, obtaining only the target category could be enough in
some cases (hard classifiers). For example, in handwriting
recognition, one simply needs the character or word that
corresponds best to the input features. Similar expectations
could apply for e-mail filtering in which the user just wants
the removal of spam e-mails without further information. In
authorship attribution, the system answer cannot be limited
to a single person, namely, the most probable author of
the disputed text. A better approach is to return a ranked
list of possible authors (soft classifiers) with their corre-
sponding fitness to the disputed text. This latter value is,
however, difficult to interpret by the user who is unable to
predict if a given value or the difference between two values
should be viewed as either small or large. Obtaining an
accurate probability of the identity of the real author would
be more useful, but this information is usually not given. Of
course, the proposed decision should also be justified by
stylistic considerations that cannot be usually generated
automatically.

Focusing on authorship attribution, the aim of this article
is to propose a method to estimate the probability that a
proposed authorship attribution is correct. In fact, even when
an authorship attribution scheme returns a fitness value
between an author profile and the doubtful text, such values
are usually difficult to interpret. In this article, we model
these fitness values as belonging to a mixture of two distri-
butions. The first corresponds to all values obtained when
considering correct attributions. The second represents the
distribution of incorrect assignments. When the underlying
authorship attribution is based on a distance, the values
corresponding to correct assignments tend to be smaller than
values associated with incorrect assignments. However, a
clear and disjoint separation between the two distributions
never occurs in practice. Thus, instead of being limited to
either a single author name with or without a fitness value,
the proposed algorithm will return a precise probability esti-
mation that the proposed solution is correct, or indicate that
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the given evidence is not sufficient to reach a decision with
a high degree of certainty.

The next section presents an overview of related work
while the Evaluation Corpora section depicts the main fea-
tures of the corpora used in our experiments. In Author
Attribution Models, we describe four authorship attribution
models used in our study. The Mixture Model section
describes our mixture model to represent the distribution of
distance values. Based on this model, the last section evalu-
ates four distinct authorship attribution schemes using our
corpora.

Related Work

Computer-based authorship attribution (Craig & Kinney,
2009; Stamatatos, 2009) aims to determine, as accurately as
possible, the author of a disputed text (e.g., a part of a play or
an anonymous letter) based on text samples written by known
authors. Using this general definition, we can find the closed-
class attribution problem where the real author is one of the
given candidates. In the open-set problem, the real author
could be one of the specified authors or an unknown one.
Authorship attribution can also be implemented to mine
demographic or psychological information on an author (pro-
filing) (Argamon, Koppel, Pennebaker, & Schler, 2009) or
simply determine whether or not a given author did, in fact,
write a given text (chat, e-mail, or testimony) (verification)
(Koppel, Schler, & Bonchek-Dokow, 2007).

To solve the closed-set question, various authorship attri-
bution approaches try to derive the particular style of the
disputed text and those corresponding to the possible candi-
dates. These stylistic representations are usually based on
either the frequency analysis of functional words (e.g.,
determiners, pronouns, prepositions, conjunctions, and
certain auxiliary and modal verbs) or on the top m most
frequent words, with m between 50 and 1,000 (Burrows,
2002; Hoover, 2004; Savoy, 2015a). Other studies have con-
sidered the letter frequencies (Merriam, 1998) or short
sequences of letters (n-gram), but always by focusing on the
most frequent ones (Kešelj, Peng, Cercone, & Thomas,
2003).

As additional sources of evidence, we can take account of
the part-of-speech (POS) distribution or short sequences of
POS tags. Moreover, some studies have also considered
structural and layout features, such as the number of lines
per sentence or per paragraph, paragraph indentation,
number of tokens per paragraph, presence of greetings or
particular signature formats, as well as features derived from
HTML tags. Both syntactical and layout information tends,
at best, to slightly improve the overall performance over
word-based features (Zheng, Li, Chen, & Huang, 2006).

Based on such representations, different distance-based
methods can be applied to determine the distance, or
inversely the similarity, between the possible authors and the
disputed text. These distance values are then used to rank the
authors, and the closest is defined as the most probable
author (Burrows, 2002; Zhao & Zobel, 2007; Labbé, 2007).

Machine-learning is another approach (Mitchell, 1997;
Barber, 2012). Based on a set of texts with known author-
ship, the computer can learn the particular style correspond-
ing to each author. Within this paradigm, a feature selection
is usually applied first to extract from the entire vocabulary
the words (or n-gram of characters) that can best discrimi-
nate between the different authors. Various experiments
have been conducted based on different models such as the
naïve Bayes, the k-nearest neighbors (k-NN), the support
vector machine (SVM), or nearest shrunken centroids
(Jockers & Witten, 2010; James, Witten, Hastie, &
Tibshirani, 2013).

With these methods, the important and useful output is
the name of the author having his profile the closest to the
disputed text. The value of the distance (or the fitness) is
either not given or difficult to interpret. When a probability
that the corresponding author is the real one is given, it is not
clear how this estimation is computed for many machine-
learning approaches. Moreover, returning a probability = 1.0
the majority of the time tends to appear overoptimistic (or
might indicate an overfitting during the learning stage).
However, some approaches, such as the logistic regression
report on the probabilities of the different categories based
on a clear, well-understood theoretical framework (James
et al., 2013). Van Halteren, Baayen, Tweedie, Haverkort,
and Neijt (2005) also suggest estimating the probability that
a given writer is the real author of a text. In this case, the
proposed estimation is specific to the suggested method
based on an adhoc weighted voting scheme combining a
large number of feature-value pair sets (with normalization
factors to guarantee that the resulting values are between 0
and 1).

Better still, Labbé (2007) suggests taking into account the
resulting distance between the disputed text and the possible
author. In this case, if the computed distance is large, the
proposed attribution should be interpreted as possible, given
without certainty. To define this threshold, Labbé (2007)
assumes that all intertextual distance values computed with
the training set follow a Gaussian distribution. Based on this
distribution, all attributions based on a distance smaller than
mean—2.5 * standard deviation (representing approxi-
mately 0.5% of the cases) will be interpreted as good
evidence.

Following this line of thought, we will propose a better
model to describe the distribution of the distance values
corresponding to correct and incorrect attributions. More-
over, we can derive a probability estimate that the proposed
attribution is correct based on clear theoretical basis. To
evaluate this proposition, two distinct corpora described in
the next section have been used together with four author-
ship attribution schemes.

Evaluation Corpora

The first corpus used in our experiments contains 224
State of the Union addresses (SUAs) delivered by 41 U.S.
presidents, from G. Washington (1790) through to B. Obama
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(2014). The main objective of these speeches is to inform the
Congress and the nation about the state of the country and
the world on the one hand and, on the other, to announce
legislative projects for the upcoming year. A more detailed
analysis of the form and political functions of these
addresses can be found in Hoffman and Howard
(2006).

Some of these SUA addresses are well known for
explaining an important issue or a political position held for
decades, such as the Louisiana purchase (1803), the Monroe
Doctrine (1823), the Roosevelt corollary to the Monroe
Doctrine (1904), the Four Freedoms (1941), or the War on
Poverty (1964). In others, we can find the first occurrence of
well-known expressions, such as the axis of evil (2002). In a
recent study, Savoy (2015b) shows that, when applying a
clustering algorithm on this collection, all speeches appear-
ing under the same presidency tend to cluster under the same
cluster.

This corpus was generated by downloading all speeches
from the website www.presidency.ucsb.edu. There are no
speeches for two presidents (W. H. Harrison [1841] and
J. A. Garfield [1881]) because their terms were limited to a
few months. We have also removed the single speech written
by Z. Taylor (1849). In fact, it is not possible to test an
authorship attribution scheme with a unique document that
cannot be used simultaneously to build an author profile and
serve as query text. The Appendix Table A1 presents, with
more details, a complete list of all U.S. presidents with the
number and date of their SUA addresses.

Each speech has been cleaned by replacing certain
UTF-8 punctuation marks with their corresponding ASCII
symbol. When needed, the diacritics found in certain words
(e.g., détente) have been removed. Moreover, the contracted
forms are replaced by their equivalent full forms (e.g., we’re
into we are).

To represent each text, we can employ the word tokens
(e.g., taken, takes, took or taxes, tax) or the word types
(lemmas or entries in the dictionary). Using this last form,
word tokens belonging to the same dictionary entry are
regrouped under the same word type (e.g., take or tax in our
previous examples). Such an approach has the advantage of
ignoring possible variations resulting from syntax.

To define the corresponding word type to each word
token, we used the POS tagger proposed by Toutanova,
Klein, Manning, and Singer (2003). For each sentence given
as input, this system provides the corresponding POS tag to
each token. For example, from the sentence “I want to
implement the Wall Street reform law.”, the POS tagger
returns “I/prp want/vbp to/to implement/vb the/dt Wall/
nnp Street/nnp reform/nn law/nn ./.” Tags may be attached
to nouns (nn, noun, singular, nns noun, plural, nnp proper
noun, singular), verbs (vb, base form, vbg gerund or present
participle, vbp non-third-person singular present, vbz third-
person singular present), adjectives (jj), personal pronouns
(prp), prepositions (in), determiners (dt), and adverbs (rb).
These morphological tags correspond mainly to those used
in the Brown corpus (Francis & Kučera, 1982). This

information makes it possible to derive the word type by
removing the plural form of nouns (e.g., laws/nns → law/
nn) or by substituting inflectional suffixes of verbs (e.g.,
creates/vbz → create/vb).

After this preprocessing, this U.S. corpus contains
1,955,699 tokens for 20,589 distinct lemmas (length of the
vocabulary). When considering the occurrence frequency,
we have 6,242 hapax legomena (word types appearing only
once and corresponding to 30.3% of the whole vocabulary)
and 2,426 dis legomena (word types occurring exactly
twice, representing 11.8% of the vocabulary). The definite
determiner the (151,068 occurrences) is the most frequent
word type, followed by of (97,818), the comma (96,128), be
(65,455), the full stop (61,563), to (60,182), and (59,920), in
(38,335), an (33,817), and we (31,214).

At the speech level, the mean length is 8,731.2 tokens
(standard deviation [SD], 5,860). The longest address was
written by Taft in 1910 (30,773 tokens) and the shortest by
Washington in January 1790 (1,180 tokens). When consid-
ering the mean length per president, Adams (1797–1800)
wrote the shortest remarks (average of 1,931 tokens per
speech) while Taft (1909–1912) is the author, of the longest
addresses (24,655 tokens).

As a second evaluation corpus, we have selected the
Federalist Papers (Rossiter, 2003) composed of 85 articles,
a test collection already used in authorship attribution
studies (Mosteller & Wallace, 1964; Jockers & Witten,
2010; Savoy, 2013). This set of articles was written to per-
suade the citizens of New York to ratify the U.S. Constitu-
tion (adopted September 17, 1787 in Philadelphia and
ratified on July 26, 1788 by the State of New York). These
articles were published between October 1787 and April
1788 in three newspapers under the pseudonym of Publius.
Although, at the time of publication, the authorship of each
article was kept secret, contemporaries guessed the joint
work of General Alexander Hamilton (1755–1804), James
Madison (1751–1836), and John Jay (1745–1829), without
being able to explicitly attribute each article to its legitimate
author.

From these 85 articles, 70 are undisputed (5 by Jay, 14 by
Madison, and 51 by Hamilton) and can be used for training
purposes. For three articles, the authorship might be a col-
laborative effort between Madison and Hamilton, and there-
fore they are ignored. For the rest (test set), 12 articles could
have been written by either Hamilton or Madison (article
nos. 49–58 and 62–63).

To generate this corpus, the Federalist articles have been
downloaded from the Gutenberg project (www.gutenberg
.org). From the plain text version, we have ignored the
Gutenberg boilerplate as well as all metadata (e.g., title,
author name, and source), the footnote texts, and calls. In all
articles, the recurrent first sentence (“To the People of the
State of New York”) has been removed. All the text was
transposed to lowercase and tokenized to determine words
(sequence of letters or digits) and punctuation symbols. As
for the SUA corpus, each article is represented by its
lemmas.
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Based on this representation, the Federalist corpus con-
tains 203,190 tokens for 7,191 distinct lemmas (length of the
vocabulary). In this collection, we can find 2,616 hapax
legomena (corresponding to 36.4% of the whole vocabulary)
and 1,059 dis legomena (representing 14.7% of the vocabu-
lary). The definite determiner the (16,849 occurrences) is the
most frequent word type, followed by the comma (12,644),
of (11,192), be (8,367), to (6,767), the full stop (4,973), and
(4,833), an (4,768), in (4,276), and it (3,212).

The average length of an article is 2,478 tokens (SD,
840). When considering the mean length per author, Ham-
ilton shows an average of 2,423 tokens per article, Madison
3,107, and Jay 1,875. For the 12 disputed articles, this mean
is 2,230 tokens per text.

Authorship Attribution Models

As for authorship attribution schemes, we have selected
three distance-based approaches, namely, the Delta rule
described in the next subsection, the Kullback-Leibler diver-
gence, and Labbé’s distance. Derived from the machine-
learning paradigm, we have chosen to evaluate the naïve
Bayes model presented in the last subsection.

Delta Rule

To determine the most probable author of a disputed text,
Burrows (2002) suggests taking into account the occurrence
of very frequent terms (e.g., the top m = 50 to 200 most
frequent word types). In this set, we can find many function
words (e.g., determiners, prepositions, conjunctions, pro-
nouns, and certain auxiliary verbal forms). In this attribution
scheme, the underlying idea is to consider only those very
frequent words used unconsciously by an author and able to
reveal his or her own style markers.

Burrows proposes to not directly consider the absolute
occurrence frequencies, but rather their standardized scores.
This Z-score value is computed for each selected term ti in a
corpus by calculating its relative term frequency rtfij in a
particular document dj, as well as the mean (meani), and
standard deviation (Si) of term ti according to all texts
belonging to the underlying corpus, as depicted in Equation
(1) (Hoover, 2004).

Z score t
rtf mean

S
ij

ij i

i

( ) =
−

(1)

Once these dimensionless quantities are obtained for each
selected term, we can then compute the distance to those
obtained from author profiles. Given a query text Q, an
author profile Aj, and a set of terms ti, for i = 1, 2, . . . , m,
Burrows (2002) suggests to compute the Delta value (or the
distance) by applying Equation (2).

Delta Q A m Z score t Z score tj iq ij
i

m

( , ) ( ) ( )= ⋅ −
=
∑1

1

(2)

When computing this distance, we attribute the same impor-
tance to each term ti, regardless of its absolute occurrence
frequencies. Large differences may occur when, for a given
term, both Z scores are large and have opposite signs. In
such cases, one author tends to use the underlying term more
frequently than the mean while the other employs it very
infrequently. Finally, to determine the most probable author,
we select the author Aj depicting the smallest distance Delta.

Kullback-Leibler Divergence

Zhao and Zobel (2007) suggest considering a limited
number of predefined terms to discriminate between differ-
ent possible authors of a disputed text. Their proposed list
consists of 363 English terms, mainly function words (e.g.,
the, in, but, not, am, of, can), as well as certain frequently
occurring forms (e.g., became, nothing). Other entries are
not very frequent (e.g., howbeit, whereafter, whereupon),
whereas some reveal the underlying tokenizer’s expected
behavior (e.g., doesn, weren) or seem to correspond to
certain arbitrary decisions (e.g., indicate, missing, specify-
ing, seemed).

After defining the feature set, the probability of occur-
rence of each word associated with a given author or a
disputed text has to be estimated. Based on these estima-
tions, we can define the degree of disagreement between the
two probabilistic distributions. To do so, Zhao and Zobel
(2007) suggest using the Kullback-Leibler divergence
(KLD) formula, also known as relative entropy (Manning &
Schütze, 1999). The KLD value expressed in Equation (3)
indicates how far the term distribution derived from the
query text Q diverges from the jth author profile distribution
Aj (concatenation of all texts written by the same writer):

KLD Q A t
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j ii
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( ) [ ] log
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⎡

⎣
⎢

⎤

⎦
⎥

=
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Prob

Prob
2

1
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where Probq[ti] and Probj[ti] indicate the occurrence prob-
ability of the term ti in the query text Q or in the author
profile Aj, respectively. With this definition, and when the
two distributions are identical, the resulting value is zero,
whereas in all other cases the returned value is positive. As
a decision rule, we assign the query text to the author whose
profile shows the smallest KLD value.

To estimate the underlying probabilities, we may con-
sider the term occurrence frequency (denoted tfi) and the
length in tokens of the corresponding text (n) (e.g.,
Prob[ti] = tfi/n, estimation based on the maximum likelihood
principle). This solution tends, however, to overestimate the
occurrence probability of terms appearing in the sample to
the detriment of missing words. To resolve this anomaly, we
suggest smoothing the probability estimates using the Lid-
stone technique (Manning & Schütze, 1999) based on the
following estimation: Prob[ti] = (tfi+λ) / (n + λ|V|), with |V|
indicating the vocabulary size. Based on past experiments
(Savoy, 2012), this λvalue was fixed to 0.1, which produces
a slightly better performance over other choices. Finally, as
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for the Delta rule, the smallest KLD value indicates the most
probable author of the disputed text.

Labbé’s Distance

To determine the most probable author of a disputed text,
Labbé (2007) suggests computing a distance between the
disputed text Q and each author profile Aj. The proposed
distance measure is a function of the overlap between the
two texts, with a minimum value 0 and the maximum equal
to 1. Between these two limits, the distance depends on both
the number of terms in common and their frequencies. To be
precise, the distance between the author profile Aj and the
disputed text Q is given by Equation (4), assuming that the
author profile Aj is longer than the text Q:

Dist( , )
2

with ,

1A Q
tf tf

n

tf tf
n

n
n tf

j

ij iqi

m

q

ij ij
Aj

q
q i

=
−

⋅

= ⋅ =

=∑ ˆ

ˆ  qqi

m

q Aj iji

m
n n tf∑ ∑= =and ˆ

ˆ
(4)

where tfiq indicates the term frequency (number of occur-
rences) of term ti in Q, nq and nAj the length of document Q,
respectively, the author profile Aj.

The important aspect in this computation is to compare
two texts with the same length. To achieve this, Equation (4)
reduces the term frequencies of the longest document
(assumed to be the author profile Aj in Equation [4]) by
multiplying them with the ratio of the two text sizes. After
this normalization, nÂj = nq. Then for each term ti that
appears either in Aj or Q, we compute the absolute value of
the difference in term frequencies.

Based on this formulation, and when all term frequencies
are equal in both texts (we have twice the same texts), the
summation will be zero. On the other hand, when the two
texts have nothing in common, the sum returns the value
nÂj + nq or 2 . nq. Dividing this value by 2 . nq, the final
distance will be 1.

Unlike the two previous authorship attribution methods,
this scheme could be based on the whole vocabulary (as
suggested by Labbé [2007]) or on a selection of the m most
important terms. In order to achieve effective attributions,
Labbé (2007) specifies some limits for this approach. First,
each text should be longer than 5,000 tokens. This is not a
hard constraint, but it is useful to have an idea about a
minimal length. Second, the ratio between the largest and
smallest text must be maximally around 1:8.

Naïve Bayes

The three previously described authorship attribution
methods belong to the classical distance-based paradigm. In
the machine-learning domain, other approaches have been
suggested for text categorization (Sebastiani, 2002) or
authorship attribution (Jockers & Witten, 2010). As a learn-
ing scheme, we select the naïve Bayes model (Mitchell,

1997; Manning, Raghavan, & Schütze, 2008) to determine
the probable writer between the set of possible authors
(or hypotheses), denoted by Aj. To define the most probable
author, the naïve Bayes model selects the one maximizing
Equation (5), in which ti represents the ith term included
in the query text Q, and m indicates the number of selected
words.

ArgMax Prob Prob Prob

Prob

A j j i j
i

m

j

j A Q A t A
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[ | ] [ ] [ | ]
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∝ ⋅

∝ +

=
∏

1

lln( [ | ])Prob t Ai ji

m

=∑ 1

(5)

To estimate the previous probabilities of each author
(Prob[Aj]), we simply take into account the proportion of
texts written by each author or assume a uniform distribution
over all writers. This second possibility was applied in our
experiments.

To determine the term probabilities Prob[ti | Aj], all texts
belonging to the same author are regrouped to define the
author profile. For each term ti, we compute the ratio
between its occurrence frequency in the author profile Aj (tfij)
and the length of this sample (nAj). As with the previous
methods, the Lidstone smoothing approach was applied to
estimate each probability Prob[ti | Aj] = (tfij+λ) / (nAj+λ.|V|),
with λ as a parameter (set to 0.1) and |V| indicating the
vocabulary size.

Unlike the three previous distance-based attribution
schemes, the largest value will indicate the most probable
author of the disputed text. This number is not strictly speak-
ing a probability, but a value proportional to the correspond-
ing probability than the author Aj is the real author of text Q.
Moreover, instead of multiplying m probabilities (and some
of them could be very small), this equation is transformed by
taking the natural logarithm. The sequence of multiplica-
tions is then transformed into a series of additions, as shown
in the left part of Equation (5).

Mixture Model

When applying any of the previously described attribu-
tion schemes, the system returns a list of possible authors
ranked according to their fitness values to the disputed text.
This value could be proportional to the estimated probability
of being the right author (naïve Bayes), an intertextual dis-
tance between 0 and 1 (Labbé), a positive distance (Delta
rule), or a measure of the divergence between two distribu-
tions (KLD). How can we interpret this value? What is a
small versus a large value? When does this value correspond
to a correct attribution with a high degree of certainty or
given without strong support?

To answer these questions, the distance value d (or
fitness) can be modeled as a mixture model of two distribu-
tions. The first one, denoted D1, corresponds to correct
assignments, while the second, indicated by D2, matches the
incorrect attributions. The general probability density
corresponding to a mixture of two distributions is given in
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Equation (6), where α denotes the relative importance of
each distribution, and u1, u2 indicate the underlying param-
eters of the two distributions.

f d D d u D d u( ) ( | ) ( ) ( | )= ⋅ + − ⋅ ≤ ≤α α α1 1 2 21 0 1with (6)

Even if D1 and D2 can be modeled by two different prob-
ability distributions, we usually select the same one, and the
Gaussian is a classical choice (Bishop, 2006).

In authorship attribution, empirical distributions are
usually not symmetrical, a reason not to choose a Gaussian
distribution. Moreover, the possible values for the distance d
tend to be limited and certainly do not cover a large spec-
trum (as is possible with a Gaussian one). Finally, when the
variable d represents a distance, the distribution D1 (correct
assignments) will show smaller values than the distribution
based on incorrect attributions. When d indicates a similarity
measure (e.g., or argmax with the naïve Bayes approach),
the reasoning is reversed.

Considering these facts, we prefer representing the dis-
tribution of the distance d using the Beta probability density
function defined by Equation (7). In this representation, the
variable d can take any value in the interval [0,1]. The
precise curvature of the density function is defined by
the two parameters a and b. For example, when a = b = 1,
the distribution is uniform (dotted horizontal line in
Figure 1); all possible values of d have the same chance of
occurring. When both a and b are greater than 1, the distri-
bution is unimodal. This is the case in the authorship attri-
bution studies. Moreover, when b > a > 1, the mode is
smaller than 0.5 (two examples are given in Figure 1). In our
context, this situation is very common for distributions cor-
responding to the correct attributions. On the other hand,
when a > b > 1, the mode is greater than 0.5. Figure 1 illus-
trates the Beta density function for different parameter
settings.
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Having defined a value for the two parameters a and b, the
mean and the variance of a Beta distribution can be computed
according to the following equations (Equation [8]).

Mean and Varianceμ σ=
+

= ⋅
+ ⋅ + +
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2

2 1
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The precise values of the mean and the variance are not
usually known when the exact values of the parameters a
and b are unknown. We can estimate them using the follow-
ing formulations (Equation [9]).
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Finally, the values for a and b are usually unknown, but can
be estimated by the following formula (Equation [10]).
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(10)

Figure 2 depicts two empirical distributions obtained when
using the KLD with the SUA corpus. The distribution D1

(correct assignments, depicted in light gray) shows, on
average, smaller values than the distribution D2 based on
incorrect attributions (dark stripes in Figure 2). For example,
the mean of distribution D1 is 0.0889, whereas for D2 the
mean is 0.2711 (median D1: 0.0778; median D2: 0.2546).
Moreover, the distribution D1 has a smaller standard devia-
tion than D2 (in our example, 0.048 vs. 0.14). The values
of the distribution D1 are more concentrated, showing less
variability.

FIG. 1. Four different density functions (Beta distribution) produced by
different parameter settings. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

FIG. 2. Density estimations for KLD based on the SUA corpus (correct
attributions in dark gray, incorrect assignments with stripes). [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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When a small KLD value is obtained between a disputed
text and a given author, there is a greater chance that this
possible attribution is correct than if a larger one. In
Figure 2, the vertical dotted line depicted at position 0.15
splits the KLD values into two; a KLD value smaller than
0.15 tends to indicate a correct assignment, a larger value
tends to indicate the opposite.

With this example, the minimal d value is 0.0186, found
between the SUA of 1905 by T. Roosevelt and T.
Roosevelt’s profile. The maximum value is 0.76 when com-
puting the KLD between 1827 Monroe’s speech and Bush’s
profile (father). As an interesting case, we can mention the
1916 SUA by Wilson. When computing the KLD with all
possible profiles, the minimum value of 0.2617 is achieved
with Wilson’s profile. Thus, considering only the author
with the minimum value, the automatic attribution scheme
assigns this text to Wilson. However, when looking at
Figure 2, we can see that this minimal value is very close to
the median of the distribution D2 (incorrect assignments). Is
such a minimal d value a strong support for the attribution to
Wilson?

Finally, when analyzing the examples of the Beta distri-
bution displayed in Figure 1 and the empirical distributions
depicted in Figure 2, we can infer that for both distributions,
the parameters a and b are greater than 1, and that a < b for
the D1 distribution (correct assignments), leading to a mode
smaller than 0.5.

Until now, we have assumed that the maximum value for
d is 1. This is the case, for example, with the Labbé measure
defined between 0 and 1. For the KLD measure, a value
larger than one might be obtained, and with the Delta
measure, this will certainly be the case. Thus, before apply-
ing the mixture model of two Beta distributions, all d values
have to be divided by the maximum value.

After this normalization, all possible values for d are
between 0 and 1. Applying this to the data used in Figure 2,
Figure 3 illustrates the mixture model after normalizing the
KLD data with the approximation for D1 (light gray and in
red) and for D2 (gray stripes and in blue).

Evaluation

The first experiment is based on the State of the Union
corpus containing 224 addresses. In this case, it is assumed
that all the speeches by one president are written by the
same author(s) (or ghost writer[s]). As authorship attribu-
tion models, the three distance-based schemes have been
applied and, from the machine-learning paradigm, the naïve
Bayes approach. To discriminate between the specific style
of each writer, the 300 most frequent words (MFWs) are
used, a number that tends to produce relatively high perfor-
mance levels across different authorship schemes (Savoy,
2015a). This list contains many functional words (determin-
ers [the, a], prepositions [in, for], conjunctions [and, but],
pronouns [we, where], some adverbs [always, very], and
some auxiliary and modal verbal forms [is, can, will]). Of
course, the main topics of the underlying corpus also

produce many entries (such as citizen, federal, defense,
treasury, or constitution).

The first row of Table 1 depicts the evaluation based on
this feature set for the four strategies using the 224 speeches
with 41 possible authors. During the evaluation, the query
text is not used, in any way, to generate the author profile the
(leaving-one-out evaluation method). The resulting perfor-
mance levels are thus not biased.

As an alternative to the MFWs, we have considered 309
words selected by Hughes, Foti, Krakauer, and Rockmore
(2012) containing many functional words, but also some
frequently used words (e.g., go, show, fifty, side, detail, or
serious). This list was applied to analyze the stylistic varia-
tions across the last four centuries (Hughes et al., 2012) and
therefore may also contain some spelling variations (e.g.,
amongst and amougst). The intersection of Hughes’s list and
the 300 MFWs contains 111 words.

The second row of Table 1 indicates the performance
achieved using Hughes’s word list. These accuracy rates are
lower for all attribution schemes than when considering the
300 MFWs. In the third row of Table 1, we have used the

FIG. 3. The mixture of two Beta distributions for the density estimations
for KLD based on the SUA corpus (correct attribution in dark gray,
incorrect attributions with stripes). [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

TABLE 1. Evaluation (leaving-one-out evaluation methodology) of the
four attribution schemes with the 224 SUAs.

Word selection Delta KLD Labbé Naïve Bayes

300 MFWs 196 197 188 192
87.5% 88.0% 83.9% 85.7%

309 words proposed by
Hughes et al. (2012)

165 182 165 183
73.7% 81.3% 73.7% 81.6%

344 words proposed by Zhao
and Zobel (2007)

165 182 160 178
67.6% 81.3% 65.6% 79.5%
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344 words included in Zhao and Zobel’s list and appearing
in the corpus as discriminative terms (Zhao & Zobel, 2007).
The overall performance level of this feature set is similar to
that achieved with Hughes’s list and is inferior to that
obtained when considering the 300 MFWs.

Using the Federalist test collection, a first experiment is
performed on the 65 articles with known attribution (14 by
Madison and 51 by Hamilton). For each evaluation, one
article is removed from the corpus, and the rest used to
generate the two author profiles. The different authorship
attribution strategies can be tested using the remaining
articles. The results of this evaluation approach the (leaving-
one-out evaluation method) are given in Table 2A. As
shown, the three lists tend to produce similar performance
levels.

In Table 2B, the 65 articles with known authorship are
used to form the author profiles. The remaining 12 disputed
articles are automatically assigned using the four authorship
attribution schemes (assuming that the real author is
Madison). In this case, both Hughes’s and Zhao and Zobel’s
word lists tend to produce similar performance levels, com-
pared to the 300 MFWs.

The evaluation results in Tables 1, 2A and 2B use the
distance value between the disputed text and the different
author profiles only to rank the possible authors. Thus,
having a very small or a large distance value is not directly
taken into account; only the minimal value (or maximal for
the naïve Bayes) is used to indicate the most probable
author, whatever this value may be. Moreover, it is not easy
to interpret a given distance value as small, moderate, or
large.

Based on the proposed model to describe the distribution
of the correct assignments and the incorrect attributions by a

mixture of two Beta distributions, we can use this represen-
tation to derive a better understanding of each distance value.

As a first interpretation, we can specify that an automatic
decision can be taken only when the minimal distance is
smaller than the mean of the correct assignment distribution.
When the minimal value is smaller than this threshold, a
good certainty that the proposed author is the real one can be
achieved. On the other hand, when the minimal value is
larger than the mean, the proposed attribution cannot be
given with a high degree of certainty and should be inter-
preted more as an indication that the suggested author is the
real one.

Based on this interpretation, and using the 300 MFWs,
the achieved performances are depicted in the second row of
Table 3. Using the 224 speeches, the proposed attribution
scheme is unable to determine the real author with a high
degree of certainty for 103 (the Labbé model) or 111
speeches (KLD or naïve Bayes). The accuracy rate obtained
when considering only assignments having a good certainty
ranges from 85.8% (naïve Bayes, with 97 correct attribu-
tions over 113) up to 95.8% (Delta, 113 correct assignments
over 118).

As a second interpretation, we begin again with the
minimal distance denoted d’ obtained with author profile Aj.
Estimating the Beta distribution corresponding to the correct
attribution (denoted D1), we can compute the Prob[d ≥
d’ | D1]. This probability is called the support in favor of the
hypothesis that the real author is Aj. If this probability is
larger than 0.5 (or another specified threshold), we can
assume with good certainty than the proposed author Aj is
the real author of the query text.

As for the first interpretation, we can find a relatively
large value for d’, rendering the Prob[d ≥ d’ | D1] smaller
than 0.5. In this case, the proposed assignment must be
interpreted as an indication of a possible authorship. Of
course, we can also compute the support of the alternative
hypothesis, namely, that the distance d’ is coming from the
Beta distribution corresponding to the incorrect attribution.
In this case, this support is given by Prob[d ≤ d’ | D2].

To illustrate these ideas, Figure 4 depicts the mixture
model of two Beta distributions with a value d’ = 0.2. Based
on this figure, when a distance d’ tends toward 0.0, the

TABLE 2A. Evaluation (leaving-one-out evaluation methodology) of the
attribution schemes with the 65 Federalist Papers (training set).

Delta KLD Labbé Naïve Bayes

300 MFWs 63 64 65 63
96.9% 98.5% 100% 96.9%

309 words proposed by
Hughes et al. (2012)

64 65 63 64
98.5% 100% 96.9% 98.5%

344 words proposed by
Zhao and Zobel (2007)

63 65 63 65
96.9% 100% 96.9% 100%

TABLE 2B. Evaluation of the attribution schemes with the 12 disputed
Federalist Papers.

Delta KLD Labbé Naïve Bayes

300 MFWs 12 11 11 12
100% 91.7% 91.7% 100%

309 words proposed by
Hughes et al. (2012)

11 12 11 12
91.7% 100% 91.7% 100%

344 words proposed by Zhao
and Zobel (2007)

10 12 11 12
83.3% 100% 91.7% 100%

TABLE 3. Evaluation of the four attribution schemes with the 224 SUA.

Delta KLD Labbé Naïve Bayes

300 MFWs 196 / 224 197 / 224 188 / 224 192 / 224
87.5% 88.0% 83.9% 85.7%

Mean 113 / 118 106 / 113 108 / 121 97 / 113
95.8% 93.8% 89.3% 85.8%

Undecidable 106 111 103 111

Probability ≥ 0.5 112 / 117 110 / 117 107 / 118 96 / 112
95.7% 94.0% 90.7% 85.7%

Undecidable 107 107 106 112
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support for the correct attribution, or Prob[d ≥ d’ | D1],
increases and will eventually reach the maximal value of
1.0. On the other hand, the support for an incorrect attribu-
tion, or Prob[d ≤ d’ | D2], will decrease and tends toward
0.0. On the other hand, when the value of d’ is increasing,
the Prob[d ≥ d’ | D1] is decreasing and will tend to 0.0
whereas the support of an incorrect assignment will increase
and, finally, will reach the value 1.0 when d’ → 1.0.

The evaluation of this second interpretation is given in
the third row of Table 3. As shown, this approach produces
similar performance levels to the first interpretation, with
between 106 and 112 speeches that cannot be assigned with
a high degree of certainty. As for the first interpretation, the
accuracy rates are higher than the baseline, given more cer-
tainty when proposing an author for a disputed text.

As illustrative examples with the KLD scheme, we can
take again the 1905 SUA delivered by T. Roosevelt. This
speech obtains the minimal d value (0.0186) over all SUAs.
The attribution model suggests T. Roosevelt as the most
probable author. When computing the support for this deci-
sion (Prob[d ≥ d’ | D1]), the value 0.975 is achieved, indicat-
ing a very strong support for T. Roosevelt. On the other
hand, the support for an incorrect attribution, or
Prob[d ≤ d’ | D2], is 0.004, too small to reject the proposed
assignment. Our second example is formed by the 1916
SUA by Wilson. For this speech, the minimal distance is
0.2617 with Wilson’s profile. When computing the support
for this attribution, we obtain a value of 0.004 whereas the
support for an incorrect attribution is 0.51. Of course, the
KLD scheme assigns this speech correctly, but with a dis-
tance of 0.2617, this decision should be interpreted as pos-
sible, without certainty.

Using the Federalist corpus, the evaluations of this first
and second interpretation are reported in Table 4A for the 65
articles with known authorship (leaving-one-out evaluation
methodology) and in Table 4B for the 12 disputed articles.
In both cases, the performance differences between the two
interpretations are small and not significant. With the corpus
of 65 articles (Table 4A), the proposed method is able to
provide a decision with good certainty for approximately
55% of the cases. For those cases, the attribution accuracy
rate is rather high (between 97.4% and 100%).

With the 12 disputed articles (Table 4B), using only the
distance to rank the possible authors, the performance level
is shown in the first row. This approach produces only two
“errors” (article no. 57 with KLD and article no. 55 with the
Labbé scheme). When considering only reliable assign-
ments according to the two interpretations, the error rate is
zero. The number of assignments with such high certainty is,
however, rather low, except for the Labbé attribution scheme
that is able to assign 50% of the articles correctly.

In order to analyze the disputed articles of the Federalist
corpus in more detail, Table 5 reports the degree of support
for a correct attribution (or Prob[d ≥ d’ | D1]). Under each
column, we find this probability computed according to the
smallest distance (or argmax for the naïve Bayes approach).
The assignments having a good support according to the
second interpretation (or Prob[d ≥ d’ | D1] > 0.5) are pre-
sented in bold and corresponding to the numbers depicted in

FIG. 4. Support for the two hypotheses with a minimal distance d’ = 0.2
according to a mixture model of two Beta distributions. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE 4A. Evaluation (leaving-one-out evaluation methodology) of the
four attribution schemes with the 65 Federalist Papers.

Delta KLD Labbé Naïve Bayes

300 MFWs 63 64 65 63
96.9% 98.5% 100% 96.9%

Mean 37 / 38 35 / 35 36 / 36 32 / 32
97.4% 100% 100% 100%

Undecidable 27 30 29 33

Probability ≥ 0.5 37 / 38 37 / 37 37 / 37 31 / 31
97.4% 100% 100% 100%

Undecidable 27 33 28 34

TABLE 4B. Evaluation of the attribution schemes with the 12 disputed
Federalist Papers.

Delta KLD Labbé Naïve Bayes

300 MFWs 12 11 11 12
100% 91.7% 91.7% 100%

Mean 2 / 2 3 / 3 6 / 6 1 / 1
100% 100% 100% 100%

Undecidable 10 9 6 11

Probability ≥ 0.5 2 / 2 3 / 3 6 / 6 1 / 1
100% 100% 100% 100%

Undecidable 10 9 6 11
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the third row of Table 4B. For example, under the Labbé
approach, six probabilities are shown in bold, corresponding
to the six attributions indicated in the third row of Table 4B.

For the three distance-based strategies, the attribution of
articles. 62 and 63 to Madison is rather high. For articles 50
and 56, the support for an assignment to Madison is weak,
but the intertextual distance is still the smallest with this
possible author. Between these two extremes, we can find
articles 53, 52, and 58 with good support in favor of
Madison.

When inspecting the two attribution errors (mentioned in
the first row of Table 4B), we first have article 55 assigned to
Hamilton by the Labbé scheme with a probability of 0.309
(value indicated in italics in Table 5). The second divergence
appears with article 57 assigned to Hamilton according to
the KLD scheme. In this case, the support for this attribution
is 0.308.

Conclusion

In authorship attribution, the main research focus has
been on proposing more effective classification schemes.
The emphasis is usually on the accuracy rate of the sug-
gested method compared to a baseline. Relatively few
studies tend explain why and when the proposed assignment
is correct or more doubtful.

Here we have analyzed the distribution of the intertextual
distance values between the different author profiles and the
disputed text. Usually, these values are just used to rank the
authors, from the closest and most probable author to the
less likely one. This distance (or similarity) measure can,
however, be useful to discriminate between more or less
certain assignments.

To achieve this goal, we propose to model the distance
values as a mixture of two Beta distributions. We prefer this
probabilistic distribution to the Gaussian because the pos-
sible distance values are limited into a subset of the real
numbers (e.g., between 0.0 and 1.0). Moreover, the empiri-
cal distributions are clearly asymmetric, rendering the
choice of the Gaussian less attractive. On the other hand,

the Beta function is limited to values between 0 and 1 and
can represent different asymmetric distributions. When
considering correct and incorrect attribution, we propose to
represent the resulting distribution as a mixture of two Beta
distributions.

Based on this model, we demonstrate how we can
compute an estimation of the probability that the smallest
distance between an author profile and the disputed text
indicates the real author. If this probability is too small, we
suggest viewing the resulting assignment as only an indica-
tion of possible authorship. On the other hand, when the
probability is larger, we have a higher degree of certainty
associated with the proposed attribution.

Using a test collection comprising 224 speeches deliv-
ered by 41 U.S. presidents, the suggested evaluation method
shows that we can improve the accuracy of the prediction
from approximately 86% to 96%, when the underlying
support is strong enough. Based also on the most frequent
words and using the Federalist Papers, the suggested
approach shows that two disputed articles (articles 50 and
56) cannot be assigned without some doubt to Madison. On
the other hand, the proposed evaluation method suggests
with a high degree of certainty that articles 62 and 63 were
written by Madison.
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Appendix

TABLE A1. List of the U.S. presidents with their number of the SUAs and
the years of these speeches.

No. President name No. of speeches From To

1 George Washington 8 1790 1796
2 John Adams 4 1797 1800
3 Thomas Jefferson 8 1801 1808
4 James Madison 8 1809 1816
5 James Monroe 8 1817 1824
6 John Quincy Adams 4 1825 1828
7 Andrew Jackson 8 1829 1836
8 Martin van Buren 4 1837 1840
9 William H. Harrison 0 1841 1841

10 John Tyler 4 1841 1844
11 James Polk 4 1845 1848
12 Zachary Taylor 1 1849 1849
13 Millard Fillmore 3 1850 1852
14 Franklin Pierce 4 1853 1856
15 James Buchanan 4 1857 1860
16 Abraham Lincoln 4 1861 1864
17 Andrew Johnson 4 1865 1868
18 Ulysses S. Grant 8 1869 1876
19 Rutherford B. Hayes 4 1877 1880
20 James A. Garfield 0 1881 1881
21 Chester A. Arthur 4 1881 1884
22 Grover Cleveland 4 1885 1888
23 Benjamin Harrison 4 1889 1892
24 Grover Cleveland 4 1893 1896
25 William McKinley 4 1897 1900
26 Theodore Roosevelt 8 1901 1908
27 William H. Taft 4 1909 1912
28 Woodrow Wilson 8 1913 1920
29 Warren Harding 2 1921 1922
30 Calvin Coolidge 6 1923 1928
31 Herbert Hoover 4 1929 1932
32 Franklin D. Roosevelt 12 1933 1945
33 Harry S. Truman 7 1947 1953
34 Dwight D. Eisenhower 9 1953 1960
35 John F. Kennedy 3 1961 1963
36 Lyndon B. Johnson 6 1964 1969
37 Richard Nixon 5 1970 1974
38 Gerald R. Ford 3 1975 1977
39 Jimmy Carter 3 1978 1980
40 Ronald Reagan 7 1982 1988
41 George H.W. Bush 4 1989 1992
42 William J. Clinton 8 1993 2000
43 George W. Bush 8 2001 2008
44 Barack Obama 6 2009 2014
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