A SURVEY ON PRACTICAL NUMBERS

GIUSEPPE MELFI

ABSTRACT. A positive integer m is said to be practical if every integer n € (1,m) is
a sum of distinct positive divisors of m. In this paper we give an equivalent definition
of practical number, and describe some arithmetical properties of practical numbers
showing a remarkable analogy with primes. We give an improvement of the estimate
of the gap between consecutive practical numbers and prove the existence of infin-
itely many practical numbers in suitable binary recurrence sequences, including the
sequences of Fibonacci, Lucas and Pell.

1. Introduction.

A positive integer m is said to be practical (see [11]) ifevery n with1 <n < misa
sum of distinct positive divisors of m. Several authors dealt with some aspects of the
theory of practical numbers. P. Erdds [3] in 1950 announced that practical numbers
have zero asymptotic density. B. M. Stewart [12] proved the following structure
theorem: an integer m > 2, m = p{"p5® - - pp*, with primes p; < ps < -+ < pg
and integers «; > 1, is practical if and only if p; =2 and, for+=2,3,...,k,

pi <o(PPps?---piiit) +1

where o(n) denotes the sum of the positive divisors of n.
Let P(z) be the counting function of practical numbers:

Pz)= Y 1.

m<x
m practical

M. Hausman and H. N. Shapiro [5] showed in 1984 that

P@) < Togapp

for any 3 < (1 —1/log2)? ~ 0.0979. M. Margenstern ([6], [7]) proved that

xz

P(z) > :
exp { @ (loglog )2 4 3loglog m}

Gerald Tenenbaum ([13], [14]) improved the above upper and lower bounds as
follows:

x T

(loglogz)~%/3~¢ <, P(z) < log log x log log log .

log x log x
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Moreover, Margenstern conjectured that:

P(z) ~ A a

log z

with A ~ 1.341, in analogy with the asymptotic behaviour of primes.

The author [8] recently proved two Goldbach-type conjectures for practical num-
bers first stated in [6]: (i) every even positive integer is a sum of two practical
numbers; (ii) there exist infinitely many practical numbers m such that m — 2 and
m + 2 are also practical.

The purpose of the present paper is to survey some of the above results and to
give some new contributions to the theory of practical numbers.

Sierpinski [10] and Stewart [12] independently remarked that a positive integer
m is practical if and only if every integer n with 1 < n < o(m) is a sum of distinct
positive divisors of m. Here we give an alternative proof of this equivalence.

We also give an improved version of [8, Lemma 2], which yields a slightly simpler
proof of the Goldbach-type result (i) mentioned above.

We study the gap between consecutive practical numbers, improving upon a
result of Hausman and Shapiro [5].

Finally we prove that some binary recurrence sequences, including the classical
sequences of Fibonacci, Lucas and Pell, contain infinitely many practical num-
bers. We incidentally note that it is unknown whether the Fibonacci sequence
{1,1,2,3,5,...} and the Lucas sequence {1,3,4,7,11,...} contain infinitely many
prime numbers. Dubner and Keller [2] recently announced the primality of some
“titanic” (i.e. having more than 1000 digits) Fibonacci and Lucas numbers, such
as Foz11, Fs3gr, Lisaae, L7741, Lsgsi, Lares, Larsr.

2. An arithmetical result.
In this section we give an equivalent definition of practical number. We begin
with the following lemma:

Lemma 1. Let m be a positive integer, and let di =1 < dy < --- < d, =m be
the positive divisors of m. Let dj, be the least divisor such that dp > \/m. Then
d1+d2+-"+dh_1+1§m.

Proof. The lemma is true for m = 1,2, 3,4. Let m > 4; since dp_1 < y/m we have

di+dy+--+dp1+1 < 142434+ [Vm]+1

NS

VIR

< m. O
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Lemma 2. (Margenstern). Let m be a positive integer, and let dy,...,dp,...,d,
be as in Lemma 1. Then m is such that every n with 1 < n < o(m) is a sum of
distinct positive divisors of m, if and only if dj;1 < di +---+d; + 1 for every
j=1,...,h—1.

Proof. For the proof see Margenstern’s paper [7]. O

Proposition 3. A positive integer m is practical if and only if every m with
1 < n < o(m) is a sum of distinct positive divisors of m.

Proof. Since o(m) > m, if m is such that every n with 1 < n < ¢(m) is a sum of
distinct positive divisors of m, a fortiori m is a practical number.

Let m be practical, i.e. every n with 1 < n < m is a sum of distinct positive
divisors of m. Let di,...,dp,...,d, be as in the preceding lemmas. For any j
satisfying 1 < j < h —1 we have d; +---+d; +1 < m by Lemma 1. Hence
diy +---+d; +1is a sum of distinct divisors of m, of which at least one must be
> djy1. It follows that dj 1 < di+---+d;+1, whence, by Lemma 2, every n with
1 <n <o(m)is a sum of distinct positive divisors of m. O

3. The Goldbach problem for practical numbers.

In this section we prove that every even positive integer is a sum of two practical
numbers.

Lemma 4. If m is a practical number and n is an integer such that 1 < n <
o(m) + 1, then mn is a practical number. In particular, for 1 < n < 2m, mn is
practical.

Proof. The first assertion easily follows from Stewart’s structure theorem; see also
[7, p. 6]. Since m—1 is a sum of distinct divisors of m, we have m+(m—1) < a(m),
i.e. 2m < o(m)+ 1, and this proves the second assertion. [

The author [8, Lemma 2] proved that if m and m + 2 are practical numbers then
every even integer 2n € [m?,3m?] is a sum of two practical numbers. This can be
improved as follows:

Lemma 5. If m and m + 2 are two practical numbers, then every even integer 2n
with m? < 2n < Im? is a sum of two practical numbers.

2 7

, 2m2} into the union of three subintervals:

Proof. We split up the interval [%m
(i) [gm?, m?[;

(i) [m?, 3m?] ;

(iii) ]3m?, Zm?] .

(i) If m = 2, the only even number contained in the interval [%m?‘, m2[ is 2,
which is a sum of two practical numbers (2 = 1 + 1). Suppose m > 2 and let
2n € [%m2, m2[ f 2n = %mz or 2n = %mz + m, we use the decompositions
m— 1) +m,

m — 1) + 2m.

gm” =m(

N[ N

m2—|—m=m(
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Otherwise we can represent 2n as %m2 +km+25 with 0 <k < %m, 1<5<
(k,j) # (0,3m) . Then

m,

N =

2n=1im> +km+2j=m (Im+k—j)+ (m+2)j

By Lemma 4, 2n is a sum of two practical numbers.

(ii) For the interval [m?, 3m?] see [8, Lemma 2].

(iii) If m = 2, the only even number contained in the interval |3m?, Im?] is
14, which is a sum of two practical numbers (14 = 6 + 8). Suppose m > 2 and let
2n € |3m?, Im?]. We can represent 2n as Im? —km +2j with 1 < k < im,

2
1<35< %m. Then
2n=Im>—km+2j=m2m—-k—j-3)+(m+2)(Em+j),

which is a sum of two practical numbers by Lemma 4. [
Theorem 6. Every even positive integer is a sum of two practical numbers.

Proof. Since (2,4), (4,6), (6,8) are pairs of twin practical numbers, by Lemma 5
every 2n < 126 is a sum of two practical numbers. Suppose we have a sequence
{my} such that
and for every n

(ii) m,, is practical

(iii) my + 2 is practical

(iv) 1< Myy1/mn < VT.

Since, by (iv), the intervals [2m2, Zm2] and [3m2.,, Im2_ ] overlap, every
even positive integer 2n > 128 is a sum of two practical numbers by Lemma 5. We
shall construct a sequence {m,} satisfying (i), (ii), (iii) and a condition slightly
stronger than (iv), i.e. 1 < mypy1/m, < 2.

Let So = {16, 30, 54, 88, 160}. For every r € Sy, r and r + 2 are practical
numbers. Denote Sy = {ro1, 70,2,..., 70,5} With 791 < 12 < --- < ro5. Note
that T, < 27‘071'_1 (’L = 2,3,4,5) and 70,5 = %7‘8’1 + 2’/‘071. Let hg = 5 and, for
k=1,2,..., define

Sk; = {%T?c—l,i —+ 27"k:—1,i , 7“,%_177; + 37'k:—1,i ‘ 7 = 1,2,..., hk—l}
={Tk,1 Th2 - -+ Thyhy |
with 71 < 7k 2 < -+ < T p,. Further let S = [Jo—, Sk. If we write S = {m,},
with m, < my41 for every n, one can see that {m,} satisfies (i), (ii), (iii) and

Mpt+1 < 2my,. The proof of this is similar to the argument given in [8, Theo-
rem 1]. O

4. k-tuples of twin practical numbers.

It is easy to find infinitely many pairs (m, m + 2) of twin practical numbers (see
the proof of Theorem 6 above). The following was conjectured in [6] and [7]:
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Theorem 7. There exist infinitely many practical numbers m such that m —2 and
m + 2 are also practical.

Proof. For the proof see [8, Theorem 2|. O

It is shown in [7] that for any even m > 2, at least one of m, m + 2, m + 4,
m + 6 is not practical. However, we state the following

Conjecture 8. There exist infinitely many 5-tuples of practical numbers of the
form (m —6,m—2, m, m+ 2, m+6).

5. Gaps between practical numbers.

Here we give an estimate of the gap between consecutive practical numbers. The
same problem for primes has been extensively studied. If {p,} is the sequence of
primes, R. C. Baker and G. Harman [1] recently proved that

Prt1 — Pn <K P53,

the exponent 0. 535 being of course replaced by %—{—s under the Riemann Hypothesis.
If {s,} is the sequence of practical numbers, Hausman and Shapiro [5] proved that

Sp+1 — Sn < 23;/2.

We can improve this inequality as follows:

Theorem 9. Let {s,} be the sequence of practical numbers and let A > 4e=/2
where «y is the Euler-Mascheroni constant. For any sufficiently large n we have
sy

n — 9n A
frtt 75 = A loglog 5,12

Proof. Let § > 0 and ¢ < €7 be such that 4c='/2(1 + 6)(1 — §)"%/2 < A. Let
Ni = [Tpcer p*, where p denotes a prime. By [4, §22.9] we have

o (Ng)

__TVR) e,
o Ni loglog Ny, ¢

(1)

For every k, let m(%) be any integer such that Ny_1|m®), m*)|Ny. It is easy
to see, by induction on k, that Ny is practical for all £ > 1, and if £ > 3 then
m() is also practical. To prove this, note that Ny = 2 and Ny = 22-32.52.72 are
practical, and m(¥) /N}_1 is a product of primes not exceeding e¥. Since e*¥ < 2N,
for k > 3, m® and hence N;, are practical by repeated application of Lemma 4.

Since n|m easily implies o(n)/n < o(m)/m, we get

0(Nk—_1) < o(m®) < o(Ng)
Ni_1loglog Ny — m®) loglogm() = Niloglog Ni_1°

Clearly
loglog Nix_1 ~ loglog Nk,
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whence, by (1),

(k)
im ()

=e7.
k—o0 m(k) loglog m(*)

Thus there exists an integer kg such that for any k£ > kg

(2) min _olm) > c.
N i mloglogm

Let s, be a practical number such that s, > cN,f0 loglog N, and let k be the least
positive integer such that

Sn
N, > :
"= ¢N,loglog N,

Further, let

(&) _

&) <o aml® = N,

mg”) = Ng_1 < my

be all the integers satisfying Nye_1|m{™, m{"|N,, and let v be such that

s
(3) mi? < .
c m,(f) log log m,(,“)
and
(%) Sn
() Myl 2 OR

cm,/y loglogm,,
Let 9 and 7 be defined by m{ = YNg_1, N, = rm{). Clearly 7 > 1. Let p” be

the least prime factor of 7, and let p’ be the greatest prime < p” (if p” = 2, we let
p’ =1). By Bertrand’s postulate we have p” < 2p’. Since N, = 97N, _1, we have

dr=| [ »p I |

psen—l en—1<psera

whence p'|d7, p'|9, and p’ \m,(,”). Therefore

(r)
m 9
" ;/ :p”'E'Nn—l
is a multiple of Ni_;. Moreover
,, m,(,”)

T
NK:TmS/n):p,'T'p .
p

is a multiple of p” m{ /p’. Hence
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for some 7 > v, since p” > p’. It follows that

(k)
m (k)

(5) m < p - —p”, < 2m{.

Let g = [sn/m,(fgl] + 1. By (2) and (4) we have

S

g < —(Z) +1
ml/-l—l
< em® 1ogl () 41
> v41loglogm,, /y +

< J(m,(j'j_)1> + 1,

whence, by Lemma 4, r = ¢ m,(fjgl is a practical number. Further

K Sn
sty [

mu+1

+1)—sn>0,

whence, by (3) and (5),

Sp41 — Sn < T — 8y

— (k) Sn
v+1

Sn

< 2

cm{ loglogm{™)

For any € > 0 and any sufficiently large n we have, by (3), (4) and (5),

2
(6) miD >t > sl
cloglogm,
and
mr(f|21 . Sn

Sp+1— Sp < 2
m) cm,(j":"k)1 loglogm,(f)

cl/2 (log log ml(,'l)l) i s
(7) <4 72 ' -
Sn/ cloglogm,
S1/2

< 4c7V2(1 4 6)

(log log m,(f")) 1/2°
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Since, by (5) and (6),

()
m{® = 2L m{), > 1092,

ml/+1

we get
1—¢

loglogm{®) > log ( log s,, — log 2) > (1 —06)loglog sy,

whence, by (7),

1/2
Sn
Sp+1— Sn < A —(10g log 5, )1/

Remark. By Gronwall’s theorem [4, Theorem 323] we have

lim sup o) _ e’

nooo nloglogn 7

which justifies the choice of the sequence Ni in our proof of Theorem 9.

6. Binary recurrence sequences.

Let P, @ be non-zero integers; a pair of Lucas sequences {u,(P,Q)}, {v,(P,Q)}
is a pair of binary recurrence sequences defined as

( Uo(P, Q) =0
< ul(P7 Q) =1
( Un(P,Q) = Pup, 1(P,Q) — Quy2(P,Q) forn>2
and
( UO(P7 Q) =2
Q ni(P,Q)=P

\’U’n(PaQ):Pvn—l(PaQ)_Qvn—Z(P7Q) fOI"I’LZ2.

The sequence {u,(P,Q)} is also called a fundamental Lucas sequence and
{v,(P,Q)} its companion sequence.
Suppose P2 — 4Q # 0 and let o, 3 be the distinct roots of the polynomial

z? — Pz + Q.
We have n_ g
a —
W(PQ) =1
un(P.Q) = 2=
and

vn (P, Q) = a™ + g".

Using a shorter notation, we shall write u,, and v,, instead of u, (P, Q) and v, (P, Q).
For (P,Q) = (1,-1), u, and v, are the sequence of Fibonacci numbers and the
sequence of Lucas numbers, respectively; for (P, Q) = (2,—1), u, is the sequence
of Pell numbers [9, p. 56].
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Theorem 10. Let {u,(P,Q)} be a fundamental Lucas sequence. If P% —4Q > 0
and PQ + P is even, then the sequence {|u,(P,Q)|} contains infinitely many prac-
tical numbers.

Proof. We shall prove that, for sufficiently large k, |us.ox| is a practical number.
Let {v,} be the companion sequence of {uy}. Since uay, = upvy, for every m, we
have, for £ > 0,
k—1
Ug.9k = U3 - H V3.9h.
h=0

Also, P2 — 4Q > 0 implies uz = P2 — Q > 0. Note that v3 = P(P? — 3Q), whence

sgnvz = sgn P. Since P? — 4Q > 0, we have o, f € R, whence v, = o™ + 8" is
positive for n even. Therefore

k—1

|ug.gr | = ug [vs| - H U3.2h -
h=1

Since PQ + P is even, vs,, is even for all m. Denoting v5,, = v3,,/2, we have

k—1

[Ug.or | = 2F ug Vg - H Vg.on-
h=1

Let 281 > max{us, [v4]}, and define u} = 2% ug|vj] - Hi_:ll V% on- We show, by

induction on j, that uj is practical for j = 1,...,k. For j = 1 this follows from
Lemma 4 applied twice, since 2" is practical and ug, [vj| < 281 Let 1 < j < k-1,

and assume that u} is practical. We have

u;‘ =2k 3.9

and
* _ *x _/
Ujp1 = Uj V395,
where
/ _ 1 1 27 27 27+1 27 2J 27+1
v3.2j_§v3-2j_§(a + )(Ol —a” 7 +p .
Note that
27 27
a” + 7 = vy;
and
9J+1 2J 27 2J+1 27
a” —a” BT+ B =y —Q

are positive integers (not both odd). In order to prove that u},, is practical, by
Lemma 4 applied twice it suffices to show that

Jj+1

. , o -
M:max{ay + 8%, ¥ —a¥p¥ + 8% }<u;k
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Since z +y < z? —xy+y?+1 for all z,y € R, we have

9J+1

M<a? =¥ +87 +1=vp — Q¥ +1

< Vgii1 + sz _ a2j+1 + a2j182j —|— 1623'+1-
From P2 —4Q > 0 and P = a + 3 # 0 it follows that o # £/3. Therefore

szj _ ,B2j

Ta—p 7"

Ugj =
i.e. Jugi| > 1. Hence

M S |u2j| <a2j+1 + a2j182j +132j+1)

as-zﬂ' _ ﬁg.zj

a—pf

= |U3.2j| < Zk_j ‘Ug.zj‘ — U; O

Theorem 11. Let {v,(P,Q)} be a companion Lucas sequence with @@ = —1 and
P > 0. If there exists a positive integer t such that vss; is practical, then {v,}
contains infinitely many practical numbers.

Proof. We shall prove by induction that, for every k > 0, vsr3s; is practical. For
k = 0 this is true by assumption. Suppose that vsks3s; is practical for some k. Since
vp, = a™ + A", where o and 3 are the roots of the polynomial 2 — Pz + ), we have

_ 3k70t 3k35¢ H3*35¢ 3k 70t
’U3k+135t = ’U3k35t (OJ — ,6 + ,6 .

Define
2D a(y/) itz #0

Dy(x,y) =10 ifr=y=0
y?Da(z/y) ify#0,

where ¢4 is the d-th cyclotomic polynomial and ¢ is the Euler totient function.
Note that 9@ pg(y/z) = y*Doy(z/y) if z # 0 and y # 0.
Since 270 — %%y 4 yT0 = &g (z, 1) Bao (2, y) Pas(z, y) Par0(2, y), we have

Ugk+135¢ = Vgkast Pe (agkt, ﬁskt) ®3q (a3kt, 53kt) Dy (a3kt, ﬂ3kt) D19 (askt, ﬂ3kt)-

Note that, since QQ = —1,

g (a?’ktaﬁ?’kt) = Ukt — (_1)t

D30 (a3kta ﬂBkt) = Ugkgt T (_1)tU3k6t - (_1)t7}3k2t -1

D42 (agkta ﬁ?’kt) = vgk1z + (= 1) vgr10; — (=1) vk — vgrag + 1

D210 (Ol?’kt; ﬂ?’kt) = wskagy — (—1)"vgka6; + Vgraas + (—1) V338 — V336

+ 2(—1)tv3k34t — Ugk3zat T+ (—1)t’l’3k30t + Vgkogt — (—l)tvskzzt

¢ ¢
+ vgkoor — (—1)"vgk1g + Vak1er — (—1) Vgk1as — Vgkgy — Uzkgy — 1.
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Since P > 0 and @ = —1, for every n > 0 we have v,, < v,41, whence

k k
0 <wgrgy —1< (I)6(043 b3 t) < vgkgy + 1 < v3k3sy,
k k
0 < vgkgy — Ugkgr + Vghgy — 1 < P3g (CV3 ek b)) < vgkgt + Vzker < Usksse,

3kt o3kt
0 < vgkyos — Usk1os + Uskgr — Vgkar < Paz (@ ¥, %) < wgkiay + vakigr + 1 < vgkssy.

Since vsk+1354, Vgksse, Pe (a3kt,ﬂ3kt), s (a?’kt,,@‘gkt), Dy (a3kt,ﬁ3kt) are positive
integers, we have ®51¢ (a?’kt, ,83kt) > 0, and it is easy to show that ®91¢ (a?’kt, ,Bskt) <
2u3ky4g:. By Lemma 4, we have that

m = vgr3zse Pe (043kt, ﬂBkt) D3 (CVSkt, ﬁgkt) Dy (OtBkt, ﬁBkt)

is a practical number. Since vgr+135, = m Paqg (a3kt, ,83kt), to complete the proof it
suffices to show that 2vskrg; < 2m, and this can be proved by straightforward and
tedious calculations that we omit. [J

The Fibonacci sequence {u,(1,—1)} and the Pell sequence {u,(2,—1)} satisfy
the assumptions of Theorem 10. Since Lgzg = v35.18(1, —1) is a practical number,
the Lucas sequence {v, (1, —1)} satisfies the assumptions of Theorem 11. Therefore
there exist infinitely many practical Fibonacci, Pell and Lucas numbers.

It is interesting to note that the first practical Fibonacci numbers are F3, Fg, Fio,
Fsy, F3o, F36, Fio, Fyg, which, except for F3, have practical subscripts. It is well
known that every prime Fibonacci number, except for Fjy, has a prime subscript
[4], but there exist some practical Fibonacci numbers with non-practical subscripts.
The smallest such number is Fyq4. In fact, 444 = 22 - 3 - 37 is not practical, but

Fugq = 2%-32.73.149 - 443 - 2221 - 4441 - 11987 - 1121101 - 54018521 - 55927129
- 6870470209 - 8336942267 - 81143477963 - 1459000305513721

is a practical number.
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