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Abstract. We study the rigidity and flexibility of symplectic em-
beddings in the model case in which the domain is a symplectic
ellipsoid. It is first proved that under the condition r2

n
≤ 2r2

1
the

symplectic ellipsoid E(r1, . . . , rn) with radii r1 ≤ · · · ≤ rn does
not symplectically embed into a ball of radius strictly smaller than
rn. We then use symplectic folding to see that this condition is
sharp. We finally sketch a proof of the fact that any connected
symplectic 4-manifold of finite volume can be asymptotically filled
with skinny ellipoids.

Introduction and Results

Consider a connected smooth n-dimensional manifold M . A volume
form on M is a smooth nowhere vanishing n-form Ω. It follows that
M is orientable. We orient M such that

∫
M

Ω is positive, and we write
Vol(M, Ω) =

∫
M

Ω. We endow each open (not necessarily connected)
subset U of

�
n with the Euclidean volume form

Ω0 = dx1 ∧ · · · ∧ dxn.

A smooth embedding ϕ : U ↪→ M is called volume preserving if

ϕ∗Ω = Ω0.

Then Vol(U, Ω0) ≤ Vol(M, Ω). The following proposition shows that
this obvious condition for the existence of a volume preserving embed-
ding is the only one.

Proposition 1 The set U embeds into M by a smooth volume pre-

serving embedding if and only if Vol(U, Ω0) ≤ Vol(M, Ω).

A proof of this result can be found in Appendix A of [11].

A symplectic manifold (M, ω) is a smooth manifold M endowed with
a smooth non-degenerate closed 2-form ω. The non-degeneracy of ω
implies that 1

n!
ωn is a volume form, and that M is even dimensional,
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dim M = 2n. We endow each open subset U of
� 2n with the standard

symplectic form

ω0 =

n∑

i=1

dxi ∧ dyi.

A smooth embedding ϕ : U ↪→ M is called symplectic if

ϕ∗ω = ω0.

In particular, every symplectic embedding preserves the volume forms
Ω0 = 1

n!
ωn

0 and 1
n!

ωn induced by the symplectic forms. Given an open
subset U of

� 2n and λ > 0 we set λU = {λz ∈ � 2n | z ∈ U}. In the
symplectic world, the question behind Proposition 1 becomes

Problem 1 What is the largest number λ such that (λU, ω0) symplec-
tically embeds into (M, ω)?

In dimension 2, an embedding is volume preserving if and only if it
is symplectic, and so Problem 1 is completely solved by Proposition 1.
In higher dimensions, however, strong symplectic rigidity phenomena
appear. Denote the open 2n-dimensional ball of radius r by B2n(πr2)
and the open 2n-dimensional symplectic cylinder B2(a) × � 2n−2 by

Z2n(a) = B2(a) × � 2n−2.

Examples 1. (Gromov’s Nonsqueezing Theorem [4]) For n ≥ 2, the

ball B2n(a) symplectically embeds into the cylinder Z2n(A) only if A ≥
a.

2. [6] For n ≥ 2, there exist bounded starshaped domains U ⊂ � 2n

which have arbitrarily small volume but do not symplectically embed
into B2n(π).

On the other hand, the following two results suggest that the situa-
tion in Problem 1 becomes less rigid if U is “thin”. We denote by

E(a1, . . . , an) =

{
(z1, . . . , zn) ∈ � n

∣∣∣∣
n∑

i=1

π|zi|2
ai

< 1

}

the open symplectic ellipsoid in
� 2n with radii

√
ai/π.

Examples 3. ([5, p. 335] and [3, p. 579]) Consider a 2n-dimensional
symplectic manifold (M, ω). For any a > 0 there exists a (possibly
very small!) ε > 0 such that the ellipsoid E2n(ε, . . . , ε, a) symplectically
embeds into M .
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4. (Traynor, [12, Theorem 6.4]) For every integer k ≥ 1 and every
ε > 0 there exists a symplectic embedding

E

(
π

k + 1
, kπ

)
↪→ B4(π + ε).

Examples 2 and 4 show that already the following special case of
Problem 1 is interesting:

Problem 2 What is the smallest ball B2n(A) into which U symplec-
tically embeds?

In this work we investigate the zone of transition between rigidity
and flexibility in Problems 1 and 2. The main tool of detecting em-
bedding obstructions will be special symplectic invariants, the so called
symplectic capacities (see [7] and Section 1). Unfortunately, symplec-
tic capacities can be computed only for very special sets. Therefore, we
look at a model situation in which the set U is a symplectic ellipsoid
E(a1, . . . , an). Since a permutation of the symplectic coordinate planes
is a (linear) symplectic map, we may assume a1 ≤ a2 ≤ · · · ≤ an. We
first discuss our answers to Problem 2. Of course, the inclusion sym-
plectically embeds E(a1, . . . , an) into B2n(A) if A ≥ an. The following
rigidity result shows that one cannot do better if an ≤ 2a1.

Theorem 1 Assume an ≤ 2a1. Then there does not exist a smooth

symplectic embedding of the ellipsoid E(a1, . . . , an) into the ball B2n(A)
if A < an.

Our proof uses the n’th Ekeland–Hofer capacity. In the special case
n = 2, Theorem 1 was proved in [3] as an application of symplectic
homology. The argument given here is much simpler and works in all
dimensions.

Our first embedding result shows that Theorem 1 is sharp.

Theorem 2 Assume an > 2a1. Then there exists a smooth symplectic

embedding of the ellipsoid E(a1, . . . , a1, an) into the ball B2n(an−δ) for

every δ ∈
]
0, an

2
− a1

[
.

The reader might ask why we assume an−1 = a1 in Theorem 2.
This is because a much better result cannot be expected. Indeed, we
will show using Ekeland–Hofer capacities that for n ≥ 3 the ellipsoid
E2n(a, 3a, . . . , 3a) does not symplectically embed into the ball B2n(A)
if A < 3a. Ekeland–Hofer capacities also imply that E6(a, 2a, 3a) does
not symplectically embed into B6(A) if A < 2a.
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Question 1 Does the ellipsoid E6(a, 2a, 3a) symplectically embed into

B6(A) for some A < 3a?

In the special case n = 2, Lalonde and McDuff observed in [8] that
Theorem 2 can be proved by their technique of symplectic folding. A
refinement of their method will prove Theorem 2 in all dimensions.

Theorem 2 can be substantially improved by folding more than once.
For the sake of clarity we restrict ourselves to dimension 4. We can
assume that a1 = π. The optimal function for the embedding problem
E(π, a) ↪→ B4(A) is the function f(a) on [π,∞[ defined by

f(a) = inf
{
A |E(π, a) symplectically embeds into B4(A)

}
.

� �

� �

� �
� �

� �

� �
� �

� � � � � � � � � � � � � � � � 	
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Figure 1. What is known about f(a).

We illustrate the present knowledge of f(a) with the help of Figure 1.
In view of Theorem 1 we have f(a) = a for a ∈ [π, 2π]. For a > 2π,
the second Ekeland–Hofer capacity c2 still implies that f(a) ≥ 2π.
This information is vacuous if a ≥ 4π, since the volume condition
Vol(E(π, a)) ≤ Vol(B4(f(a))) translates to f(a) ≥ √

πa. The estimate
f(a) ≤ a/2 + π stated in Theorem 2 is obtained by folding once. In
view of Theorem 1 and Theorem 2 we are particularly interested in the
behaviour of f(a) as a → 2π+. Define the function s2(a) on ]2π,∞[ by

s2(a) = 2π + (a − 2π)
a + π

3a + π
.
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We shall show by folding twice that for each a > 2π and each ε > 0
the ellipsoid E(π, a) symplectically embeds into the ball B4 (s2(a) + ε).
Since d

da
s2(2π) = 3

7
, we conclude

Theorem 3 We have

lim sup
ε→0+

f(2π + ε) − 2π

ε
≤ 3

7
.

It will be clear from the 2-fold folding procedure described in the
proof of Theorem 3 how one can associate to each m ≥ 3 and to
a > 2π and ε > 0 an m-fold folding procedure which symplectically
embeds E(π, a) into B4 (sm(a) + ε). We shall compute s3(a) at the end
of Section 3. In general, sm is a strictly increasing rational function on
]2π,∞[, and d

da
sm(2π) = 3

7
for all m ≥ 3.

Question 2 Is the estimate in Theorem 3 sharp?

The family sm is strictly decreasing. We denote the limit by

s(a) = lim
m→∞

sm(a), a > 2π.

The upper bound s(a) of f(a) is obtained from folding “infinitely many
times”. The graph of the function s is computed by a computer pro-
gram, which in particular yields

f(3π) ≤ s(3π) = 2.3801 . . . π and f(4π) ≤ s(4π) = 2.6916 . . . π.

Finally, the piecewise linear upper bound l(a) of f(a) is a consequence
of Traynor’s theorem stated in Example 4, which she obtained from a
Lagrangian folding method. We refer to Chapters 3 and 6 of [11] for
a thorough analysis of the functions sm, m ≥ 4, and s as well as for a
comparison of the functions s and l. There it is also shown that both
differences s(a)−√

πa and l(a)−√
πa are bounded. It follows that the

difference f(a) −√
πa is bounded. We in particular have

lim
a→∞

Vol (E(π, a))

Vol (B4 (f(a)))
= 1,

i.e., a four dimensional ball can be asymptotically symplectically filled
by thin ellipsoids. Symplectic folding can be used to prove such a
result for any connected symplectic manifold (M 2n, ω) of finite volume
Vol(M, ω) = 1

n!

∫
M

ωn. For a ≥ π we define

ea(M, ω) = sup
λ

Vol(λE(π, . . . , π, a))

Vol(M, ω)
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where the supremum is taken over all those λ for which λE2n(π, . . . , π, a)
symplectically embeds into (M, ω).

Theorem 4 Assume that (M, ω) is a connected symplectic manifold

of finite volume. Then

lim
a→∞

ea(M, ω) = 1.

This is our answer to Problem 1.

The paper is organized as follows: In Section i we prove Theorem i,
i = 1,2,3. In Section 4 we outline a proof of Theorem 4 in dimension
4. A complete proof of Theorem 4 can be found in [11].

We write |x| for the Euclidean norm of a point x ∈ �
n and |U |

for the Lebesgue measure of an open set U ⊂ �
n. We work in the

C∞-category, i.e., all manifolds and diffeomorphisms are assumed to
be C∞-smooth, and so are all symplectic forms and maps.

Acknowledgements. This paper is part of my PhD thesis written at
ETH Zürich. I would like to express my gratitude to my advisor Edi
Zehnder for his support, his patience, and his continuous interest in
my work. I am also indebted to Dusa McDuff who explained to me
symplectic folding, a technique basic for this work.

1. Proof of Theorem 1

The main ingredient in the proof are Ekeland–Hofer capacities [2].
We recall the

Definition 1.1. An extrinsic symplectic capacity on (
� 2n, ω0) is a map

c associating with each subset S of
� 2n a number c(S) ∈ [0,∞] in such

a way that the following axioms are satisfied.

A1. Monotonicity: c(S) ≤ c(T ) if there exists a symplectomor-
phism ϕ of

� 2n such that ϕ(S) ⊂ T .
A2. Conformality: c(λS) = λ2c(S) for all λ ∈ � \ {0}.
A3. Nontriviality: 0 < c(B2n(π)) and c(Z2n(π)) < ∞.

The Ekeland–Hofer capacities form a countable family {ci}, i ≥ 1,
of extrinsic symplectic capacities on

� 2n. For a symplectic ellipsoid
E = E(a1, . . . , an) these invariants are given by

(1) { c1(E) ≤ c2(E) ≤ . . . } = { kai | k ∈ � , 1 ≤ i ≤ n },
see [2, Proposition 4].
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Assume now that an ≤ 2a1 and that E(a1, . . . , an) symplectically
embeds into B2n(A). We need to show that A ≥ an. By the Extension
after Restriction Principle, for which we refer to [1] or [11, Appendix
C], we find for each δ ∈ ]0, 1[ a symplectomorphism ϕδ of

� 2n such
that ϕδ (E(δa1, . . . , δan)) ⊂ B2n(A). By assumption, δan ≤ 2δa1, and
so (1) implies that

cn (E(δa1, . . . , δan)) = δan.

The monotonicity of the capacity cn and cn (B2n(A)) = A now yield
δan ≤ A. Since δ ∈ ]0, 1[ was arbitrary we conclude that A ≥ an, as
claimed. 2

We conclude this section by observing that the third Ekeland–Hofer
capacity c3 implies for n ≥ 3 that the ellipsoid E2n(a, 3a, . . . , 3a) does
not symplectically embed into B2n(A) if A < 3a.

We refer to [11, Section 1.2] for a refinement of Theorem 1.

2. Proof of Theorem 2

2.1. Reformulation of Theorem 2. Recall from the introduction
that the ellipsoid E(a1, . . . , an) is defined by

(2) E(a1, . . . , an) =

{
(z1, . . . , zn) ∈ � n

∣∣∣∣
n∑

i=1

π|zi|2
ai

< 1

}
.

Theorem 2 of the introduction clearly can be reformulated as follows:

Theorem 2.1. Assume a > 2π. Then E2n(π, . . . , π, a) symplectically

embeds into B2n
(

a
2

+ π + ε
)

for every ε > 0.

The symplectic folding construction of Lalonde and McDuff considers a
4-ellipsoid as a fibration of discs of varying size over a disc and applies
the flexibility of volume preserving maps to both the base and the
fibers. It is therefore purely four dimensional in nature. We will refine
the method in such a way that it allows us to prove Theorem 2.1 for
every n ≥ 2.

We shall conclude Theorem 2.1 from the following proposition in
dimension 4.

Proposition 2.2. Assume a > 2π. Given ε > 0 there exists a sym-

plectic embedding

Φ: E(a, π) ↪→ B4
(a

2
+ π + ε

)
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satisfying

π|Φ(z1, z2)|2 <
a

2
+ ε +

π2|z1|2
a

+ π|z2|2 for all (z1, z2) ∈ E(a, π).

We recall that | · | denotes the Euclidean norm. Postponing the proof,
we first show that Proposition 2.2 implies Theorem 2.1.

Corollary 2.3. Assume that Φ is as in Proposition 2.2. Then the com-

position of the permutation E2n(π, . . . , π, a) → E2n(a, π, . . . , π) with

the restriction of Φ × id2n−4 to E2n(a, π, . . . , π) embeds E2n(π, . . . , π, a)
into B2n

(
a
2

+ π + ε
)
.

Proof. Let z = (z1, . . . , zn) ∈ E2n(a, π, . . . , π). By Proposition 2.2 and
the definition (2) of the ellipsoid,

π |Φ × id2n−4(z)|2 = π

(
|Φ(z1, z2)|2 +

n∑

i=3

|zi|2
)

<
a

2
+ ε +

π2|z1|2
a

+ π
n∑

i=2

|zi|2

=
a

2
+ ε + π

(
π|z1|2

a
+

n∑

i=2

π|zi|2
π

)

<
a

2
+ ε + π,

as claimed. 2

It remains to prove Proposition 2.2. In order to do so, we start with
some preparations.

The flexibility of 2-dimensional area preserving maps is crucial for the
construction of the map Φ. We now make sure that we may describe
such a map by prescribing it on an exhausting and nested family of
embedded loops. Recall that D(a) denotes the open disc of area a
centered at the origin.

Definition 2.4. A family L of loops in a simply connected domain
U ⊂ � 2 is called admissible if there is a diffeomorphism β : D(|U |) \
{0} → U \ {p} for some point p ∈ U such that

(i) concentric circles are mapped to elements of L,
(ii) in a neighbourhood of the origin β is a translation.

Lemma 2.5. Let U and V be bounded and simply connected domains

in
� 2 of equal area and let LU and LV be admissible families of loops

in U and V , respectively. Then there is a symplectomorphism between

U and V mapping loops to loops.
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Remark 2.6. The regularity condition (ii) imposed on the families
taken into consideration can be weakened. Some condition, however,
is necessary. Indeed, if LU is a family of concentric circles and LV

is a family of rectangles with smooth corners and width larger than
a positive constant, then no bijection from U to V mapping loops to
loops is continuous at the origin. 3

Proof of Lemma 2.5. Denote the concentric circle of radius r by C(r).
We may assume that LU = {C(r)}, 0 < r < R. Let β be the dif-
feomorphism parameterizing (V \ {p}, LV ). After reparametrizing the
r-variable by a diffeomorphism of ]0, R[ which is the identity near 0 we
may assume that β maps the loop C(r) of radius r to the loop L(r) in
LV which encloses the domain V (r) of area πr2. We denote the Jaco-
bian of β at reiϕ by β ′(reiϕ). Since β is a translation near the origin
and U is connected, det β ′(reiϕ) > 0. By our choice of β,

πr2 = |V (r)| =

∫

D(πr2)

det β ′ =

∫ r

0

ρ dρ

∫ 2π

0

det β ′(ρeiϕ) dϕ.

Differentiating in r we obtain

(3) 2π =

∫ 2π

0

det β ′(reiϕ) dϕ.

Define the smooth function h : ]0, R[× � → �
as the unique solution

of the initial value problem

(4)
d
dt

h(r, t) = 1/ detβ ′(reih(r,t)), t ∈ �

h(r, t) = 0, t = 0

}

depending on the parameter r. We claim that

(5) h(r, t + 2π) = h(r, t) + 2π.

It then follows, since the function h is strictly increasing in the variable
t, that for every r fixed the map h(r, ·) :

� → �
induces a diffeomor-

phism of the circle
�

/2π � . In order to prove the claim (5) we denote
by t0(r) > 0 the unique solution of h(r, t0(r)) = 2π. Substituting ϕ =
h(r, t) into formula (3) we obtain, using det β ′(reih(r,t)) · d

dt
h(r, t) = 1,

that

2π =

∫ t0(r)

0

dt = t0(r).

Hence h(r, 2π) = 2π. Therefore, the two functions in t, h(r, t+2π)−2π
and h(r, t), solve the same initial value problem (4), and so the claim
(5) follows. The desired diffeomorphism is now defined by

α : U \ {0} → V \ {p}, reiϕ 7→ β(reih(r,ϕ)).
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It is area preserving. Indeed, representing α as the composition

reiϕ 7→ (r, ϕ) 7→ (r, h(r, ϕ)) 7→ reih(r,ϕ) 7→ β(reih(r,ϕ))

we obtain for the determinant of the Jacobian
1

r
· ∂h

∂ϕ
(r, ϕ) · r · det β ′(reih(r,ϕ)) = 1,

where we again have used (4). Finally, α is a translation in a punctured
neighbourhood of the origin and thus smoothly extends to the origin.
This finishes the proof of Lemma 2.5. 2

Consider a bounded domain U ⊂ � and a continuous function
f : U → �

>0. The set F(U, f) in � 2 defined by

F(U, f) =
{
(z1, z2) ∈ � 2

∣∣ z1 ∈ U, π |z2|2 < f(z1)
}

is the trivial fibration over U having as fiber over z1 the disc of capacity
f(z1). Given two such fibrations F(U, f) and F(V, g), a symplectic em-
bedding ϕ : U ↪→ V defines a symplectic embedding ϕ× id : F(U, f) ↪→
F(V, g) if and only if f(z1) ≤ g(ϕ(z1)) for all z1 ∈ U .

Examples 2.7.

1. The ellipsoid E(a, b) can be represented as

E(a, b) = F

(
D(a), f(z1) = b

(
1 − π|z1|2

a

))
.

2. Define the open trapezoid T (a, b) by T (a, b) = F(R(a), g), where

R(a) = { z1 = (u, v) | 0 < u < a, 0 < v < 1 }
is a rectangle and g(z1) = g(u) = b(1 − u/a). We set T 4(a) = T (a, a).
The example is inspired by [9, p. 54]. It will be very useful to think of
T (a, b) as depicted in Figure 2. 3

�

�

�

�����	��

������
	�����

Figure 2. The trapezoid T (a, b).

In order to reformulate Proposition 2.2 we shall prove the following
lemma which later on allows us to work with more convenient “shapes”.
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Lemma 2.8. Assume ε > 0. Then

(i) E(a, b) symplectically embeds into T (a + ε, b + ε),
(ii) T 4(a) symplectically embeds into B4(a + ε).

Proof. Set ε′ = aε2/(ab + aε + bε). We are going to use Lemma 2.5
to construct an area preserving diffeomorphism α : D(a) → R(a) such
that for the first coordinate in the image R(a),

(6) u(α(z1)) ≤ π|z1|2 + ε′ for all z1 ∈ D(a),

see Figures 3 and 4.

�

�

�
�

��

���	�

���	 ���� � � �	


��

 �
�


 �

Figure 3. Constructing the embedding α.

In an “optimal world” we would choose the loops L̂u, 0 < u < a,
in the image R(a) as the boundaries of the rectangles with corners

(0, 0), (0, 1), (u, 0), (u, 1). If the family L̂ =
{
L̂u

}
induced a map α̂,

we would then have u (α̂(z1)) ≤ π |z1|2 for all (z1, z2) ∈ R(a). The

non admissible family L̂ can be perturbed to an admissible family L in
such a way that the induced map α satisfies the estimate (6). Indeed,
choose the translation disc appearing in the proof of Lemma 2.5 as the
disc of radius ε′/8 centered at (u0, v0) =

(
ε′

2
, 1

2

)
. For r < ε′/8 the loops

L(r) are therefore the circles centered at (u0, v0). In the following, all
rectangles considered have edges parallel to the coordinate axes. We
may thus describe a rectangle by specifying its lower left and upper
right corner. Let L0 be the boundary of the rectangle with corners(

ε′

4
, ε′

4a

)
and

(
3ε′

4
, 1 − ε′

4a

)
, and let L1 be the boundary of R(a). We

define a family of loops Ls by linearly interpolating between L0 and
L1, i.e., Ls is the boundary of the rectangle with corners
(

(1 − s)
ε′

4
, (1 − s)

ε′

4a

)
and

(
us, 1 −

ε′

4a
+

ε′

4a
s

)
, s ∈ [0, 1],
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where us = 3ε′

4
+ s

(
a − 3ε′

4

)
. Since us < a, the area enclosed by Ls is

estimated from below by

(7)

(
us −

ε′

4

)(
1 − 2

ε′

4a

)
> us −

3ε′

4
.

Let {Ls}, s ∈ [0, 1[, be the smooth family of smooth loops obtained
from

{
Ls

}
by smoothing the corners as indicated in Figure 3. By

choosing the smooth corners of Ls more and more rectangular as s → 1,
we can arrange that the set

∐
0<s<1 Ls is the domain bounded by L0

and L1. Moreover, by choosing all smooth corners rectangular enough,
we can arrange that the area enclosed by Ls and Ls is less than ε′/4. In
view of (7), the area enclosed by Ls is then at least us − ε′. Complete
the families {L(r)} and {Ls} to an admissible family L of loops in R(a)
and let α : D(a) → R(a) be the map defined by L. Fix (z1, z2) ∈ D(a).
If α(z1) lies on a loop in L\{Ls}0<s<1, then u (α(z1)) < 3ε′

4
≤ π |z1|2+ε′,

and so the required estimate (6) is satisfied. If α(z1) ∈ Ls for some

s ∈ ]0, 1[, then the area enclosed by Ls is π |z1|2, and so π |z1|2 +
ε′ > us ≥ u (α(z1)), whence (6) is again satisfied. This completes
the construction of a symplectomorphism α : D(a) → R(a) satisfying
(6). In the sequel, we will illustrate a map like α by a picture like in
Figure 4.

To continue the proof of (i) we shall show that (α(z1), z2) ∈ T (a +
ε, b + ε) for every (z1, z2) ∈ E(a, b), so that the symplectic map α × id
embeds E(a, b) into T (a+ ε, b+ ε). Take (z1, z2) ∈ E(a, b). Then, using
the definition (2) of E(a, b), the estimate (6) and the definition of ε′ we
find

π|z2|2 < b

(
1 − π|z1|2

a

)
≤ b

(
1 − u (α(z1))

a
+

ε′

a

)

< b

(
1 − u (α(z1))

a + ε

)
+ b

ε′

a

= b

(
1 − u (α(z1))

a + ε

)
+ ε − ε

a + ε
(a + ε′)

≤ b

(
1 − u (α(z1))

a + ε

)
+ ε − ε

a + ε
u (α(z1))

= (b + ε)

(
1 − u(α(z1))

a + ε

)
.

It follows that

(α(z1), z2) ∈ T (a + ε, b + ε) = F

(
R(a + ε), (b + ε)

(
1 − u

a + ε

))
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as claimed.

In order to prove (ii) we shall construct an area preserving diffeo-
morphism ω from a rectangular neighbourhood of R(a) having smooth
corners and area a + ε to D(a + ε) such that

(8) π|ω(z1)|2 ≤ u + ε for all z1 = (u, v) ∈ R(a).

Such a map ω can again be obtained with the help of Lemma 2.5. In
an “optimal world” we would choose the loops L̂u in the domain R(a)
as before. This time, we perturb this non admissible family to an
admissible family L of loops as illustrated in Figure 4. If the smooth
corners of all those loops in L which enclose an area greater than ε/2
lie outside R(a) and if the upper, left and lower edges of all these loops
are close enough, then the induced map ω will satisfy (8).

Restricting ω to R(a) we obtain a symplectic embedding ω×id : T 4(a) ↪→
� 4. For (z1, z2) ∈ T 4(a) we have π |z2|2 < a (1 − u/a), where z1 =
(u, v) ∈ R(a). In view of (8) we conclude that

π
(
|ω(z1)|2 + |z2|2

)
< u + ε + a

(
1 − u

a

)

= u + ε + a − u

= a + ε,

and so (ω × id)(z1, z2) ∈ B4(a + ε) for all (z1, z2) ∈ T 4(a). 2

Lemma 2.8 allows us to reformulate Proposition 2.2 as follows.

Proposition 2.9. Assume a > 2π. Given ε > 0, there exists a sym-

plectic embedding

Ψ: T (a, π) ↪→ T 4
(a

2
+ π + ε

)
, (z1, z2) 7→ (z′1, z

′
2),

z1 = (u, v) and z′1 = (u′, v′), satisfying

(9) u′ + π|z′2|2 <
a

2
+ ε +

πu

a
+ π|z2|2 for all (u, v, z2) ∈ T (a, π).

Postponing the proof, we first show that Proposition 2.9 implies Proposition 2.2.

Corollary 2.10. Assume the statement of Proposition 2.9 holds true.

Then there exists a symplectic embedding Φ: E(a, π) ↪→ B4
(

a
2

+ π + ε
)

satisfying

(10)

π|Φ(z1, z2)|2 <
a

2
+ ε +

π2|z1|2
a

+ π|z2|2 for all (z1, z2) ∈ E(a, π).
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Figure 4. The first and the last base deformation.

Proof. Let ε′ > 0 be so small that ca+ ε′ > 2π, where c = 1− ε′/π. As
in the proof of Lemma 2.8 we can construct a symplectic embedding

α × id : E(ca, cπ) ↪→ T (ca + ε′, cπ + ε′) = T (ca + ε′, π)

satisfying the estimate

u(α(z1)) ≤ π|z1|2 +
a(ε′)2

caπ + aε′ + πε′
for all z1 ∈ D(ca)(11)

and another symplectic embedding

ω × id : T 4
(ca

2
+ π + ε′

)
↪→ B4

(ca

2
+ π + 2ε′

)

satisfying

π|ω(z1)|2 ≤ u + ε′ for all z1 = (u, v) ∈ R
(ca

2
+ π + ε′

)
.(12)

Since ca + ε′ > 2π, Proposition 2.9 applied to ca + ε′ replacing a and
ε′/2 replacing ε guarantees a symplectic embedding

Ψ: T (ca + ε′, π) ↪→ T 4
(ca

2
+ π + ε′

)
,

(z1, z2) 7→ (Ψ1(z1, z2), Ψ2(z1, z2)), satisfying
(13)

u (Ψ1(α(z1), z2)) + π |Ψ2 (α(z1), z2)|2 <
ca

2
+ ε′ +

πu(α(z1))

ca + ε′
+ π |z2|2
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for all (u(α(z1)), v, z2) ∈ T (ca + ε′, π). Set Φ̂ = (ω × id) ◦ Ψ ◦ (α ×
id). Then Φ̂ symplectically embeds E(ca, cπ) into B4

(
ca
2

+ π + 2ε′
)
.

Moreover, if (z1, z2) ∈ E(ca, cπ), then

π
∣∣∣Φ̂(z1, z2)

∣∣∣
2

= π |ω (Ψ1(α(z1), z2))|2 + π |Ψ2(α(z1), z2)|2

(12)

≤ u(Ψ1(α(z1), z2)) + ε′ + π |Ψ2(α(z1), z2)|2
(13)
<

ca

2
+ 2ε′ +

πu(α(z1))

ca + ε′
+ π|z2|2

(11)

≤ ca

2
+ 2ε′ +

π2|z1|2
ca + ε′

+
π

ca + ε′
a(ε′)2

caπ + aε′ + πε′
+ π|z2|2

<
ca

2
+ 3ε′ +

π2|z1|2
ca

+ π|z2|2

where in the last step we again used ca + ε′ > 2π. Now choose ε′ > 0
so small that π+3ε′

c
< π + ε. We denote the dilatation by

√
c in

� 4 also

by
√

c, and define Φ: E(a, π) → � 4 by Φ = (
√

c)
−1 ◦ Φ̂ ◦ √

c. Then
Φ symplectically embeds E(a, π) into B4

(
a
2

+ π+2ε′

c

)
⊂ B4

(
a
2

+ π + ε
)
,

and since π |z1|2 < a for all (z1, z2) ∈ E(a, π) and by the choice of ε′,

π |Φ(z1, z2)|2 =
π

c

∣∣∣Φ̂
(√

c z1,
√

c z2

)∣∣∣
2

<
1

c

(
ca

2
+ 3ε′ +

π2|z1|2
a

+ πc|z2|2
)

=
a

2
+

3ε′

c
+

1

c

π2|z1|2
a

+ π|z2|2

<
a

2
+ ε +

π2|z1|2
a

+ π|z2|2

for all (z1, z2) ∈ E(a, π). This proves the required estimate (10), and
so the proof of Corollary 2.10 is complete. 2

It remains to prove Proposition 2.9. This is done in the following two
sections.

2.2. The folding construction. The idea in the construction of an
embedding Ψ as in Proposition 2.9 is to separate the small fibers from
the large ones and then to fold the two parts on top of each other. As
in the previous section we denote the coordinates in the base and the
fiber by z1 = (u, v) and z2 = (x, y), respectively.
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Step 1. Following [9, Lemma 2.1] we first separate the “low” regions
over R(a) from the “high” ones. We may do this using Lemma 2.5. We
prefer, however, to give an explicit construction.

�

�

�

�
� � � ��

�

�

	 ��
 � 	
���� 
 ��� � � 
 � ��
 � � �

�

�
� �

Figure 5. Separating the low fibers from the large fibers.

Let δ > 0 be small. Set F = F(U, f), where U and f are described
in Figure 5, and write

P1 = U ∩
{

u ≤ a

2
+ δ
}

,

P2 = U ∩
{

u ≥ a + π

2
+ 11δ

}
,

L = U \ (P1 ∪ P2).

Hence, U is the disjoint union

U = P1

∐
L
∐

P2.

Choose a smooth function h : [0, a + δ] → ]0, 1] as in Figure 6, i.e.

(i) h(w) = 1 for w ∈
[
0, a

2

]
,

(ii) h′(w) < 0 for w ∈
]

a
2
, a

2
+ δ2

[
,

(iii) h
(

a
2

+ δ2
)

= δ,
(iv) h(w) = h(a − w) for all w ∈ [0, a + δ].

By (ii), (iii) and (iv) we have that

(14)

∫ a

2
+δ2

a

2

1

h(w)
dw < δ and

∫ a

2
+δ

a

2
+δ−δ2

1

h(w)
dw < δ.

We may thus further require that
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Figure 6. The function h.

(v) h(w) < δ for w ∈
]

a
2

+ δ2, a
2

+ δ − δ2
[
,

(vi)
∫ a

2
+δ

a

2

1
h(w)

dw = π
2

+ 12δ.

Consider the map

β : R(a) → � 2, (u, v) 7→
(∫ u

0

1

h(w)
dw, h(u)v

)
.

Clearly, β is a symplectic embedding. We see from (i), (iv) and (vi)
that

(15) β ∣∣{u< a

2} = id and β ∣∣{u> a

2
+δ} = id +

(π

2
+ 11δ, 0

)
.

These identities and the estimates (14) and (v) imply that β embeds
R(a) into U (cf. Figure 7, where the black region in R(a) is mapped
to the black region in U , and so on). Finally, by construction, β × id
symplectically embeds T (a, π) into F.

� �




�

� � �� � � ����� ������ � � � � � � � ��� ��� �

�

Figure 7. The embedding β : R(a) ↪→ U .

Step 2. We next map the fibers into a convenient shape. Using
Lemma 2.5 in a similar way as it was used in the proof of Lemma
2.8 we find a symplectomorphism σ mapping D(π) to the rectangle
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Re and D
(

π
2

)
to the rectangle with smooth corners Ri as specified in

Figure 8. We require that for z2 ∈ D
(

π
2

)

π|z2|2 + 2δ > y(σ(z2)) −
(
−π

2
− 2δ

)
,

i.e.

(16) y(σ(z2)) < π|z2|2 −
π

2
for z2 ∈ D

(π

2

)
.

� �

���
�

�

��	�� ��

��
 � � � �

��


���

���

Figure 8. Preparing the fibers.

Write for the resulting bundle (id × σ)F of rectangles with smooth
corners

(id × σ)F = S = S(P1)
∐

S(L)
∐

S(P2).

In order to fold S(P2) over S(P1) we first move S(P2) along the y-axis
and then turn it in the z1-direction over S(P1).

Step 3. In order to move S(P2) along the y-axis we follow again [8, p.
355]. Let c :

� → [0, 1 − 2δ] be a smooth cut off function as in Figure
9:

c(t) =

{
0, t ≤ a

2
+ 2δ and t ≥ a+π

2
+ 10δ,

1 − 2δ, a
2

+ 3δ ≤ t ≤ a+π
2

+ 9δ,

Set I(t) =
∫ t

0
c(s) ds and define the diffeomorphism ϕ :

� 4 → � 4 by

ϕ(u, x, v, y) =

(
u, x, v + c(u)

(
x +

1

2

)
, y + I(u)

)
.(17)
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Figure 9. The cut off c.

We then find for the derivative

dϕ(u, x, v, y) =

[ �
2 0

A
�
2

]
with A =

[
∗ c(u)

c(u) 0

]
,

whence ϕ is a symplectomorphism in view of the criterion in [7, p. 5].
Moreover, defining the number I∞ by I∞ = I

(
a+π

2
+ 10δ

)
, we find

ϕ∣∣{u≤a

2
+2δ} = id and ϕ∣∣{u≥a+π

2
+10δ} = id + (0, 0, 0, I∞),(18)

and assuming that δ < 1
15

we compute with the help of Figure 9 that

π

2
+ 2δ < I∞ <

π

2
+ 5δ.(19)

The first inequality in (19) implies

ϕ(P2 × Ri) ∩ (
� 2 × Re) = ∅.(20)

Remark 2.11. The map ϕ is the crucial map of the folding construc-
tion. Indeed, ϕ is the only map in the construction which does not
split as a product of 2-dimensional maps. It is the map which sends
the lines {v, x, y constant} to the characteristics of the hypersurface

(u, x, y) 7→
(

u, x, c(u)

(
x +

1

2

)
, y

)

which generates (the cut off of) the obvious flow separating Ri from
Re. 3

Step 4. In this step we turn ϕ (S(P2)) over S(P1) by folding in the
base. From the definition (17) of the map ϕ and Figure 5 and Figure 8
we read off that the projection of ϕ(S) onto the (u, v)-plane is contained
in the union U of U with the open set bounded by the graph of u 7→
δ + c(u), the u-axis and the two lines {u = a/2 + δ} and {u = (a +
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π)/2+11δ}, cf. Figure 10. Observe that δ+c(u) ≤ 1−δ. Define a local
symplectic embedding γ of U into { (u, v) | 0 < u < (a+π)/2+11δ, 0 <
v < 1 } as follows: On P1 = U∩{u ≤ a/2+δ} the map γ is the identity,
and on U ∩ {u ≥ a/2 + 2δ} it is the orientation preserving isometry
which maps the right edge of P2 = U ∩ {u ≥ (a + π)/2 + 11δ} to the
left edge of P1. In particular, we have for z1 = (u, v) ∈ P2,

(21) u′(γ(z1)) = a +
π

2
+ 12δ − u.

�

�����

�

��� � �
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Figure 10. Folding in the base.

On the remaining black square B = U ∩ {a/2 + δ < u < a/2 + 2δ}
the map γ looks as shown in Figure 10. We then have for (u, v) ∈
U \ (P1 ∪ P2),

u′(γ(u, v)) −
(a

2
+ δ
)

<
π

2
+ 10δ −

(
u −

(a

2
+ δ
))

+ δ,

i.e.

u′(γ(u, v)) < −u +
π

2
+ a + 13δ.(22)

By (20) the map γ × id is one-to-one on ϕ(S).



2.2. The folding construction 21

The existence of an area and orientation preserving embedding as
proposed in Figure 10 can be proved as follows: Set u0 = a/2 + 2δ
and u1 = (a + π)/2 + 21δ/2. Moreover, set l = π/2 + 1 + 39 δ/4 and
choose λ3 > 0 so small that λ3l ≤ δ2/3. Similar to Figure 6 we choose
a smooth function h :

[
a
2

+ δ, a
2

+ 2δ
]
→ ]0, 1] such that

(i) h(u) = 1 for u near a
2

+ δ and u near a
2

+ 2δ,

(ii) h(u) = λ3

δ
for u ∈

[
a
2

+ 3δ
2
, a

2
+ 3δ

2
+ λ3l

δ

]
,

(iii)
∫ a

2
+ 3δ

2
a

2
+δ

1
h(w)

dw = δ and
∫ a

2
+2δ

a

2
+ 3δ

2
+

λ3l

δ

1
h(w)

dw = δ
2

.

The embedding γδ : B →
[

a
2

+ δ, u0 + l + δ
2

]
× [0, δ] defined by

(u, v) 7→
(

a

2
+ δ +

∫ u

a

2
+δ

1

h(w)
dw, h(u)v

)

and illustrated in Figure 11 is symplectic.
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� �
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Figure 11. The map γδ.

We now map the image of γδ to a domain B′ in the (u′, v′)-plane as
painted in Figure 10: By the choice of l we may require that the part of
the “outer” boundary of B′ between (u0, 0) and (u1, 1), which contains
(u1, 0), is smooth, has length l, and is parametrized by ζ(s), where the
parameter s ∈ I := [u0, u0 + l] is arc length and

(23)
ζ(s) = (s, 0) on [u0, u1] ,
ζ(s) = (u1 + u0 + l − s, 1) on

[
u0 + l − δ

4
, u0 + l

]
.

Denote the inward pointing unit normal vector field along ζ by ν. We
choose λ1 > 0 so small that

η : I × [0, λ1] → � 2, (s, t) 7→ ζ(s) + t ν(s)

is an embedding. In order to make the map area preserving, we consider
the initial value problem

(24)
∂f

∂t
(s, t) = 1/ det dη(s, f(s, t))

f(s, 0) = 0

}

in which s ∈ I is a parameter. The existence and uniqueness theorem
for ordinary differential equations with parameters yields a smooth
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solution f on I × [0, λ2] for some λ2 > 0. Then f(s, t) < λ1 for all
(s, t) ∈ I × [0, λ2]. This and the second equation in (24) imply that the
composition

γζ : (s, t) 7→ (s, f(s, t))
η7→ (u′, v′)

is a diffeomorphism of I × [0, λ2] onto half of a tubular neighbourhood
of ζ. Moreover, by the first equation in (24),

det γζ(s, t) =
∂f

∂t
(s, t) det dη(s, f(s, t)) = 1,

i.e., γζ is area preserving. In view of the identities (23) for ζ, the map
γζ is the identity in

� 2 for s near u0 and t ∈ [0, λ2], and γζ is an
isometry for s near u0 + l and t ∈ [0, λ2].

We now choose the parameter λ3 > 0 in the construction of γδ smaller
than λ2. Restrict γζ to the gray region I×]0, λ3[ in the image of γδ,
and let γζ be the smooth extension of γζ to the image of γδ which is
the identity on {u ≤ u0} and an isometry on {u ≥ u0 + l}. By (i), the
composition γζ ◦ γδ is the identity near u = a/2 + δ and an isometry
near u = a/2 + 2δ. It thus smoothly fits with the map γ|U\B already
defined at the beginning of this step.

Step 5. We finally adjust the fibers. In view of the constructions
in Step 2 and Step 3, the projection of the image ϕ(S) onto the z2-
plane is contained in a tower shaped domain T (cf. Figure 12), and by
the second inequality in (19) we have T ⊂

{
(x, y) | y < π

2
+ 4δ

}
. Using

once more our Lemma 2.5 we construct a symplectomorphism τ from a
neighbourhood of T to a disc such that the preimages of the concentric
circles in the image are as in Figure 12. We require that for z2 = (x, y),

π|τ(z2)|2 < y +
π

2
+ 3δ for y ≥ −π

2
− 2δ,(25)

π|τ(z2)|2 < π|σ−1(z2)|2 +
π

2
+ 8δ for z2 ∈ Re,(26)

where σ : D(π) → Re is the diffeomorphism constructed in Step 2.

Step 1 to Step 5 are the ingredients of our folding construction. The
folding map Ψ: T (a, π) ↪→ � 4 is defined as the composition of maps

(27) Ψ = (id×τ)◦(γ×id)◦ϕ◦(id×σ)◦(β×id) = (γ×τ)◦ϕ◦(β×σ).

2.3. End of the proof. Recall that it remains to prove Proposition 2.9.
So let ε > 0 be as in Proposition 2.9 and set δ = min{ 1

15
, ε

15
}. We de-

fine the desired map Ψ as in (27). It remains to verify that Ψ meets
the required estimate (9). So let z = (z1, z2) = (u, v, x, y) ∈ T (a, π)
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Figure 12. Mapping the tower to a disc.

and write Ψ(z) = (u′, v′, z′2). By the choice of δ it suffices to show that
for all (u, v, z2) ∈ T (a, π)

u′ − πu

a
+ π|z′2|2 − π|z2|2 <

a

2
+ 15δ.(28)

We distinguish three cases according to the locus of the image β(z1) in
the set U = P1

∐
L
∐

P2 (see Figure 5 and Figure 7). We denote the
u-coordinate of β(z1) = β(u, v) by u′′ (β(u, v)).

Case 1. β(z1) ∈ P1. The first identity in (18) implies ϕ|S(P1) = id,
and Step 4 implies γ|S(P1) = id. Therefore, u′ = u′′(β(u, v)). Moreover,
u′′(β(u, v)) < u + δ. Indeed, the definition of the map β illustrated in
Figure 7 shows that if u′′(β(u, v)) ≤ a

2
, then u′′(β(u, v)) = u, and if

u′′(β(u, v)) ∈
]

a
2
, a

2
+ δ
]
, then u > a

2
. Summarizing, we have

u′ < u + δ.

Using again ϕ|S(P1) = id we find σ(z2) ∈ Re and z′2 = τ(σ(z2)). Hence,
the estimate (26) for the map τ yields

π|z′2|2 = π|τ(σ(z2))|2 < π|σ−1(σ(z2))|2 +
π

2
+ 8δ = π|z2|2 +

π

2
+ 8δ.
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Finally, we have u ≤ a
2

+ δ. Indeed, if u > a
2

+ δ, then the second
identity in (15) implies β(u, v) ∈ P2. Altogether we can estimate

u′ − πu

a
+ π|z′2|2 − π|z2|2 < u

(
1 − π

a

)
+ δ +

π

2
+ 8δ

<
a

2

(
1 − π

a

)
+

π

2
+ 10δ

=
a

2
+ 10δ.

Case 2. β(z1) ∈ P2. By the second identity in (18) we have ϕ|S(P2) =
id+(0, 0, 0, I∞), and so, in view of the identity (21), u′ = u′(γ(β(z1))) =
a + π

2
+ 12δ − u′′(β(u, v)). Moreover, u′′(β(u, v)) > u + π

2
+ 10δ. In-

deed, the definition of β shows that if u′′(β(u, v)) ≥ a+π
2

+ 12δ, then

u′′(β(u, v)) = u + π
2

+ 11δ, and if u′′(β(u, v)) ∈
[

a+π
2

+ 11δ, a+π
2

+ 12δ
[
,

then u < a
2

+ δ. Summarizing, we have

u′ < a − u + 2δ.

Step 2 shows σ(z2) ∈ Ri, and so y
(
σ(z2) + (0, I∞)

)
≥ −π

2
− 2δ. Hence,

the estimates (25), (16) and (19) imply

π|z′2|2 = π
∣∣τ
(
σ(z2) + (0, I∞)

)∣∣2

< y(σ(z2)) + I∞ +
π

2
+ 3δ

<
(
π|z2|2 −

π

2

)
+
(π

2
+ 5δ

)
+

π

2
+ 3δ

= π|z2|2 +
π

2
+ 8δ.

Finally, we have u ≥ a
2
. Indeed, if u < a

2
, then the first identity in (15)

implies β(u, v) ∈ P1. Altogether we can estimate

u′ − πu

a
+ π|z′2|2 − π|z2|2 < a − u

(
1 +

π

a

)
+ 2δ +

π

2
+ 8δ

≤ a − a

2

(
1 +

π

a

)
+

π

2
+ 10δ

=
a

2
+ 10δ.

Case 3. β(z1) ∈ L. Using the definition of ϕ, the estimate (22) implies

u′ < −u′′(β(u, v)) +
π

2
+ a + 13δ.

Since π|z2|2 < π
2
, we have σ(z2) ∈ Ri, cf. Figure 8. In particular,

y
(
σ(z2) + (0, I(u′′(β(u, v))))

)
≥ −π

2
− 2δ. Hence, the estimates (25)
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and (16) and the estimate I(t) < (1 − 2δ)(t − ( a
2

+ 2δ)) read off from
Figure 9 yield

π|z′2|2 = π
∣∣τ
(
x(σ(z2)), y(σ(z2)) + I(u′′(β(u, v)))

)∣∣2

< y(σ(z2)) + I(u′′(β(u, v))) +
π

2
+ 3δ

<
(
π|z2|2 −

π

2

)
+ (1 − 2δ)

(
u′′(β(u, v)) − a

2
− 2δ

)
+

π

2
+ 3δ

= π|z2|2 + u′′(β(u, v))− a

2
− 2δ − 2δu′′(β(u, v)) + δa + 4δ2 + 3δ.

Finally, we have u′′(β(u, v)) > a
2

+ δ by the definition of L, and u ≥ a
2

by the first identity in (15). Altogether we can estimate

u′ − πu

a
+ π|z′2|2 − π|z2|2 < −u′′(β(u, v)) +

π

2
+ a + 13δ − π

a

a

2

+u′′(β(u, v)) − a

2
− 2δ − 2δ

(a

2
+ δ
)

+δa + 4δ2 + 3δ

=
a

2
+ 14δ + 2δ2

<
a

2
+ 15δ,

where in the last step we have used that 2δ2 < δ which follows from
δ < 1

15
.

We have verified that the estimate (28) holds for all (u, v, z2) ∈
T (a, π), and the proof of Proposition 2.9 is complete. 2

Recall that by Corollary 2.10, Proposition 2.9 implies Proposition 2.2,
and so, in view of Corollary 2.3, the proof of Theorem 2.1 is complete.

Remarks 2.12.

1. As the verifications done in this section showed, the specific choice
of the maps β, σ, ϕ, γ and τ constructed in the previous section is
crucial for obtaining the required estimate (9).

2. We recall that the embedding Φ: E(a, π) ↪→ B4(a
2

+ π + ε) in our
construction is the composition

Φ = c−1 ◦ (ω × id) ◦ Ψ ◦ (α × id) ◦ c

= c−1 ◦ (ω × id) ◦ (id × τ) ◦ (γ × id) ◦ ϕ ◦ (id × σ) ◦ (β × id) ◦ (α × id) ◦ c,

where c is the dilatation by a number close to 1.

3. The folding map Ψ: T (a, π) ↪→ T 4(A) can be visualized as in
Figure 13, in which the pictures are to be understood in the same
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sense as the picture in Figure 2: The horizontal direction is the u-
direction and refers to the base, while the vertical direction indicates
the locus of the fibers. In the first two pictures and in the last one,
the fibers are (contained in) discs, and in the other three pictures they
are (contained in) rectangles. As illustrated in Figure 14, the map Ψ

� ����� �������

� 	 ���
�

�������

Figure 13. Folding an ellipsoid into a ball.

essentially restricts to the identity on the black rectangle and maps the
triangle {u > a

2
} to the light triangle and the triangle {π|z2|2 > π

2
} to

the dark triangle.


�

�

�

�

Figure 14. How the parts of the ellipsoid are mapped.
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3. Proof of Theorem 3

Recall from the introduction that in order to prove Theorem 3 it is
enough to show that for each a > 2π and each ε > 0 there exists a
symplectic embedding Φ: E(π, a) ↪→ B4 (s2(a) + ε) where

s2(a) = 2π + (a − 2π)
a + π

3a + π
.

Using Lemma 2.8 we see as in the proof of Corollary 2.10 that to this
end it is enough to prove

Proposition 3.1. Assume a > 2π. Given ε > 0, there exists a sym-

plectic embedding

Ψ: T (a, π) ↪→ T 4 (s2(a) + ε) .

Proof. In order not to disturb the exposition unnecessarily with the
arbitrarily small δ-terms (arising from “rounding off corners” and so
on) we shall skip them. Since all the sets under consideration will be
bounded and all constructions will involve only finitely many steps, we
will not lose control of the δ-terms.

� �
� �
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Figure 15. Folding twice.

We shall prove Proposition 3.1 by folding T (a, π) twice. Up to the
final fiber adjusting map τ , the folding map Ψ is the composition of
maps explained in Figure 15, in which the pictures are to be understood
as in Figure 2: The horizontal direction refers to the base and the
vertical direction to the fibers. Here are the details: Recall that T (a, π)
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fibers over the rectangle R(a) = {(u, v) | 0 < u < a, 0 < v < 1}. We
set

(29) u1 =
a2 + aπ

3a + π
and u2 = u3 =

a2

3a + π
.

Then u1 + u2 + u3 = a. Define the heights h1 and h2 by

(30) h1 = π − π

a
u1 and h2 = π − π

a
(u1 + u2).

Using the definitions (29) of u1 and u2 we find that h2 = u1 − u2.

Step 1 (Separating smaller fibers from larger ones). Let U and f be
as in Figure 16. Proceeding as in Step 1 of the folding construction in
Section 2.2 we find a symplectic embedding β : R(a) ↪→ U such that
(β × id)(T (a, π)) ⊂ F(U, f).

�
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Figure 16. F(U, f).

Step 2 (Preparing the fibers). The map σ is explained in Figure 17.
More precisely, σ maps the central black disc to the black disc D, and
up to some neglected δ-terms we have

y(σ(z2)) =





h1 − h2 + π |z2|2 for most z2 ∈ D (h2) \ D,

h1 − π |z2|2 for most z2 ∈ D (h1) \ D (h2) ,

π |z2|2 for most z2 ∈ D (π) \ D (h1) .
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Here, D(h) denotes again the open disc of area h centered at the origin.
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Figure 17. The map σ.

Step 3 (Lifting the fibers). Choose cut off functions ci over Li, i = 1, 2,

and abbreviate c(t) = c1(t)+c2(t) and I(t) =
∫ t

0
c(s) ds. The symplectic

embedding ϕ : (β × σ)(T (a, π)) ↪→ � 4 is defined as in (17) by

ϕ(u, x, v, y) =

(
u, x, v + c(u)

(
x +

1

2

)
, y + I(u)

)
.

Step 4 (Folding). Step 4 in Section 2.2 now requires two steps.

1. The folding map γ1 is essentially the map γ of Section 2.2: On the
part of the base denoted by P1 it is the identity, for u1 < u < u1 +h1 it
looks like the map in Figure 10, and for u ≥ u1 + h1 it is an isometry.
By construction, the stairs S1 are contained in the “trapezoid” over
{(u, v) | u1 < u < u1 + h1, 0 < v < 1} with left edge of length 2h1 and
right edge of length h1, cf. Figure 19. Moreover, the identity h2 = u1−
u2 implies that the stairs S ′

2 lie over {(u, v) | 0 < u < h2, 0 < v < 1}.
By construction, the slope of the stairs S ′

2 is 1, while the slope of the
upper edge of the floor F1 is π/a < 1, and so the sets S ′

2 and F1 are
disjoint.

2. The map γ2 × id is not really a global product map, but restricts
to a product on certain pieces of its domain: It is the identity on
F1

∐
S1

∐
F2, and it is the product γ2 × id on the remaining domain,

where γ2 is explained in Figure 18: It is the identity on the gray part
of its domain, maps the black square to the black part of its image,
and is an isometry on {u ≤ 0}. The map γ2 is constructed the same
way as the map γ in Section 2.2.
By construction, the stairs S2 are contained in a “trapezoid” over the
set {(u, v) | 0 < u < h2, 0 < v < 1} with horizontal upper edge, left



30 3. Proof of Theorem 2

� �

�

���
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Figure 18. Folding on the left.

edge of height h2 and right edge of height 2h2, and since u2 = u3,
the lower edge of the floor F3 coincides with the upper edge of F2, cf.
Figure 19.

Step 5 (Adjusting the fibers). The z2-projection of the image of ϕ is a
tower shaped domain T. The final map τ is a symplectomorphism from
a small neighbourhood of T to a disc. We choose τ in such a way that up
to some neglected δ-term we have for any z2 = (x, y), z′2 = (x′, y′) ∈ T,

y < y′ =⇒ |τ(z2)|2 < |τ(z′2)|2.

This finishes the 2-fold folding construction. We define the embedding
Ψ: T (a, π) ↪→ � 4 as the composition

Ψ = (id × τ) ◦ (γ2 × id) ◦ (γ1 × id) ◦ ϕ ◦ (β × σ) .

If all the δ’s were chosen appropriately, then

Ψ (T (a, π)) ⊂ T 4 (u1 + 2h1 + ε) ,

cf. Figure 19. Using the definitions (29) and (30) of u1 and h1 we find
that

u1 + 2h1 = 2π +
a + π

3a + π
= s2(a).
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Figure 19. The image Ψ (T (a, π)) ⊂ T 4 (s2(a) + ε) for
a = 4π.

This completes the proof of Proposition 3.1. 2

Proceeding in a similar way as in the above proof, one can associate
to each m ≥ 3 and to a > 2π and ε > 0 an m-fold folding procedure
which symplectically embeds E(π, a) into B4 (sm(a) + ε). We claim
that

s3(a) = 2π + (a − 2π)
(a + π)(a + 2π)

4 (a2 + aπ + π2)
.
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Figure 20. The image of E(π, a) in B4 (s3(a) + ε) for
a = 4π.
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Indeed, we read off from Figure 20 that

u2 = u1 − h2

u3 = u2 − 2h3

u4 = u3 + h2

where we abbreviated

hi = π − π

a

i∑

j=1

uj, j = 1, 2, 3.

Substituting these equations into the equation

u1 + u2 + u3 + u4 = a

we find that

u1 =
a(a + π)(a + 2π)

4 (a2 + aπ + π2)
,

and so

s3(a) = u1+2h1 = 2π+

(
1 − 2π

a

)
u1 = 2π+(a − 2π)

(a + π)(a + 2π)

4 (a2 + aπ + π2)
,

as claimed.

4. Sketch of a proof of Theorem 4 in dimension 4

The proof of Theorem 4 given in [11] combines a non-elementary result
of [10] with an elementary but intricate filling procedure based on the
symplectic folding method. In dimension 4, however, there is an ele-
mentary way of proving Theorem 4. The reason is that in dimension 4
a thin cuboid can almost be filled by a thin ellipsoid.

Define the rectangle R(a, b) by

R(a, b) = {(x, y) | 0 < x < a, 0 < y < b} .

We denote the 4-dimensional cuboid R(a, 1) × R(1, b) by

C(a, b) = R(a, 1) × R(1, b).

If b = a, we abbreviate the cube C4(a) = C(a, a).

Proposition 4.1. Assume a > π. Given ε > 0, there exists a symplec-

tic embedding

E(π, a) ↪→ C

(
a + π

2
+ ε, π + ε

)
.
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Proof. As in the previous sections we can replace the ellipsoid E(π, a)
by the trapezoid T (a, π). We shall embed T (a, π) into C

(
a+π

2
+ ε, π + ε

)

by folding once. We choose β as in Step 1 of the folding construction
given in Section 2.2, replace the map σ of Step 2 by the map σ given
by Figure 21, define ϕ as in (17), and choose γ as in Step 4.
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Figure 21. The map σ.

If all the δ’s were chosen appropriately, the map Ψ defined by

Ψ = (γ × id) ◦ ϕ ◦ (β × σ)

embeds T (a, π) into C
(

a+π
2

+ ε, π + ε
)
.

	

� �
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�

Figure 22. The image Ψ (T (a, π)) ⊂ C
(

a+π
2

+ ε, π + ε
)
.

The map Ψ can be visualized as in Figure 22. 2

Fix now a connected 4-dimensional symplectic manifold (M, ω) of
finite volume Vol(M, ω) = 1

2

∫
M

ω2. For a ≥ π we define

ca(M, ω) = sup
λ

Vol (λC(π, a))

Vol (M, ω)
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where the supremum is taken over all those λ for which λC(π, a) sym-
plectically embeds into (M, ω). The desired identity

lim
a→∞

ea(M, ω) = 1

is a consequence of Proposition 4.1 and

Theorem 4.2. We have lim
a→∞

ca(M, ω) = 1.

Sketch of proof. In the case that (M, ω) is a cube, Theorem 4.2 follows
from

Proposition 4.3. For every ε > 0 and every natural number N there

exists a symplectic embedding

C
(
π,
(
N2 + 1

)
π
)

↪→ C4 ((N + 1)π + ε) .

Proof. We fold C (π, (N 2 + 1)π) alternatingly on the right at Nπ and
on the left at π, and fold altogether N times, cf. Figure 23. 2
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Figure 23. The embedding C (π, (N 2 + 1)π) ↪→
C4 ((N + 1)π + ε) for N = 3.

In the general case, Theorem 4.2 can be proved along the follow-
ing lines: First, fill almost all of M with finitely many symplectically
embedded cubes whose closures are disjoint, and connect these cubes
by neighbourhoods of lines. In view of Proposition 4.3, the cubes can
almost be filled with symplectically embedded thin cuboids, and the
neighbourhoods of the lines can be used to pass from one cube to an-
other, cf. Figure 24.
We refer to [11, Section 5.1] for a complete proof. 2
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�

Figure 24. Filling M with a thin cuboid.
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