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1. Configuration spaces and linkages

1.1. Configuration spaces and phase spaces. The set of configurations Q that a given
dynamical system can attain is called the configuration space of the system. This is the
“space of candidates” for the positions that the system may attain, and given an initial
condition, the task is to find out which position the system actually will attain at a given
time.

We shall usually assume that the set Q is a smooth manifold, so that tools from analysis
can be used to study the dynamics. Often, but not always, we shall assume that Q is
compact (under natural assumptions on the dynamical system, this guarantees that the
motion exists for all times).

In this section we first define the tangent bundle and the cotangent bundle of a configu-
ration space, and then give many examples of configuration spaces of concrete dynamical
systems. Most of these spaces will be compact, but some are not.

1.2. Tangent space and cotangent space. If we just worked on the space Q, then the
set of the trajectories of our dynamics on Q does not fit together to form a flow: In a given
point q ∈ Q, one can move in various directions, and hence the point q ∈ Q and a time
t0 ∈ R would not give rise to an initial value problem. We therefore rather look at the
points q ∈ Q and, for each q, at all the possible vectors v at q into which the point q may
move, that is, the tangent space TqQ of Q at q. The union of these tangent spaces,

TQ =
⋃

q∈Q

TqQ

is the tangent bundle of Q. The manifold structure of Q gives rise to a manifold structure
of TQ in a natural way: If ϕ : U → Q is a chart with U ⊂ Rn, then

Tϕ : TU = U ×Rn → TQ, Tϕ(x, y) = (ϕ(x), Dϕ(x)y)

is a chart for TQ, and if {(Uj , ϕj)} is an atlas for Q, then {(TUj , Tϕj)} is an atlas for TQ.
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Examples of configuration spaces. The following example shows that the concept of
configuration space is non-trivial, and can be surprisingly helpful.

Example 1.1. Two nonintersecting roads (of zero width) lead from town A to town B. It
is known that two (pointlike) cars, connected by a rope of length 2r, were able to travel on
these different roads from A to B without breaking the rope. Is it possible for two circular
wagons of radius > r, one starting at A and one at B, whose centers move along these
roads, to reach the opposite town without colliding?

We invite the reader to guess the answer intuitively, and to compare (in case of a correct
answer) his intuition with the following argument:

...
It is rather clear that these two curves must intersect.

Exercise 1.2. Give a mathematical argument for the fact that the curves γ1, γ2 must
intersect.

1.1. The pendulum. The configuration space is thus the circle S1.

1.2. The double pendulum. The configuration space is thus the 2-torus T 2 = S1 × S1.

1.3. The spherical pendulum. The configuration space is thus the 2-sphere S2. We
agree that the presence of the mounting makes it hard to realize all of S2 as configuration
space. However, you may think of the linkage rather as a 2-atom molecule, with one atom
at rest, and the rod replaced by a force.

Coupled penduli.

The configuration space of two mechanical systems, modeled on Q1 and Q2, is the
product Q1 × Q2. If the dynamics do not interact, then we will just have a product
situation for the dynamics too, and may equally well study the two dynamics separately.
If the systems are coupled, however, then the dynamics may be far from split.

Example coupled penduli spring, Bild

2. The rigid body. A rigid body K is a body that is rigid, i.e., a system of point masses
in R3, constrained by holonomic relations expressed by the fact that the distance between
points is constant:

|xi − xj | = rij = const

Approximate examples are tops, airplanes (hopefully), and planets.

Exercise 1.3. Show that the configuration space Q of K is

R

3 if K is a point;

R

3 × S2 if K is not a point and is contained in a line;

R

3 × SO(3) if K is not contained in a line. Here, SO(3) is the group of rotations
of R3.
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Proof. Refer to [1, Ch. 28], or (a bit less precise): A translation by −O ∈ R3 moves the
center of mass O of K to the origin of R3. If K is contained in a line, then this oriented
line is determined by a point on S2. Otherwise, let F = {e1, e2, e3} be the standard or-
thonormal frame in R3. Then any other position of K relative to the origin corresponds
to a unique other orthonormal frame F ′. There is a unique rotation taking F to F ′. ✷

These configuration spaces are not compact. However, the description of the motion
of K decomposes into two parts: The motion of its center of mass O in R3, and the motion
of K relative to O. The first problem is sometimes easily solved. For instance, the center
of mass of a free rigid body moves with constant speed along a line. One may then restrict
attention to the motion of K around O, on the reduced configuration space S2 or SO(3).

Exercise 1.4. Show that the space SO(3) is diffeomorphic to real projective space RP3 =
S3/{x ∼ −x}.

The above examples suggest that closed manifolds Q that appear as configuration spaces
of a classical mechanical system are (quotients of) spheres and products of such manifolds.
It may therefore look awkward to develop a theory for arbitrary closed manifolds Q. As
the following examples show, manifolds more complicated than spheres naturally do arise
already in simple mechanical devices.

4. Planar linkages. A planar linkage is a system of rigid rods with hinge connections.
Some of the hinges are fixed, and some can freely move. As before, we shall paint the fixed
hinges in black and the movable ones as circles. We have already met the two most simple
linkages: A pendulum has one rod, with one end fixed. A double pendulum consists of two
rods, fixed at one end point.

As a warm-up, we look at the linkage drawn in Figure 1, and determine the configuration
spaces Q(d) for each d ≥ 0.

1 1

1

d

P1
P2

Figure 1. A linkage with three rods.

Consider the possible positions of the pin P1. For 0 ≤ d ≤ 1, the pin P1 can move along
a circle, while for d ∈ (1, 3) it can move along a closed segment. For each position of P1

the other pin P2 can attain one or two positions. For 0 ≤ d < 1, we have Q(d) = S1 ∐ S1.
When d tends to 1, the left points of the two circles merge, and at the right a new circle
appears. For d ∈ (1, 3), Q(d) is a circle. And of course, Q(3) is a point and Q(d) is empty
for d > 3. Notice that the space Q(d) does not change in a continuous way at d = 1, and
that Q(1) is not a manifold.
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0 1 3
d

Figure 2. The configuration spaces Q(d).

The triple arm linkage. Consider now the triple-arm linkage drawn in Figure 3: At each
vertex of an equilateral triangle of side length ℓ, fix an arm made of two rods of lengths
r and s, where r > s and r + 2s > ℓ, and join the three arms at their moving ends. In
order to understand the configuration space Q, we first draw the set of possible positions
of the central pin O. Each arm keeps the pin within a ring centered at its anchor, of inner
radius r − s and outer radius r + s. Hence the pin O can reach any point that lies in the
intersection of the three rings corresponding to the three arms. Since r > s and r+2s > ℓ,
this region is a curvilinear hexagon, as drawn in Figure 3.

r

s

r + s

r − s

ℓ

O
H

Figure 3. The triple arms linkage, and the hexagon H .

For each point O in the interior of the hexagon, the elbow of each arm can be bent in one
of two ways (to the left or to the right). The total number of configurations for each point
in the interior is therefore 23 = 8. We conclude that Q is obtained from eight copies of
the hexagon, each hexagon corresponding to a different combination of elbows (right-right-
right, left-right-right, etc.). Since Q is clearly connected, these eight pieces are to be glued
together. Let’s see how.

When O lies on an edge of the hexagon (but not on a vertex), exactly one arm is fully
straight or fully folded while the other two arms are not aligned, and hence there correspond
22 = 4 configurations to this position of O. Given such a position, we can reach nearby
positions in which the previously straight arm is now slightly bent either to the left or to
the right, while the other two arms are still bent in the same direction. It follows that
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from such a position we can reach exactly two hexagons. In other words, at each edge of
Q exactly two hexagons meet.

When O lies on a vertex of the hexagon, exactly two arms are fully straight or fully
folded, hence there correspond 21 = 2 configurations to this position of O. This time,
given such a position, we can reach nearby positions in which the two previously straight
arms are now slightly bent to the right-right or right-left or left-right or left-left, while the
other arm is still bent in the same direction. It follows that from such a position we can
reach exactly four hexagons. In other words, at each vertex of Q exactly four hexagonal
faces meet.

O

O

Figure 4. When O lies on an edge, or on a vertex, of the hexagon.

We are now ready to compute the number of faces F , the number of edges E, and the
number of vertices V of our polyhedral decomposition of Q obtained by the above gluing of
the eight hexagons: Of course, F = 8. The 8 hexagons have 8×6 edges in total. Since they
are glued in pairs, E = 24. Finally, there are 8×6 vertices in total, but each vertex belongs
to four faces, hence V = 12. It follows that the Euler characteristic of the closed surface Q
is χ(Q) = F − E + V = 8 − 24 + 12 = −4. Therefore, Q is either a closed orientable
surface Σ3 of genus 3, or the non-orientable closed surface obtained as connected sum of
three Klein bottles.

Exercise 1.5. Show that Q is orientable. Hence Q is diffeomorphic to Σ3.

Exercise 1.6. Show that the configuration space of the linkage in Figure 5 is the closed
orientable surface Σ2 of genus 2.

Exercise 1.7. Consider the linkage drawn in Figure ??: The two ends are fixed at dis-
tance d, the three hinges are free, and each rod has length 1. Denote by Q(d) the con-
figuration space of this linkage. Of course, Q(d) is empty for d > 4 and Q(d) is point for
d = 4.

(i) Q(3.9) is the sphere S2.

(ii) Q(1) is the orientable surface of genus 4.

The exercise shows that Q(d) is not a smooth surface for all d ∈ [1, 3.9]: As d moves
from 1 to 3.9, the topology of the configuration space changes at some values of d. One
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7

44

11

Figure 5. A linkage with Q = Σ2.

can show that given a linkage, for a generic set of lengths of the arms the configuration
space is a smooth manifold, [7, ].

We have now found planar linkages that have Σg as configuration space for g = 0, 1, 2, 3, 4.
Surprisingly, any closed manifold can be realized as (part of) the configuration space of a
planar linkage:

Theorem 1.8. Let M be a closed smooth manifold. Then there exists a planar linkage
whose configuration space is diffeomorphic to a finite disjoint union of copies of M .

Exercise 1.9. Let Σ be a closed surface. A triangulation of Σ is a decomposition of Σ
into triangles “which fit together nicely”. (What do we mean exactly? Consult [11, p. 16]
if necessary.) It is quite believable, and true, that Σ can be triangulated. Given a trian-
gulation T of Σ, define χ(Σ; T ) as the alternating sum V − E + F , where V,E, F are the
number of vertices, edges, faces of T .

(i) Prove that χ(Σ; T ) does not depend on the triangulation T . The common value χ(Σ)
is the Euler characteristic of Σ.

Hint: Use the quite believable, and true, fact that two triangulations of Σ have a common refine-

ment.

(ii) Derive Euler’s polyhedron formula: For any polyhedral decomposition of Σ, the
number of faces minus the number of edges plus the number of vertices equals χ(Σ).

(iii) Compute χ(S2) = 2 and χ(T 2) = 0.

(iv) Given two closed surfaces Σ and Σ′, consider their connected sum Σ#Σ′. Prove
that χ(Σ#Σ′) = χ(Σ) + χ(Σ′)− 2.

(v) Conclude that for the oriented surface of genus g,

χ(Σg) = 2− 2g.

(vi) Every non-orientable closed surface Σ has an orientable double cover Σ̂. Prove that

χ(Σ̂) = 2χ(Σ).
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2. Closed geodesics on Riemannian manifolds

We cannot do without citing the following famous lines of Poincaré’s despite its somewhat
martial language.

Poincaré 1905 [13]

Dans mes Méthodes nouvelles de la Mécanique céleste j’ai étudié les par-
ticularités des solutions du problème des trois corps et en particulier des
solutions périodiques et asymptotiques. Il suffit de se reporter à ce que j’ai
écrit à ce sujet pour comprendre l’extrême complexité de ce problème ; à coté
de la difficulté principale, de celle qui tient au fond même des choses, il y a
une foule de difficultés secondaires qui viennent encore compliquer la tâche
du chercheur. Il y aurait donc intérêt à étudier d’abord un problème où on
rencontrerait cette difficulté principale, mais où on serait affranchi de toutes
les difficultés secondaires. Ce problème est tout trouvé, c’est celui des lignes
géodésiques d’une surface ; c’est encore un problème de dynamique, de sorte
que la difficulté principale subsiste ; mais c’est le plus simple de tous les
problèmes de dynamique ; d’abord il n’y a que deux degrés de liberté, et puis
si l’on prend une surface sans point singulier, on n’a rien de comparable avec
la difficulté que l’on rencontre dans les problèmes de dynamique aux points
où la vitesse est nulle ; dans le problème des lignes géodésiques, en effet, la
vitesse est constante et peut donc être regardée comme une des données de
la question.

2.1. Existence of closed geodesics. In this section, M is a closed connected smooth
manifold, endowed with a Riemannian metric g. Two closed cuves on M are freely homo-
topic if they are homotopic. (The word is introduced to distinguish from pointed homotopy
classes, that form the fundamental group of M .) Free homotopy defines an equivalence
relation on the free loop space ΛM . The equivalence classes are the path components
of ΛM . They are called free homotopy classes, and we denote the set of free homotopy
classes by F(M). The class of contractible curves contains the point curves. In this section
we give the most elementary proof known to us of the following theorem.

Theorem 2.1. Let M be a closed manifold and let α ∈ F(M) be a free homotopy class of
closed curves.

(i) If α is non-trivial, then there exists a closed geodesic in class α.

(ii) If F(M) contains only the class of contractible curves, then there exists a con-
tractible closed geodesic on M .

In particular, every closed Riemannian manifold carries a closed geodesic.

Proof. The distance d(p, q) between two points in M is defined as the infimum of the
length of a smooth curve from p to q. We endow the loop space ΛM with the C0-topology,
defined by the metric

d(c1, c2) = max
t∈[0,1]

d(c1(t), c2(t)).
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Recall that there is a number ρ0 > 0 with the property that any two points p, q ∈ M
with d(p, q) ≤ ρ0 can be connected by a unique geodesic of shortest length. Moreover, this
geodesic depends continuously on p and q. (One can take as ρ0 any number smaller than
the injectivity radius of (M, g).

Lemma 2.2. Let c0, c1 : S
1 → M be two curves with d(c0, c1) ≤ ρ0. Then c0 and c1 are

homotopic.

Proof. For each t ∈ S1 let γt(s) : [0, 1] → M be the unique geodesic from c0(t) to c1(t),
parametrized proportional to arc-length. Since γt depends continuously on its endpoints,
it depends continuously on t. Hence

Γ(t, s) := γt(s), t ∈ S1, s ∈ [0, 1],

is continuous and yields the desired homotopy from c0 to c1, see Figure 6. ✷

c0(t)

c1(t)

γt

Figure 6. The homotopy Γ.

Proof of (i). Let ℓα be the infimum of the lengths of piecewise differentiable curves be-
longing to α. Since α is non-trivial, ℓα > 0. Let c1, c2, . . . be a sequence of piecewise
differentiable curves in α whose lengths ℓ(cj) are monotone decreasing to ℓα. Choose
N ∈ N such that ℓ(c1)/N ≤ ρ0. Consider the partition 0 = t0 < t1 < · · · < tN = t0 = 1
of S1 with ti+1 − ti =

1
N

for all i. We can assume that the curves cj are parametrized
proportional to arc-length. Then

(1) d(cj(ti), cj(ti+1)) ≤ ℓ(cj |[ti,ti+1]) ≤ ℓ(cj)/N ≤ ρ0 for all j and i.

SinceM is compact, itsN -fold productMN is also compact. The sequence (cj(t0), . . . , cj(tN−1))
in MN therefore has a convergent subsequence, that we still denote (cj(t0), . . . , cj(tN−1)).
Let (p0, . . . , pN−1) be its limit. Then d(pi, pi+1) = limj→∞ d(cj(ti), cj(ti+1)) ≤ ρ0 in view
of (1). Let γ be the broken geodesic with vertices pi. Using again (1) we find

ℓ(γ) =

N−1∑

i=0

d(pi, pi+1) =

N−1∑

i=0

lim
j→∞

d(cj(ti), cj(ti+1))

= lim
j→∞

N−1∑

i=0

d(cj(ti), cj(ti+1)) ≤ lim
j→∞

ℓ(cj) = ℓα

and hence ℓ(γ) = ℓα.
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q1

q2

p

Figure 7. Constructing a shorter curve.

It remains to show that γ is smooth at each vertex pi. Assume the contrary, namely that γ
is not smooth at some point p. Choose points q1, q2 on γ as in Figure 7 such that d(q1, p),
d(p, q2) and d(q1, q2) are at most ρ0 and such that the curve q1p q2 is homotopic to the
unique geodesic q1q2 of length ≤ ρ0, relative end points. Replacing the part q1p q2 of γ
by q1q2 we obtain a closed piecewise smooth curve γ̃ with ℓ(γ̃) < ℓ(γ) = ℓα that also lies
in class α. This contradicts the definition of ℓα.

Proof of (ii). We first assume that M is a 2-sphere. Recall that we identify the circle S1

with R/Z. Denote the standard sphere in R3 of radius 1 by S2. Choose a smooth map
f : S2 → S2 =: M of degree one: [f(S2)] = [M ] = 1 ∈ Z ∼= π2(M). The map f induces a
“tapestry” on M , namely the family of curves {cs : S

1 → M}, c ∈ [−1, 1]. Now let’s pull
along all these curves! Let v := max−1≤s≤1 ‖ċs(t)‖∞ be the maximal velocity of a curve cs.
Denote by Lv the space of piecewise smooth curves c : S1 → M for which ‖ċ(t)‖ ≤ v at
smooth points of c, and let Bv be the subset of Lv consisting of broken geodesics. The
length of c ∈ Lv is, of course, the sum of the lengths of its smooth pieces.

The main tool of the proof is a curve shortening procedure:

Proposition 2.3. There exists a map P : Lv → Bv with the following properties.

(i) ℓ(P (c)) ≤ ℓ(c) with equality if and only if c is either a geodesic or a point curve;

(ii) for every c there exists a subsequence nk ⊂ N such that P nk(c) converges uniformly
to either a geodesic or a point curve;

(iii) the map P : Lv → Bv is homotopic to the identity of Lv;

(iv) the map P is continuous in the C0-topology, and the functions

fn : [0, 1]→ R, s 7→ ℓ(P n(cs))

are continuous.

Proof. Recall that any two points p, q ∈M with d(p, q) ≤ ρ0 can be connected by a unique
geodesic of shortest length. Moreover, this geodesic depends continuously on p and q.
Choose N so large that L/N ≤ ρ0. Consider the partitions 0 = t0 < t1 < · · · < tN = t0 = 1
and 1

2N
= τ1 < · · · < τ2N+1 =

2N+1
2N

of S1 with ti− ti−1 =
1
N

and τi− τi−1 =
1
N

for all i, and
t0 = tN , τ1 = τ2N+1. For c ∈ Lv we can then define P1(c) (resp. P2(c)) to be the unique
broken geodesic with vertices c(ti) (resp. c(τi)). Set P := P2 ◦ P1.
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Exercise 2.4. Verify that P meets properties (i)–(iv).

By (ii) we find for every s ∈ [−1, 1] a subsequence nk(s) such that P nk(s)(cs) converges
uniformly to a closed geodesic or to a point curve. Arguing by contradiction, assume now
that for each s this limit curve is a point. By (iv), the functions fn(s) = ℓ(P n(cs)) are
continuous, and by (i) and by our assumption, for each s the sequence fn(s) is monotone
and tends to 0. In other words, the sequence fn converges monotone and pointwise to
the continuous function f(t) ≡ 0. Dini’s theorem thus implies that fn → 0 uniformly
on [−1, 1]. Hence there exists n0 such that ℓ(P n0(cs)) ≤ ρ0 for all s ∈ [−1, 1].

Exercise 2.5. Conclude that f(S2) is contractible in M .

This contradiction shows that there exists s0 such that a subsequence of P n(cs0) tends to
a closed geodesic. ✷

Remark 2.6. 1. The proof of assertion (i) of Theorem 2.1 yields a geodesic in class α
that minimizes the length of all rectifiable closed curves in class α. The curve shortening
procedure used in the proof of (ii), applied to a curve in a non-trivial class α, also yields
the existence of a closed geodesic in class α. This geodesic may, however, not minimize the
length of curves in α.

2. Most authors prove Theorem 2.1 (ii) by considering the energy functional E(c) =
1
2

∫ 1

0
‖ċ(t)‖2 dt instead of the length L(c). The energy functional has the advantage that

for generic Riemannian metrics (for which the closed geodesics are isolated) the compo-
nents of the critical set of E (namely the closed geodesics) are compact (namely circles),
see Proposition ?? wie Dietmar. This is relevant for doing Morse theory on the free
loop space. On the other hand, the length of a closed geodesic does not change under
reparametrization, and so a component of the critical set of L is at least as large as the
group of orientation preserving diffeomorphisms of the circle, which is not compact. For
the proof of Theorem 2.1 (ii) this disadvantage of the length functional is irrelevant, and
we found it more natural and also slightly more elementary to work with the length.

3. Assertion (i) of Theorem 2.1 goes back to Cartan and Hadamard. Assertion (ii) was
proven by G. Birkhoff in 1917 for S2 and in 1927 [4] for Sn. The general case was proven
by Lusternik and Fet in 1947 [8]. Hurewicz’s theorem used in the proof of Lemma ?? was
not available in 1927.

Exercise 2.7. (i) Consider the circle S1 ⊂ C, parametrized by γ(t) = e2πit. Fix k ≥ 1,
and choose the two partitions tj = j/k, τj = (j − 1/2)/k. Show that P n(γ) converges to
the origin.

(ii) Decompose S2 ⊂ R3 into loops cs = S2 ∩ {x1 = s}, s ∈ [0, 1]. Parametrize each loop
on [0, 1] proportional to arc-length. Describe the family P n(cs) for n large.

2.2. Counting closed geodesics. It is conjectured, and known for most closed manifolds,
that for every Riemannian metric g on M there exists infinitely many closed geodesics.
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Once this is known, one wants to count the closed geodesics finer: below length. In view
of Theorem 2.1 (i) we first study the set F(M) of free homotopy classes.

Let ∼ be the equivalence relation on π1(M) given by conjugacy: α ∼ β if there exists
γ ∈ π1(M) such that α = γβγ−1.

Exercise 2.8. The set of free homotopy classes F(M) is in bijection with π1(M)/ ∼.

2.3. Geodesic and horocycle dynamics on the hyperbolic plane and its compact

quotients.

2.3.1. Geodesics and horocycles on the upper half plane. Endow the upper half plane

H := {z = x+ iy ∈ C | y > 0}

with the Riemannian metric

(2) ds2 =
1

y2
(
dx2 + dy2

)
.

This Riemannian manifold is, up to isometry, the unique simply connected surface of
constant curvature −1. The group

PSL(2,R) :=

{(
a b
c d

)
| a, b, c, d ∈ R; ad− bc = 1

}
/{±1}

acts biholomorphically on H via the mappings

z 7→
az + b

cz + d

and leaves the metric (2) invariant. In fact, PSL(2,R) is the full group of orientation
preserving isometries of H. Typical examples are the inversion z 7→ −1/z, the translations
z 7→ z + b (b ∈ R), and the dilations z 7→ az (a > 0).

The geodesics on H are precisely the vertical lines and the half-circles with center on the
real axis. The horizontal lines R+iy = {r+is | r ∈ R} are called horocycles centered at∞;
the intersection of circles tangent to R at x ∈ R with H are called horocycles centered
at x, see Figure 8.

Figure 8. Geodesics and horocycles on H.
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Lemma 2.9. For every horocycle H there exists an orientation preserving isometry T of H
such that T (R+ i) = H.

Proof. For horocycles H = R + is take a dilation Tz = sz. The inversion Tz = −1/z
maps R+ i to the horocycle centered at (0, 0 and passing through i: For all r ∈ R we have

∣∣∣∣T (r + i)−
i

2

∣∣∣∣ =
∣∣∣∣

1

r + i
+
i

2

∣∣∣∣ =
∣∣∣∣
2 + i(r + i)

2(r + i)

∣∣∣∣ =
∣∣∣∣
i(r − i)

2(r + i)

∣∣∣∣ =
1

2
.

The horocycle centered at x of (Euclidean) radius a is obtained from this horocycle by first
applying the dilation by a and then the translation by x. ✷

ev hier geodesic curvature ...

2.4. Compact quotients. Now let Γ be a discrete subgroup of PSL(2,R) that acts on H

without fixed points. Then the quotient MΓ := Γ \ H is a smooth manifold, and the
Riemannian metric (2) descends to MΓ. Then the projection map is a local isometry.
Therefore, the geodesics onMΓ are the projections of geodesics onH, the curves of geodesic
curvature +1 are the projections of the horocycles onH (which are called again horocycles),
and the Gauss curvature of MΓ is −1. From now on, we also assume that MΓ is compact.
By the Gauss–Bonnet theorem, we then must have

kVolMΓ = −VolMΓ = 2π χ(MΓ)

where χ(MΓ) is the Euler characteristic of MΓ. Since the Euler characteristic of a surface
of genus g is 2 − 2g, we see that we must have g ≥ 2. That for g ≥ 2 such subgroups Γ
exist is not obvious. For a few explicit examples see [10, p. 215], [5], [?]. In turns out that
such examples are abundant: The set of closed 2-dimensional Riemannian manifolds mod-
ulo isometries isotopic to the identity (the so-called Teichmüller space) is homeomorphic
to R6(g−1) (see [2, B.4], [5, Ch. 6].

Lemma 2.10. No horocycle in MΓ is closed.

Proof. Let H be a horocycle in MΓ, parametrized by arc-length, and let H̃ be its lift
to H. Arguing by contradiction we assume that H is closed. Since the horocycle H̃ is
not a closed curve, H is a non-contractible closed curve in MΓ. Therefore, there exists

a Deck transformation ϕ ∈ π1(MΓ) ∼= Γ ⊂ PSL(2;R) with ϕ 6= id and ϕ(H̃) = H̃ .
Recall from Theorem 2.1 that the free homotopy class corresponding to ϕ ∈ Γ ∼= π1(MΓ)
contains a closed geodesic.1 From this it follows easily that “ϕ has an axis”, i.e., there
exists a geodesic c on H such that ϕ(c) = c, see for instance [6, Chap. 12, Prop. 2.6].
By Lemma (2.9) there exists an isometry T ∈ PSL(2;R) such that T (H) = R + i. Then
the isometry ψ := T ◦ ϕ ◦ T−1 ∈ PSL(2;R) leaves invariant the geodesic T ◦ c and the

1Here we use that MΓ is closed. The generator of the fundamental group of the pseudosphere Γ \H,
where Γ is generated by the translation T (z) = z + 1, cannot be represented by a closed geodesic.
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horocycle R + i. Since ψ is an isometry, it translates R + i by a constant, say τ . If
ψ(z) = az+b

cz+d
, we thus have

ψ(r + i) =
a(r + i) + b

c(r + i) + d
= r + i+ τ for all r ∈ R.

It readily follows that ψ is a translation of H, ψ(z) = z + b = z + τ . Since ϕ 6= id, also
ψ 6= id. However, a non-trivial translation leaves invariant no geodesic of H. ✷

Remark 2.11. In the above proof we followed [9, p. 137]. A seminal result of Hedlund []
is much stronger: The horocycle flow on MΓ is minimal, i.e., each orbit of the horocycle
flow is dense in T1MΓ. In particular, each horocycle is dense inMΓ (and hence not closed).

As a introduction to hyperbolic geometry we recommend [2]. All we needed on hyperbolic
geometry can be found in [10, Ch. 5.4]. The traditional way is to start from the Riemannian
metric, and then to compute the geodesics and isometries. A more intrinsic approach starts
from geodesics, and then computes the isometries and the metric, see [14, ???].

3. Solutions of exercises

Exercise 1.2. We give two proofs, the first based on the Jordan curve theorem, the second
on the notion of intersection degree.

First proof. Assume that γ1, γ2 do no intersect. Since their images are compact, their
distance is then positive. We can therefore approximate γ1, γ2 by piecewise linear curves
γ̃1, γ̃2 that are still disjoint and have finitely many and transverse self-intersections. After
removing finitely many closed arcs from γ̃1, we can assume that γ̃1 is embedded. We can
also assume that γ̃1 avoids the points (0, 1) and (1, 0). (and piecewise linear ? for Jordan?)
By the Jordan curve theorem, the image of γ̃1 divides Q = [0, 1]2 into two regions R1

containing (0, 1) and R2 containing (1, 0). By the Tietze extension theorem we find a
continuous function f : Q → [−1, 1] with f−1(0) = γ̃1 and such that f is negative on
R1 \ γ̃1 and positive on R2 \ γ̃1. Now consider the continuous function g : [0, 1] → [−1, 1],
g(t) = f ◦ γ̃2(t). Since γ̃2 starts in (0, 1) ∈ R1 \ γ̃1 and ends in (1, 0) ∈ R2 \ γ̃1, the
intermediate value theorem implies that there exists t∗ with g(t∗) = 0, i.e., γ̃2(t

∗) ⊂ γ̃1.
Hence the curves γ̃1, γ̃2 intersect.

Second proof. Given a continuous curve γ1 : [0, 1]→ Q from (0, 0) to (1, 1) and a continuous
curve γ2 : [0, 1] → Q from (0, 1) to (1, 0), the Z2-intersection degree deg(γ1, γ2) ∈ {0, 1} is
defined as follows. If γ1 and γ2 are smooth and intersect transversally, then deg(γ1, γ2) is
the number modulo 2 of intersections of γ1 and γ2. In general, deg(γ1, γ2) := deg(γ̃1, γ̃2),
where γ̃1, γ̃2 are smooth approximations of γ1, γ2 that intersect transversally. This number
is indeed well-defined, and it is invariant under homotopies of γ1, γ2 relative endpoints.

Let now γ1, γ2 be the two curves in our problem. Since γ1 is homotopic to the diago-
nal γ̃1 from (0, 0) to (1, 1) and γ2 is homotopic to the anti-diagonal γ̃2 from (0, 1) to (1, 0),
deg(γ1, γ2) = deg(γ̃1, γ̃2) = 1. Hence γ1, γ2 intersect.
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Exercise 1.4. We propose two solutions, a more topological and a more algebraic one.

Solution 1. The space RP3 is defined as the quotient S3/{x = −x}. By restricting the
antipodal action on S3 to a closed hemisphere, we see that RP3 is obtained from a closed
3-ball by identifying antipodal boundary points.

Consider the closed ball B3(π) ⊂ R3 of radius π. Define the map ϕ : B3(π) → SO(3)
by sending a nonzero vector x to the rotation through angle |x| about the axis formed by
the line through the origin in the direction of x. Here, we use the “right-hand-rule”. By
continuity, ϕ then sends 0 to the identity. Antipodal points of ∂B3(π) are sent to the same
rotation through angle π, so ϕ induces a map ϕ : RP3 → SO(3). The map ϕ is injective,
because the axis of a nontrivial rotation is uniquely determined as its fixed point set, and
ϕ is surjective, because every non-identity element of SO(3) has 1 as a simple eigenvalue,
and hence is a rotation about some axis. It follows that ϕ is a homeomorphism.

It is not easy to see whether ϕ is a diffeomorphism. That the spaces RP3 and SO(3)
are diffeomorphic follows from a theorem of Bing and Moise according to which every
topological 3-manifolds has a unique smooth structure. In the following solution, the
smoothness of the map is clear.

Solution 2. Identify S3 ⊂ R

4 = H with the set of quaternions a + bi + cj + dk of
length 1. Multiplication of quaternions satisfies |xy| = |x| |y|. View R3 as the set of “pure
imaginary” quaternions {bi+ cj + dk}.

(a) For x ∈ S3 the map y 7→ xyx−1 defines an orthogonal map fx : R
3 → R

3 with
determinant +1. We thus obtain a map f : S3 → SO(3), x 7→ fx.

(b) The map f : S3 → SO(3) is smooth, surjective, and f(x) = f(x′) if and only if
x′ = ±x.

(c) The map f : S3 → SO(3) is a 2-fold covering map.

(d) f induces a diffeomorphism RP3 → SO(3).

Exercise 1.5. Label the three arms of the linkage by 1, 2, 3. The usual orientation of the
plane R2 induces an orientation of the hexaxon H . The configuration space Q is obtained
from gluing the eight hexagons

HLLL, HLLR, HLRL, HRLL, HLRR, HRLR, HRRL, HRRR

where, for instance, HLLR is the hexagon whose interior points correspond to configurations
with the first and second elbow turned to the left and the third elbow turned to the right.
Label each edge of such a hexagon by one of 1±, 2±, 3±, where 1− (resp. 1+) is the edge
lying on the smaller (resp. larger) circle centred at 1, etc.

figure
The eight hexagons are glued as follows: Two hexagons have a common edge if and only

if they differ in exactly one of the three letters from the set {L,R}, say in position j, and
in this case the two edges j− are glued and the two edges j+ are glued. E.g., HLLR and
HLRR are glued along the two edges 2− and the two edges 2+.
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Note that the gluing along edges is done abstractly. E.g. HLLR is glued to HLRR by
putting HLLR ⊂ R

2 on top of HLRR ⊂ R
2 and identifying the edges 2− and the edges 2+.

On the other hand, a smooth curve in Q crossing an edge transversely corresponds to
a curve in H ⊂ R2 that is reflected at the corresponding edge. It is now clear how to
define an orientation of Q: Orient a hexagon H ⊂ Q like H if none or two of its labels
are L, and orient H ⊂ Q opposite to H if one or three of its labels differ from L. For
instance, HLLR ⊂ Q is oriented like HLLR ⊂ R

2, while HLRR ⊂ Q is oriented opposite
to HLRR ⊂ R

2. This defines an orientation of Q because any sequence of moves from
a given word in {L,R} with three letters to another given such word (where each move
changes exactly one letter) either has even or odd length. Equivalently, any closed curve
in Q (that we may assume to avoid vertices and to intersect edges transversally) crosses
an even number of edges, and hence the orientation along closed curves is preserved.

Exercise 2.8. Fix a point p ∈M . Consider the maps

F(M)
ϕ
−→ π1(M, p)/ ∼ and F(M)

ψ
←− π1(M, p)/ ∼

defined as follows. For [α] ∈ F(M) choose a closed curve α̃ based at p that is freely
homotopic to α, and set ϕ([α]) = [[α̃]], where [[α̃]] is the projection of [α̃] ∈ π1(M, p) to
π1(M, p)/ ∼. Conversely, given an element [[β]] ∈ π1(M)/ ∼ with [β] ∈ π1(M, p), define
ψ([[β]]) = [β] ∈ F(M). We only need to show that ϕ and ψ are well-defined, since then
ψ ◦ ϕ = idF(M) and ϕ ◦ ψ = idπ1(M,p)/∼.

ϕ is well-defined: Let h(t, s) : [0, 1]× [0, 1]→M be a free homotopy between closed curves
α1, α2 : [0, 1]→M based at p. Then

h(t, 0) = α1(t), h(t, 1) = α2(t) and γ(s) := h(0, s) = h(1, s) for all t ∈ [0, 1].

In particular, [γ] ∈ π1(M, p).
figure

By restricting h to the family of paths indicated in Figure ?? we see that α1 is homotopic
to γ−1 ◦ α2 ◦ γ relative p, that is, [α1] = [γ]−1[α2][γ] in π1(M, p).

ψ is well-defined: Assume that β1, β2 and γ are closed curves based at p such that β2 is
homotopic to γ−1 ◦ β1 ◦ γ relative p. Moving the base point 0 of [0, 1]/{0, 1} by 1/3 we see
that γ−1 ◦ β1 ◦ γ is freely homotopic to γ ◦ γ−1 ◦ β1, which is homotopic to β1 relative p.
Hence β2 is freely homotopic to β1, i.e., [β1] = [β2] ∈ F(M).
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