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Abstract. Let M be a compact symplectic manifold. The Arnold conjecture states that any
Hamiltonian diffeomorphism of M should have at least as many fixed points as the minimal

number of critical points of a smooth function on M . This conjecture was posed in the 60’s,

and since then has been a great sourse of motivation for the development of modern symplectic
topology. Following the work of Chaperon, Laudenbach, Sikorav and Théret, I will present

a proof of the Arnold conjecture in the case of CPn and T2n. The proof will be based on

the technique of generating functions, which is a simple but deep technique that relates the
properties of Hamiltonian diffeomorphisms to the Morse theory of the associated functions. I

will also discuss a version of the Arnold conjecture for Lagrangian intersections in the cotangent
bundle and some other related topics such as the non-degenerate version of the Conley conjecture

for periodic points of Hamiltonian diffeomorphims of T2n (following Théret) and Gromov’s Non–

Squeezing theorem in R2n (following Viterbo).

Still in progress... comments and corrections are welcome!

1. Symplectic manifolds

A symplectic manifold (M,ω) is a smooth manifold equipped with a symplectic form, i.e. a 2-form
ω which is closed (dω = 0) and non–degenerate (at every point p of M , the skew-symmetric bilinear
form ωp on the vector space TpM is non-degenerate). Non-degeneracy of the symplectic form ω
implies that M must have even dimension 2n, and that ωn is a volume form on M . Closedness
of ω implies in particular that ω represents a cohomology class [ω] ∈ H2(M ;R). If [ω] = 0 then
the symplectic manifold (M,ω) is said to be exact. In this case the symplectic form ω is exact,
and thus it can be written as ω = −dλ for some 1-form λ which is then called a Liouville form.
Note that an exact symplectic manifold (M,ω) cannot be compact. Indeed, if M is compact then
[ωn] 6= 0 (because ωn is a volume form) and so [ω] 6= 0. The same argument also shows that a
compact manifold M with H2(M ;R) = 0 (for example S2n for n > 1) cannot be symplectic.

We now describe some examples of symplectic manifolds.

Example 1.1 (Standard symplectic Euclidean space). Consider the Euclidean space R2n, with
coordinates (x1, · · · , xn, y1, · · · , yn). The 2-form

ωst =

n∑
i=1

dxi ∧ dyi

is called the standard symplectic form on R2n. Note that ωst = −d
(∑n

i=1 yidxi
)

thus
(
R2n, ωst

)
is an exact symplectic manifold, with Liouville form λst =

∑n
i=1 yidxi.

Example 1.2 (Torus). Since the symplectic form ωst =
∑n
i=1 dxi ∧ dyi on R2n is invariant by

translations (in particular by translations by integer numbers along the coordinate axes), it descends
to a symplectic form on the quotient T2n = R2n/Z2n. Note however that on T2n the symplectic
form ωst is not exact anymore because the 1-form λst =

∑
yi dxi does not descend to the quotient.

1



2 SHEILA SANDON

Example 1.3 (Cotangent bundles). Let B be a smooth manifold and consider the cotangent bundle
π : T ∗B → B, i.e. the vector bundle whose sections are the 1-forms on B. The total space T ∗B
has a canonical exact symplectic form ωcan = −dλcan, where the Liouville form λcan is defined by

λcan(X) = α
(
π∗(X)

)
for a vector X in T(q,α)(T

∗B). The 1-form λcan is also called the tautological 1-form on T ∗B
because it is characterized by the following property: for any 1-form α on B, which we regard as a
section α : B → T ∗B, it holds that α∗ λcan = α. If q1, · · · , qn are local coordinated in B and q1,
· · · , qn p1, · · · , pn the associated local coordinates in T ∗B, then we have that λcan =

∑n
i=1 pidqi.

Example 1.4 (Products). For any two symplectic manifolds (M1, ω1) and (M2, ω2) the 2-form
ω1 ⊕ ω2 is a symplectic form on the product M1 ×M2. In these notes we will consider more often
the twisted product

(
M1 ×M2, (−ω1)⊕ ω2

)
, that we will sometimes also denote by M1 ×M2.

Example 1.5 (Oriented surfaces). If M is a 2-dimensional manifold then for any 2-form ω we
have that dω = 0. Thus any oriented surface, equipped with its area form, is a symplectic manifold.
Consider for example the 2-sphere S2, seen as the unit sphere in R3 i.e.

S2 = { (x1, x2, x3) ∈ R3 such that x2
1 + x2

2 + x2
3 = 1 } .

Let ω be the area form on S2 (to total area 4π) given by ωx(ξ, η) =< x, ξ × η > for ξ, η ∈ TxS2.
Consider cylindrical polar coordinates (θ, x3) on S2 \ { (0, 0,±1) } where 0 ≤ θ ≤ 2π and −1 <
x3 < 1. Then ω = dθ ∧ dx3. This means that the horizontal projection from the cylinder to S2

preserves the area, a fact already known to Archimedes.

A symplectic transformation between two symplectic manifolds (M1, ω1) and (M2, ω2) is a smooth
map ϕ : M1 → M2 such that ϕ∗ω2 = ω1. A symplectic diffeomorphism of (M,ω) is also called a
symplectomorphism. A symplectic isotopy is an isotopy ϕt consisting of symplectomorphisms. If
(M,ω = −dλ) is an exact symplectic manifold, a symplectomorphism ϕ of M is called exact with
respect to the Liouville form λ if the (necessarily closed) 1-form ϕ∗λ− λ is exact.

A very important feature of symplectic topology is that locally all symplectic manifolds are equiv-
alent. This is the content of the following theorem.

Theorem 1.6 (Darboux). Every point in an arbitrary symplectic manifold has an open neighbor-
hood which is symplectomorphic to an open domain in

(
R2n, ωst

)
.

This theorem can be proved by using Mosers’s homotopy method for symplectic forms [Mo65],
see for example [MS98]. We also refer to Arnold [Arn89, Section 43B] for a different and more
geometric proof. It follows from the Darboux Theorem that, unlike Riemannian manifolds, sym-
plectic manifolds have no local invariants. As we will see in the next section a second key feature
of symplectic geometry, that distinguish it from Riemannian geometry, is the fact that symplectic
forms, unlike metrics, always have an infinite-dimensional group of symmetries.

2. The groups of symplectic and Hamiltonian diffeormophisms

We denote by Symp(M,ω) the group of symplectomorphisms of a symplectic manifold (M,ω). We
will now see that every smooth function on M induces a 1–parameter subgroup of Symp(M,ω),
and so in particular Symp(M,ω) is an infinite dimensional group. Note that this is very different
from what happens in Riemannian geometry, where the group of isometries of a compact manifold
is always finite dimensional.

Observe first that non-degeneracy of ω implies that there is a canonical isomorphism between
TM and T ∗M (we can namely identify a vector X with the 1-form ιXω) and so a canonical
1-1 correspondence between vector fields and 1-forms on M . Thus, given a smooth function
H : M → R we can consider the vector field XH defined by

ιXH
ω = −dH .
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We claim that the flow of XH consists of symplectomorphisms. To see this, note first that the
flow of a vector field X on M consists of symplectomorphisms if and only if LXω = 0 and thus,
because of the Cartan formula LXω = d (ιXω) + ιXdω, if and only if the 1-form ιXω is closed.
In our case we have, by the definition of XH , that the 1-form ιXH

ω is exact. Thus in particular
it is closed, and so the flow of XH consists of symplectomorphisms. The vector field XH is
called the Hamiltonian vector field associated to the function H (which is called the Hamiltonian
function of XH). The vector field XH is sometimes also called the symplectic gradient of H.
However, unlike the gradient associated to a metric, XH is always tangent to the level sets of
H because dH(XH) = ιXH

ω(XH) = 0. More generally we can also consider the Hamiltonian
flow of a time-dependent function Ht : M → R, i.e. the flow of the time-dependent vector field
XHt

defined by ιXHt
ω = dHt. Again, the flow ϕt of XHt

preserves ω. An isotopy ϕt of (M,ω)
is called a Hamiltonian isotopy if it is the Hamiltonian flow of a (time-dependent) function Ht.
A Hamiltonian symplectomorphism of (M,ω) is a symplectomorphism that can be written as
the time-1 map of a Hamiltonian isotopy. We denote by Ham(M,ω) the group of Hamiltonian
symplectomorphisms.

Example 2.1. Let (S2, ω) be the unit sphere in R3 equipped with the area form described in
Example 1.5. Consider the height function H : S2 → R, H(x1, x2, x3) = x3. In cylindrical polar
coordinates (θ, x3) we have XH = ∂

∂θ , thus the Hamiltonian isotopy generated by H is given by
rotations around the x3-axis.

Example 2.2. Consider the standard symplectic Euclidean space (R2n, ωst) of Example 1.1, and
the function H = xi (for i = 1, · · · , n). Then XH = ∂

∂yi
, thus the Hamiltonian flow of H is

given by the translations along the yi-axis. Similarly, for H = yi we have XH = − ∂
∂xi

. Identify

now R2n with Cn via the map (x1, · · · , xn, y1, · · · , yn) 7→ (z1 = x1 + iy1, · · · , zn = xn + iyn), and
consider the function H : Cn → R, H(z1, · · · , zn) = 1

2 |zi|
2. Then the Hamiltonian flow ϕt is given

by rotations ϕt(z1, · · · , zi, · · · , zn) = (z1, · · · , eitzi, · · · , zn). Similarly the Hamiltonian flow of

H(z1, · · · , zn) =
1

2

n∑
i=1

|zi|2

is given by

ϕt(z1, · · · , xn) = (eitz1, · · · , eitzn) .

Example 2.3. Consider the torus T2n = R2n/Z2n with the symplectic form ωst coming from
R2n, as explained in Example 1.2. Note that T2n can be seen as the product of 2n circles, T2n =
R/Z × · · · × R/Z = S1 × · · · × S1. Rotations along each circle are generated by the vector fields
∂
∂xi

and ∂
∂yi

, i = 1, · · · , n. They are symplectic isotopies, but not Hamiltonian. Indeed the

Hamiltonian functions of the vector fields ∂
∂xi

and ∂
∂yi

on R2n are the functions −yi and xi, which

do not descend to the quotient T2n.

Example 2.4. Consider the cotangent bundle T ∗B of a smooth manifold B, with the symplectic
form described in Example 1.3. Any diffeomorphism ϕ of B lifts to a diffeomorphism Ψϕ of T ∗B
by the formula

Ψϕ(q, α) =
(
ϕ(q), (dϕ(q)−1)∗α

)
.

Note that Ψ ∗
ϕ λcan = λcan, thus Ψϕ is an exact symplectomorphism. If ϕt is the flow of a vector

field Y on B then Ψϕt
is the flow of the Hamiltonian vector field XH which is generated by the

Hamiltonian function H on T ∗B given by H(q, α) = α
(
Y (q)

)
.

We will now see that every Hamiltonian symplectomorphism ϕ of an exact symplectic manifold
(M,ω = −dλ) is exact (with respect to any Liouville 1-form λ). This fact, and the formula in the
statement of the next lemma, will be important in Section 10.

Lemma 2.5. Let ϕt, t ∈ [0, 1], be a symplectic isotopy (starting at the identity) of an exact
symplectic manifold

(
M,ω = −dλ

)
. Then ϕt is a Hamiltonian isotopy if and only if ϕ ∗t λ−λ = dSt
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for a smooth family of functions St : M −→ R. In this case the St are given by

(1) St =

∫ t

0

(
λ(Xs) +Hs

)
◦ ϕs ds

where Xt is the vector field generating ϕt, and Ht : M −→ R the corresponding Hamiltonian
function.

Proof. Note first that for any symplectic isotopy ϕt generated by a vector field Xt it holds

d

dt

(
ϕ ∗t λ− λ

)
=

d

dt
ϕ ∗t λ = ϕ ∗t (LXtλ) = ϕ ∗t

(
d (ιXtλ) + ιXtdλ

)
= ϕ ∗t

(
d (ιXt

λ)− ιXt
ω
)
.

Suppose now that ϕt is a Hamiltonian isotopy with ιXt
ω = −dHt, and let St : M → R be defined

by (1). Then
d

dt

(
ϕ ∗t λ− λ

)
= ϕ ∗t

(
d (ιXt

λ) + dHt

)
=

d

dt
dSt

and so ϕ ∗t λ−λ = dSt since both sides vanish for t = 0. Conversely, suppose that for the symplectic
isotopy ϕt it holds ϕ ∗t λ− λ = dSt for some St : M → R, and define

Ht =
( d
dt
St
)
◦ ϕ −1

t − ιXt
λ.

Then

dHt = (ϕ −1
t )∗

d

dt
dSt − d (ιXt

λ) = (ϕ −1
t )∗

d

dt

(
ϕ ∗t λ− λ

)
− d (ιXt

λ) = −ιXt
ω

thus ϕt is Hamiltonian with Hamiltonian function Ht. �

Recall that if (M,ω) is a symplectic manifold of dimension 2n then ωn is a volume form on
M . Thus every symplectomorphism in particular preserves the volume. Until the ’80s it was
still not clear whether or not symplectic transformations were really essentially different from the
volume-preserving ones. In particular it was not known whether it was true or not that every
volume-preserving transformation could be approximated by symplectic ones. The first negative
answer to this question came from the following theorem of Gromov [Gr85], that is often considered
as the starting point of modern symplectic topology. Let B2n(R) ⊂ R2n be the ball of radius R,
i.e.

B2n(R) = {
n∑
i=1

x 2
i + y 2

i < R2 }

and C2n(R) ⊂ R2n the cylinder

C2n(R) = B2(R)× R2n−2 .

Theorem 2.6 (Gromov). If R2 < R1 then there is no symplectic embedding of B(R1) into C(R2).

Note that, since C2n(R2) has infinite volume, it is possible to find a volume-preserving embedding
of B2n(R1) into C(R2). By Gromov’s theorem thus such volume-preserving embedding cannot
be approximated by symplectic ones. This shows that being a symplectic transformation is a
much stricter and fundamentally different condition than just preserving volume. Gromov’s non-
squeezing theorem also shows that, although (by the Darboux theorem) all symplectic manifolds
are locally equivalent, globally this is not the case. Consider indeed the image E of B2n(R1) into
C2n(R2) given by some volume-preserving embedding. By Gromov’s theorem, E and B2n(R) are
not symplectomorphic, i.e. there can be no symplectic transformation sending one diffeomorphi-
cally to the other. Gromov’s non-squeezing theorem motivated the discovery of what are now
called symplectic capacities, symplectic invariants that are more subtle than the volume and the
diffeomorphism type of the underlying manifold. In these notes we will see one of them, the
Viterbo capacity [Vit92].

Another result which is similar in spirit to the non-squeezing theorem is the discovery of the Hofer
metric [Hof90] on the Hamiltonian group of a compact symplectic manifold (or on the group of
compactly supported Hamiltonian symplectomorphisms, in case M is not compact). This metric
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is defined as follows. We first define the length of a Hamiltonian isotopy ϕtt∈[0,1] generated by Ht

as

l(ϕt) =

∫ 1

0

sup
x∈M

Ht(x)− inf
x∈M

Ht(x) dt .

We then define the norm of a Hamiltonian symplectomorphism ϕ (i.e. its distance to the identity)
to be the infimum of the lengths l(ϕt) of all Hamiltonian isotopies ϕt with ϕ as their time-1
map. It is quite easy to prove that this definition gives rise to a bi-invariant pseudometric on
Ham(M,ω), i.e. an application that satisfies all properties of being a bi-invariant metric except
possibly for non-degeneracy 1. On the other hand, non-degeneracy of the Hofer metric, i.e. the
fact that a Hamiltonian isotopy of length 0 is necessarily the identity, is a very deep fact which was
proved by Hofer [Hof90] for M = R2n and by Lalonde-McDuff [LM95] in general. Interestingly,
as explained in the work of Lalonde-McDuff, non-degeneracy of the Hofer metric is deeply related
to the symplectic non-squeezing theorem. In these notes we will see the construction, discovered
by Viterbo [Vit92], of another bi-invariant metric on the Hamiltonian group of R2n, which is also
related to the Hofer metric and to the non-squeezing theorem 2. Existence of bi-invariant metrics
is also seen as a rigidity result because it gives some structure to the Hamiltonian group, which
is not available in the volume-preserving case. Another form of rigidity on Hamc(R2n) is the
existence of a bi-invariant partial order, which is defined as follows. Given ϕ1, ϕ2 ∈ Hamc(R2n),
we say that ϕ1 ≤ ϕ2 if ϕ2 ϕ

−1
1 can be written as the time-1 map of the flow of a non-negative

Hamiltonian function. Again, in the proof that ≤ is indeed a partial order one of the properties is
deep and difficult to prove. The deep property in this case is anti-symmetry, i.e. the fact that if
ϕ1 ≤ ϕ2 and ϕ2 ≤ ϕ1 then ϕ1 = ϕ2. We will see a proof of this in Section 12, following Viterbo.

Finally, one more form of rigidity, that will be central in the discussion in these notes, is given by
the Arnold conjecture on fixed points of Hamiltonian symplectomorphisms. This conjecture says
that, on a compact symplectic manifold (M,ω), every Hamiltonian symplectomorphisms has at
least as many fixed points as the minimal number of critical points of a smooth function on M . It
was stated in the 60s and it motivated the discovery of some of the most important techniques that
we have now in Symplectic Topology, as for example generating functions. In these notes we will
show, following Chaperon and Théret, how generating functions provide a proof of this conjecture
in the case of T2n and CPn. Moreover we will also discuss some of the ideas that are involved in
the proof of the non-degenerate version of another famous conjecture, the Conley conjecture on
periodic points of Hamiltonian symplectomorphisms of T2n.

As we will see in the next section, the Arnold conjecture is related to another conjecture, which
is also due to Arnold and deal with intersection points between Lagrangian submanifolds.

3. Lagrangian submanifolds

Let (M,ω) be a 2n–dimensional symplectic manifold. A Lagrangian submanifold of M is an n–
dimensional submanifold L such that i ∗L ω = 0, where iL : L ↪→ M is the inclusion. Note that,
for reasons of linear algebra, n is the maximal dimension of a submanifold L of M that satisfies
i ∗L ω = 0. A Lagrangian submanifold L of an exact symplectic manifold (M,ω = −dλ) is said
to be exact (with respect to the Liouville form λ) if the (necessarily closed) 1-form i ∗L λ is exact.
Note that the image of an exact Lagrangian submanifold by an exact symplectomorphisms is again
exact.

Example 3.1. The submanifolds Rn × 0 and 0× Rn of (R2n, ωst) are Lagrangian.

Example 3.2. Any curve of an oriented surface is a Lagrangian submanifold.

1See Section 12 for the precise definition of a bi-invariant (pseudo)metric, and for example [MS98] for the proof
that the above definition gives a bi-invariant pseudometric.
2In fact, Viterbo’s construction was used in [Vit92] also to give an alternative proof of non-degeneracy of the Hofer
metric, but we are not going to see this in these notes.
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Example 3.3. The 0-section 0B = { (q, 0) , q ∈ M } is a Lagrangian submanifold of T ∗B. It is
exact, since i ∗

0B
λcan = 0. For any point q of B the fiber T ∗q B is a Lagrangian submanifold of

T ∗B, which is is never exact. Given a smooth function f : B → R, the graph

df = {
(
q, df(q)

)
: q ∈ B }

of its differential is an exact Lagrangian submanifold, with i ∗df λcan = f . More generally, let α be
a 1-form on B and regard it as a section α : B → T ∗B. Then the graph of α is a Lagrangian
submanifold of T ∗B if and only if α is closed, and it is exact if and only if so is α, i.e. if and only if
α is the differential df of a smooth function f : B → R. Note that every Lagrangian submanifolds
L of T ∗B that projects diffeomorphically to the 0–section is the graph of a 1–form α on B. By
Lemma 2.5, every Hamiltonian deformation of the 0-section is an exact Lagrangian submanifold.
A famous and still unproved conjecture by Arnold (the Nearby Lagrangian Conjecture) says that
the converse should also be true, i.e. that a Lagrangian submanifold of T ∗B is exact if and only if
it is Hamiltonian isotopic to the 0–section.

Example 3.4. Given a symplectic manifold (M,ω), consider the twisted product

M ×M = (M ×M,−ω × ω) .

The diagonal ∆ = { (q, q) , q ∈ M } is a Lagrangian submanifold. Given a diffeomorphism ϕ of
M , its graph

gr(ϕ) = {
(
q, ϕ(q)

)
, q ∈M }

is Lagrangian if and only if ϕ is a symplectomorphism.

Note that, because of the following theorem, all Lagrangian submanifolds of any symplectic man-
ifold locally looks like the 0-section of a cotangent bundle.

Theorem 3.5 (Weinstein neighborhood theorem for Lagrangian submanifolds). Let L be a La-
grangian submanifold of a symplectic manifold (M,ω). Then there exists a tubular neighborhood
of L in M which is symplectomorphic to a tubular neighborhood of the 0-section of T ∗L.

The proof of this theorem uses the same methods of differential topology that are used to prove
the Darboux Theorem (see for example [MS98]).

Consider now a Lagrangian submanifold L of T ∗B that is Hamiltonian isotopic to the 0-section
through a C1–small Hamiltonian isotopy. By Lemma 2.5 we know that L is exact. Moreover, since
the Hamiltonian isotopy of T ∗B that sends the 0-section to L is C1–small, we also know that L
projects diffeomorphically to the 0–section. Thus, by the discussion in Example 3.3 we conclude
that L = df for a smooth function f : B → R. An easy but crucial observation is now that critical
points of f correspond to intersections of L with the 0–section. We conclude thus that in this case
there are at least as many intersections of L with the 0-section as the minimal number of critical
points of a smooth function on L. Arnold conjectured that the same statement should be true for
all Lagrangian submanifolds of T ∗B that are Hamiltonian isotopic to the 0-section, thus not just
in the C1-small case. In the next three sections we will sketch a proof of this conjecture, following
Laudenbach and SIkorav. The proof uses the method of generating functions, that gives a way to
generalize the fact, discussed above, that a function f on B defines a Lagrangian submanifold df
of T ∗B, whose intersections with the 0-section correspond to the critical points of the function.
Before starting to discuss this, let’s see how the C1-small case of the Lagrangian Arnold conjecture
and Theorem 3.5 also imply C1-small case of the Hamiltonian Arnold conjecture.

Let ϕ be a C1–small Hamiltonian symplectomorphism of a compact symplectic manifold (M,ω).
Since ϕ is C1–small, the graph gr(ϕ) is a Lagrangian section in a small neighborhood of the diagonal
∆ in M ×M . By Theorem 3.5 such a neighborhood is symplectomorphic to a neighborhood of
the 0–section in T ∗∆. Thus the image of gr(ϕ) under the identification of Theorem 3.5 can be
written as the graph of a closed 1–form α on ∆. Since ϕ is Hamiltonian we have that the 1–form
is exact. Moreover α is C1–close to the 0–section, and so it must be the differential df of a function
f : ∆→ R. Since critical points of f correspond to intersections of α with the 0-section, hence to
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intersections of gr(ϕ) with the ∆ and hence to fixed points of ϕ, and since ∆ is diffeomorphic to
M , we conclude that ϕ must have at least as many fixed points as the minimal number of critical
points of a function on M .

4. Coisotropic submanifolds, characteristic foliations and symplectic reduction

In this section we will discuss the notion of symplectic reduction, which will be used to describe the
symplectic structure of CPn−1 and in Section 5 for the definition of generating functions. Some
of the notions presented in this section will also appear in other parts of these notes.

Let (M,ω) be a symplectic manifold. Given a compact orientable hypersurface S of M we can
define a line bundle L over S by

Lp =
(
TpS

)⊥ω
at every point p of S, where

(
TpS

)⊥ω
denotes the symplectic orthogonal in TpM of the linear

subspace TpS. The line bundle L determines a 1-dimensional foliation of the hypersurface S,
which is called the characteristic foliation. Note that if S is a regular level surface of a time-
independent Hamiltonian function H on (M,ω) then the leaves of the characteristic foliation are
the integral curves of XH . Indeed, ω(XH , Y ) = dH(Y ) = 0 for every vector Y tangent to S. This
fact will be used in Section 10 and in the calculation of the symplectic capacity of ellipsoids.

More generally, we will now define the characteristic foliation of any coisotropic submanifold of
(M,ω), i.e. any submanifold N such that (TN)⊥ω ⊂ TN . As before, we can consider the
distribution (TN)⊥ω (which is now in general of rank greater than 1).

Lemma 4.1. The distribution (TN)⊥ω ⊂ TN is integrable.

Proof. We have to show that for any two vector fields X and Y on N with values in (TN)⊥ω the
Lie bracket [X,Y ] also takes values in (TN)⊥ω, i.e. ω

(
[X,Y ](q), v

)
= 0 for all q ∈ N and v ∈ TqN .

But, after choosing a vector field Z on N such that Z(q) = v, we have

0 = dω(X,Y, Z) = LX
(
ω(Z, Y )

)
+ LY

(
ω(X,Z)

)
+ LZ

(
ω(Y,X)

)
+ ω

(
[Y,Z], X

)
+ ω

(
[Z,X], Y

)
+ ω

(
[X,Y ], Z

)
= ω

(
[X,Y ], Z

)
as we wanted. �

By the Frobenius Theorem, Lemma 4.1 implies that there is a foliation on N that integrates the
distribution (TN)⊥ω ⊂ TN . This foliation is called the characteristic foliation of N .

Assume now that the quotient MN of N by the foliation is a smooth manifold, and denote by
π : N →MN the projection.

Lemma 4.2. There is a symplectic form ω on MN such that π∗(ω) = i∗(ω), where i : N ↪→M is
the inclusion.

Proof. The result follows from the following fact of linear algebra. Let (V, ω) be a symplectic
vector space, and W ⊂ V a coisotropic submanifold. Then ω induces a symplectic form ω on the
quotient VW = W/W⊥ω. To see this, note first that, for w1, w2 ∈ W , ω(w1, w2) depends only on
the equivalence classes of w1 and w2 in the quotient. Thus ω induces a 2-form ω on VW . Note
then that ω is non-degenerate, hence a symplectic form, because if w ∈W and ω(v, w) = 0 for all
v ∈ W then w ∈ W⊥ω. See for example [MS98] for how to deduce the statement of the lemma
from this fact of linear algebra. �

The symplectic manifold (MN , ω) is called the symplectic reduction of (M,ω) at the coisotropic
submanifold N .
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Lemma 4.3. If L is a Lagrangian submanifold of M which is transverse to N then L := π(L∩N)
is an immersed Lagrangian submanifold of (MN , ω)

Proof. The result follows again from linear algebra. Let (V, ω) be a symplectic vector space and
W a coisotropic subspace. Denote by (VW , ω) the reduced symplectic vector space, as explained
in the proof of Lemma 4.2. If L ⊂ V is a Lagrangian subspace then L :=

(
(L∩W ) +W⊥ω

)
/W⊥ω

is a Lagrangian subspace of VW . Again, see [MS98] for how to use this to conclude the proof. �

Using symplectic reduction we can now describe a symplectic structure on the complex projective
space CPn−1. Recall that CPn−1 is by definition the quotient of Cn by the action of C∗ = C \ 0
by multiplication in each coordinate. Equivalently, it is the quotient of the unit sphere S2n−1 ⊂
Cn ≡ R2n−1 by the Hopf action, i.e. the action of S1 given by

t · (z1, · · · , zn) = (eitz1, · · · , eitzn) .

Example 4.4 (Projective space). Consider the unit sphere S2n−1 in the standard symplectic
Euclidean space (R2n, ωst). If we identify R2n with Cn then at a point z ∈ S2n−1 we have that
(TzS

2n−1)⊥ωst =< iz >. Thus the leaves of the characteristic foliation of S2n−1 are given by the
Hopf fibers, and so the quotient is diffeomorphic to complex projective space CPn−1. By Lemma
4.2 we see thus that there is a symplectic form ω on CPn−1 that satisfies π∗ω = i∗ωst. For a
different description of the symplectic structure of complex projective space (via the Fubini-Study
symplectic form) see for example [Ca01, pages 96-97].

5. Generating functions for Lagrangian submanifolds of the cotangent bundle,
and the Lagrangian Arnold conjecture

We have seen in Section 3 that any exact Lagrangian submanifold L of T ∗B that projects dif-
feomorphically to the 0–section is the graph of the differential of a function f : B → R. This
function is called a generating function for L. A crucial property of such a function is that its
(non-degenerate) critical points correspond to (transverse) intersections of L with the 0–section.
More generally we can say that the symplectic geometry of the Lagrangian submanifold L can be
described in terms of the Morse theory of f .

We will now generalize this idea, in order to associate a generating function to every Lagrangian
submanifold of T ∗B that is Hamiltonian isotopic to the 0-section, keeping the link between the
geometry of the Lagrangian and the Morse theory of the function. The functions that we will
obtain will be our main tool to study all the applications that we are going to discuss in these
notes. The idea of the construction of generating functions goes back to Hörmander [Hör71] and
goes as follows. Let p : E → B be a fiber bundle, and consider the fiber normal bundle

NE := { (e, µ) ∈ T ∗E |µ = 0 on ker dp(e) }.
i.e. the space of 1–forms on E that vanish in the vertical direction.

Lemma 5.1. NE is a coisotropic submanifold of T ∗E, and the symplectic reduction of T ∗E at
NE can be naturally identified with T ∗B.

Proof. Exercise. �

For a smooth function F : E → R, consider its differential dF ⊂ T ∗E. If dF is transverse to NE
then by Lemma 4.3 we can consider its reduction, which is an immersed Lagrangian submanifold
LF of T ∗B. We say that F is a generating function for LF .

The above construction can be described more explicitly as follows. Consider the set ΣF of fiber
critical points of F , i.e. the set of points e of E that are critical points of the restriction of F to
the fiber through e:

ΣF := { e ∈ E | e critical point of F |
p−1
(
p(e)
) }.
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Note that ΣF = dF ∩NE . Thus, under our transversality assumption, ΣF is a smooth submanifold
of E, of dimension equal to the dimension of B. Given a point e of ΣF we can associate to it an
element v∗(e) of T ∗p(e)B by defining

v∗(e) := dF (X̂)

for X ∈ Tp(e)B, where X̂ is any vector in TeE with p∗(X̂) = X. The element v∗(e) of T ∗p(e)B is

sometimes called the Lagrange multiplier of e. Note that v∗(e) is well-defined (i.e. it does not

depend on the choice of the lift X̂ of X) because e is a fiber critical point and thus the differential
of F at e vanishes on vertical vectors. The map

iF : ΣF → T ∗B

defined by e 7→
(
p(e), v∗(e)

)
is an exact Lagrangian immersion, with i ∗F λcan = d(F |ΣF

). The
image LF = iF (ΣF ) ⊂ T ∗B is the reduction of the Lagrangian submanifold dF of T ∗E.

Note that if E = B and p : E → B is the identity then iF : ΣF → T ∗B is just the graph of the
differential of F . Thus this construction indeed generalizes the one that we discussed in Section 3,
i.e. the fact that every smooth function f on B generates the Lagrangian submanifold df of T ∗B.

Lemma 5.2. (Non–degenerate) critical points of F correspond to (transverse) intersections of LF
with the 0-section.

Proof. Exercise. �

Note that an even more explicit description of generating functions is available in the special case
when p : E → B is a trivial vector bundle, i.e. E = B×RN and p : B×RN → B is the projection
into the first factor. In this case

iF (ΣF ) = { (q, p) ∈ T ∗B | ∃ ξ ∈ RN such that
∂F

∂ξ
(q, ξ) = 0 and

∂F

∂q
(q, ξ) = p }.

We will say that q is the base variable and ξ is the fiber variable. Moreover, ∂S∂ξ and ∂F
∂q are called

respectively the vertical and horizontal derivatives of F .

Lemma 5.2 alone does not necessarily imply tat LF must intersect the 0-section, because the
function F is defined on the possibly non-compact manifold E and so it does not necessarily have
critical points. In order to prove the Lagrangian Arnold conjecture we will thus need to construct
generating functions with some condition at infinity that makes them behave as functions that are
defined on a compact manifold. The condition that we will use, following Laudenbach and Sikorav,
is that of being quadratic at infinity. We will now give a preliminary definition of this notion, that
is good for the purposes of proving the Arnold conjecture (in the cases that we will see) but will
need to be modified in Section 9 in order to be able to define invariants for symplectomorphisms
and domains of R2n.

Definition 5.3. A generating function F : E → R is said to be quadratic at infinity if p : E → B
is a vector bundle (of finite rank) and F coincides with a non-degenerate quadratic form Q : E → R
outside a compact subset.

The following theorem is the key ingredient to study all the applications that we are going to
discuss in these notes.

Theorem 5.4 ([LS85, Sik86, Sik87]). Let B be a compact manifold. If L is a Lagrangian sub-
manifold of T ∗B that is Hamiltonian isotopic to the 0–section then it has a generating function
quadratic at infinity. More generally, if L ⊂ T ∗B has a g.f.q.i. and ϕt is a Hamiltonian iso-
topy of T ∗B, then there exists a continuous family of generating functions quadratic at infinity
Ft : E −→ R such that each Ft generates the corresponding ϕt(L).

We will see a sketch of the proof to this theorem in Section 6. Assuming the theorem, the
Lagrangian Arnold conjecture in T ∗B follows from the following result, that relates the number
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of critical points of a function F : E → R quadratic at infinity to the topology of B. For a proof
see for example [ChZ83][pages 82–95].

Theorem 5.5. Let B be a compact manifold, p : E → B a vector bundle, and F : B×RN → R a
smooth function quadratic at infinity. Then the number of critical points of F is bounded below by
the cup-length of B. Moreover, if we assume that all critical points of F are non-degenerate then
their number is bounded below by the sum of the Betti numbers of B.

Note that the Lagrangian Arnold conjecture on T ∗B implies also the Hamiltonian Arnold conjec-
ture on any symplectic manifold (M,ω) in the case of a Hamiltonian symplectomorphism ϕ which
is C0-small. Indeed in this case, by using the Weinstein Theorem 3.5, we can identify the graph
of ϕ in M ×M with a Lagrangian submanifold of T ∗∆, Hamiltonian isotopic to the 0-section.
In order to prove the Hamiltonian Arnold conjecture for all Hamiltonian symplectomorphisms we
would need a global identification of M ×M with T ∗∆. We will see in Section 7 how such an
identifiertion is available in the case of M = R2n, allowing us to obtain generating functions for
all Hamiltonian symplectomorphisms of R2n and use them to define spectral invariants. We will
also see how the construction of generating functions for Hamiltonian symplectomorphisms of R2n

can be modified in order to obtain generating functions for Hamiltonian symplectomorphisms of
T2n and CPn−1 and prove the Arnold conjecture in those cases. But first let’s discuss in the next
section the idea of the proof of Theorem 5.4.

6. Construction of generating functions

In this section we will sketch the proof of Theorem 5.4, i.e. we will show how to construct a gen-
erating function quadratic at infinity for any Lagrangian submanifold of T ∗B that is Hamiltonian
isotopic to the 0-section. In order to do this we will first define the symplectic action functional
on the space of paths in T ∗B, and discuss how it can be interpreted as a generating function
with infinite dimensional domain. Following Laudenbach and Sikorav we will then construct a
finite-dimensional approximation of the action functional in order to obtain a function defined
on a finite dimensional manifold, thus a generating function in the sense of the definition given
above. This idea goes back to Chaperon [Chap84] and is inspired by the broken geodesics method
of Morse Theory [Mi63, Bott80].

Consider an exact symplectic manifold (M,ω = −dλ), and let Ht : M → R be a time-dependent
Hamiltonian. Then Ht determines a functional on the space of paths γ : [t0, t1] → M which is
called the action functional and is defined by

AH(γ) :=

∫ t1

t0

(
λ
(
γ̇(t)

)
+Ht

(
γ(t)

))
dt.

It can be proved that γ is a critical point of AH (with respect to variations with fixed endpoints)
if and only if it is an integral curve of the Hamiltonian flow of H. The action functional plays
a central role in symplectic topology. As we will now see it is also related in a crucial way to
generating functions.

Consider the case when M = T ∗B, for a smooth compact manifold B. Consider the space E of
all paths γ : [0, 1]→ T ∗B that begin at the 0-section. Note that E can be seen as a fiber bundle
over B, with projection p : E → B given by γ 7→ π

(
γ(1)

)
where π is the projection of T ∗B into B.

Given a time-dependent Hamiltonian Ht : T ∗B → R we consider the function F : E → R given
by

F (γ) := AH(γ)

where AH is the action functional with respect to the Hamiltonian Ht. The set ΣF ⊂ E of fiber
critical points of F : E → R is given by the set of trajectories of the Hamiltonian flow of Ht.
Given a fiber critical point γ, the Lagrange multiplier v∗(γ) is the vertical component of γ(1). We
see thus that F is a “generating function”for the image of the 0-section by the time-1 map of the
Hamiltonian flow of Ht. Note that F is not a generating function in the sense of the definition
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given in Section 5, because E is not a finite-dimensional manifold. We will now show how to
construct a finite-dimensional appoximation of E, and thus obtain a true generating function for
any Lagrangian submanifold of T ∗B which is Hamiltonian isotopic to the 0-section.

Let Ht be a time-dependent Hamiltonian on T ∗B. Fix an integer N sufficiently big. We will
now define the space EN of broken Hamiltonian trajectories of Ht with N − 1 singularities and N
smooth pieces. Elements of EN will be of the form

e = (q0, X, P )

where q0 is a point of B, X = (X1, · · · , XN−1) is an (N − 1)-tuple of vectors Xi ∈ Tq0B and
P = (P1, · · · , PN−1) is an (N − 1)-tuple of linear maps Pi ∈ T ∗q0 B. The broken Hamiltonian

trajectory of Ht associated to e is defined as follows. The first smooth piece, for t ∈ [0, 1
N ], is

obtained by following the Hamiltonian flow of Ht in T ∗B starting at the point (q0, 0) of the 0-
section. The endpoint of this first smooth piece will be some other point of T ∗B, that we denote
by z −1 . The second smooth piece of the broken Hamiltonian trajectory will not necessarily start
from z −1 but from a point z +

1 which is uniquely determined by z −1 , X1 and P1 in a way that we
will describe later. The second smooth piece of the broken Hamiltonian trajectory is obtained by
following the flow of Ht for t ∈ [ 1

N ,
2
N ], starting from z +

1 . The endpoint will be some point z −2 of
T ∗B. The third smooth piece of the broken Hamiltonian trajectory is obtained by following the
Hamiltonian flow of Ht for t ∈ [ 2

N ,
3
N ], starting at the point z +

2 that is uniquely determined by

z −2 , X2 and P2 by the procedure we are going to describe later. We continue in this way to describe
the whole broken trajectory for t ∈ [0, 1]. It has N−1 jumps for t = 1

N ,
2
N , · · · ,

N−1
N and N smooth

pieces from z +
i to z −i for t ∈ [ iN ,

i+1
N ], i = 0, · · ·N − 1. In order to describe the jumps we need

to fix a Riemannian metric on B. Then TB and T ∗B have the associated Levi-Civita connection.
We describe now the first jump, from z −1 to z +

1 . The point z +
1 = (q +

1 , p +
1 ) is determined by

z −1 = (q −1 , p −1 ), X1 ∈ Tq0B and P1 ∈ T ∗q0 B as follows. Denote by γ(t) =
(
q(t), p(t)

)
for t ∈ [0, 1

N ]

the first smooth piece of the broken Hamiltonian trajectory, from (q0, 0) to z −1 = (q −1 , p −1 ). In

particular, q(t) for t ∈ [0, 1
N ] is a smooth path in B. We take the vector X1 ∈ Tq −1 B and the 1-form

P 1 ∈ T ∗
q −1

B that are obtained by parallel transport, with respect to the Levi-Civita connection,

of X1 ∈ Tq0B and P1 ∈ T ∗q0 B along q(t), t ∈ [0, 1
N ]. The point z +

1 is then defined to be

z +
1 = (q +

1 , p +
1 )

where q +
1 := expq −1

(X1) and p +
1 := t

(
dexpq −1

(X1)
)−1

(p1). The other jumps are defined simi-

larly.

Consider the projection p : EN → B that sends e to the projection to B of the endpoint of the
broken Hamiltonian trajectory associated to e.

We define a function F : EN → R by

F (e) :=

N−1∑
i=1

< Pi, Xi > +

N∑
i=1

AH(γi)

where γi denotes the i-th smooth piece of the broken Hamiltonian trajectory of H associated to e.

Then the fiber critical points of F : EN → R are the unbroken Hamiltonian trajectories of Ht, and
F is a generating function for the image of the 0-section by the time-1 map of the Hamiltonian
flow of Ht. Note that the above construction works only if N is sufficiently big.

7. Generating functions for Hamiltonian symplectomorphisms of R2n

We have seen in the previous section that if B is a compact smooth manifold then any Lagrangian
submanifold L of the cotangent bundle T ∗B has a generating function quadratic at infinity. We
will now see how this result can be applied to obtain generating functions quadratic at infinity for
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all compactly supported Hamiltonian symplectomorphisms of R2n. As already mentioned above,
the idea is to use a global identification of R2n × R2n with T ∗R2n.

Let ϕ be a Hamiltonian symplectomorphism of R2n (not necessarily compactly supported, for the
moment). We will first explain how to associate to ϕ a Lagrangian submanifold Γϕ of T ∗R2n.

Recall that the graph gr(ϕ) is a Lagrangian submanifold of R2n × R2n. Consider now the map

τ : R2n × R2n → T ∗R2n

defined by

τ(x, y,X, Y ) = (
x+X

2
,
y + Y

2
, Y − y, x−X) .

This map is a symplectomorphism, and it sends the diagonal to the 0-section 3. Note that in
complex notation (after identifying R2n with Cn) we have τ(z, Z) =

(
z+Z

2 , i(z − Z)
)
. We define

Γϕ to be the Lagrangian submanifold of T ∗R2n that corresponds to gr(ϕ) under the identification
τ . Note that Γϕ is Hamiltonian isotopic to the 0–section, indeed it can be written as Γϕ =
Ψϕ (0-section) where Ψϕ is the Hamiltonian symplectomorphism of T ∗R2n defined by the diagram

R2n × R2n id×ϕ //

τ

��

R2n × R2n

τ

��
T ∗R2n

Ψϕ

// T ∗R2n.

Assume now that ϕ is compactly supported. Then Γϕ coincides with the 0-section outside a
compact set. Using this, we can identify Γϕ to a Lagrangian submanifold of T ∗S2n (that we
will still denote by Γϕ). We have thus seen that we can associate to any compactly supported
Hamiltonian symplectomorphism ϕ of R2n a Lagrangian submanifold Γϕ of T ∗S2n. Since S2n is
compact, by Theorem 5.4 we have that Γϕ has a generating function F : E → R quadratic at
infinity, where E is the total space of a vector bundle over B.

Let ϕ be a compactly supported Hamiltonian symplectomorphism of R2n, with generating function
F , thus Γϕ is the image of iF : ΣF → T ∗R2n.

Lemma 7.1. Fixed points of ϕ correspond to critical points of F . More precisely, a point q of
R2n is a fixed point of ϕ if and only if i −1

F (q, 0) is a critical point of F .

Proof. Exercise. �

We will see in Section 10 that not only critical points of the generating function correspond to
fixed points of ϕ, but we also have that the critical values are given by the symplectic action of the
corresponding fixed points. As we will see, this fact makes it possible to use generating functions
not only to prove the Arnold conjecture but also to define symplectic invariants.

8. Composition formulas

Although, as we have seen in the previous section, generating functions quadratic at infinity for
compactly supported Hamiltonian symplectomorphisms can be obtained by applying Theorem 5.4,
there is also another more direct construction. This alternative construction is less geometric and
more difficult to interpret, but it has the advantage that it works for all Hamiltonian symplec-
tomorphisms of R2n, not just for the compactly supported ones. This will be useful in Sections
16 and 17 in order to construct generating functions for Hamiltonian symplectomorphisms of the
torus and of complex projective space.

3Instead of τ we could also take any other symplectomorphism R2n × R2n → T ∗R2n that sends the diagonal

to the 0-section. Other such identifications used in the literature are τ ′(x, y,X, Y ) = (X, y, Y − y, x − X) and
τ ′′(x, y,X, Y ) = (x, Y, Y − y, x−X).
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Note first that if ϕ is a Hamiiltonian symplectomorphism of R2n which is C1-close to the identity
then it has a generating function F : R2n → R. Given an arbitrary Hamiltonian symplectomor-
phism ϕ of R2n, the idea is now to subdivide a Hamiltonian isotopy ϕt joining ϕ to the identity into
C1-small pieces, and then study a composition formula to put together the generating functions
of all pieces and finally obtain a generating function for ϕ. The composition formula that we will
use is given by the following proposition, which is due to Théret.

Proposition 8.1. Let ϕ1 and ϕ2 be Hamiltonian symplectomorphisms of R2n that have generating
functions F1 : R2n × RN → R and F2 : R2n → R respectively. Then the function F1]F2 :
R2n × (R2n × R2n × RN )→ R defined by

F1]F2(u; v, w, ξ) = F1(u+ w; ξ) + F2(v + w) + 2 < u− v, iw >

or equivalently, in real notations, by

F1]F2(x1, y1;x2, y2, x3, y3, ξ) = F1(x1+x3, y1+y3; ξ)+F2(x2+x3, y2+y3)+2x3(y1−y2)−2y3(x1−x2)

is a generating function for the composition ϕ2 ◦ ϕ1.

Proof. Exercise. �

Given a Hamiltonian symplectomorphism ϕ of R2n we can now obtain a generating function
F : R2n × (RN → R for it by considering a Hamiltonian isotopy ϕt connecting ϕ to the identity
and then subdividing it into C1-small pieces and applying Porposition 8.1 at each step.

Note that the above formula is obtained using the identification τ(x, y,X, Y ) = (x+X
2 , y+Y

2 , Y −
y, x − X). If we use a different identification of R2n × R2n with T ∗R2n then the composition
formula is also different. For example if we use τ ′(x, y,X, Y ) = (X, y, Y − y, x − X) then the
generating function for ϕ2 ◦ ϕ1 is given by (F1]F2)τ ′ : R2n × (R2n × RN )→ R,

(2) (F1]τ ′F2)(x1, y1;x2, y2, ξ) = F1(x2, y1; ξ) + F2(x1, y2)− (y2 − y1)(x1 − x2) .

This formula is attibuted to Chekanov, but it is implicit also in the work of Chaperon.

Remark 8.2. If the generating function of ϕ2 has also fiber variables then the same formula as
above for F1]F2 gives a function that does not (necessarily) satisfy the transversality condition in
the definition of generating functions. However it is still related to ϕ2 ◦ϕ1 by the fact that critical
points of F1]F2 correspond to fixed points of ϕ2 ◦ ϕ1. Moreover if the transversality condition is
satisfied then F1]F2 is a generating function for ϕ2 ◦ϕ1. Note also that the trasversality condition
and composition formula also always hold if F2 has fiber variables but F1 not.

Following Théret and Giroux [Gir88, Section II.7] we will now give a geometric interpretation of
the composition formula (2). I believe that there should be a similar geometric interpretation also
for the composition formula of Proposition 8.1 (i.e. the one with respect to τ) but for the moment
I don’t see it...

Let ϕ1 and ϕ2 be Hamiltonian symplectomorphisms of R2n that have generating functions F1 :
R2n × RN → R and F2 : R2n → R respectively. Consider the function F1]τ ′F2 : R2n × (R2n ×
R2n × RN )→ R defined by

(F1]τ ′F2)(x1, y1;x2, y2, ξ) = F1(x2, y1; ξ) + F2(x1, y2)− (y2 − y1)(x1 − x2) .

The following points explain why this function is a generating function for the composition ϕ2◦ϕ1.

• Consider the Lagrangian submanifold gr(ϕ1)× gr(ϕ2) of

(R2n × R2n)× (R2n × R2n) ≡ T ∗R2n × T ∗R2n ≡ T ∗(R2n × R2n) .

This Lagrangian submanifold has generating function F1 ⊕ F2 : (R2n × R2n)× RN → R,

(F1 ⊕ F2)(x1, y1, x2, y2; ξ) = F1(x1, y1; ξ) + F2(x2, y2) .
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More generally, the following is true. If L1 ⊂ T ∗B1 has generating function F1 : B1 ×
RN1 → R and L2 ⊂ T ∗B2 has generating function F2 : B2 × RN2 → R then L1 × L2 ⊂
T ∗B1×T ∗B2 ≡ T ∗(B1×B2) has generating function F1⊕F2 : (B1×B2)×(RN1×RN2)→ R.

• We can get gr(ϕ2 ◦ϕ1) ⊂ R2n×R2n from gr(ϕ1)× gr(ϕ2) ⊂ (R2n×R2n)× (R2n×R2n) by

symplectic reduction. Indeed, consider the coisotropic submanifolds V = R2n × ∆R2n ×
R2n of (R2n × R2n) × (R2n × R2n). Its symplectic orthogonal is V 0 = 0 × ∆R2n × 0,

thus the symplectic reduction can be identified to R2n × R2n by V → V/V 0 = R2n ×
R2n, (q, p, q′p′;Q,P,Q′, P ′) 7→ (q, p;Q′, P ′). The Lagrangian gr(ϕ1) × gr(ϕ2) is always

transverse to V . Its reduction can be identified to gr(ϕ2 ◦ ϕ1) ⊂ R2n × R2n.

• Generating functions interact with symplectic reduction as follows. Consider the coisotropic
submanifold V ′ = R2n×R2n×(R2n)∗×0 of T ∗(R2n×R2n). If a Lagrangian L ⊂ T ∗(R2n×
R2n) has generating function F : (R2n × R2n) × RN → R then the reduced Lagrangian
L ⊂ T ∗(R2n) has generating function F : R2n × (R2n × RN ) → R, F (u; v, ζ) = F (u, v; ζ)
(i.e. the same function, but some fiber variable has become a base variable).

• If A : T ∗B → T ∗B is a symplectomorphism of the form A(X,Y ) =
(
X,Y + dh(X)

)
for

some h : B → R, and L ⊂ T ∗B has generating function F : B × RN → R, then A(L) ⊂
T ∗B has generating function F + h. We will apply this fact to the symplectomorphism
A : T ∗(R2n ×R2n)→ (R2n ×R2n), A(X1, y1, X2, y2;Y1 − y1, x1 −X1, Y2 − y2, x2 −X2) 7→
(X1, y1, X2, y2;Y1−y2, x1−X2, Y2−y1, x2−X1) . Thus h(X1, y1, X2, y2) = (y2−y1)(X2−
X1) and dh = (y1 − y2, X1 −X2, y2 − y1, X2 −X1).

We now put all these steps together. We have seen that a generating function for (τ ′×τ ′)
(
gr(ϕ1)×

gr(ϕ2)
)

is given by F1 ⊕ F2 : (R2n × R2n) × RN → R. By the forth point, a generating function

for A
(

(τ ′ × τ ′)
(
gr(ϕ1)× gr(ϕ2)

))
is then given by F1 ⊕ F2 + h : (R2n × R2n)× RN → R,

(F1 ⊕ F2 + h)(x1, y1, x2, y2; ξ) = F1(x1, y1; ξ) + F2(x2, y2) + (y2 − y1)(x2 − x1) .

Consider the symplectomorphism B of T ∗(R2n×R2n) that switches the first and third coordinates.

A generating function for B ◦A
(

(τ ′ × τ ′)
(
gr(ϕ1)× gr(ϕ2)

))
is (x1, y1, x2, y2; ξ) 7→ F1(x2, y1; ξ) +

F2(x1, y2) + (y2 − y1)(x2 − x1). Note the following two things:

1) B ◦A
(
(τ ′ × τ ′)(V )

)
= V ′

2) The following diagram commutes (where the vertical arrows are given by symplectic reduction
and the upper horizontal one by the composition B ◦A ◦ (τ ′ × τ ′))

(R2n × R2n)× (R2n × R2n) //

��

T ∗(R2n × R2n)

��
R2n × R2n

τ ′
// T ∗R2n.

The formula we want then follows from this and the third point above.

9. Uniqueness of generating functions quadratic at infinity

So far we have only used generating functions to prove the Arnold conjecture, just by looking
at the number of their critical points. Viterbo [Vit92] was the first to realize that once we have
generating functions we can do more with them than just count their critical points. His idea was
to use critical values of the generating function to associate numbers (spectral invariants) first to
Lagrangian submanifolds of T ∗B and then to Hamiltonian symplectomorphisms of R2n. Among
the many applications of this idea, he could define a symplectic capacity for domains, getting in
particular a proof of Symplectic Non–Squeezing Theorem, and a partial order and bi–invariant
metric on Hamiltonian group of R2n. In order to obtain these applications it is not enough to
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use just existence of generating functions quadratic at infinity but we also need to prove their
uniqueness for a given Lagrangian, because we have to make sure that the spectral invariants will
not depend on the choice of the generating function that we used to define them.

Note first that, strictly speaking, generating functions are never unique. Indeed if a Lagrangian L
in T ∗B has generating function F : E → R then any other function F ′ which is obtained by one
of the following operations is also a generating function for L:

• (Addition of a constant) F ′ = F + c : E → R for a constant c ∈ R;
• (Fiber preserving diffeomorphism) F ′ = F ◦ Φ : E → R where Φ : E → E is a fiber–

preserving diffeomorphism (i.e. π ◦ Φ = π);
• (Stabilization) F ′ = F ⊕ Q′ : E ⊕ E′ → R where π′ : E′ → B is a vector bundle and
Q′ : E′ → R a non-degenerate quadratic form.

Note however that the three operations above do not change the Morse theory of the function
(indeed, we still have the same number of critical points and diffeomorphic gradient flows). We
will say that two generating functions F and F ′ of a Lagrangian submanifold L of T ∗B are
equivalent if they only differ by one the three operations above (or a sequence of them). Roughly
speaking, Viterbo’s uniqueness theorem states that if L is Hamiltonian isotopic to the 0–section
then any two generating functions quadratic at infinity for L are equivalent. However, in order
for this to make sense we need a better definition of quadratic at infinity. Indeed, the preliminary
definition (Definition 5.3) is not so good because it is too rigid, in particular it is not preserved
by any of the three operations above. We will use instead the following definition 4.

Definition 9.1. A generating function F : E → R is said to be quadratic at infinity if p : E → B
is a vector bundle (of finite rank) and there is a non–degenerate quadratic form Q : E → R such
that the vertical derivative ∂v(F − Q) : E → E∗ is bounded (for some choice of a Riemannian
metric on E and the induced metric on E∗).

With this definition, the notion of quadratic at infinity is stable by the three operations above
(assuming for the second that the fiber–preserving diffeomorphism Φ : E → E is compactly
supported). Note also that if a generating function is quadratic at infinity in the sense of Definition
5.3 then it can be made quadratic at infinity also in the sense of Definition 9.1 by a fiber–preserving
diffeomorphism. This is the content of the following proposition.

Proposition 9.2. If F : E → R is quadratic at infinity then there is a fiber–preserving diffeo-
morphism Φ : E → E such that F ◦ Φ : E → R coincides with a non–degenerate quadratic form
Q : E → R outside a compact subset.

The proof of this result is based on the Moser method. We refer to Théret [Th95, page 25].

Moreover it can also be proved (again we refer to Théret) that any generating function F : E → R
quadratic at infinity is equivalent to a special one, i.e. to a generating function F ′ : E′ → R with
E′ = B × RN and with F ′ equal, outside a compact set, to a non–degenerate quadratic form Q
that does not depend on the first variable (i.e. it is the same non–degenerate quadratic form on
each fiber).

We are now ready to state Viterbo’s uniqueness theorem for generating functions. This theorem
first appeared in [Vit92], but a complete proof of it was given only later and is due to Théret
[Th99a].

Theorem 9.3. Let B be a compact smooth manifold. If L is a Lagrangian submanifold of T ∗B
which is Hamiltonian isotopic to the 0–section then all generating functions quadratic at infinity
of L are equivalent.

The idea of the proof is as follows. First one shows that the result is true for L equal to the
0–section. Note that non–degenerate quadratic forms defined on some vector bundle over B are

4Note that Theorem 5.5 holds also with the new definition of quadratic at infinity.



16 SHEILA SANDON

generating functions quadratic at infinity for the 0–section, and they are all equivalent. Thus it is
enough to show that any generating function quadratic at infinity F : E → R of the 0–section is
equivalent to a non–degenerate quadratic form. This can be done by showing, via a global Morse
lemma with parameter, that any special generating function quadratic at infinity F : B×RN → R
for the 0–section is equivalent to the function (x, v) 7→ 1

2d
2Fx(0) · (v, v). The second step in the

proof is then to show that the uniqueness property is stable by Hamiltonian isotopy. For this,
Théret looks at the space F of generating functions quadratic at infinity (without restriction on the
number of fiber variables) and considers the map that sends F ∈ F to the generated Lagrangian
L of T ∗B. He shows that this map is a Serre fibration, and that the fibers are path–connected
(after diffeomorphism and stabilization). He thus concludes that if F , F ′ are two generating
functions quadratic at infinity of the same L (isotopic to the 0–section) then we can join them
(after stabilization and diffeomorphism) by a continuous path of generating functions quadratic at
infinity, all generating the same L. He then use the Moser method to find a path of diffeomorphisms
relating all these functions.

10. Symplectic action

The main reason why generating functions are a suitable tool to study Lagrangian submanifolds
and symplectomorphisms is not only that their critical points correspond to the geometric objects
we are interested in (Lagrangian intersections, fixed points) but also that critical values of gener-
ating functions are related to the symplectic action of the corresponding objects. The symplectic
action of Lagrangian intersections and of fixed points of Hamiltonian symplectomorphisms is a
number that is defined in terms of the symplectic action functional, which we introduced above
in Section 6.

Recall that, given an exact symplectic manifold (M,ω = −dλ) and a Hamiltonian function Ht :
M → R, the action functional is defined by

AH(γ) :=

∫ t1

t0

(
λ
(
γ̇(t)

)
+Ht

(
γ(t)

))
dt

for a path γ : [t0, t1] → M . Recall also from Lemma 2.5 that if ϕt is a Hamiltonian isotopy of

(M,ω = −dλ) then ϕ ∗t λ− λ = dSt with St =
∫ t

0

(
λ(Xs) +Hs

)
◦ ϕs ds. Thus, the value of St at a

point q of M is equal to the value of the action functional with respect to Ht of the path ϕs(q),
s ∈ [0, t].

We will now define the action spectrum of Hamiltonian symplectomorphisms and domains of R2n.

Let ϕ be a compactly supported Hamiltonian symplectomorphism of R2n. The symplectic action
of a fixed point q of ϕ is defined by

Aϕ(q) := AH
(
ϕt(q)

)
=

∫ 1

0

(
λst(Xt) +Ht

) (
ϕt(q)

)
dt

where ϕt is a Hamiltonian isotopy joining ϕ to the identity, Xt the vector field generating it and
Ht the corresponding Hamiltonian function. By Lemma 2.5 we have that Aϕ(q) = S(q) where
S : R2n → R is the compactly supported function satisfying ϕ∗λst − λst = dS. Note in particular
that this implies that the definition of the symplectic action Aϕ(q) does not depend on the choice
of the Hamiltonian isotopy ϕt joining ϕ to the identity. We then define the action spectrum of
ϕ to be the set Λ(ϕ) ⊂ R of all values of Aϕ at fixed points of ϕ. As we will see in the next
proposition, a crucial property of the action spectrum is that it is invariant by conjugation.

Proposition 10.1. For any other symplectomorphism ψ of R2n we have that Λ(ψϕψ−1) = Λ(ϕ).

Proof. For a proof of this, see for example in [HZ94, 5.2]. �

We will now show that the action spectrum of a compactly supported Hamiltonian symplecto-
morphism ϕ of R2n coincides with the set of critical values of a generating function Fϕ, provided
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that the generating function is normalized as follows. Recall that a generating function Fϕ for
ϕ is in fact, by definition, a generating function for the Lagrangian submanifold Γϕ of T ∗S2n

associated to ϕ, as explained in Section 7. If we see S2n as the 1-point compactification of R2n

then, since we assume that ϕ is compactly supported, Γϕ always intersects the 0-section of T ∗S2n

at the point at infinity of S2n. The generating function Fϕ of ϕ is normalized by requiring the
critical point of Fϕ that corresponds to the Lagrangian intersection given by the point at infinity
of S2n to have critical value 0. Note that if we normalize generating functions in this way then
addition of a constant is not allowed anymore. Note also that the other two operations defining
equivalent generating functions (fiber preserving diffeomorphism and stabilization) do not change
the set of critical values of the generating function, which depends thus only on the generated
Hamiltonian symplectomorphism. We will now see in the next proposition that this set coincides
with the action spectrum of ϕ.

Lemma 10.2. Let Fϕ be a (normalized) generating function quadratic at infinity for a compactly
supported Hamiltonian symplectomorphism ϕ of R2n. Then Λ(ϕ) coincides with Crit(Fϕ).

Proof. Let q be a fixed point of ϕ, and take a point p in R2n outside the support of ϕ. Then on
the one hand we have

Aϕ(q) = −
∫
γtϕ(γ)−1

λst

where γ is any path in R2n joining p to q. To see this, consider the map u : [0, 1]× [0, 1] → R2n,
u(s, t) = ϕt

(
γ(s)

)
and apply Stokes’ theorem to u∗ωst = −d(u∗λst). On the other hand we also

have

−
∫
γtϕ(γ)−1

λst = F
(
i −1
F (q, 0)

)
.

Indeed, note that if a Lagrangian submanifold L of T ∗B is generated by F : E → R, i.e. L is the
image of iF : ΣF → T ∗B, then we have that

∫
γ
λcan = F

(
i −1
F (y)

)
− F

(
i −1
F (x)

)
for any path γ

in L joining two points x and y. �

Given a simple closed curve γ in R2n, we define the action of γ by

A(γ) =

∫
γ

λst

where λst is the Liouville form of R2n. Note that every symplectomorphism ϕ of R2n preserves
the action, i.e. A

(
ϕ(γ)

)
= A(γ).

Consider now a domain U in R2n and denote by [∂U ] the set of closed characteristics of ∂U , i.e.
closed orbits of the characteristic foliation of the hypersurface ∂U (cf Section 4). The action
spectrum A(U) of U is defined by

A
(
U
)

:= {A(γ) | γ ∈ [∂U ] }.

Consider the special case when the domain U of R2n can be written as U = {H ≤ 1 } for some
time-independent Hamiltonian function H. Recall that in this case the characteristic foliation on
∂U is given by the Hamiltonian flow of H. Thus, closed characteristics on ∂U coincide with the
closed orbits of the Hamiltonian flow of H at the level H = 1. Note that the symplectic action as
closed characteristics does not coincide with the symplectic action as closed Hamiltonian orbits.
However we will see in Section 14 that if ϕ0 ≤ ϕ1 ≤ ϕ2ϕ3 ≤ · · · is an unbounded ordered sequence
of Hamiltonian symplectomorphisms supported in U then the action spectrum of the ϕi’s tends
to the action spectrum of U .

Example 10.3. Consider the ellipsoid

E(R1, · · · , Rn) = {
n∑
i=1

1

R2
i

(x2
i + y2

i ) < 1 } .
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Then closed characteristics on the boundary coincide with the closed orbits of the Hamiltonian flow
of H : R2n → R,

H(x1, · · · , xn, y1, · · · , yn) =

n∑
i=1

1

R2
i

(x2
i + y2

i ) =

n∑
i=1

1

R2
i

|zi|2

(after identifying R2n with Cn). By a calculation similar to the one in Example 2.2 we see that
the Hamiltonian flow of H is given by

ϕt(z1, · · · , zn) = (e
it 2

R2
1 z1, · · · , e

it 2
R2

n zn) .

Thus the closed characteristics are given by the curves γ1(t) = (e
it 2

R2
1R1, 0, · · · , 0), · · · , γn(t) =

(0, · · · , 0, eit
2

R2
nRn) and they have action πR2

1, · · · , πR2
n. In particular (with a similar calculation

for the cylinder) we have that A
(
B2n(R)

)
= A

(
C2n(R)

)
= {πR2}.

It is a classical principle that closed characteristics in ∂U can be interpreted as obstructions to
the symplectic squeezing problem for U . In other words, rigidity properties of a domain in R2n

are related to the action of the closed characteristics on its boundary. We refer for example
to [Arn87],[HZ94], [FH94], [EH89] and [EH90] for a discussion of this idea. In particular, the
introduction of [FH94] contains a heuristic argument to explain Gromov’s Non-Squeezing theorem
by looking at closed characteristics on the boundary of balls and cylinders. We will see later
in these notes how the capacity and symplectic homology of a domain are related to the action
spectrum of its boundary.

11. Spectral invariants

Let B be a closed manifold and L a Lagrangian submanifolds of T ∗B Hamiltonian isotopic to
the 0-section. As we have seen in Section 6, L has a generating function quadratic at infinity
F : E → R. We are going to see now how to define invariants for L by selecting critical values
of its generating function F . Recall that F is only defined up to fiber-preserving diffeomorphism,
stabilization and addition of a constant. While the first two operations do not affect the critical
values of the function, addition of a constant does and so, in order to get well-defined invariants,
we first need to normalize generating functions. This can be done by fixing a point P in B and
only considering the set LP of Lagrangian submanifolds L of T ∗B which are Hamiltonian isotopic
to the 0-section and intersect it at P . We then normalize generating functions by requiring the
critical value of the critical point corresponding to P to be 0.

Let L be an element of LP with generating function F : E −→ R. We will now explain how to
use a cohomology class u of B to select a critical value of F , in order to get an invariant c(u, L).

Recall that we can assume that E = B × RN and F is of the form F = F0 + Q∞ where F0

is compactly supported and Q∞ is a non-degenerate quadratic form on RN . We denote by Ea,
for a ∈ R, the sublevel set of F at a i.e. Ea = {x ∈ E |F (x) ≤ a } and by E−∞ the set
E−a for a big enough (i.e. such that −a is smaller that all critical values of F0). Note that up
to homotopy equivalence E−∞ is the same for all elements of LP . We will study the inclusion
ia : (Ea, E−∞) ↪→ (E,E−∞), and the induced map on cohomology

i ∗a : H∗(B) ≡ H∗(E,E−∞) −→ H∗(Ea, E−∞).

Here H∗(B) is identified with H∗(E,E−∞) via the Thom isomorphism

T : H∗(B)
∼=−→ H∗

(
D(E−), S(E−)

)
where E− denotes the subbundle of E where Q∞ is negative definite. Note that this isomorphism
shifts the grading by the index of Q∞. Note also that, by excision, H∗

(
D(E−), S(E−)

)
is iso-

morphic to H∗(E,E−∞). For |a| big enough we have H∗(Ea, E−∞) ≡ 0 if a < 0, and i ∗a = id if
a > 0. So we can define

c(u, L) := inf { a ∈ R | i ∗a (u) 6= 0 }
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for u 6= 0 in H∗(B). Note that c(u, L) is a critical value of F . Moreover it follows from Theorem
9.3 that c(u, L) is well-defined, i.e. it does not depend on the choice of the generating function
used to calculate it.

Proposition 11.1. Let µ ∈ Hn(B) denote the orientation class of B. The map H∗(B)×LP −→
R, (u, L) 7−→ c(u, L) satisfies the following properties:

(1) If L1, L2 have generating functions F1, F2 : E −→ R with |F1 − F2|C0 ≤ ε, then for any
u in H∗(B) it holds that |c(u, L1), c(u, L2)| ≤ ε.

(2)

c
(
u ∪ v, L1 + L2

)
≥ c(u, L1) + c(v, L2)

where L1 + L2 is the Lagrangian submanifold of T ∗B defined by

L1 + L2 := { (q, p) ∈ T ∗B | p = p1 + p2, (q, p1) ∈ L1, (q, p2) ∈ L2 }.

(3)

c(µ,L) = −c(1, L),

where L denotes the image of L under the map T ∗B → T ∗B, (q, p) 7→ (q,−p).
(4) c(µ,L) = c(1, L) if and only if L is the 0-section. In this case we have

c(µ,L) = c(1, L) = 0.

(5) For any Hamiltonian symplectomorphism Ψ of T ∗B such that Ψ(P ) = P , it holds

c
(
u,Ψ(L)

)
= c
(
u, L−Ψ−1(0B)

)
.

(6) If α, β ∈ H∗(B) are both non-zero, of degree ≥ 1, and such that α ∧ β 6= 0 then

c(α ∧ β, F ) ≥ c(α, F )

with strict inequality if F has only finitely many critical points.

The first property is immediate. For a ∈ R and j = 1, 2 denote by
(
Ea
)
j

the sublevel set of Fj

at a, and by (i ∗a )j the map on cohomology induced by the inclusion of the pair
(
(Ea)j , E

−∞)
into

(
E , E−∞

)
. If |F1 − F2|C0 ≤ ε, then we have inclusions of sublevel sets

(
Ea−ε

)
2
⊂
(
Ea
)

1
⊂(

Ea+ε
)

2
. For any a > c(u, L1) we have (i ∗a )1(u) 6= 0 which implies (i ∗

a+ε )2(u) 6= 0 and so

c(u, L2) ≤ a + ε. Similarly, for any a′ < c(u, L1) we have that c(u, L2) > a′ − ε. It follows that
c(u, L1)− ε ≤ c(u, L2) ≤ c(u, L1) + ε as we wanted.

Properties (2), (3), (4) and (6) require more elaborated arguments of algebraic topology, and we
refer to [Vit92] for a proof. We will present here only the proof of (5), because it is the only point
that needs arguments of symplectic geometry.

We first need to introduce some preliminaries from [Vit92] and [Vit87]. Given Lagrangian sub-
manifolds L1, L2 of T ∗B and points x, y in L1 ∩ L2, define

l (x, y;L1, L2) :=

∫
γ1γ
−1
2

λcan

where γ1 and γ2 are paths in L1, L2 respectively joining x and y. Note that l(x, y;L1, L2) =

F1

(
i −1
F1

(y)
)
− F1

(
i −1
F1

(x)
)

+ F2

(
i −1
F2

(y)
)
− F2

(
i −1
F2

(x)
)
, where F1, F2 are g.f.q.i. for L1,

L2. In particular, for any L in LP and u in H∗(B) there exist points x, y in L ∩ 0B such

that c(u, L) = l (x, y, ;L, 0B): just take x = P and y such that F
(
i −1
F (y)

)
= c(u, L), where

F is a g.f.q.i. for L. Note that if Ψt is an Hamiltonian isotopy of T ∗B then l (x, y;L1, L2) =
l
(
Ψt(x),Ψt(y); Ψt(L1),Ψt(L2)

)
, as can be easily checked using the fact that Ψ ∗

t λcan − λcan is
exact. For L ∈ LP , define a subset Λ(L) of R by Λ(L) := { l(x, y, ;L, 0B) |x, y ∈ L ∩ 0B }. Note
that Λ(L) is a totally disconnected set.
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Proof of Proposition 11.1(5). Let Ψ be the time-1 flow of a Hamiltonian isotopy Ψt, and consider
the map t 7−→ c

(
u,Ψ−1

t Ψ(L) − Ψ−1
t (0B)

)
. We know by Proposition 11.1(1) and Theorem 5.4

that this map is continuous, and we claim that it takes values in Λ(L). Since Λ(L) is a totally
disconnected set, it will follow that t 7−→ c

(
u,Ψ−1

t Ψ(L)−Ψ−1
t (0B)

)
is independent of t and thus

in particular c
(
u,Ψ(L)

)
= c

(
u, L − Ψ−1(0B)

)
. To prove the claim, let xt, yt be points in the

intersection of Ψ−1
t Ψ(L)−Ψ−1

t (0B) with 0B such that

c(u,Ψ−1
t Ψ(L)−Ψ−1

t (0B)) = l(xt, yt; Ψ−1
t Ψ(L)−Ψ−1

t (0B), 0B),

and let x′t, y
′
t be the points in Ψ−1

t Ψ(L) ∩Ψ−1
t (0B) projecting to xt, yt. Then we have

c
(
u,Ψ−1

t Ψ(L)−Ψ−1
t (0B)

)
= l(xt, yt; Ψ−1

t Ψ(L)−Ψ−1
t (0B), 0B)

= l(x′t, y
′
t; Ψ−1

t Ψ(L),Ψ−1
t (0B)) = l(Ψtx

′
t,Ψty

′
t; Ψ(L), 0B) ∈ Λ(L)

as we wanted. �

We now apply the above construction of spectral invariants to the special case of compactly
supported Hamiltonian symplectomorphisms of R2n.

Consider a compactly supported Hamiltonian symplectomorphism ϕ of R2n. Define

c+(ϕ) = c(µ,Γϕ) and c−(ϕ) = c(1,Γϕ)

where Γϕ is the Lagrangian submanifold of T ∗S2n constructed in Section 7, and µ and 1 are
respectively the orientation and the unit classes of S2n. Note that Γϕ intersects the 0-section at
the point at infinity of S2n. This point plays the role of the point P of the discussion above.

Proposition 11.2. The maps Hamc(R2n)→ R, ϕ 7→ c±(ϕ) satisfy the following properties.

(1) c+(ϕ) ≥ 0 and c−(ϕ) ≤ 0.
(2) c+(ϕ) = c−(ϕ) = 0 if and only if ϕ is the identity.
(3) c−(ϕ) = −c+(ϕ−1).
(4) c+(ϕψ) ≤ c+(ϕ) + c+(ψ) and c−(ϕψ) ≥ c−(ϕ) + c−(ψ).
(5) c±(ϕ) = c(ψϕψ−1).
(6) If ϕ1 ≤ ϕ2, then c(ϕ1) ≤ c(ϕ2).

Note first that Property (3) follows from Proposition 11.1 (3) and (5). Indeed, from 11.1 (3) we
have

c−(ϕ) = c(1,Γϕ) = −c(µ,Γϕ)

and, by applying 11.1 (5) to L = 0B and Ψ = Ψϕ−1 , we get

c+(ϕ−1) = c(µ,Γϕ−1) = c(µ,Ψϕ−1(0B)) = c(µ, 0B −Ψϕ(0B)) = c(µ,Γϕ)

and thus c−(ϕ) = −c+(ϕ−1) as we wanted. We now show that for any ϕ ∈ Hamc(R2n) we have
c−(ϕ) ≤ 0 (and thus, by (3), also that for any ϕ ∈ Hamc(R2n) we have c+(ϕ) ≥ 0). Since
c−(ϕ) = c(1,Γφ) = inf { a ∈ R | i ∗a (1) 6= 0 }, we need to prove that i ∗0 (1) 6= 0. Let F : E → R
be a generating function quadratic at infinity for Γϕ, and recall that we regard S2n as the 1-point
compactification R2n ∪ {P}. Consider the commutative diagram

H∗(E0, E−∞) // H∗(E 0
P , E −∞

P )

H∗(S2n) //

(i0)∗

OO

H∗({P})

∼=

OO

where the horizontal maps are induced by the inclusions {P} ↪→ S2n and EP ↪→ E. Since ϕ is
compactly supported, Γϕ coincides with the 0-section on a neighborhood of P , so S|EP

: EP → R is
a quadratic form. It follows that the vertical map on the right hand side is an isomorphism. Since
the horizontal map on the bottom sends 1 to 1, we see that i ∗0 (1) 6= 0 as we wanted, concluding
the proof of (1). Since c±(ϕ) are critical values for any (normalized) generating function of Γϕ,
by Lemma 10.2 we have that c±(ϕ) = Aϕ(q±) for some fixed points q± of ϕ. In particular this
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implies that c+(id) = c−(id) = 0. Conversely, suppose that c+(ϕ) = c−(ϕ). Then by Proposition
11.1 (4) we have that Γϕ is the 0-section, and thus ϕ is the identity, proving (2). The triangle
inequality c+(ϕψ) ≤ c+(ϕ) + c+(ψ) follows from Proposition 11.1 (5), (2) and (3), indeed

c+(ψ) = c(µ,Γψ) = c
(
µ ∪ 1,Ψϕ−1(Γϕψ)

)
= c
(
µ ∪ 1,Γϕψ −Ψϕ(0B)

)
≥

c(µ,Γϕψ) + c
(
1,Ψϕ(0B)

)
= c(µ,Γϕψ) + c(1,Γϕ) = c(µ,Γϕψ)− c(1,Γϕ)

= c+(ϕψ)− c+(ϕ) .

Note also that the triangle inequality for c− follows from the triangle inequality for c+ and (3).
In order to prove (6) we need the following result.

Proposition 11.3. If ϕ0 ≤ ϕ1 then there are generating functions F0, F1 : E → R for ϕ0 and ϕ1

such that F0 ≤ F1.

Proof. ... �

Using Proposition 11.3 we can now prove (6). Indeed it follows from Proposition 11.3 that for any
a we have inclusion of sublevel sets (Ea)Fϕ2

⊂ (Ea)Fϕ1
and this implies that c(u,Γφ1

) ≤ c(u,Γφ2
)

for any u. In particular, c±(ϕ1) ≤ c±(ϕ2) as we wanted.

It remains to prove that c+ and c− are invariant by conjugation, i.e. that c±(ϕ) = c±(ψϕψ−1)
for all compactly supported Hamiltonian symplectomorphisms ϕ and ψ of R2n. Let ψt be a
Hamiltonian isotopy joining ψ to the identity. By Proposition 10.1 we know that the action
spectrum is invariant by conjugation, and so the map t 7→ Λ(ψtϕψ

−1
t ) is independent of t. Since

the action spectrum of a compactly supported Hamiltonian symplectomorphism of R2n is discrete,
and since the maps t 7→ c±(ψtϕψ

−1
t ) are continuous (because of Proposition 11.1), it follows that

c±(ψtϕψ
−1
t ) are independent of t and so in particular c±(ψϕψ−1) = c±(ϕ) as we wanted.

12. Applications to the geometry of the Hamiltonian group

Using the spectral invariants constructed in the previous section we will now define, still following
Viterbo [Vit92], a partial order and a bi–invariant metric on the group Hamc(R2n) of compactly
supported Hamiltonian symplectomorphisms of R2n. We will also show that the metric and the
partial order are compatible with each other, giving to Hamc(R2n) the structure of a partially
ordered metric space.

Viterbo’s partial order ≤V on Hamc (R2n) is defined as follows. Given ϕ1, ϕ2 in Hamc (R2n) we
set

ϕ1 ≤V ϕ2 if c(ϕ1ϕ
−1

2 ) = 0 .

Recall from Proposition 11.2 that we always have c(ϕ1 ϕ
−1

2 ) ≥ 0. Thus, ... (explain the meaning
of the definition)

Proposition 12.1. The relation ≤V is a bi-invariant partial order on Hamc (R2n), i.e.

(i) (reflexivity) ϕ ≤V ϕ for all ϕ ∈ Hamc (R2n).
(ii) (anti-symmetry) If ϕ1 ≤V ϕ2 and ϕ2 ≤V ϕ1 then ϕ1 = ϕ2.
(iii) (transitivity) If ϕ1 ≤V ϕ2 and ϕ2 ≤V ϕ3 then ϕ1 ≤V ϕ3.
(iv) (bi-invariance) If ϕ1 ≤V ϕ2 and ψ1 ≤V ψ2 then ϕ1ψ1 ≤V ϕ2ψ2.

Proof. Reflexivity holds because c(id) = 0. Anti-symmetry and transitivity are immediate conse-
quences of respectively properties (2) and (4) in Proposition 11.2. As for bi-invariance, it can be
seen as follows. Suppose that ϕ1 ≤V ϕ2 and ψ1 ≤V ψ2, i.e. c(ϕ1ϕ

−1
2 ) = c(ψ1ψ

−1
2 ) = 0. We have

to show that ϕ1ψ1 ≤V ϕ2ψ2, i.e. c(ϕ1ψ1ψ
−1

2 ϕ −1
2 ) = 0. But, using Proposition 11.2 (4) and (5)

we have

c+(ϕ1ψ1ψ
−1

2 ϕ −1
2 ) = c¬+ (ϕ1ψ1ψ

−1
2 ϕ −1

1 ϕ1ϕ
−1

2 ) ≤ c+(ϕ1ψ1ψ
−1

2 ϕ −1
1 ) + c+(ϕ1ϕ

−1
2 )

= c+(ψ1ψ
−1

2 ) + c+(ϕ1ϕ
−1

2 ) = 0



22 SHEILA SANDON

thus c+(ϕ1ψ1ψ
−1

2 ϕ −1
2 ) = 0 as we wanted. �

Recall that the relation ≤ on the group Hamc (R2n) is defined by setting ϕ1 ≤ ϕ2 if ϕ2 ϕ
−1

1 can
be written as the time-1 map of the flow of a non-negative Hamiltonian function. Using Viterbo’s
partial order we can now show that this relation is also a partial order. The only non-trivial
property to prove is anti-symmetry. But this follows from anti-symmetry of ≤V via the following
proposition.

Proposition 12.2. If ϕ1 ≤ ϕ2 then ϕ1 ≤V ϕ2.

Proof. Note that ϕ1 ≤ ϕ2 is equivalent to ϕ1 ϕ
−1

2 ≤ id because by definition both relations mean
that ϕ1 ϕ

−1
2 is the time-1 map of the flow of a non-negative Hamiltonian function. Thus by

Proposition 11.1(6) and since c+(id) = 0, ϕ1 ≤ ϕ2 implies that c+(ϕ1 ϕ
−1

2 ) ≤ 0. Since on the
other hand c+(ϕ1 ϕ

−1
2 ) ≥ 0 by Proposition 11.2(1), we have c+(ϕ1 ϕ

−1
2 ) = 0 i.e. ϕ1 ≤V ϕ2. �

The Viterbo metric on Hamc (R2n) is defined by

dV (ϕ,ψ) := c+(ϕψ−1)− c−(ϕψ−1).

Proposition 12.3. dV is a bi-invariant metric on Hamc (R2n), i.e.

(i) (positivity) dV (ϕ,ψ) ≥ 0 for all ϕ, ψ.
(ii) (non-degeneracy) dV (ϕ,ψ) = 0 if and only if ϕ = ψ.

(iii) (symmetry) dV (ϕ,ψ) = dV (ψ,ϕ).
(iv) (triangle inequality) dV (ϕ,ψ) ≤ dV (ϕ, φ) + dV (φ, ψ)
(v) (bi-invariance) dV (ϕφ, ψφ) = dV (φϕ, φψ) = dV (ϕ,ψ).

Proof. Symmetry is obvious, and positivity follows from positivity of c+. Using Proposition 11.2(4)
we have

dV (ϕ,ψ) = c+(ϕψ−1) + c+(ψϕ−1) = c+(ϕφ−1φψ−1) + c+(ψφ−1φϕ−1)

≤ c+(ϕφ−1) + c+(φψ−1) + c+(ψφ−1) + c+(φϕ−1) = dV (ϕ, φ) + dV (φ, ψ)

proving the triangle inequality. Since c+(id) = 0 we have dV (ϕ,ϕ) = 0. Suppose now that
dV (ϕ,ψ) = 0. Then since c+ is always non-negative we must have c+(ϕψ−1) = c+(ψϕ−1) = 0 and
so ϕ = ψ by Proposition 11.2(2). This proves non-degeneracy. As for bi-invariance, we have

dV (ϕφ, ψφ) = c+(ϕφφ−1ψ−1)− c−(ψφφ−1ϕ−1) = c+(ϕψ−1)− c−(ϕψ−1) = dV (ϕ,ψ)

and, by Proposition 11.2,

dV (φϕ, φψ) = c+(φϕψ−1φ−1)− c−(φϕψ−1φ−1) = c+(ϕψ−1)− c−(ϕψ−1) = dV (ϕ,ψ).

�

We will now show that the metric dV is compatible with the partial order ≤V , in the sense that
if ϕ1 ≤V ϕ2 ≤V ϕ3 then dV (ϕ1, ϕ2) ≤ dV (ϕ1, ϕ3). A metric space (Z, d) endowed with a partial
order ≤ satisfying this property is called a partially ordered metric space.

Proposition 12.4.
(
Hamc (R2n), dV ,≤V

)
is a partially ordered metric space.

Proof. Suppose that ϕ1 ≤V ϕ2 ≤V ϕ3, i.e. c+(ϕ1ϕ
−1

2 ) = 0, c+(ϕ2ϕ
−1

3 ) = 0 and hence
c+(ϕ1ϕ

−1
3 ) = 0. Then, by Proposition 11.2(4),

dV (ϕ1, ϕ2) = c+(ϕ1ϕ
−1

2 )− c−(ϕ1ϕ
−1

2 ) = c+(ϕ1ϕ
−1

2 ) + c+(ϕ2ϕ
−1

1 )

= c+(ϕ2ϕ
−1

1 ) ≤ c+(ϕ2ϕ
−1

3 ) + c+(ϕ3ϕ
−1

1 ) = c+(ϕ3ϕ
−1

1 )

= c+(ϕ1ϕ
−1

3 ) + c+(ϕ3ϕ
−1

1 ) = dV (ϕ1, ϕ3).

�
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Given ψ ∈ Hamc (R2n), we will denote by E(ψ) its distance to the identity, i.e.

E(ψ) := dV (ψ, id) = c+(ψ)− c−(ψ).

E(ψ) is called the energy of ψ. In Section 14 we will discuss a third application of spectral
invariants, the definition of a symplectic capacity for domains. We will also discuss the relation
between the capacity of a domain and the energy of Hamiltonian symplectomorphisms that displace
the domain. But let’s first discuss the notion of index, that will be needed in Section 14 to
calculate the capacity of ellipsoids and in Section 16 to study periodic points of Hamiltonian
symplectomorphisms of T2n.

13. The Maslov index

The Maslov index for loops of linear Lagrangians of R2n is a classical notion, see [Arn67], [D],
and the references in Robbin–Salamon [RS93]. It is an intersection index of a loop of linear
Lagrangians in R2n with a fixed one (e.g. Rn × 0). Robbin and Salamon [RS93] extended this to
the case of paths of linear Lagrangians in R2n, and Théret [Th95] gave an alternative construction
using generating functions (more precisely generating quadratic forms). In this whole section we
follow thus Théret. Once we have defined a Maslov index for a path of linear Lagrangians in R2n,
we will then use it to define the Maslov index of a path of linear symplectomorphisms of R2n (via
their graph) and then the Maslov index of a fixed point of a Hamiltonian isotopy of R2n. Finally
we will also define the local homology of a fixed point of a Hamiltonian isotopy of R2n, a notion
that will be used in Section 16.

13.1. Maslov index for paths of linear Lagrangians in R2n. Let Λ(n) be the space of linear
Lagrangians in R2n ≡ T ∗Rn. Roughly speaking, the Maslov index of a path in Λ(n) is an integer
that counts the algebraic number of times the path crosses the 0–section. More precisely, the
construction goes as follows. Let Q : Rn × RN → R be a quadratic form (in the sense that it
is a quadratic form on the total space). Assume that it satisfies the transversality condition we
asked for generating functions. Then it generates a linear Lagrangian of R2n ≡ T ∗Rn. This can

be seen as follows. Write Q(z) = 1
2B(z, z) with B =

(
a b
tb c

)
, where a and c are symmetric

matrices in Rn and RN respectively and b ∈Mn,N (R). The transversality condition is equivalent
to asking (tb, c) to have maximal rank, i.e. rank N . Then ΣQ = ker(tb, c), which is a linear
subspace of Rn ×RN of dimension n. Then map iQ : ΣQ → L = im(iQ), (x, v) 7→ (x, ax+ bv) is a
vector space isomorphism and thus L is a linear Lagrangian subspace. Note that such a generating
quadratic form is not necessarily quadratic at infinity in the sense of Definitions 5.3 or 9.1 (unless

B =

(
0 0
0 c

)
with c ∈ GL(RN )).

The following proposition gives a uniqueness result for generating quadratic forms of the 0–section.

Proposition 13.1. If Q : Rn × RN → R is a generating quadratic form of the 0–section Rn × 0
then there is an isotopy As, s ∈ [0, 1], of linear fiber–preserving automorphisms of Rn × RN such
that Q ◦A1 is a quadratic form independent of the first variable.

Proof. Note that iQ sends ker(c) isomorphically to L∩ (0×Rn). Thus, since L = Rn× 0, we have
that c is invertible and so ΣQ = { (x, v) | v = −a−1bx , x ∈ Rn }. Let As(x, v) = (x, v− sc−1(tb)x).
Then

Q ◦A1 =
1

2
(tA1)BA1 =

1

2

(
a− c−1(tb)x 0

0 c

)
.

Since Q ◦ A1 generates the 0–section, we have then that a − c−1(tb) = 0 i.e. that Q ◦ A1(x, v) =
1
2
tvcv. �

We will now present the linear version of the existence theorem.
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Proposition 13.2. Let t 7→ Lt, t ∈ [0, 1] be a continuous path in Λ(n), and Q a generating
quadratic form for L0. Then there is a continuous path t 7→ Qt of generating quadratic forms such
that Q0 is a stabilization of Q and Qt generates Lt for all t.

Proof. Take an isotopy At, t ∈ [0, 1], of linear symplectomorphisms of R2n such that At(L0) = Lt.
Take a subdivision 0 = t0 < t1 < · · · < tN = 1 so that Ati+1 ◦ A−1

ti is close enough to the identity
to have a generating quadratic form without fiber variable (relative to identification τ). Using
the composition formula we get a generating quadratic form of Lti+1

= Ati+1
◦ A−1

ti (Lti) from a
generating quadratic form of Lti . �

Let t 7→ Lt, t ∈ [0, 1], be a continuous path in Λ(n), and t 7→ Qt a path of generating quadratic
forms for Lt. We define the Maslov index of t 7→ Lt by

i(t 7→ Lt) = ind(Q1)− ind(Q0) .

Note that this does not depend on the choice of Qt. This number counts the algebraic number of
times the path Lt intersects the 0–section.

13.2. Maslov index for paths of linear symplectomorphisms of R2n. Let Sp(R2n) be the
space of linear symplectomorphisms of R2n. The Maslov index of a path R : t 7→ Rt in Sp(R2n)
is defined to be the Maslov index (in the sense of the previous section) of the path t 7→ Lt =
τ
(
gr(Rt)

)
⊂ T ∗R2n. It is an integer that counts the (algebraic) number of times the path Rt

crosses the eigenvalue 1. It has the following properties.

(1) If R1 = S0 we have i(R t S) = i(R) + i(S).
(2) If the dimension of the kernel of Rt − I is constant then i(R) = 0.
(3) If (s, t) 7→ T (s, t) is a parametrized surface in Sp(R2n) then

i
(
s 7→ T (s, 1)

)
− i
(
s 7→ T (s, 0)

)
= i
(
t 7→ T (1, t)

)
− i
(
t 7→ T (0, t)

)
.

(4) If R is a loop then i(R) is even.
(5) If R and S have the same endpoints then the following is true: i(S) = i(R) if and only if

R and S are homotopic with fixed endpoints.
(6) If R is a loop, S0 ∈ Sp(R2n) and RS0 denotes the loop t 7→ R(t)S0 then i(RS0) = i(R).

The only two properties that do not follow immediately from the definition are (4) and (6).
Property (4) can be seen as follows. Note that π1

(
Sp(R2n)

)
= Z, with generator t 7→ r2πt × id,

t ∈ [0, 1] where r2πt is the rotation in R2 and id is the identity in R2n−2 (see [MS98]). Then the
result follows from i

(
t 7→ r2πt × id

)
= i
(
t 7→ r2πt

)
= −2. On the other hand, (6) follows from the

fact that Sp(R2n) is path connected, and thus we can take a path Ss joining S0 to S1 = id and
then use (3).

13.3. Maslov index for fixed points of Hamiltonians isotopies of R2n. Let {ϕt}t∈[0,1] be

a Hamiltonian isotopy of R2n, and x a fixed point of ϕ1. We define the Maslov index i(x) of x
to be the index of t 7→ dϕt(x), t ∈ [0, 1]. We also define the nullity of x to be the dimension of
ker
(
dϕ1(x)− id

)
.

Proposition 13.3. Assume that {ϕt}t∈[0,1] is compactly supported, and let F : R2n×RN → R be
a generating function quadratic at infinity of ϕ1 with quadratic at infinity part Q∞. Let z = (x, v)
be the critical point of F associated to the fixed point x of ϕ1. Then

i(x) = ind
(
d2F (z)

)
− ind(Q∞)

where ind
(
d2F (z)

)
is the Morse index of z as critical point of F .

Proof. By uniqueness of generating functions quaratic at infinity, ind
(
d2F (z)

)
− ind(Q∞) is in-

dependent of F . Let Ft : R2n × RN → R be a path of generating functions quadratic at infinity
for ϕt. Let ψt be the isotopy of T ∗R2n corresponding to id × ϕt : R2n × R2n → R2n × R2n.
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Then we have a continuous path t 7→ z(t), t ∈ [0, 1], in R2n × RN such that z(0) = (x, 0),
z(t) ∈ ΣFt and iFt

(
z(t)

)
= ψt(x, 0) for all t. The Maslov index of t 7→ dϕt(x) is the Maslov index

of t 7→ Tz(t)ψt(R2n × 0). But t 7→ d2Ft
(
z(t)

)
is a path of generating quadratic forms for this last

path of Lagrangians. Thus the index is

ind
(
d2F1(z(1))

)
− ind

(
d2F0(z(0))

)
.

Using uniqueness of generating functions quadratic at infinity we see that ind
(
d2F0(z(0))

)
=

ind(Q0
∞) (where Q0

∞ is the quadratic at infinity part of F0) because z(0) ∈ ΣF0 and F0 generates
the 0–section. We also have that all Ft are equal to the same quadratic form outside a compact,
i.e. Qt∞ = Q0

∞. �

13.4. Local homology for fixed points of Hamiltonians isotopies of R2n. Let {ϕt}t∈[0,1]

be a Hamiltonian isotopy of R2n, and x a fixed point of ϕ1. We will define the local homology
of x to be the local homology of the totally degenerate part of a generating function at the
corresponding critical point. In order to do this we first recall what is local homology, and what is
the totally degenerate part of a functional (see also [MW89, ?]). Let M be a complete Riemannian
manifold and f : M → R a smooth function satisfying Palais–Smale (C) condition (for example
this condition is satisfied if M is compact, or f proper, or f : B ×RN → R quadratic at infinity).
Also assume that all critical points of f are isolated. For a ∈ R let fa = { f ≤ a }, fa− = { f < a },
and Ka the set of critical points of critical value a. Recall that if f has no critical values in (a, b)
then f b − Kb deformation retracts to fa. Let x be an isolated critical point of f , with critical
value c.

Definition 13.4. The local homology of f at x is defined by

H∗(f ;x) = H∗(f
c ∩ U , f c − {x} ∩ U)

for a neighborhood U of x in M .

Note that the above definition is independent of the choice of a neighborhood U . Note also that
H∗(f ;x) = H∗(f

c
− ∪ {x}, fc−). Moreover the local homology satisfies the following properties.

(1) if h : M → N is a local diffeomorphism with h(x) = y then H∗(f ;x) = H∗(f ◦ h−1; y)
(2) if x is a local minimum of f then H∗(f ;x) = R if ∗ = 0 and 0 otherwise.
(3) if x is a local maximum of f then H∗(f ;x) = R if ∗ = dim(M) and 0 otherwise.
(4) if x is not a local minimum nor a local maximum then H0(f ;x = Hdim(M)(f ;x)) = 0.
(5) χ(f ;x) = ind∇xf .
(6) if f is a quadratic form Rn → R of index i then H∗(f ;x) = R if ∗ = i and 0 otherwise.

As we will now explain, H∗(f ;x) is determined by the index of d2f(x) and the local homology of
the totally degenerate part of f at x. Let f : Rn → R be a smooth function with f(0) = 0, and
assume that 0 a critical point of f . Let L be a complementary in Rn of K = ker

(
d2f0(0)

)
. For

the following results we refer to [GM69b].

Lemma 13.5 (Reduction Lemma). There is a diffeomorphism Φ : K×L→ K×L with Φ(0) = 0
of the form Φ(x′, x′′) = (x′, h(x′, x′′)) and ϕ : K → R, ϕ(0) = 0 such that

f ◦ Φ−1(x′, x′′) = ϕ(x′) +
1

2
B(x′, x′′)

and ϕ0(0) = 0, dϕ0(0) = 0, d2ϕ0(0) = 0 where B = d2f(0)|L and (x′, x′′) is the decomposition of
x ∈ Rn = K ⊕ L.

We say that the function f̂ := ϕ is the totally degenerate part of f in 0. It is defined up to

diffeomorphism, and so its local homology H∗(f̂ ; 0) is defined up to isomorphism.

Lemma 13.6 (Shifting Lemma). We have H∗(f ; 0) = H∗−i(f̂ ; 0), where i is the index of d2f(0).
In particular if Hk(f ; 0) 6= 0 then

i ≤ k ≤ i+ dim
(
ker(d2f(0))

)
.



26 SHEILA SANDON

We now apply this result to the case of a Hamiltonian isotopy {ϕt}t∈[0,1] of R2n. For a fixed point
x of ϕ1 we define

H∗(ϕ1;x) := H∗(F̂ ; ẑ)

where F̂ is the totally degenerate part of a generating function quadratic at infinity F for ϕ1, and
z is the critical point corresponding to x. Lemma 13.6 in this special case will be important for
us in Section 16.

Note. The Maslov index i(x) is global (it depends on the whole ϕ) while the local homology only
depends on what ϕ does in a neighborhood of x.

14. Symplectic capacity

As we have discussed in Section 1, there are no local invariants in symplectic topology. On the
other hand, the volume is an obvious global invariant. We will see in this section how the spectral
invariants discussed above can be used to define a more subtle symplectic invariant for domains
of R2n. The invariant we will define is an example of a symplectic capacity.

Given an open bounded domain U of R2n, its Viterbo capacity c(U) is defined by

c(U) := sup { c+(ϕ) | ϕ ∈ Ham (U) }

where Ham (U) denotes the set of time-1 maps of the flow of Hamiltonian functions supported in
U . The following lemma shows that c(U) is well–defined (i.e. is a finite real number).

Lemma 14.1. For every compactly supported Hamiltonian symplectomorphism ψ of R2n that
displaces U (i.e. such that ψ(U) ∩ U = ∅) and every ϕ ∈ Ham (U) we have

c+(ϕ) ≤ E(ψ)

where E(ψ) := d(ψ, id) = c+(ψ)− c−(ψ).

Proof. We first show that c+(ψϕ) = c+(ψ) for all ϕ and ψ as in the statement of the lemma. Let
ϕt be a Hamiltonian isotopy connecting ϕ to the identity and, for every t, let xt be a fixed point
of ψϕt such that c+(ψϕt) = Aψϕt

(xt). Since ψ(U) ∩ U = ∅ we have that xt /∈ U . It follows that
xt is a fixed point of all ϕt and hence of ψ. Moreover we have that Aψϕt

(xt) = Aψ(xt). Thus the
continuous map t 7→ c+(ψϕt) takes values in Λ(ψ) and so it is independent of t. In particular we
get that c+(ψϕ) = c+(ψ) as we claimed. Using this it then follows that

c+(ϕ) ≤ c+(ψϕ) + c+(ψ−1) = c+(ψ)− c−(ψ) = E(ψ) .

�

If V is an open (not necessarily bounded) domain of R2n we define c(V) to be the supremum of
the values of c(U) for all bounded U contained in V. If A is an arbitrary domain of R2n we define
its capacity c(A) to be the infimum of the values of c(V) for all open V containing A.

The symplectic capacity that we just defined satisfies the following properties:

• (Symplectic invariance) For any Hamiltonian symplectomorphism ψ of R2n we have

c(ψ(U)) = c(U) .

• (Monotonicity) If U1 ⊂ U2, then c(U1) ≤ c(U2).
• (Conformality) For any positive constant α we have c(αU) = α2c(U).
• (Non–triviality) c (B2n(1)) > 0 and c (C2n(1)) <∞.

All these property are summarized by saying that c is a symplectic capacity in R2n. Note that
monotonicity is obvious from the definition, while symplectic invariance is a consequence of Propo-
sition 11.2(5). Conformality can be proved using the fact that if ψ is a conformal symplectomor-
phism of R2n, i.e. ψ∗ω = αω for some constant α, then Λ(ψφψ−1) = αΛ(φ) (see [HZ94, 5.2]).
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Non–triviality will follow from the calculation of the capacity of ellipsoids that we will explain
later in this section. Other two important properties of the Viterbo capacity are the following.

• (Energy–capacity inequality) If ψ is a compactly supported Hamiltonian symplectomor-
phism of R2n such that ψ(U) ∩ U = ∅ then c(U) ≤ E(ψ).

• (Representation property) If U ⊂ R2n is a bounded domain of restricted contact type then
its Viterbo capacity5 equals the action of some closed characteristic on ∂U .

The energy–capacity inequality follows immediately form Lemma 14. In the rest of this section
we will discuss the representation property in the special case of a starshaped domain, and use
this discussion to calculate the capacity of ellipsoids. As an application we will finally prove the
Symplectic Non–Squeezing Theorem.

Let U ⊂ R2n be a domain which is starshaped around the origin (i.e. such that its boundary is
everywhere transverse to the radial direction). Then U can be written as U = {H < 1} for some
positive function H : R2n → R which is R+-equivariant, i.e. H(αz) = α2H(z). As we saw in
Section 4, closed characteristics on ∂U coincide with closed orbits of the Hamiltonian flow ϕt of
H. Recall that the action of a closed characteristic γ on ∂U is defined by

A(γ) :=

∫
γ

λ0.

We will now show that c(U) belongs to the action spectrum of U . More precisely, we will show
that c(U) = A(γ) for some closed characteristic γ of ∂U of index 2n.

Note that the property H(αz) = α2H(z) implies that XH(αz) = αXH(z) and that the flow ϕt
commutes with z 7→ αz, i.e. ϕt(αz) = αϕt(z). Thus if γ is a closed characteristic on {H =
1} then

√
αγ is a closed characteristic on {H = α} and we have that A(

√
αγ) = αA(γ) and

ind (
√
αγ) = ind (γ). In order to calculate c(U) we need to construct an unbounded ordered

sequence of Hamiltonian symplectomorphisms supported in U . As we will see, we can obtain
such a sequence by reparametrizing H in a suitable way. Let ρ : [0,∞) → [0,∞) be a function
supported in [0, 1] and with ρ′′ > 0, and consider the Hamiltonian function Hρ := ρ◦H. Take then
a sequence ρ1, ρ2, ρ3, · · · of functions of this form with limi→∞ ρi(0) = ∞, limi→∞ ρ′i(0) = −∞
and such that the time-1 maps of the flows of Hρi form an unbounded ordered sequence, supported
in U . Note that the Hamiltonian flow of Hρ is given by

ϕρt = ϕ t ρ′◦H

thus closed characteristics on ∂U determine and are determined by the fixed points of ϕρ := ϕρ1.
More precisely, a closed characteristic γ on ∂U with period T correspond to a fixed point z0 of
ϕρ at the level {H = m} where ρ′(m) = T . The critical value c of the generating function of ϕρ

corresponding to the fixed point z0 is equal to the symplectic action of the path t 7→ ϕρt(z0), thus

c =

∫ 1

0

(
λ(Xρ) +Hρ

) (
ϕρt(z0)

)
dt

=

∫ 1

0

λ(Xρ)
(
ϕρt(z0)

)
dt + ρ(m) = mA(γ) + ρ(m).

The last equality holds because∫ 1

0

λ(Xρ)
(
ϕρt(z0)

)
dt =

∫ 1

0

(ρ′ ◦H)λ(X)
(
ϕtT (z0)

)
dt =∫ 1

0

Tλ(X)
(
ϕtT (z0)

)
dt =

∫ T

0

λ(X)
(
ϕt(z0)

)
dt

thus
∫ 1

0
λ(Xρ)

(
ϕρt(z0)

)
dt is the action of the closed characteristic on {H = m} corresponding to

γ which, as we saw before, is equal to mA(γ). Note that if we consider the sequence {ρi} then

5This representation property is shared by most known capacities, though not for all (see [Her05] for a counterex-
ample).
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the corresponding critical value of the generating function of ϕρi is given by ci = miA(γ)+ρi(mi)
which tends to A(γ) for i→∞. Moreover, it is also possible to prove that for every ρ the index of
the fixed point z0 of ϕρ is equal to the index of the corresponding closed characteristic γ on ∂U .

This discussion shows that for every critical value (of a certain index) of the generating function
of some ϕρi0 in the sequence there corresponds a critical value ci for every ϕρi , with ci tending
for i→∞ to the action of some closed characteristic of ∂U (with the same index). In particular,
since for every Hamiltonian symplectomorphism ϕ the index of the fixed point corresponding to
c+(ϕ) is 2n, we see that c(U) is the action of a closed characteristic on ∂U of index 2n.

Using this representation property it is easy to see, after calculating the action spectrum, that the
capacity of an ellipsoid

E2n(R1, · · · , Rn) = {
n∑
i=1

1

R2
i

(x 2
i + y 2

i ) < 1 }

with R1 ≤ · · · ≤ Rn is given by πR2
1. In particular c

(
B2n(R)

)
= πR2. Since every bounded

domain contained in the cylinder C2n(R) is also contained in some ellipsoid E2n(R,R2, · · · , Rn),
it follows from monotonicity that c

(
C2n(R)

)
= πR2.

Due to this result, the Viterbo capacity can be used to prove Gromov’s Non-Squeezing Theo-
rem, which says that if R2 < R1 then there is no symplectic embedding of B2n(R1) into C2n(R2).
Indeed, suppose there is such an embedding Ψ : B2n(R1) ↪→ C2n(R2). Then for any δ ∈ (0, 1)
we can find a compactly supported Hamiltonian symplectomorphism Ψδ of R2n with Ψδ ≡ Ψ
on δ B2n(R1) (this is the so called extension after restriction principle, see for example [EH89]).
Hence

δ2R1 = δ2 c
(
B2n(R1)

)
= c
(
δB2n(R1)

)
≤ c
(
C2n(R2)

)
= R2.

Since this is true for any δ ∈ (0, 1), it follows that R1 ≤ R2. Moreover, the Viterbo capacity
has been used in [Vit92] to prove the Camel Theorem, which says that there is no Hamiltonian
isotopy ψt supported in

(
R2n \ R2n−1

)
∪ B2n(ε) such that ψ0 = id and ψ1 sends a ball of radius

R > ε contained in one component of R2n \ R2n−1 into the other component.

15. Symplectic homology

Following Traynor [Tr01], in this section we will associate homology groups to compactly supported
Hamiltonian symplectomorphisms of R2n (by considering relative homology of sublevel sets of the
generating function) and then, by a limit process, to domains of R2n.

Let ϕ be a compactly supported Hamiltonian symplectomorphism of R2n. Given real numbers a,
b not belonging to the action spectrum of ϕ and such that −∞ < a < b ≤ ∞, we define the k-th
symplectic homology group of ϕ with respect to the values a, b by

G
(a,b]
k (ϕ) := Hk+ι (Eb, Ea)

where Ec, for c ∈ R, denotes the sublevel set {x ∈ E |F (x) ≤ c } of a generating function
F : E → R for ϕ and ι is the index of the quadratic at infinity part of S. By Theorem 9.3, the

groups G
(a,b]
k (ϕ) are well-defined, i.e. do not depend on the choice of the generating function.

We will now show that they are invariant by conjugation.

Proposition 15.1. For any ϕ and ψ in Hamc (R2n) we have an induced isomorphism

ψ∗ : G
(a,b]
∗ (ψϕψ−1) −→ G

(a,b]
∗ (ϕ) .

In order to prove this result we need the following Morse-theoretical lemma.

Lemma 15.2. Let ft, t ∈ [0, 1], be a continuous 1-parameter family of functions defined on a
compact manifold M . Suppose that a ∈ R is a regular value of all ft. Then there exists an isotopy
θt of M such that θt(M

a
0) = Ma

t, where Ma
t := {x ∈M | ft(x) ≤ a }.
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Proof. Choose a Riemannian metric g. Consider the time-dependent gradient ∇ft, i.e. the time-
dependent vector field defined by g(∇ft, ·) = dft for all t. Note that ∇ft(x) 6= 0 if x ∈ f −1

t (a).
Indeed, suppose by contradiction that ∇ft(x) = 0. Then dft

(
Y (x)

)
= g

(
∇ft(x), Y

)
= 0 for all

Y ∈ TxM thus x is a critical point of ft. But this is a contradiction because ft(x) = a and
we assumed that a is a regular value of all ft. For each t consider now the vector field Xt on
a neighborhood of f −1

t (a) defined by Xt = −
(
dft
dt

)
1

‖∇ft‖2∇ft. Extend this to a time-dependent

vector field Xt defined everywhere (by using a cut-off function to make it 0 outside a small
neighborhood of f −1

t (a)). Take the flow θt of Xt. Then θt(x) ∈ f −1
t (a) if x ∈ f −1

0 (a). Indeed

d

dt

(
ft ◦ θt

)
= dft(Xt) ◦ θt +

dft
dt
◦ θt = 0

thus for any x ∈ f −1
0 (a) we have that ft

(
θt(x)

)
= f0(x) = a. Hence for every t we have that θt

sends {f0 ≤ a} to {ft ≤ a}. �

Proposition 15.1 can be now proved as follows. Let ψt be a Hamiltonian isotopy starting at the
identity and ending at ψ1 = ψ. We know by Proposition 10.1 that Λ

(
ψtϕψ

−1
t

)
= Λ(ϕ) for all t, so

if we consider a continuous family Ft : R2n×RN −→ R of generating functions, each Ft generating
the corresponding ψtϕψ

−1
t , then the set Λ

(
ψtϕψ

−1
t

)
of critical values of Ft is independent of t.

Since a and b are regular values for F0 it follows that they are regular values for all Ft, and
so we can conclude using Lemma 15.2. Note that we can do it even though R2n × RN is not
compact, because the functions Ft are (special) quadratic at infinity. More generally, Lemma
15.2 implies the following result. Note that if ϕ0 ≤ ϕ1 then we have an induced homomorphism

λ 1
0 : G

(a,b]
∗ (ϕ1) −→ G

(a,b]
∗ (ϕ0). Indeed, by Proposition 11.3 we know that there are generating

functions F0 and F1 : E −→ R for ϕ0 and ϕ1 such that F0 ≤ F1. The homomorphism λ 1
0 is then

induced by the inclusions of sublevel sets E a
1 ⊂ E a

0 and E b
1 ⊂ E b

0 .

Proposition 15.3. Suppose that ϕt, t ∈ [0, 1] is a path in Hamc (R2n) such that, for every t, a

and b are not critical values of the generating function Ft. Then G
(a,b]
∗ (ϕt) is independent of t. If

moreover ϕ0 ≤ ϕ1 then the homomorphism λ 1
0 : G

(a,b]
∗ (φ1) −→ G

(a,b]
∗ (φ0) induced by inclusion

of sublevel sets of the generating functions is the identity.

Consider now a domain U of R2n. Given a, b ∈ R we denote by Ham c
a,b (U) the set of compactly

supported Hamiltonian symplectomorphisms of R2n that are the time-1 map of the flow of a
Hamiltonian function which is supported in U and whose action spectrum does not contain a and
b. As before if ϕ0 ≤ ϕ1 then we have an induced homomorphism

λ 1
0 : G

(a,b]
k (ϕ1) −→ G

(a,b]
k (ϕ0) .

Moreover, given ϕ0, ϕ1, ϕ2 in Ham c
a,b (U) with ϕ0 ≤ φ1 ≤ φ2, it holds λ 1

2 ◦λ 0
1 = λ 0

2 and λ i
i = id.

We conclude that {G (a,b]
k (ϕi)}ϕi∈Ham c

a,b (U) is an inversely directed system of groups6. We define

the k-th symplectic homology group G
(a,b]
k (U) of U with respect to the values a, b to be the

inverse limit of the inversely directed system {G (a,b]
k (ϕi)}ϕi∈Ham c

a,b (U). Note that G
(a,b]
k (U) can

be calculated by any sequence ϕ0 ≤ ϕ1 ≤ ϕ2 ≤ · · · such that the associated Hamiltonians get
arbitrarily large. The next result, i.e. the fact that the symplectic homology groups are indeed
symplectic invariants, follows from Proposition 15.1.

6Recall the definition of an inversely directed system of groups. Let (I,≤) be a directed partially ordered set, i.e.
a set I with a partial order ≤ such that for any two elements i and j of I there exists a third element k such that

i ≤ k and j ≤ k. A family of groups {Ai}i∈I is called an inversely directed system of groups if for every i ≤ j there
exists a homomorphism fij : Aj → Ai such that the following properties are satisfied: fii = id and fik = fij ◦ fjk
for all i ≤ j ≤ k. The inverse limit of the inversely directed system {Ai}i∈I is then defined by

lim←−Ai := {a ∈
∏
i∈I

Ai | ai = fij(aj) for all i ≤ j }.
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Proposition 15.4. For any domain U in R2n and any Hamiltonian symplectomorphism ψ we
have an induced isomorphism

ψ∗ : G
(a,b]
∗

(
ψ(U)

)
−→ G

(a,b]
∗ (U).

We will now present Traynor’s calculations [Tr01] of the symplectic homology of ellipsoids. To
simplify the notations we specialize to the case of a ball B(R) and consider only homology groups
with respect to intervals of the form (a,∞] for a > 0.

Theorem 15.5. Consider B2n(R) ⊂ R2n and let a be a positive real number. Then for ∗ = 2nl
we have

G
(a,∞]
∗

(
B2n(R)

)
=

{
Z2 if a

l < πR2 ≤ a
l−1

0 otherwise

where l is any positive integer. In particular for l = 1 we have

G
(a,∞]

2n

(
B2n(R)

)
=

{
Z2 if πR2 > a
0 otherwise.

For all other values of ∗ the corresponding homology groups are 0. Moreover, given R1, R2 with
a
l < πR2

2 < πR2
1 ≤ a

l−1 , the homomorphism G
(a,∞]
∗

(
B2n(R1)

)
−→ G

(a,∞]
∗

(
B2n(R2)

)
induced by

the inclusion B2n(R2) ⊂ B2n(R1) is an isomorphism.

Proof. We only present the idea of the proof, referring to [Tr01] for all the details. We have

B2n(R) = {H < 1}

with H : R2n → R, H(x1, y1, · · · , xn, yn) =
∑n
i=1

1
R2 (x 2

i +y 2
i ), so we can construct an unbounded

ordered sequence φρ1 ≤ φρ2 ≤ φρ3 ≤ · · · supported in B2n(R) as explained above, i.e. by
considering the time-1 flow of Hamiltonian functions of the form Hρ = ρ ◦ H with ρ : [0,∞) →
[0,∞) supported in [0, 1]. Note that the Hamiltonian flow of Hρ is

φρt = φ t ρ′◦H

where φt is the rotation z 7→ e
2it
R2 z. Let φρ be the time-1 map of φρt. Critical points of the

generating function of φρ correspond to fixed points of φρ. Let ml ∈ [0, 1] be defined by ρ′(ml) =
−lR. Then the fixed point sets of φρ are given by Z0 = {0}, Z∞ = {H > 1} and Zl = {H = ml}
for all l = 1, · · · , l0 with −lπR2 < ρ′(0). The critical values of the corresponding critical point
sets X0, X∞, X1, · · · , Xl0 are c0 = ρ(0), c∞ = 0 and cl = lπR2ml + ρ(ml) and the gf-indices
respectively 2(l0 + 1)n, 0 and 2ln. Convexity of ρ implies that cl < lπR2 and cl < cl+1. Moreover
when we consider the sequence φρ1 ≤ φρ2 ≤ φρ3 ≤ · · · we have that cl tends to lπR2. Using

Proposition 15.3 we see thus that G
(a,∞]
∗

(
B2n(R)

)
= G

(a,∞]
∗

(
φρj
)

for j big enough so that the

critical values of the generating function of φρj are arbitrarily close to πR2, 2πR2, 3πR2, · · · .
Thus, G

(a,∞]
∗

(
B2n(R)

)
only depends on the position of a with respect to πR2, 2πR2, 3πR2, · · ·

and can be easily calculated by using Morse theoretical arguments (in particular the fact that,
since all critical submanifolds are diffeomorphic to S2n−1, passing a critical value of index 2nl

only affects G
(a,∞]
∗

(
B2n(R)

)
for ∗ = 2nl and ∗ = 2nl + 2n − 1). The statement about the

homomorphism induced by inclusion follows from Proposition 15.3. �

16. Arnold and Conley conjectures on T2n

Recall that we see the torus T2n as the quotient of R2n by the action of Z2n given by translations
along the coordinate axes. Since the symplectic form ωst on R2n is invariant by such action, it
descends to a symplectic form on T2n (still denoted by ω0). We will see in this section how to
use generating functions to prove the Hamiltonian Arnold conjecture on the symplectic manifold
(T2n, ωst). We will also discuss the non-degenerate case of another famous conjecture, the Conley
Conjecture on periodic points of Hamiltonian simplectomorphisms.
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Theorem 16.1 (Hamiltonian Arnold Conjecture). Any Hamiltonian symplectomorphisms ϕ of
T2n has at least 2n+ 1 fixed points. Moreover, if all the fixed points of ϕ are non-degenerate then
there must be at least 22n of them.

Note that 2n + 1 is the cup-lenght of T2n and 22n is the sum of the Betti numbers. To prove
Theorem 16.1 we will follow the generating functions approach given by Chaperon, Givental and
Théret . Other proofs of the same result, as well as of the next, were given earlier with different
(and more complicated) methods by Conley–Zehnder [CoZ84] and Salamon–Zehnder [SZ92]. In
order to state the next theorem we need to introduce the following notion. Let ϕ be a Hamiltonian
symplectomorphism of a symplectic manifold (M,ω). A point q of M is said to be a periodic point
of ϕ if q is a fixed point of some iteration of ϕ, i.e. q = ϕN (q) for some N ∈ N.

Theorem 16.2 (Non-degenerate Conley Conjecture). If ϕ is a Hamiltonian symplectomorphism
of T2n such that all its fixed points of are non-degenerate then ϕ has infinitely many periodic
points.

The full Conley conjecture states that any Hamiltonian symplectomorphism ϕ of T2n (without any
assumption on non-degeneracy of fixed points) has infinitely many periodic points. This general
statement is much harder than its non-degenerate version, and was proved by Hingston in [Hin09].
See also Mazzucchelli [Maz13] for an alternative proof using generating functions, and Ginzburg
[Gin10] for the following extension of the result to a more general class of symplectic manifolds.
Note first that the Conley conjecture does not hold for all symplectic manifolds, for example it
does not hold for S2 since an irrational rotation has only two periodic points (the north and
south poles). Ginzburg’s result is that the Conley conjecture holds for all aspherical symplectic
manifolds. All proofs of the Conley conjecture are inspired by the methods that are used to find
periodic geodesics on a compact Riemannian manifold, see e.g. Gromoll-Meyer [GM69a].

We will first explain how to prove Theorem 16.1. Recall from Section 7 that in order to associate
a generating function to a Hamiltonian symplectomorphism ϕ of R2n we have looked at the graph
gr(ϕ), which is a Lagrangian submanifold of R2n×R2n, and then used an identification of R2n×R2n

with T ∗R2n (sending the diagonal to the 0-section) in order to get a Lagrangian submanifold Γϕ
of T ∗R2n and apply Theorem 5.4. In the case of T2n this does not work in the same way. Indeed
given a Hamiltonian symplectomorphism ϕ of T2n we can still look at the graph gr(ϕ) inside the

twisted product T2n ×T2n, but now we cannot identify T2n ×T2n with T ∗T2n (note in particular

that T2n×T2n is compact while T ∗T2n is not). However, as first indicated by Chaperon [Chap84],
the problem can be solved by using the following fact.

Proposition 16.3. There is a symplectic cover Π : T ∗T2n → T2n × T2n, that induces a diffeo-
morphism of the 0-section to the diagonal.

Proof. Let π : R2n → T2n be the standard projection and consider the symplectic cover π ×
π : R2n × R2n → T2n × T2n. Recall that we have an identification τ : R2n × R2n → T ∗R2n,
τ(x, y,X, Y ) 7→ (x+X

2 , y+Y
2 , Y − y, x−X). Consider the diagonal action of Z2n on R2n × R2n. It

is taken by τ to the action of Z2n on the base of T ∗R2n, thus we get induced symplectomorphism

(R2n × R2n)/Z2n ≡ T ∗T2n .

But (R2n×R2n)/Z2n is the total space of a symplectic cover to T2n×T2n, thus we get a symplectic

cover Π : T ∗T2n → T2n × T2n, which sends the 0–section diffeomorphically to the diagonal. �

Let ϕ be a Hamiltonian symplectomorphism of T2n, and {ϕt}t∈R a Hamiltonian isotopy connecting

it to the identity. Look at the path of Lagrangian subspaces gr(ϕt) of T2n × T2n, and lift it to
a path of Lagrangian subspaces Γϕt

of T ∗T2n (starting at the 0-section) by using Proposition 16
(to do this, write gr(ϕt) as the image of the diagonal by the Hamiltonian isotopy id×ϕt, then lift
the Hamiltonian function to T ∗T2n and take the image of the 0–section by the time-1 map of the
flow).
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We can now apply Theorem 5.4, and get a generating function quadratic at infinity F : T2n×RN →
R for Γϕ. We will say that a fixed point q of ϕ is a contractible fixed point if the loop t 7→ ϕt(q)
is contractible.

Lemma 16.4. Critical points of F are in 1-1 correspondence to contractible fixed points of ϕ.

Proof. Exercise. �

Theorem 16.1 now follows from this result and Theorem 5.5.

We will now sketch the proof of Theorem 16.2. The main ingredient is the Maslov index of fixed
points. Given a Hamiltonian symplectomorphism ϕ of T2n, we define the Maslov index i(x) and
the nullity ν(x) of a fixed point x by taking the Maslov index and nullity of a representative x̃ of
x in R2n with respect to the lift of ϕ to a Hamiltonian symplectomorphism of R2n (note that the
definitions do not depend on choices). We will now show that if a Hamiltonian symplectomorphism
ϕ of T2n has only finitely many fixed points, all of them non-degenerate, then ϕ has a fixed point
of Maslov index 2n. This result will follow by applying to the case of the torus the following
general fact, for a proof of which we refer to [Sch].

Proposition 16.5. Let B be a compact manifold and F : B × RN → R a function quadratic at
infinity, with quadratic at infinity part Q. If F has only finitely many critical points then for every
α ∈ Hd(B) there is a critical point z of F at level F = c(α, F ) such that Hd+ind(Q)(F ; z) 6= 0.

By applying Proposition 16.5 to the case of B = T2n we get that if F : T2n × RN → R is a
generating function quadratic at infinity, with quadratic at infinity part Q, and if F has only
finitely many critical points, then there are critical points z0, · · · , z2n such that

Hd+ind(Q)(F ; zd) 6= 0

for all d = 0, · · · , 2n. Suppose now that ϕ is a Hamiltonian symplectomorphism of T2n that has
only finitely many fixed points. Then F has only finitely many critical points and thus, by the
above result, there are 2n + 1 critical points z0, · · · , z2n such that Hd+ind(Q)(F ; zd) 6= 0 for all
d = 0, · · · , 2n. By the Shifting Lemma 13.6 we have then that

ind
(
d2F (zd)

)
≤ d+ ind(Q) ≤ ind

(
d2F (zd)

)
+ dim

(
ker(d2F (zd))

)
.

But ind
(
d2F (zd)

)
− ind(Q) is the Maslov index of the fixed point xd of ϕ corresponding to the

critical point zd, and dim
(
ker(d2F (zd))

)
is the nullity of xd. We get thus the following result.

Proposition 16.6. If ϕ is a Hamiltonian symplectomorphism of T2n that has only finitely many
fixed points then there are fixed points x0, · · · , x2n such that

i(xd) ≤ d ≤ i(xd) + ν(xd) .

If all fixed points of ϕ are non-degenerate then it follows in particular that there is a fixed point
of ϕ with Maslov index 2n.

Consider now a Hamiltonian isotopy ϕt, t ∈ R, with ϕ1 = ϕ and assume (without loss of generality)
that it is generated by a Hamiltonian Ht : T2n → R which is 1-periodic, so that ϕk = ϕk for all
k ∈ Z. Let x be a fixed point of ϕ of Maslov index 2n and denote by ik(x) the Maslov index of
x as a fixed point of ϕk. Recall that we assume that all fixed points of ϕ, in particular x, are
non-degenerate.

Theorem 16.7. We have that ik(x)→∞ for k →∞.

Proof. See Théret (proof takes 15 pages). Idea? �

Using Theorem 16.7 we can now conclude the proof of Theorem 16.2. Indeed, suppose that ϕ has
only finitely many periodic points. Then in particular there are only finitely many primes p such
that ϕ has a periodic point of period p. Thus we can find a sequence {pm}m≥1 of primes which
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is strictly increasing and such that, for all m, ϕ does not have periodic points of period pm, i.e.
if x is a fixed point of ϕpm then x is a fixed point of ϕ. This implies that all fixed point of ϕpm

are non–degenerate. Thus, for every m ≥ 1, we can find (by repeating what we have done for
ϕ1) a fixed point xm for ϕpm which is non–degenerate and has Maslov index 2n (relative to ϕpm).
All xm are fixed points of ϕ. Since we assume that ϕ has only finitely many fixed points, there
must be the same x repeating infinitely many times in the sequence {xm}m≥1. But then we get a
contradiction with Theorem 16.7.

17. The Arnold conjecture on CPn

Following Théret [Th95, Th98], in this section we will prove the following result (that was obtained
earlier, with more complicate methods, also by Fortune and Weinstein [FW85]).

Theorem 17.1 (Hamiltonian Arnold conjecture for CPn−1). Every Hamiltonian symplectomor-
phism of CPn−1 has at least n fixed points.

Note that n is the cuplength of CPn−1, which in this case coincides with the sum of the Betti
numbers. Note also that if we assume that all fixed points are non-degenerate then existence of
at least n fixed points just follows (for all Hamiltonian symplectomorphisms of CPn−1 smoothly
isotopic to the identity) from the Lefschetz fixed point theorem.

In order to be able to use generating functions we will reduce the problem to euclidean space, by
seeing CPn−1 as a symplectic reduction of R2n as explained in Example 4.4. In particular we will
see CPn−1 as the quotient of the unit sphere S2n−1 of R2n ≡ Cn by the action of S1 given by

t · (z1, · · · , zn) = (e2πitz1, · · · , e2πitzn) .

Using this description of CPn−1 we can lift any Hamiltonian isotopy ϕt to a Hamiltonian isotopy
of R2n. This is done as follows. Let ht : CPn−1 → R be a Hamiltonian function generating ϕt.
Consider the pullback ht ◦π : S2n−1 → R, where π : S2n−1 → CPn−1 is the projection, and extend
it to a function Ht : Cn → R which is homogeneous of degree 2, i.e. satisfies

Ht(λz1, · · · , λzn) = λ2Ht(z1, · · · , zn)

for all λ ∈ R+ (note that there is a unique choice of such a function). Consider the Hamiltonian
flow Φt : Cn → Cn of Ht : Cn → R. Then Φt is C∗-equivariant, i.e.

Φt(λz) = λΦt(z)

for all λ ∈ C∗ and z ∈ Cn. Moreover it preserves the Euclidean spheres of Cn centered at 0, and
its restriction to the unit sphere S2n−1 projects to our initial Hamiltonian isotopy ϕt.

Note that the lift Φt : Cn → Cn of ϕt : CPn−1 → CPn−1 depends on the choice of a Hamiltonian
function ht : CPn−1 → R for ϕt. For example if ϕt is the constant isotopy then we can choose as
Hamiltonian function either ht ≡ 0 or in fact any Hamiltonian function of the form ht(x) = c(t).
If C(t) is the primitive of c(t) which vanishes at 0 then we get that Φt(z) = e−2iC(t)z. More
generally, if Φt is the lift of a Hamiltonian isotopy ϕt which is obtained via the Hamiltonian
function ht then any other Hamiltonian isotopy of Cn of the form Ψt = θ(t)Φt for some map
θ : [0, 1]→ S1 can be obtained by modifying ht in a suitable way. In order to solve this ambiguity
we normalize the Hamiltonian function ht of a Hamiltonian isotopy ϕt of CPn−1 by the condition∫
CPn−1 ht(x)dx = 0 for all t.

Using the construction in Section 7 we can obtain a generating function F : R2n × R2N → R for
Φ1. We will now show that this function has the same properties of the Hamiltonian function of
Φt, i.e. it is homogeneous and S1-invariant.

Proposition 17.2. Let Φt : Cn → C2n be the lift of a Hamiltonian isotopy ϕt of CPn−1. Then
Φ = Φ1 has a generating function F : R2n × R2N → R which is homogeneous of degree 2, i.e.

F (λz;λξ) = λ2F (z; ξ)

for all λ ∈ R+, and invariant by the diagonal action of S1 on R2n × R2N .
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Proof. Exercise. �

Remark: F is not smooth everywhere, however... (see Théret).

Since F is homogeneous of degree 2, it is determined by its restriction to the unit sphere S2n+2N−1

Moreover, since it is S1-invariant, its restriction to S2n+2N−1 descends to a function

f : CPn+N−1 → R .

Recall that we are interested in fixed points of ϕ : CPn−1 → CPn−1. Note that fixed points of ϕ do
not correspond to fixed points of the lift Φ : Cn → Cn, but to points z of Cn such that Φ(z) and z
are in the same orbit of the S1-action on Cn. Moreover to every fixed point of ϕ there corresponds
a whole C∗-family of points of Cn with this property. Note also that a point z of Cn is in the same
S1-orbit as Φ(z) if and only if it is a fixed point of Rλ ◦ Φ for some λ ∈ S1, where Rλ : Cn → Cn
denotes the rotation given by the S1-action. On the other hand, by Lemma 7.1 we know that
fixed points of Rλ ◦Φ correspond to critical points of a generating function Fλ : Cn×CN → R for
Rλ ◦Φ. Finally note that, since Fλ is homogeneous of degree 2 and S1-invariant, all critical points
have critical value 0 and come in C∗-families. If fλ : CPn+N−1 → R is the function induced by
Fλ, then there is a 1-1 correspondence between C∗-families of critical points of Fλ with the critical
points of fλ of critical value 0. We obtain thus the following result.

Proposition 17.3. Let ϕ be a Hamiltonian symplectomorphism of CPn−1 and, for every λ ∈ S1,
let fλ be the function on CPn+N−1 which is induced by a generating function Fλ : Cn × CN → R
for Rλ ◦ Φ, where Φ is a lift for ϕ. Then the set of fixed points of ϕ corresponds to the union for
all λ ∈ S1 of the sets of critical points of fλ of critical value 0.

In order to prove Theorem 17.1 the strategy is now as follows. Given a Hamiltonian symplecto-
morphism ϕ of CPn−1 we consider the corresponding family of functions fλ : CPn+N−1 → R for
λ ∈ S1 and look at the sublevel sets

Aλ = { fλ ≤ 0 } ⊂ CPn+N−1 .

If for all λ in some interval [λ0, λ1] the functions fλ have no critical points of critical value 0 then
it follows from Lemma 15.2 that Aλ0

and Aλ1
must be diffeomorphic. Thus if we can prove that,

for some λ0 < λ1, Aλ0
and Aλ1

are not diffeomorphic then this implies that there must be a λ in
the interval [λ0, λ1] such that fλ has a critical point of critical value 0 and thus, by Proposition
17.3, that there is a fixed point of φ. In order to prove Theorem 17.1 we thus have to show that,
for any ϕ, this must always happen at least n times. The tool we will use to prove this is the
cohomological index for subsets of projective space. This index was studied in a more general
context by Fadell and Rabinowitz [FR78]. In our context it is defined as follows.

Recall that H∗(CPM ;Z) = Z[u]/uM+1 where u is the generator of H2(CPM ;Z). Given a subset
A of CPM we define

ind(A) = 1 + max{ l ∈ N | i ∗A (ul) 6= 0 }

where iA : A ↪→ CPM is the inclusion (and we set by definition ind(∅) = 0). In other words, ind(A)
is the dimension over Z of the image of the homomorphism i ∗A : H∗(CPM ;Z) → H∗(A;Z). For
a proof to the following properties of the cohomological index we refer to [FR78], Theret and
Givental.

Proposition 17.4. The cohomological index satisfies the following properties:

(i) ind(∅) = 0 and ind(CPM ) = M .
(ii) (monotonicity) If A ⊂ B then ind(A) ≤ ind(B).
(iii) (subadditivity) For A and B closed subsets of CPM we have

ind(A ∪B) ≤ ind(A) + ind(B).
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(iv) (continuity) Let A ⊂ CPM be a closed subset. Then A has a closed neighborhood U ⊂ CPM
such that

ind(U) = ind(A) .

(v) (additivity under join) For A ⊂ CPM and B ⊂ CPM ′ let A ∗S1 B be the S1–join, i.e. the

subset of CPM+M ′−1 which is given by the quotient by the S1–action of the topological

join Ã ∗ B̃ ⊂ S2M+2M ′−1 of the S1–invariant subsets Ã ⊂ S2M−1 and B̃ ⊂ S2M ′−1

corresponding to A and B. Then

ind(A ∗S1 B) = ind(A) + ind(B) .

(vi) (Lefchetz property) If X ′ is a complex hyperplane section of A ⊂ CPM (i.e. A′ = A ∩H
with H ⊂ CPM the quotient of the restriction to S2M−1 of a hyperplane of CM ) then

ind(A′) ≥ ind(A)− 1 .

Given S1-invariant functions F andG defined on CM and CM ′ respectively, let F⊕G : CM+M ′ → R
be their direct sum and let f ⊕ g : CPM+M ′−1 → R be the function induced by F ⊕G.

Lemma 17.5. The set {f ⊕ g ≤ 0} deformation retracts to {f ≤ 0} ∗S1 {g ≤ 0}.

Proof. Exercise. �

As a consequence of Lemma 17.5 and Proposition 17.4(iv) we obtain the following result.

Proposition 17.6. Given S1-invariant and homogeneous of degree 2 functions F and G defined
on CM and CM ′ respectively we have

ind
(
F ⊕G

)
= ind(F ) + ind

(
G).

We now apply these notions to the case we are interested in. Let ϕ be a Hamiltonian symplec-
tomorphism of CPn−1, and consider the corresponding family of functions fλ : CPn+N−1 → R,
λ ∈ S1, as explained above. Denote by l(λ) the cohomological index of the subset { fλ ≤ 0 } of
CPn+N−1. It follows from the discussion above that if for all λ in an interval [λ0, λ1] there are
no critical points of fλ of critical value 0 then l(λ0) = l(λ1). Suppose now that there is only one
value of λ in the interval [λ0, λ1] for which fλ has a critical point of critical value 0. Then the
presence of this critical point makes the index jump in the following way.

Lemma 17.7. Let Kλ be the set of critical points of critical value 0 of fλ. Then

l(λ1) ≤ l(λ0) + ind(Kλ) .

Proof. Take a neighborhood Uλ of Kλ which has the same index as Kλ (which is possible by
continuity). Similarly to the proof of Lemma 15.2 we can find an isotopy of CPn+N−1 that
deformation retracts { fλ1

≤ 0 } into a subset of { fλ0
≤ 0 } ∪ Uλ. Thus, by monotonicity and

subadditivity we have

l(λ1) = ind({fλ1 ≤ 0}) ≤ ind
(
{fλ0 ≤ 0} ∪ Uλ

)
≤ ind

(
{fλ0

≤ 0}
)

+ ind
(
Uλ
)

= l(λ0) + ind
(
Kλ

)
as we wanted. �

In particular if l(λ1) − l(λ0) ≥ 2 then l(Kλ) ≤ 2, thus Kλ has infinitely many points and so ϕ
has infinitely many fixed points. Theorem 17.1 now follows from this discussion and the following
fact.

Proposition 17.8. For any Hamiltonian symplectomorphism ϕ of CPn−1 we have l(λ1)−l(λ0) =
n.
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This result can be proved by contracting explicitly a path of generating functions for the Hamil-
tonian isotopy Rλ, λ ∈ S1, and calculating the difference of the indices of the sub level sets. We
refer to Théret [Th95, Th98].

Assuming Proposition 17.8, Theorem 17.1 follows. Indeed, given a Hamiltonian symplectomor-
phism ϕ, if there are less than n values of λ at which l(λ) jumps then by the discussion above this
implies that ϕ has infinitely many fixed points. On the other hand if l(λ) jumps n times then this
means that ϕ must have at least n fixed points, as we wanted to prove.
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