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(a) On the 4-punctured sphere

(b) On the torus
Figure 1. Examples of train tracks.

On a surface S, train tracks approximate simple
closed curves just as partial quotients of contin-
ued fraction expansions approximate rational num-
bers. The simple closed curve on the 4-punctured
sphere (see photograph on cover and p. 356) that,
in about 1972, was painted on the wall of the UC
Berkeley math department by William P. Thurston
and Dennis Sullivan is approximated by the train
track shown in Figure 1(a). To visualize the ap-
proximation, blur your eyes so that parallel strands
of the curve merge into branches of the train track
and so that diverging strands split apart at switches
of the train track. Train tracks were introduced by
Thurston in the late 1970s as a means of studying
simple closed curves and related structures on
surfaces.

In general, the surface S should be of finite
type—a compact, connected, oriented surface, pos-
sibly with a finite number of punctures. The sim-
ple closed curves on S that we study are those
which are essential, meaning that any disc they
bound has at least two punctures. Two essential
simple closed curves are considered to be the same
if they are isotopic on S, that is, homotopic through
simple closed curves.

Lee Mosher is chair of the Department of Mathematics and
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A Train Track?

Lee Mosher

A train track on S is a smooth 1-complex T,
whose vertices are called switches and whose edges
are called branches, such that at each switch s
there is a unique tangent line and s has an open
neighborhood in T which is a union of smoothly
embedded open arcs. The metric completion C of
each component of S — T is a surface with cusps
whose “cusped Euler index” must be negative, that
is, x(C) — %#(cusps) < 0. The latter condition rules
out several possibilities for C: a disc with no cusps
and < 1 puncture, a disc with no puncture and one
or two cusps, and an annulus with no cusps and
no puncture. Sometimes these conditions are
slightly relaxed to allow C to be a bigon, a disc with
no puncture and two cusps, which has cusped
Euler index equal to zero. Indeed, on a torus, one
must allow bigons or else train tracks do not exist.

A simple closed curve y is carried by a train track
T if y can be isotoped into an arbitrarily small
neighborhood of T so that each tangent line of y
is arbitrarily close to a tangent line of 1. The re-
quirement that each completed component of S — T
has negative cusped Euler index (or is a bigon) im-
plies that each simple closed curve carried by T is
essential on S. The statement that a simple closed
curve is carried by a train track is an analogue of
the statement that a rational number is approxi-
mated by a continued fraction partial quotient. On
the torus T2 =R?/Z? this analogy becomes very
precise, as we now describe.

Up to isotopy, simple closed curves on T2 are
in one-to-one correspondence with the extended ra-
tionals Q U {c0} —arational number r corresponds
to a simple closed curve y, which lifts to a line in
R? of slope r. The basic train track Tjo,c] on T2,
shown in Figure 1(b), is obtained from yo U y« by
flattening the angles at the transverse intersection
point yo N Y until this point has a unique tangent
line of positive slope. The train track 7o, has one
bigon, and Tjp,] carries precisely those simple
closed curves y, with 0 < r < co. More generally,
consider integers a,b,c,d >0 such that
ad — bc = 1. The rational numbers p=§ <7 =¢q
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p<r=<gq.

To make sense of any notion of approximation,
we must say how the approximation can be re-
fined. With train tracks this is accomplished by the
notion of splitting. Given a train track T, first one
looks in T for a splitting locus consisting of two
strands of T that meet tangentially at a point or
along a short arc, and then one can define a left
splitting T > T and a right splitting T > Tg, using
the model for splitting depicted in Figure 2. Every
simple closed curve y that is carried by T is also
carried by one of 17 or Tg, possibly both, and so
one can regard 17 or TR as refining the approxi-
mation of y.

On the torus, starting from the train track
T[0,00] = Tjo 1y, @ left splitting results in
Ty = T(1.»], and a right splitting results in

T[é’%] = Tjo,1]. More generally, givenp=5 <% =g

as above, if one takes the Farey sum r = 57, then
p<r<gq, and there is a right splitting
R L

Given a simple closed curve y, with r € [0, o],
there is a finite sequence of splittings Tjg,c] =
To> Ty > -+ > Tp1 > Ty, Wwhere the parity (L or
R) of each splitting is chosen inductively so that
each T; carries the curve y,. The sequence halts
when it first reaches a train track 1, that contains
an embedded copy of y,. This train track sequence
is called the train track expansion of the closed
curve y,. For example, the train track expansion of
Y10/7 is given by
R
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From the LR sequence of this train track expansion—

1L, 2 Rs, 3 Ls—one can derive the continued

fraction expansion 0_14 % Also, the partial
7 2+3

quotients 1 = % and 1 + % = % show up in the train
track expansion. More generally, given any rational
number r € [0, o], from the train track expansion
of y, one can derive the partial quotients and the
continued fraction expansion of r: from the RL
sequence consisting of ng Ls, n1 Rs, n» Ls, ...,
ending with nkg Ls or Rs depending on whether K
is even or odd, one obtains the expansion

r=ngo+
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The dictionary between train track expansions
and continued fraction expansions can be extended
much further. Thurston discovered that, just as the
extended rational numbers Q U {e} can be com-
pleted to the extended real numbers R U {c0} by a
compactification which is natural with respect to
the fractional linear action of the modular group
SL(2,Z) , so can the set of isotopy classes of essen-
tial simple closed curves on a finite-type surface S
be completed to the space PM L of projective mea-
sured laminations on S by a compactification which
is natural with respect to the action of the mapping
class group MCG(S) [CB88]. Some results about train
track expansions of measured laminations on S are
described in [Pen92], and a detailed description of the
theory is given in [Mos]. For example, just as irra-
tional numbers correspond bijectively with infinite
continued fractions, so do projective measured
laminations whose leaves are not all closed curves
correspond bijectively to infinite train track expan-
sions that satisfy some mild combinatorial condi-
tion. One can also use train track expansions to
detect finer properties of a measured lamination
such as “arationality”, which means that the lami-
nation fills the whole surface.

One application of the dictionary is to the study
of Thurston’s classification of mapping classes
on S [CB88]. The set of points in R U « fixed
by Anosov elements of SL(2,Z)are precisely
the quadratic irrationalities, which are precisely
the numbers with eventually periodic continued
fraction expansion; moreover, the periodicity loop
can be used to classify Anosov elements of SL(2, Z)
up to conjugacy. The set of points in P’M L fixed
by pseudo-Anosov elements of MCG can be
characterized in terms of periodic behavior of
their train track expansions, and the periodicity
data can be used to classify pseudo-Anosov map-
ping classes up to conjugacy [Mos].
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Comments and suggestions may be sent to
notices-whatis@ams.org.
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About the Cover

This month’s cover, mentioned in Lee Mosher’s article, portrays
part of a mural on a wall of Evans Hall at the University of Cali-
fornia in Berkeley, painted in the fall of 1971 by Dennis Sullivan
and William (Bill) Thurston (signatures at upper right in cover
image). The whole mural is shown below. It portrays what I pre-
sume to be a more or less randomly chosen path on a two-sphere
punctured by three points, and the ideas behind it played a role
in the evolution of the concept of train tracks.

Last fall Sullivan wrote to Mosher: “In 1971 I was a guest of
the University of California giving lectures in the Math Dept. At
the same time there was a confrontation between the trustees and
the graduate students et al. The latter planned to continue dec-
orating the walls of the department by painting attractive murals
and the trustees forbade it. At tea some students came up and
invited me to join their painting the next day. I became enthusi-
astic when one bearded fellow [W. T.] showed me an incredible
drawing of an embedded curve in the triply punctured disk and
asked if I thought this would be interesting to paint. I said, “‘You
bet,” and the next day we spent all afternoon doing it. As we
transferred the figure to the wall it was natural and automatic to
do it in terms of bunches of strands at a time—as an approximate
foliation—and then connect them up at the end as long as the num-
bers worked out. Thus some years later in ’76 when Bill gave an
impromptu 3-hour lecture about his theory of surface transfor-
mations I absorbed it painlessly at a heuristic level after the ex-
perience of several hours of painting in '71.”

Thurston wrote in a note to Mosher that the project “was in
response to a little flurry with administration sanctions of some
sort when John Rhodes painted the wall outside his office, I think

with a political slogan related to one of the issues of the times
(Vietnam war, invasion of Cambodia, People’s Park?).”

Later Thurston wrote to add: “The letters refer to a word in
the free group on three generators, which is the fundamental group
of the plane minus the 3 points. If you imagine 3 ‘branch cuts’
going vertically from the three spots, and label them a, b, and c,
then as you trace out the word starting from the left inside (I be-
lieve) it will trace out the given word, where a’ designates al,
etc.

“I'was excited as a graduate student to rediscover that you could
describe simple closed curves such as this by a small number of
integer parameters, which I later learned had been earlier inves-
tigated by Dehn and Nielsen (i.e., in this case, the three vertical
branch cuts intersect 8, 13, and 5 segments of the curve). The
fact that these are Fibonacci numbers is related to one method
for generating this curve. Start with 3 points in the plane, with a
circle enclosing say the right two. Now ‘braid’ the points, like a
standard woman’s hair braid, middle over left, then middle over
right, etc. If you drag the curve along, these numbers will always
be Fibonacci numbers, and you’ll get the given curve after a few
passes. Generalizing this theory eventually led me to my theory
of pseudo-Anosov diffeomorphisms.” References for this work of
Thurston’s are “On the geometry and dynamics of diffeomor-
phisms of surfaces”, Bull. Amer. Math. Soc. 19 (1988), 417-31 and
“Travaux de Thurston sur les surfaces”, Astérisque 66-67 (1979).

Both photographs were taken by Kenneth Ribet, to whom we
are extremely grateful for the time and effort he spent to obtain
them.

—BIill Casselman (notices-covers@ams.org)
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