WHAT T§...

a Quasi-morphism?

As far as I know, the notion of a quasi-morphism
does not have much to do with category theory. This
very natural idea underlies several interesting re-
cent developments at the crossroads of algebra,
topology, geometry, and dynamics. Other, perhaps
better, names currently in use for the same concept
are quasi-homomorphism and pseudo-character.

Let G be a group. A map {:G — R is called a
quasi-morphism if its deviation from being a
homomorphism is bounded; in other words, there
exists a constant D(f), called the defect of f, such
that

If(xy) = f(x) = f(¥)| < D(f)

for all x,y € G. The most obvious examples of
quasi-morphisms are of course homomorphisms
and arbitrary bounded maps. To avoid trivialities
associated with the latter and to make subsequent
arguments neater, one usually passes to homoge-
neous quasi-morphisms. Every quasi-morphism
can be homogenized by defining

(X"

Px) = r!ll’Il}O T .

Then @ is again a quasi-morphism, is homoge-
neous in the sense that @(x") =n@(x), and is
constant on conjugacy classes.

It turns out that homogeneous quasi-morphisms
share enough properties with homomorphisms
that they can be used in similar ways. For exam-
ple, let S C G be an arbitrary subset. The S-length
Is(x) of x € G is the minimal number of factors
in a factorization of x into elements of S. For a
homogeneous quasi-morphism @:G — R set
C(p,S) = supses |@(s)]. Then
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n- X =px")
< Is(x") - C(@, $) + Usx™) = 1) - D(@) .

If @(x)+#0 and @ is bounded on S, then one
obtains a positive lower bound for the S-length
Is(x™) of x", which is linear in n. Hence one obtains
a positive lower bound for the stable S-length

[Ix[ls = lim —IS(;‘") of x

lPX)]
> —
(1) lx]ls = C(@.5)+D(@)
There are many papers in algebra and topology
discussing these kinds of estimates in the case
when S is taken to be the set of commutators in
G; see [1] and the papers cited there and [3] for
some more recent developments. (Note that gen-
uine homomorphisms are useless for bounding
the commutator length, but quasi-morphisms are
not.) Moreover, these estimates are useful for many
other length problems, where S does not have to
be the set of commutators; and other algebraic
problems, which are not a priori length problems,
can be attacked using quasi-morphisms. These
include the question whether G is boundedly gen-
erated and questions about the width of subgroups.
Here are some examples of quasi-morphisms.
The first one is due to Brooks:

Example 1. Let G = F» = (x, y) be afree group on
two generators and w a cyclically reduced word in
these generators. Define @, (g) to be the number
of nonoverlapping copies of w minus the number
of nonoverlapping copies of w=! in g. This is a
quasi-morphism on F>. For w = x or y one obtains
the two homomorphisms generating the first
cohomology of F>, but for more complicated words
these quasi-morphisms are not homomorphisms.

Many authors have generalized this construction,
among them Fujiwara and his collaborators. They
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have shown, for example, that the vector space of
quasi-morphisms is infinite dimensional if G is a
free group or any nonelementary word-hyperbolic
group, or if G admits a suitably weakly hyperbolic
action on a Gromov-hyperbolic space. The same
conclusion holds if G=A x¢ B such that C has
index at least 2 in both A and B and has at least
three double cosets in at least one of the factors,
or if G has infinitely many ends.

Our second example is very classical. It shares,
and perhaps explains, the hyperbolic flavor of the
first one.

Example 2. Consider the action of G = SL>(Z) by
Mobius transformations of the upper half-plane. The
translates of a piece of the unit circle connecting
i € H? to a primitive third root of unity £ € H? form
a tree, all of whose vertices are trivalent. The
orientation of H? defines a cyclic ordering of the edges
meeting at each vertex. There is a unique path [ with-
out backtracking fromi to g(i) for any g € G. Define
@(g) to be the number of left turns minus the num-
ber of right turns that one makes when travelling
along I. This defines a quasi-morphism on SL»(Z).

This is essentially the Rademacher ¢-function,
which can be defined purely arithmetically. It is
related to Dedekind sums, to the signature defects
of torus-bundles, to Maslov indices, and to eta-
invariants of 3-manifolds and their adiabatic
limits. It admits many generalizations and varia-
tions, some of which have turned up in work of
Barge, Gambaudo, and Ghys on diffeomorphism
groups of surfaces and in work of Polterovich and
Rudnick in dynamics.

Example 3. The universal covering of the group
of orientation-preserving homeomorphisms of S?
consists of continuous strictly monotonically
increasing functions f:R — R with the property
f(x+1)=fx)+1.For such an f the limit

n— oo n

exists and is independent of x. This is the trans-
lation number of f, defining a homogeneous
quasi-morphism.

In his 1958 paper on flat connections in plane
bundles over surfaces, Milnor explicitly noted that,
letting SL»(R) act on the circle by projective trans-
formations, tlﬁganslation number is a quasi-
morphism on SL»(R). The bound on Euler numbers
of flat bundles that Milnor proved is obtained by
combining two estimates: the lower bound (1) for
the (stable) commutator length given by this
quasi-morphism and an upper bound for its defect.
This was probably the first application of a quasi-
morphism. Later Wood generalized the argument

—_~

to Homeo4(S1). In a similar spirit, the Ruelle in-
variant of area-preserving diffeomorphisms of
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the disc is a quasi-morphism admitting many
generalizations, some of which have been studied
recently by Gambaudo and Ghys.

Many other interesting quasi-morphisms are
turning up on groups of homeomorphisms. For
example, for the homeomorphism groups of closed
surfaces, one can implicitly obtain the existence of
nontrivial quasi-morphisms using Seiberg-Witten
theory on symplectic four-manifolds; cf. [3]. For
certain symplectomorphism groups Entov and
Polterovich have constructed nontrivial quasi-
morphisms related to the Calabi homomorphism
by using quantum cohomology.

There is an important relationship between quasi-
morphisms and bounded cohomology in the sense
of Gromov [2]. The definitions show that the cobound-
ary of ahomogeneous quasi-morphism is abounded
2-cocycle on G and sorepresents abounded degree
2 cohomology class. The image of this class in the
usual group cohomology is trivial, as the cocycle is
a coboundary by definition, although it is not the
coboundary of any bounded function. Thus the vec-
tor space of homogeneous quasi-morphisms mod-
ulo the space of homomorphisms to R is identified
with the kernel of the comparison map
between bounded and usual group cohomology in
degree 2.

Recent progress in the theory of bounded coho-
mology due to Burger and Monod in many situations
implies that the space of quasi-morphisms is triv-
ial, or at least finite dimensional, most notably for
lattices in higher rank groups. The tension between
these results and the existence theorems for (infi-
nitely many) quasi-morphisms mentioned above
leads to interesting conclusions when comparing
various groups arising in geometry and dynamics
with algebraic groups.

Finally, it is sometimes useful to consider quasi-
morphisms with values in groups other than R. For
example, quasi-morphisms with values in Z play a role
in the classification of representations in the home-
omorphism group of the circle. There is also an in-
teresting construction of the real numbers as the
space of quasi-morphisms Z — Z modulo bounded
maps, due to ACampo.

References

[1] C. BAvarD, Longeur stable des commutateurs, Enseign.
Math. 37 (1991), 109-150.

[2] M. Gromov, Volume and bounded cohomology, Inst.
Hautes Etudes Sci. Publ. Math. 56 (1982), 5-99.

[3] D. KoTscHIcK, Quasi-homomorphisms and stable
lengths in mapping class groups, Proc. Amer. Math.
Soc. (to appear).

NOTICES OF THE AMS



